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Extended Abstract

Complex systems often involve interactions among more than two entities, naturally repre-
sented as hypergraphs. Stochastic block models offer one approach to extracting community
structures within complex systems, fitting generative models of hypergraphs that assume a la-
tent community structure to real-world data [1, 2]. Existing models for hypergraphs (e.g.,
Refs. [3, 4]) assume a single, uniform interaction pattern (e.g., a global affinity matrix) re-
gardless of hyperedge size. This simplification may obscure crucial qualitative differences in
interaction dynamics across varying group sizes (e.g., a small group’s dynamics versus a large
group’s), which can lead to suboptimal community detection and link prediction performance.
Here, by accounting for the heterogeneity of community-specific higher-order interaction pat-
terns across different hyperedge sizes, we propose the multi-order stochastic block model for
hypergraphs, which we refer to as HyperMOSBM.

We model a hypergraph probabilistically, assuming an underlying K communities and soft
community memberships for N nodes. The propensity of node v; belonging to each com-
munity is specified by a K-dimensional vector (u;)j<x<g, where uy >0 foralli=1,...,N
and k =1,..., K. We represent these membership vectors as an N x K matrix, denoted by
U = (uix)1<i<N, 1<k<k- We refer to the number of nodes contained in a hyperedge e as its size,
and let . be the set of hyperedges’ sizes observed in the hypergraph. We define a partition
of ¥/ as € = {Cy,C,,...,CL}, where C; are disjoint subsets of .% such that UzL:1 C =Y
and L > 1. Each subset C; € ¥ corresponds to a set of hyperedges’ sizes that are assumed to
share a common interaction pattern. The strength of intra- and inter-community interactions
among nodes is represented by a set of symmetric K x K affinity matrices, denoted by w =
(W/EQ)ISkSK 1<q<k»> Where w,(clq) >0forallk=1,...,K,q=1,...,K,and[ =1, ..., L. Specifi-
cally, for any hyperedge e of size s = |e|, its interaction pattern is governed by the affinity matrix
W where s € C;. HyperMOSBM is a generative model for a hypergraph, with the number
of communities K, node membership matrix U, and affinity matrices {W(l), we W(L)}.
To investigate the community structure of a given hypergraph, we fit HyperMOSBM with a
specified number of communities to that hypergraph, using a maximum likelihood approach to
infer the model parameters U and {W(l), we W(L)}.

A central challenge for HyperMOSBM is determining the partition ¢ of hyperedge sizes.
We employ a data-driven strategy based on maximizing the area under the receiver operat-
ing characteristic curve (AUC) in link prediction. We begin with an initial clustering where
all hyperedge sizes belong to a single cluster (i.e., L =1 and C; = .¥’). In each subsequent
step, we greedily explore splitting one existing hyperedge size cluster into two smaller clusters
based on adjacent sizes. The split operation that yields the largest improvement in the AUC
is chosen. This process continues until the AUC no longer improves by a predefined relative
threshold (here we set 1%). For robust evaluation, we measure the AUC as the average over
100 independent training-test splits of the set of hyperedges.

We applied HyperMOSBM to five contact hypergraphs. Each hypergraph consists of nodes
representing individuals and hyperedges representing social contacts. HyperMOSBM achieves
higher AUC values 30.8%, 26.7%, and 19.3% than Hy-MMSBM [4] in ‘primary-school’,
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‘high-school’, and ‘invs15” hypergraphs, respectively. This suggests that the interaction pat-
terns within these contact hypergraphs exhibit specific heterogeneities across different group
sizes. Indeed, in the ‘high-school’ dataset, HyperMOSBM largely recovered communities cor-
responding to distinct classrooms in a high school than Hy-MMSBM (see Fig. 1).

Taken together, HyperMOSBM explicitly models heterogeneous interaction patterns across
varying group sizes. Future work includes exploring alternative strategies for efficiently deter-
mining the partition of the set of hyperedge sizes and applying it to a wider range of hypergraph
datasets to further explore the nature of multi-order heterogeneity in real-world complex sys-
tems. This work contributes to the effective modeling, deeper understanding, and analysis of
community and mesoscale structures in complex systems.

Ethical Considerations

Our study exclusively utilizes publicly available or anonymized datasets, ensuring that no per-
sonally identifiable information is processed. The insights gained are intended solely for aca-
demic and scientific understanding of complex systems, without direct applications that could
pose immediate ethical concerns.
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Figure 1: Inferred community-membership matrix of size N x K in the high-school data.
The row indices are arranged according to the classroom. N = 327 and K = 9.



