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ABSTRACT

Collaborative perception leverages data exchange among multiple agents to over-
come the perception limitation of individual agents, significantly enhancing over-
all perception capabilities. However, heterogeneity brings domain gaps among
agents, hindering the collaboration. The heterogeneity is further compounded by
an underexplored problem, modality isolation, where the absence of co-occurring
data across certain modalities leads to even bigger domain gaps and limits fea-
ture alignment approaches. To address this problem, we propose CodeAlign, the
first framework to systematically resolve modality isolation in heterogeneous col-
laborative perception. The key idea is to partition modalities into groups based
on whether they have isolation or not, and apply customized strategies for intra-
group and inter-group alignment. For intra-group alignment, CodeAlign intro-
duces code space formation that constructs a shared discrete feature space using a
codebook, enabling effective feature alignment and efficient communication. For
inter-group alignment, CodeAlign introduces code space translation that establish
mappings between code spaces, facilitating efficient and dynamic feature transfer.
A lightweight Unified Code Translator is designed to perform convenient one-
to-many code translation, controlled by conditional embeddings. Experiments
show that CodeAlign reduces training parameters by 92% when integrating 4 new
modalities, and achieving 1024x lower communication volume, while maintaining
on-par perception performance with SOTA methods. The code will be released.

1 INTRODUCTION

Collaborative perception plays a pivotal role in intelligent systems such as connected autonomous
vehicles and multi-robot collaboration. It enables agents to build a more comprehensive under-
standing of the environment by sharing perceptual information. In real-world applications, however,
vehicles from different manufacturers often exhibit heterogeneity leading to significant domain gaps
during feature-level collaboration. Heterogeneity includes different sensor types, sensor parame-
ters, and perception models. Late fusion bypasses heterogeneity by integrating detection outputs,
but suffers from suboptimal performance, localization noise |Lu et al|(2022), and communication
latency [Wang et al.| (2020). Traditional approaches often use fusion networks for collective training
on data involving collaborating modalities Xiang et al. (2023). Further developments leverage con-
trastive learning between intermediate features to facilitate feature alignment [Luo et al|(2024). To
enable extensible heterogeneous collaboration, some approaches generate standardized intermediate
features, using contrastive learning to align modalities toward this common representation for easier
integration of new modalities |Gao et al.| (2025)). These methods all require collaborative data for
training, that is, data from different modalities must have cooperated within the same scene.

A critical yet understudied issue in heterogeneous settings is modality isolation, illustrated in Fig-
ure [} Perception data are collected by different institutions across diverse locations and times,
resulting in datasets that each cover only limited modalities. Consequently, many modalities lack
co-occurring data from the same scene, meaning they have never collaborated in any recorded data,
and are more difficult in alignment. We refer to this situation as modality isolation. Modality iso-
lation significantly increasing the difficulty of achieving robust and generalizable alignment. When
aligning two modality-isolated agents, the absence of co-occurring data in any frame makes it im-
possible to establish mutual supervision through correspondence of BEV features (Gao et al.|(2025),
nor can shared ground truth data be utilized as reference to facilitate alignment. For collective
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trained fusion networks, it is feasible to alternately input single-modality data from isolated modal-
ities; however, this significantly impairs perception performance. Although (Lu et al.,2024) adapts
to modality-isolated scenarios through a extension strategy trained on local data of each modalities,
it is limited by the high training cost and inconvenience of retraining encoders.

Modality isolation post the following challenges: i) Heterogeneity arises from diverse factors, re-
sulting in a wide spectrum of heterogeneous types. ii) Continuous technological advancements lead
to the emergence of new modalities, which inevitably suffer from modality isolation with existing
ones. iii) Datasets collected by different institutions are often subject to data privacy requirements,
further restricting data accessibility. Under such conditions, the system must be capable of aligning
numerous modalities efficiently, while maintaining extensibility and protecting data privacy.

Common assumption A new challenge!
heterogeneous agents have Modality Isolation: No collaborative data!
collaborative data between modalities from different dataset.

Modalities in Data 1 : "Modalities in Data 1 Modalities in Data 2 |

a benefit end-to-end training a@degrade end-to-end training
v . . . . .
enable contrastive learning disable contrastive learning

Figure 1: Illusion of modality isolation in heterogeneouse collaborative perception.

To address this challenge, we propose CodeAlign, the first framework to systematically resolve
modality isolation in heterogeneous collaborative perception. The key idea is a group-wise align-
ment strategy, which groups non-isolated modalities and separates isolated ones, applying special-
ized strategies for both intra- and inter-group alignment. Group-wise alignment is crucial for training
efficiency. Without grouping, each modality must align with every other, since collective training
is ineffective under modality isolation, leading to high training costs. Grouping reduces complexity
while enabling non-isolated modalities to fully leverage collaborative data for stronger perception.

To achieve efficient group-wise alignment, CodeAlign involves two key steps: i) Intra-group align-
ment is accomplished through Code Space Formation. The step inserts a shared learnable codebook
into the perception framework, establishing a discrete shared feature space within the group. This
maintains the invariance of the network while reducing training parameters. ii) Inter-group align-
ment is achieved by Code Space Translation through a proposed lightweight Unified Code Transla-
tor. The model learns the mapping from the current group’s code space to multiple groups’ feature
code spaces, incorporating different conditional embeddings for different mappings by gated mod-
ulation. The training of the code translation model uses only the local data of the current group,
ensuring data privacy. By leveraging the discrete nature of codebook, CodeAlign not only reduces
the complexity of feature space formation and mutual mapping between feature spaces, but also
compresses information, significantly improving communication efficiency. Compared with exist-
ing methods, CodeAlign overcomes the challenge of modality isolation by eliminating the reliance
on co-occurring data, while achieving reduced training costs and communication overhead.

We evaluate CodeAlign on the OPV2V Xu et al.| (2022d)) dataset and demonstrate significant im-
provements in efficiency. Our method reduces training parameters by 92% when four new agent
types are added, while maintain well-matched perceptual performance compared to SOTA ap-
proaches. Furthermore, CodeAlign reduces communication volume by 1024x, highlighting its prac-
tical utility in bandwidth-constrained environments. Our contributions are as follows:

* We propose CodeAlign, the first framework that systematically tackles modality isolation
in heterogeneous collaborative perception, which improves extensibility and efficiency.

* CodeAlign introduce a group-wise alignment paradigm for modality isolation. We present
a Shared Code Space Formation step for effective intra-group alignment and a Unified Code
Translator for efficient inter-group alignment.

» Extensive experiments demonstrate that CodeAlign reduces training parameters by 99%
when integrating three new agent types and achieves 1024x lower communication volume,
outperforming existing methods in accuracy.
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2 RELATED WORKS
2.1 COLLABORATIVE PERCEPTION

Collaborative perception improves detection accuracy by leveraging shared sensory information
across multiple agents and is commonly classified into early, intermediate, and late fusion strate-
gies. Early fusion transmits raw sensor data, incurring high communication cost, while late fusion
shares only bounding boxes, limiting performance and robustness due to feature loss. Intermediate
fusion (Hu et al.l 2022} [Fu et al., 2025) has gained popularity for achieving a favorable balance
between performance and communication efficiency. To advance research in multi-agent collabo-
rative perception, OPV2V (Xu et al., |2022d) provides simulated vehicle-to-vehicle collaboration,
DAIR-V2X (Yu et al.l [2022)) offers real-world vehicle-infrastructure data, and RCooper (Hao et al.,
2024) introduces adverse weather conditions for robustness evaluation. To mitigate communica-
tion bottlenecks, Hu et al. proposed Where2comm (Hu et al., [2022)) and CodeFilling (Hu et al.,
2024), which reduce redundancy in transmitted features. Other approaches (Wei et al., 2023} [Lei
et al.| [2022) address communication disruptions or latency by exploiting historical interaction data
or temporal context. Despite these advances, most existing methods assume homogeneous sensor
modalities and identical models across agents. In this work, we study heterogeneous collaborative
perception, where agents may possess different sensor and model configurations. We further iden-
tify and investigate the underexplored challenge of modality isolation, arising when heterogeneous
agents struggle to effectively align and fuse features due to significant domain gaps.

2.2 HETEROGENEOUS COLLABORATIVE PERCEPTION

Heterogeneity in collaborative perception arises from differences in sensor modalities, sensor con-
figurations, and perception model architectures. Early works focus on LiDAR-based heterogene-
ity: V2XVIiT (Xu et al., [2022c) addresses spatial misalignment between vehicle and infrastructure;
MPDA (Xu et al., [2022b) and Calibrator (Xu et al.l 2022a) study heterogeneous LiDAR models;
PNPDA (Luo et al, 2024) further considers varying voxel sizes; and Polylnter (Xia et al., [2025)
explores scalability. However, the domain gap between LiDAR and camera data constitutes a more
significant challenge. HMViT (Xiang et al., 2023)) proposes collective training of cross-modal mod-
els to bridge this gap but lacks scalability. STAMP (Gao et al., 2025)) train a network to provide
reference features for the scene, and leverage contrastive learning to align heterogeneous features
to these references, achieving scalable heterogeneous cooperative perception. However, a new chal-
lenge—modality isolation—arises from the fact that different modalities are rarely co-collected in
the same scenes, leading to a lack of co-occurring training data. This limitation hinders effective
end-to-end training and renders contrastive learning infeasible. HEAL addresses this issue through
backward alignment by retraining encoders on local data, but suffers from high computational and
communication overhead. In this work, we propose CodeAlign, a group-wise alignment frame-
work under modality isolation that leverages code space construction and mapping to systematically
address this challenge.

3 METHODOLOGY

3.1 PRELIMINARY: GROUP-WISE ALIGNMENT PARADIGM

Group-wise alignment consists of two steps: intra-group alignment and inter-group alignment. Intra-
group alignment jointly trains modalities that have collaborative data to establish a shared, aligned
feature space, thereby fully enhancing collaboration performance and reducing the number of re-
quired alignments. Inter-group alignment connects the pre-trained groups by establishing mappings
to enable inter-group collaboration. Let the observation of agent k be Oy, and define ego group and
other groups as collection GG, and GG,,. Then, the detection output B; from ego agent ¢ is obtained
as:

Fy = fenc[k] (Ok)7 keG. UG, (1)

{Mk = falign[Ge](Fk)a ke Ge (2)
Mk = ftrans[GnGc] (Fk)a ke Gn

Fisi = Tisi(My,) 3)

“4)
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Hi = ffusion ({Fk%i}kGGcUGn) (5)

31 = fhcad(Hi) (6)

where F}, is the encoded feature of each agent, and Mj, is the aligned feature obtained either from

alignment module fah-gn[.](-) of ego group or transformation module ftmns[.](-) of other groups.

T'x_,; is the spatial transformation applied during message passing (F;_,; = F;). Fusion network

frusion(-) integrates all transformed features to the fused feature H;, and detection head freqq(-)
output the detection results.

Group-wise Alignment under Modality Isolation
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Figure 2: Overview of CodeAlign framework. The form of group-wise alignment is described above
the figure. CodeAlign takes discrete code space as the core and includes intra-group alignment and
inter-group alignment. Alignment is achieved through the formation and translation of code space.

3.2 CODEALIGN FRAMEWORK

To achieve efficient group-wise alignment under modality isolation, CodeAlign consists of two key
steps, as illustrated in Figure[2} i) For intra-group alignment, Shared Code Space Formation utilizes
a codebook to construct a discrete shared feature space for each group. ii) For inter-group align-
ment, a Unified Code Translator maps features into codes of multiple target code spaces, with the
transformation controlled by conditional embeddings through channel modulation. Compared to
the common group-wise alignment, the equation [2] and equation [3]in CodeAlign framework can be
expressed as:

{Ik = ®(Clg,1Enc(Fk)), k€ Ge 7
Iy = Tiq,)(Fy, Elg,jtolG.))s Kk € Gn
Fii = Trsi(Crapec () (3

where C|q,) is the codebook of group G, while Cig |En. and C|g |pe. are encoder and decoder
of codebook. [ is the code map transformed by calculator ®. T}, ; is the Unified Code Translator
of group G, and Eg, js0[G.] is the conditional embedding target at group G, used to control the
translator’s output.

3.2.1 INTRA-GROUP ALIGNMENT: SHARED CODE SPACE FORMATION

The purpose of intra-group alignment is to align modalities that have collaborative data into a shared
feature space, and prepare the feature space as representation of current group for later inter-group
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alignment. In CodeAlign, a codebook is employed as the shared feature space (code space) of a
group. The encoded BEV features are aligned into the code space by assigning each feature to
the nearest embedding, yielding a compact code map composed of codebook indices for message
passing. During communication, only the code map is transmitted and subsequently decoded into
the corresponding embeddings. Since the encoded BEV features are mapped from the same shared
code space, effective alignment is achieved. For instance, features corresponding to a vehicle from
different modalities may be represented by the same embedding in the code space, resulting in
identical decoded features, which facilitates seamless fusion.

In perception systems, the encoder extracts features from raw inputs, and is deeply coupled with
downstream tasks. Arbitrary modifications can compromise the overall system performance and
stability. HEAL achieves alignment by retraining the encoder, which disrupts the consistency of the
perception system and introduces additional training overhead. In contrast, CodeAlign preserves the
encoder in a frozen state during alignment, inserting the adapter and codebook only at intermediate
stage of the framework, thereby maintaining the integrity and modularity of the overall system.

Multi modality grouping. As shown in Fig. 2] for modalities within a group that have access to
collaborative data, a learnable codebook is inserted into the perception pipeline between the encoder
and the backend to establish an effective and efficient shared code space. The backend is shared and
trainable, as a network processing features from the code space should be learned. A lightweight
ResNet-based adapter is introduced before the codebook to accelerate the alignment. Based on
the shared codebook C, each agent can replace the encoded feature map Fj with a series of code
indices I}, forming a compact code map. For each BEV location (h, w), the code index is computed
by calculator ¢ as,

. 2
(13 : (Ilc)[h,w] = arg m@ln H(C[GE]Enc(Fk))[h,w] — Cm H2 (9)

The code map is used for message passing and is decoded by C|g,|pe. to reconstruct the aligned
feature map, as the aligned features maps are composed of deterministic discrete features in the code
space. The transmitted intermediate feature is compressed from H « W x C to H x W x log2(D),
where D denotes the codebook size, significantly reducing communication bandwidth.

Single modality grouping. Homogeneous datasets are also widely available, and these single
modalities can form standalone groups, enabling the efficient construction of a code space using
a simplified approach. For homogeneous perception pipelines, both the encoder and the backend
can be kept frozen, with only the adapter and codebook inserted and trained in the middle. This
approach minimizes the number of trainable parameters, preserves the integrity of the original mod-
ules, and maintains most of the original perception performance.

Loss Function. To accelerate alignment and ensure consistent feature representations across agents,
we supervise three objectives: object detection, fusion learning, and inter-agent feature similarity.
The overall loss is defined as:

L= Lo (04,00) + Ipyamia A Y Lam(Fusis Fyoi), iswij €Ge (10)
My, #M;

where Lge () denotes the detection loss, O? and @i represent the ground-truth and predicted object
states for agent ¢, respectively. Lpyramig 1S the pyramid loss from HEAL(), as we employ pyramid
fusion as fusion net. Lgpn,(+) is similarity loss, which enforces feature consistency among collab-
orating agents. M denotes modality, only similarity between different modalities is calculated.
We adopt the cosine similarity between pairwise aligned features, defined as Ly (Fiy—i, Fj—i) =
(1 — cos (Fi—i, Fj—;)). During the optimization, the network parameters and the codebook are
updated simultaneously.

3.2.2 INTER-GROUP ALIGNMENT: CODE SPACE TRANSLATION

Since each group has established its own shared code space to represent group-specific features,
inter-group alignment requires a mechanism to translate between these heterogeneous code spaces.
Within the CodeAlign framework, translation can occur between dense features or code maps.
Among the feasible strategies, dense-to-dense (D2D) translation offers lossless transformation but
incurs high computational cost and forfeits the bandwidth efficiency advantage. Conversely, code-
to-code (C2C) translation suffers from excessive quantization error due to its highly discrete na-
ture, causing significant information loss and degraded alignment performance. The dense-to-code
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(D2C) approach achieves the optimal balance: it preserves the low-bandwidth communication ben-
efits while maintaining reconstruction fidelity within acceptable limits, making it the most practical
solution for inter-group alignment.

CodeAlign achieve inter-group alignment through Code Space Translation with a code translator in
D2C paradigm. Given an encoded dense feature from a source group, the translator maps it into a
code map defined by the target group’s codebook. This compact representation is then transmitted
and decoded using the target group’s codebook decoder, allowing the feature to be reconstructed in
the target group’s code space and seamlessly integrated into its collaborative perception pipeline.
The simplest implementation of a code translator is a one-to-one translator, where each pair of
groups trains a translator for each other.

Local Group Data Training. The

mOdahty isolation is.sue hlghhghts Unified Code Translator with Channel Modulation :

data privacy preservation, as datasets Nre Conditional embedding

from different institutions may not be e

shared externally. To address this, we | Embeddingset MLP Torget Code Mz
design a privacy-aware training pro- Source Feature Map M P e OHE
tocol that relies exclusively on local HwrC ra— HD:D:D:'«W*C 1zle
data:dthe iourcehgroup pré)cess%s Lts i 84 ’ ’ + (maotiing)
own data through its encoder and the

code translator, with the intermedi-
ate feature fed directly into the target ~ Figure 3: Model structure of the Unified Code Translator.
group’s decoder and backend. The detection loss computed on the target backend’s output serves as
the supervision, explicitly encouraging the translator to produce features that align with the target
group’s code space. This approach requires no external data transmission, achieves effective align-
ment by local training with the ego group’s data, and fully complies with data privacy regulations
while enabling cross-institutional collaboration.

Multi-group Translation. In scenarios involving collaboration among multiple groups, the con-
ventional one-to-one translation paradigm suffers from significant drawbacks: a complex training
process and high inference memory usage. The training complexity arises because a dedicated trans-
lator must be trained for every possible pair of groups, and often in both directions. During inference,
the system must load all trained translators into memory to be prepared for potential collaboration
with any modality, leading to substantial memory overhead. A straightforward alternative is to train
a shared backbone with multiple output heads, each dedicated to a specific target group. While this
approach improves model reuse and reduces training cost, it still demands loading all output heads
at inference time, making the memory footprint grow linearly with the number of groups.

To address this issue, we propose a lightweight Unified Code Translator, which operates through
channel modulation with conditional embeddings. The training and inference process is illustrated in
Fig.[2l and model structure in Fig.[3] The module transforms source features into the semantic style
of a target group’s code space by using a corresponding learnable embedding to guide the channel
modulation mechanism. Specifically, the embedding generates a set of channel-wise weights that
modulate the features, effectively steering the translation. This design allows only the backbone to be
loaded during inference, with translations performed dynamically by inserting different embeddings.
The model backbone is implemented with stacked ConvNeXt blocks, and each embedding is a vector
of shape 1xC’. During training, only the translator is trainable with encoder, codebook and backend
frozen. In addition, we design a data balancing strategy to dynamically adjust the proportion of
training data according to the loss changes of different targets to promote balanced spatial learning.
Notably, when translation is required between only two groups, the model can degenerate into a
standard one-to-one translator without relying on embeddings.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset. CodeAlign is evaluated on the simulated OPV2V dataset. OPV2V is a large-scale multi-
modal cooperative V2V perception dataset collected in CARLA and OpenCDA, which contains
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Table 1: Modality settings in the experiment. The network after LSS is its backbone.

ml m2 m3 m4 m5
Sensor Type LiDAR LiDAR  LiDAR Camera Camera
Encoder Point-Pillar Second VoxelNet LSS(ResNet-101) LSS(EfficientNet)

over 70 driving scenarios and each scenario contains multiple connected AVs (2 to 7) and each AV
is equipped with 1 LiDAR and 4 monocular cameras.

Modality settings. Following HEAL’s design for modality variation, five modalities are used in the
experiments, as summarized in Tab. E} The selected modalities include LiDAR and camera—two
distinct sensor types with a significant domain gap—each equipped with dedicated encoders to en-
sure diversity in representation. For representation of modality isolation, [--] denotes modalities that
are not isolated and are trained with collaborative data, while - + - denotes the latter modality join
the former modality for cooperation.

Data Type AP30 AP50 AP70 Align Method AP30 AP50 AP70
Not Isolated | 89.96 88.52 80.88 Intra-group Alignment | 88.90  87.51 80.33
Isolated 82.36  80.51 65.67 Inter-group Alignment | 87.25 85.55 75.30

Table 2: Impact of data isolation on per- Table 3: Performance of different align method for
ceptual results of pyramid fusion (e2e modalities that have collaborative data (m2, m6). Re-
training with alternative data of m1, m6).  sults show the necessity of intra-group alignment.

Implementation details. We employ the pyramid fusion network as the fusion net in backend. The
adapter is implemented as a stack of four ResNet blocks with 3x3 convolutions. Unless otherwise
specified, a codebook size of 16 is used across all experiments. All models are trained using the
Adam optimizer with an initial learning rate of 0.001. Intra-group alignment is trained for 50 epochs,
and intra-group alignment is trained for 30 epochs. Experiments are conducted on an NVIDIA
GeForce RTX 3090 GPU. The weight of the cosine loss is set to 1. Training is conducted within
the spatial range = € [—102.4m, +102.4m|,y € [—102.4m,+102.4m]. See evaluation details in
Appendix.

4.2 QUANTITATIVE RESULTS

Impact of Modality Isolation. Table [2| shows the perceptual performance of an end-to-end pyra-
mid fusion network on modalities m1 and m6. When modalities are not isolated and co-occurring
collaborative data is available, training with such data yields high performance. In contrast, under
modality isolation, m1 and m6 have disjoint datasets, and the model is trained by alternately feeding
data from each modality. This lack of collaborative supervision hinders effective feature alignment,
resulting in a 15% drop in performance.

Necessity of Intra-group Alignment. Table |3| shows the perceptual performance on non-isolated
modality pairs and illustrates the benefits of intra-group alignment. When m2 and m6 share a collab-
orative dataset, intra-group alignment leverages actual co-occurring data for feature fusion, achiev-
ing better performance than inter-group alignment, which relies solely on m6’s local data to map its
features to m2’s space.

Performance and Training Cost. Table[dreports CodeAlign’s results on the OPV2V dataset across
three key settings: the first two involve collaboration between two modality-isolated agents, and the
third examines the integration of a new isolated modality into an existing group. In the first two set-

Table 4: Perception performance on OPV2V. TP denotes training parameters. At last column, we
show the one-shot communication payload.

Group settings [m1]+[m2] [m2]+[m6] [M2m6]+[m1]+[m7] Pavioad
Metrics AP30 AP50 AP70 TP AP30 AP50 AP70 TP AP30 AP50 AP70 Y
Single 76.83 74.83 60.58 0 79.26  76.99 65.97 0 79.26  76.99 65.97 0 0
Collab w/o Align | 78.38 77.76 67.18 0 72.38 71.73  65.54 0 89.22 87.17 712 0 32 MB
Late Fusion 91.96 90.65 78.42 0 80.59 7592 56.69 0 88.39 84.84 68.69 0 0.45 KB
HEAL 93.00 9247 87.69 1.0M | 86.79 8479 76.01 1.8M | 9249 91.19 85.06 17.0M | 32 MB
CodeAlign 93.02 9232 86.62 0.8M | 8848 86.53 76.35 0.8M | 91.92 9047 8372 6.7M 32 KB
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Table 5: Component ablation in intra-group training of group [m1m6].

Codebook  Pyramid Loss  Fix Enc  Adapter Cosine Loss | AP30  AP50
89.96 88.52

v 87.51 86.32

v v 88.8  87.08

v v v v 89.51 88.17

v v v v v 89.62 88.31

tings, CodeAlign achieves the best perception performance in terms of AP30, outperforming both
HEAL and late fusion. Notably, in the [m2] + [m6] pair, it get the highest score across APs with
compressed features, even surpassing HEAL, which is Lossless end-to-end training. In the second
setting, CodeAlign matches HEAL’s performance with only 40% of the training cost. Moreover,
while HEAL transmits uncompressed intermediate features at 32 MB per vehicle, CodeAlign re-
duces communication to just 32 KB, demonstrating strong suitability for bandwidth-constrained
environments. Late fusion underperforms significantly, lagging CodeAlign by 14.29% in AP70 in
average. The unaligned Collab w/o Align baseline shows marginal gains in the [m1] 4+ [m2] LIDAR
case but suffers performance degradation in the heterogeneous [m2] + [m6] pair; it exhibits slight
collaboration in setting 3 because intra-group alignment between LiDAR and camera has already
been performed. On average, CodeAlign surpasses other baselines while matching HEAL’s accu-
racy with drastically reduced training cost and 1/1024th the communication overhead, highlighting
its practicality and efficiency.

Ablation of Intra-group Alignment Strategy. Table[5|presents an ablation study on the intra-group
alignment strategy. The first row corresponds to HEAL’s end-to-end training, which involves no fea-
ture compression and thus serves as an upper bound on performance. When a codebook is introduced
to compress the transmitted features, performance drops by 2.2% on AP50, which is acceptable and
demonstrates the strong feature extraction capability of the codebook as well as the redundancy
inherent in dense features. The pyramid loss helps the fusion network recover more accurate rep-
resentations. To maintain system consistency, CodeAlign fixes the encoders of each modality and
inserts an adapter before the codebook to facilitate alignment, resulting in a 1.09% performance gain
on AP50. Finally, the cosine-based similarity loss encourages features from different modalities to
become more aligned, further improving perception. At this point, CodeAlign achieves performance
close to that of the lossless end-to-end model, with a 512x feature compression ratio.

Ablation of Inter-group Alignment Strategy.Figure
compares HEAL and the three one-to-many translator im- Taple 6: Codebook size ablation for

plementations discussed in Section[3.2.2)in terms of both  jnter-group alignment. Perception re-
perceptual performance and training cost. The evalua-  gy]ts of [m7] when surrounded by [m2].

tion focuses on mappings among the five single-modality Codebook size 16 is the best choice.
groups in an order of m2+m1+m3+m6+m?7; for simplic-

ity, we only report the performance of mapping from ~Codebook size AP0 APSO  CV
modality m2 to the other four modalities. As shown in  [m2] [m7]

Figure[[a), CodeAlign’s code space mapping framework 4 4 75.00 7450 16KB
achieves performance on par with HEAL while requiring 16 16 | 8435 8332 32KB
only 8% of its training parameters. The one-to-one ap- 64 64 44.29 4370 48KB
proach incurs the highest training cost among the three,

as it trains a separate translator for every new group pair. Figure f{b) illustrates how the training
cost scales as the number of collaborating groups increases. HEAL’s cost is dominated by encoder
size — when the number of groups grows from 4 to 35, its training cost surges significantly for large
encoders. The one-to-one approach exhibits quadratic growth, whereas both the multi-head and
channel modulation strategies scale linearly. Notably, the channel modulation variant uses only 1%
of the parameters in the conditional switching module compared to the multi-head approach (from
66 to 5.2k), while achieving 0.2% higher performance, making it more practical for real-world de-
ployment.

Ablation on Codebook Size. Table[6|presents the code-space translation performance between m2
and m7 using codebooks of three different sizes. With a codebook size of 4, the representation is
overly compressed, failing to capture the full spectrum of features necessary for effective alignment.
Conversely, a codebook size of 64 introduces excessive complexity, making the cross-codebook
mapping significantly harder and degrading performance. A size of 16 strikes an optimal balance
between information compression and representational capacity, yielding the best overall results.
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Model Ablation Analysis for Inter-group Alignment
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Figure 4: Ablation experiments on model structures of inter-group alignment. Test scene is [m2]
mapping to 4 other single modality groups.

Comparing feature representations of different codebook sizes, shown in Figure |§| (c), (e), and (j),
we observe that codebook(4) yields overly sparse and fragmented features, with poorly defined
centroids. In contrast, codebook(64) introduces ambiguity and noise into the representation, diluting
semantic clarity.

4.3 QUALITATIVE RESULTS

Figure [5] presents visualization results from the collaboratively trained group [m2,m6], illustrating
codebook’s effectiveness in alignment. Although camera inherently has weaker representational
capacity, after alignment to the shared codebook via the adapter and subsequent decoding, it partially
acquires representational characteristics, highlighted by the red boxes in subfigures (g) and (h).

(a) m2 encoder (b) m2 adapter 16 (e) m2 codebook(4)

(c) m2 codebook(

(f) m6 encoder (g) m6 adapter (h) m6 codebook(16) (1) detection results (J) m2 codebook(64)

Figure 5: Visualization of BEV features during alignment, which are feature maps that have gone
through the subheading module, with the size of the codebook in parentheses.

5 CONCLUSION

In this work, we address modality isolation — a critical yet underexplored challenge in heteroge-
neous collaborative perception, where the lack of co-occurring data across certain modalities ex-
acerbates domain gaps and undermines conventional alignment strategies. To tackle this, we pro-
pose CodeAlign, the first framework that systematically resolves modality isolation through intra-
group and inter-group code space alignment. By leveraging discrete code representations and a
lightweight Unified Code Translator with conditional control, CodeAlign enables efficient, scalable,
and communication-friendly collaboration across diverse and isolated modalities.

Limitations. Our evaluation is constrained by the limited modality diversity in existing simulation
datasets, which prevents large-scale testing of group-wise alignment under extensive heterogeneity.
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A APPENDIX

A.1 EVALUATION SETTINGS

The training range is € [—102.4m,+102.4m],y € [~102.4m, +102.4m]. In Table [d we ex-
pand the range to x € [—204.8m,4204.8m],y € [—102.4m, +102.4m] in evaluation for holistic
view follow HEAL. We also assign the car order in OPV2V follow HEAL, that is to alternatively
assign lidar and camera, to better test the heterogeneity. Note that for each test scene, for evaluation
convenience, we set the first modality as the ego car.

Additionally, we design a dedicated evaluation protocol to maximally assess the alignment between
two modalities. To amplify cross-modal interaction, we configure all collaborating vehicles (except
the ego vehicle) to use the second modality. All other experiments are conducted under this setting,
with the default communication range matching that used during training.

A.2 EXPERIMENT OF SINGLE MODALITY GROUP FORMATION

A code space for a single modality can be constructed via several approaches, as summarized in
the table. End-to-end training yields the best performance but requires modifying the original en-
coder architecture and incurs high training cost. Alternatively, fixing the encoder and adding an
adapter achieves performance close to end-to-end training while preserving the original encoder.
The most efficient and cost-effective option is to fix both the encoder and the backend and only train
a lightweight adapter; although its performance is slightly lower (e.g., at the first evaluation point), it
avoids fine-tuning the parameter-heavy backend, offering the best trade-off between efficiency and
effectiveness.

A.3 SINGLE MODALITY PERFORMANCE

Table[8|compares the performance of each modality with and without the codebook (size 16) in both
single-agent and cooperative settings. For high-performing modalities (m1-m3, e.g., LiDAR vari-
ants), introducing the codebook leads to minimal performance change—demonstrating that the dis-
crete code space preserves rich semantic information effectively. In contrast, for weaker modalities
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Table 7: Performance of different strategies for training a codebook(16) for single group [m1]

Strategies AP30 AP50 AP70
end-to-end retrain 95.9 9533 91.06
fix encoder 94.83 9424 87.89
fix encoder and add adapter 95.22 94.87 90.47
fix encoder&backend 9347 92.69 84.94
fix encoder&backend and add adapter | 94.84 94.28 8§89.20

Table 8: Single modality performance for the 5 modalities, with or without codebook.

With Codebook(16) Without Codebook
modality | AP30  APS0  AP70 | AP30 AP50  AP70
Cooperate  ml 0.959  0.9532 0915 | 09591 0.9548 0.9206
m2 0.9605 0.9563 0.9235 | 0.9596 0.9548 0.9265
m3 0.9581 0.9535 0.9108 | 0.9599 0.9554 0.9232
m4 0.5558 0.4773 0.2853 | 0.5841 0.5048 0.3149
m5 0.6135 0.5424 0.3606 | 0.6222 0.5389 0.3427
Single ml 0.8365 0.8171 0.704 | 0.8409 0.8258 0.7289
m2 0.85 0.837  0.7458 | 0.8347 0.8175 0.7341
m3 0.8344 0.8186 0.7059 | 0.8402 0.8242 0.7246
m4 0.2668 0.1841 0.0776 | 0.2722 0.1912 0.0808
m5 0.3145 0.2264 0.1126 | 0.3244 0.2225 0.1011

(m4-m5, e.g., camera or radar), the codebook slightly reduces absolute performance, particularly at
stricter IoU thresholds (AP70), suggesting a mild compression loss. Nevertheless, the performance
drop is marginal, confirming that the codebook-based representation remains faithful to the origi-
nal features while enabling efficient cross-modal alignment. Overall, the results validate that code
space formation incurs negligible degradation in perception quality, making it a viable foundation
for heterogeneous collaboration.

B LLM USAGE

The authors used a large language model (LLM) solely for language polishing and grammatical
refinement of the manuscript. All technical content, experimental design, analysis, and conclusions
were conceived and produced independently by the authors without any assistance from the LLM.
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