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ABSTRACT1

Music is highly structured, in forms that reflect cultural2

traditions and human cognitive constraints. Building mu-3

sical AI that explicitly models this structure can bring in-4

sight into music cognition, and enable more controllable5

and human-centered tools to empower musicians. To this6

end, we build on recent work on concept representation7

in cognitive science to model structured musical concepts8

as generative programs, and model reasoning about mu-9

sic structure as program induction. We leverage large lan-10

guage models (LLMs) as a backend for generating pro-11

grams for tractable inference, where structure is repre-12

sented by program-like primitives and their compositional13

transformations. In line with recent research on world-14

modeling with LLM-based program synthesis, we explore15

encoding these programs in a Turing-complete language,16

such as Python. We compare unconstrained program gen-17

eration, and program generation constrained by a musical18

DSL of four operations (transpose, invert, retrograde, iden-19

tity), finding that DSL constraints improve program dis-20

covery on unseen sequences. This result demonstrates the21

proof-of-concept validity and value of our approach toward22

building computational models of music cognition.23

1. INTRODUCTION24

Music is highly structured. This structure reflects in part25

the communicative pressure of transmitting music between26

practitioners [1–3], and in part the combinatorial nature27

of human thought [4, 5] reflected in the process of music28

creation. In this work we build on a core idea in cogni-29

tive science, that human learned representations are uni-30

versally combinatorial, where complex concepts are built31

by combining simpler ones [4, 6, 7]. Based on this prin-32

ciple, we propose a new approach for engineering genera-33

tive AI (GenAI) systems for music production grounded34

in human-like, combinatorial representations of musical35

structure. We give a proof-of-concept implementation of36

such a system, as a step toward building more control-37

lable and human-centered tools for human-AI music co-38

creation.39
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Recent influential works in psychology have modeled40

mental representations of the world as generative pro-41

grams. A common approach to modeling how mental pro-42

grams are learned from experience is based on Program43

Induction (PI) – the process by which, when given a set of44

examples, learners hypothesize a latent generative rule that45

could have produced them. [8, 9]. These models demon-46

strate an impressive power of PI to explain human mental47

representations across reasoning domains including spa-48

tial [10, 11], visual [8, 12], and linguistic [13] concepts.49

Conversely, the creative process by which people come50

up with new samples from a given concept class can be51

modeled as Program Synthesis (PS) – the generative pro-52

cess that recombines and mutates simple compositional el-53

ements into more complex concepts. Given that the latent54

hierarchical structure in music is particularly well-suited55

for PI-based modeling, in this work we explore compu-56

tational modeling approaches for flexibly encoding a va-57

riety of symbolic musical structures, as well as examine58

approaches that would make inference of the underlying59

structural representations more tractable.60

We contribute: (1) proof-of-concept representations61

of musical structure as Turing-complete programs, (2) a62

tractable framework for discovery of musical structure63

through leveraging LLM-based synthesis of symbolic pro-64

grams65

2. APPROACH66

Previous work on music representations Previous work67

has studied the generative nature of music via Context68

Free Grammars (CFGs) [14]. CFGs successfully model69

non-local hierarchical dependencies [15], the perception70

of structure in Western music [16], production of musical71

rhythm [17], and harmony [18]. However, CFGs are not72

Turing-complete, cannot grow by inventing new primitives73

and lack the flexibility to interactively adapt to human per-74

formers.75

Music as Python programs We represent musical76

concepts as executable Python code. Unlike CFG or statis-77

tical models, Python code can encode causal transforma-78

tions, recursion, and compositional hierarchies. Programs79

can be executed, inspected, and debugged, making them80

both highly expressive and human-interpretable.81

LLMs as program generators A key challenge in82

program induction is the curse of compositionality, where83

there are infinitely many possible programs that can ex-84



Figure 1. LLM-guided program induction for musical cognition. Given training examples and DSL constraints, LLMs
generate candidate programs that are evaluated for compositional reasoning and generalization to novel sequences.

plain observed behavior. This makes searching for pro-85

grams computationally costly, a naive approach of enu-86

merative search through all possible programs that satisfy87

given examples is computationally intractable [8, 9].88

To make inference tractable, traditional PI frameworks89

assume that the underlying programs are written in a pre-90

defined Domain-Specific Language (DSL): a small set of91

primitives and transformations are hand-designed to con-92

strain the search space, while capturing the concepts in the93

given domain. The need to hand-craft a DSL has tradition-94

ally limited applicability of PI to natural domains, such as95

music, where the DSL is inherently domain-open – new96

concepts can be invented as the system evolves.97

Recent work addresses this challenge by using LLMs98

as stochastic proposal generators, guiding search toward99

plausible programs that can then be evaluated by Bayesian100

inference or symbolic execution [19,20]. We adopt a simi-101

lar strategy: an LLM proposes candidate programs consis-102

tent with observed musical excerpts, while a lightweight103

evaluator checks their validity and likelihood.104

Domain-specific language constraints To test105

whether representational constraints improve program dis-106

covery, we compare unconstrained Python code generation107

with generation restricted to a minimal musical DSL. The108

DSL implements four primitive operations—transpose,109

invert, retrograde, and identity—each composable to form110

more complex transformations. Importantly, primitives111

can be composed, producing arbitrarily deep programs that112

capture hierarchical transformations. We hypothesized113

that constraining proposals to this DSL steers the model114

toward compositional generalization.115

3. EXPERIMENTS116

We conducted a proof-of-concept experiment testing117

whether LLMs can discover compositional structure in118

musical transformations when guided by representational119

constraints.120

We first extracted symbolic note sequences using the121

music21 library [21]. Each excerpt was represented as a122

sequence of MIDI pitch values (ignoring dynamics, tim-123

bre, or expressive timing). From these sequences we con-124

structed input-output training pairs, where the output was125

derived from the input via a simple, musically interpretable126

transformation (e.g., transposition by n semitones, inver-127

sion about a reference pitch, retrograde reversal). These128

transformations instantiate examples of latent rules that hu-129

man practitioners manipulate when producing music.130

The task for the model was then: given a handful of131

input-output pairs, infer a program that explains the trans-132

formation. We compared two prompting techniques for133

LLM-based synthesis:134

Freeform Python Generation: LLMs were allowed to135

produce arbitrary Python code. This setting provides max-136

imal flexibility, with access to loops, conditionals, arith-137

metic, and even hardcoded lookup tables. However, such138

flexibility opens the door to degenerate “shortcut” solu-139

tions that fit training examples without revealing the un-140

derlying structure.141

DSL-Constrained Generation: LLMs were restricted142

to our musical DSL. This forces the model to compose143

transformations from interpretable primitives. This ap-144

proach introduces elements of traditional DSL-based pro-145

gram synthesis into LLM-based code generation, as a146

heuristic that constrains the program search space.147

Both conditions were evaluated on their ability to gen-148

eralize transformations to novel inputs (unseen excerpts149

drawn from the same underlying composition).150

DSL-constrained generation achieved higher rates of151

generalization compared to freeform Python. Qualita-152

tive analysis of the generated programs shows uncon-153

strained programs often defaulted to hardcoded memo-154

rization, while constrained generation discovered general155

transformation rules.156

4. DISCUSSION157

This work offers a new paradigm for computational cog-158

nitive science in creative domains. By combining neural159

generation with symbolic constraints and Bayesian reason-160

ing, we aim to build AI systems that learn like humans:161

through interpretable, compositional programs that can be162

understood, debugged, and collaboratively extended. We163

argue that by building Gen AI grounded in human cog-164

nition, we take a step toward engineering systems that165

empower human creativity through interpretable, steerable166

tools that reason about music in fundamentally human-like167

ways, rather than replacing humans with black box AI.168
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