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Abstract

Uncertainty in machine learning is not generally
taught as general knowledge in Machine Learning
course curricula. In this paper we propose a short
curriculum for a course about uncertainty in ma-
chine learning, and complement the course with a
selection of use cases, aimed to trigger discussion
and let students play with the concepts of uncer-
tainty in a programming setting. Our use cases
cover the concept of output uncertainty, Bayesian
neural networks and weight distributions, sources
of uncertainty, and out of distribution detection.
We expect that this curriculum and set of use cases
motivates the community to adopt these important
concepts into courses for safety in Al

1. Introduction

Neural networks and machine learning models are ubiqui-
tous in real-world applications, but in general model and
data uncertainty are not well explored, and this propagates
on how machine learning is taught at different levels. Un-
certainty is an important concept that should be taught to all
students interested in machine learning.

Overall Uncertainty Quantification of machine learning
models (Gawlikowski et al., 2021) is not part of the stan-
dard curricula at the undergraduate or graduate level, mostly
being present in advanced summer schools (like MLSS,
EEML, DeepLearn, SMILES, etc), with some exceptions at
graduate courses aimed mostly at theory of Bayesian NNs
(BNNs).

In this paper we aim to develop a concept for teaching
uncertainty quantification in machine learning, first with
a short curriculum, and then through different use cases,
starting from why we need models with uncertainty and
ending at out of distribution detection. We hope that this
material can be used for easier planning of future courses.
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Teaching with clear use cases can be beneficial for student’s
learning (Lynn Jr, 1999), specially when they are combined
with practical experience.

Uncertainty in ML is a subject that is heavy on probability
and statistics, and this is a topic that might not be easy for
some students. We believe that having clear use cases for
this purpose can help students learn and to clarify concepts.
These use cases can be implemented in code using standard
machine learning frameworks like Keras, TensorFlow, and
PyTorch.

2. Curricula for UQ in ML

We first introduce a short curricula template for a uncertainty
in machine learning course. This could be a graduate-level
course, requiring students to know basic neural networks,
machine learning theory, and probability and statistics, as
well as having appropriate coding skills in a programming
language in order to understand and implement the use cases
in a framework of their choice.

The overall curriculum is presented in Table 1. Any teacher
should of course adapt this course to their institution or
student body, and we encourage the teacher to also include
seminar-style discussions including state of the art research
in BNNs and uncertainty in ML, as this is still a very re-
search heavy field.

The ultimate goal of this course is to enable students to per-
form research in this field, and to apply this knowledge into
neighboring task field like Computer Vision, Reinforcement
Learning, or Robotics.

3. Use Cases

In this section we present a selection of use cases to teach
concepts of uncertainty in machine learning settings. These
represent what we think are the most difficult concepts for
students to grasp, which motivate the application of use
cases as teaching methodology.

3.1. Output Uncertainty

The best use case to teach the concept of uncertainty at the
output of a machine learning model is a simple regression
setting, as the output mean can be associated to the output
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Unit

Content

Introduction to UQ

Statistical Methods
Bayesian NNs
Methods for UQ

Metrics and Evaluation

Point-wise outputs versus distribution outputs in ML models. Two-headed models for
regression. Sources of uncertainty. Representations of output uncertainty. Applications
and possible legal requirements. Relationship to Explainable AI. Connections to safety and
trustworthiness in Al

Categorical, Gaussian, and Dirichlet Distributions. Predictive intervals, Quantile Regression.
Distribution over weights. Predictive posterior distribution. Inference using Bayes Rule.
Deep Ensembles (Lakshminarayanan et al., 2016), Monte Carlo methods like Dropout (Gal
& Ghahramani, 2016) and DropConnect (Mobiny et al., 2019). For advanced courses,
Gaussian Processes (Rasmussen & Williams, 2005) and Markov Chain Monte Carlo methods
(Betancourt, 2017) can also be included.

Losses with uncertainty, Entropy, Calibration, Reliability plots, and related calibration metrics
(Guo et al., 2017). Advanced topics can be proper scoring rules (DeGroot & Fienberg, 1983).

Out of Distribution
Detection
curves.
Challenges and
Future Research
2021).

In distribution and Out of distribution data. Evaluation protocol with standard datasets
(CIFAR10 vs SVHN, MNIST vs Fashion MNIST). Evaluation using histograms and ROC

Scalability of BNNs, Generalization of out of distribution detection, Computational
performance, Datasets with uncertainty, and Real-world applications (Valdenegro-Toro,

Table 1. Curriculum for a graduate course in Uncertainty Quantification in Machine Learning

of a classical model (without uncertainty), and the standard
deviation of the output can be directly associated with the
uncertainty in the output. In a classification setting with
probabilities associated to each class, it is more difficult to
directly see the effect of uncertainty in the model.

Learning Objective. Students will learn about the differ-
ence between a classical machine learning model and one
with output uncertainty.

Use Case. Students will implement a standard neural net-
work using a framework of their or the teacher’s choice.
Students will generate data by sampling the following func-

tion:
f(z) =sin(z) + € (D
e ~N(0,0(x)) (2
o(z) =0.15(1 + e *)7? (3)

For the range « € [—m, 7]. Two neural network models can
be used. One is a standard neural network and the other is
a ensemble of 5 neural networks (Lakshminarayanan et al.,
2016), which is a simple method to estimate uncertainty. An
example of this setting can be seen in Figure 1, where output
uncertainty is represented as confidence intervals. Students
can the visually compare their results, and relate on how the
standard neural network does not model the training data
points variations, while the neural network with uncertainty
does. This is specially noticeable as the standard deviation
of the noise is variable, which is not captured with a standard
neural network.

A variation of this exercise is to use a deep ensemble, where
each ensemble member has two output heads, one for the

task (u()) and another for uncertainty (o2(z)), which can
be trained with a negative log-likelihood loss that does not
require labels for uncertainty (Eq 5). This exercise helps
students see that a model needs to be “added something” to
estimate uncertainty properly, an output head in this case.
The uncertainty head o (z) represents the variance of the
output .

3.2. Bayesian Neural Networks

Bayesian Neural Networks are difficult to understand con-
ceptually since the formulation is heavy in probability, and
weights are replaced by probability distributions. In this use
case we simplify the concept for easy understanding.

Learning Objective. Students will learn the conceptual
differences between a standard and an Bayesian neural net-
work and how it relates to produce uncertainty at the model
output.

Use Case. Students will implement the forward pass of
a simple neural network using numpy or a similar linear
algebra framework. For a standard neural network, scalar or
point-wise weights are used, and for a BNN, weights will be
drawn from a given Gaussian distribution (the actual weight
values for this use case do not matter). Sampling can be
used to produce predictions from a BNN, by sampling a set
of weights and producing a forward pass with a given input.

Students will compare the outputs given random weights
for each of their networks, and compare how the BNN is
a stochastic model, meaning that predictions vary with a
given input, as different weights are sampled and propagate
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Figure 1. Comparison between classic and neural networks with output uncertainty for regression of f(z) = sin(z) + €.

through the network to produce different outputs, but these
predictions are not completely random, and are samples of
the predictive posterior distribution.

In comparison, the standard neural network has fixed predic-
tions with a given input and weights, which cannot model
uncertainty. An additional experiment is to vary the depth
or width of the network, as a way to increase the number
of weights, and see how predictions change in terms of
stochasticity.

3.3. Bayesian NN Intractability

Connecting to the previous use case, it is well known that
inference in BNNSs is intractable, due to the high computa-
tional complexity required to estimate weight distributions,
particularly for highly parameterized neural networks. In
this use case we wish the student to form an intuition on
why this is the case.

Learning Objective. Students will learn an intuition on
why BNNs are intractable with a thought experiment and
validate it with a code implementation.

Use Case. As a thought experiment, students should think
about the predictive posterior distribution (Eq 4), which
integrates a term over the weights of the network to produce
a distribution output.

P(y|1):/ P(y|z,w)P(w)dw )

For the experimental setting, students should implement a
simple BNN using numpy, with randomly initialized weight
distributions (Gaussian distributions can be used for sim-
plicity), and then produce predictions with random data
(similarly to the previous use case). But then students are
asked to vary their network architectures, increasing depth
from a few layer to over 50 layers, or the width from a small
number to a large number (over 1024 neurons), and then
estimate and plot the computation time as network depth
and number of samples is varied.

Students the analyze their results and comment on the appli-

cability of BNNs for real-world applications, considering
their computational costs. Additional experiments for dis-
cussion are the possibilities of computing the integral in Eq
4 with analytical or numerical methods.

3.4. Aleatoric vs Epistemic Uncertainty

Different sources of uncertainty (Der Kiureghian &
Ditlevsen, 2009) and their separation (Kendall & Gal, 2017)
are not always easy to see and learn intuitively. This use
case tries to show the difference with a practical example in
a regression setting.

Learning Objective. Students will learn the difference be-
tween aleatoric and epistemic uncertainty through a simple
regression problem, and how different parts of the model
contribute to these sources of uncertainty.

Use Case. We will use the same setting as the output uncer-
tainty use case (Sec 3.1), but only a model with uncertainty.
Since an ensemble is used to estimate uncertainty in this
case, we will use the negative log-likelihood loss formula-
tion to estimate aleatoric uncertainty:

log 01'2 (Xn) (pi(xn) — yn)2
2 202(xp)

L (yn; Xn) = &)

Students should train an ensemble of 5 networks, and then
plot the predictions separately. First students plot the predic-
tions of the mean output of each ensemble member (which
produces epistemic uncertainty), and then separately plot the
standard deviation outputs of each ensemble member (which
estimate aleatoric uncertainty). This concept is shown in
Figure 2.

Students then compare both kinds of predictions and try to
explain the differences, and how they relate to the epistemic
and aleatoric sources of uncertainty. A plot of the training
data might also help students visualize aleatoric uncertainty.

3.5. Out of Distribution Detection

Out of distribution detection entails detecting input samples
outside of the training set distribution, through output un-
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Figure 2. Comparison between Epistemic and Aleatoric Uncer-
tainty in the Toy Regression example.

certainty or other confidence measures. In this setting we
present two use cases.

Learning Objective. Students will learn how to perform
and evaluate out of distribution using standard image clas-
sification datasets and in a regression toy example, and to
get the intuitions on how uncertainty enables the out of
distribution detection task.

Classification Use Case. Using an appropriate neural
network framework, students will implement and train a
BNN (or an approximation) on the SVHN dataset (ID, in-
distribution), and evaluate in the train and test splits. Then
students are asked to make predictions using their model on
the CIFAR10 test set (OOD, out-of-distribution) and to look
at the class probabilities that their model produces. Entropy
can be used to obtain a single measure for each sample,
and then compare the ID vs OOD entropy values using a
histogram. The use case can be completed by obtaining a
threshold between ID and OOD entropy distributions us-
ing an ROC curve, in order to perform out of distribution
detection in the wild.

Regression Use Case. For a toy example in regression, we
use the same setting as Sec 3.1, keeping the training set x €
[—7, 7], and introducing an OOD set of z € [—2m, —7r] U
[, 27]. Students then plot the predictions from their model,
noting the values on the two datasets (ID and OOD). A
sample result can be seen in Figure 3.

Students should compare the output standard deviation pro-
duced by their model in the ID and OOD datasets. They
should observe that uncertainty as predicted by the output
standard deviation should be higher in the OOD data than in
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Figure 3. Out of Distribution Detection in the Toy Regression Ex-
ample. Values x > 7 and x < — are out of distribution in this
example, which triggers large epistemic uncertainty and can be
used to detect this condition.

the ID data, which indicates that the model is extrapolating.
Students can add additional evidence of extrapolation by
plotting the function f(z) = sin(z) which is the true func-
tion that generated the training data, and confirm that the
model predictions in the OOD data are very incorrect when
compared to the true function, while predictions in the ID
data are correct inside the training range ([—, 7]). Error
metrics like mean absolute error can be used to confirm this
difference.

The teacher can also show that uncertainty in the OOD set
should be proportional to the distance (in input space) from
the sample to the edge of the OOD set, and that this propor-
tionality is expected for proper uncertainty quantification.

Misconceptions. Students might be confused that some
OOD examples have low uncertainty and are easily confused
with ID examples. This can be explained with models are
not perfect and make mistakes, and this also translates into
mistakes in OOD.

Another issue is the definition of out of distribution data
can be very abstract, as it is an open set that corresponds to
anything not in the training data distribution. Multiple OOD
datasets can be used to show this.

4. Conclusions and Future Work

In this paper we have presented a small course curriculum
and a selection of use cases to teach students about uncer-
tainty quantification in machine learning models. We hope
that this work can motivate the community about the impor-
tance of teaching uncertainty quantification and BNNs to
students learning about machine learning, and how it relates
to the concept of safety in artificial intelligence.

Future course contents and use cases can be centered in
specific applications of machine learning and artificial intel-
ligence, such as Computer Vision, Robotics, or Autonomous
Systems. There is a good demand to connect theoretical
fields (BNNs in particular) into practical applications as a
way to lead future research.
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