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Abstract

Retrieval-augmented generation supports lan-
guage models to strengthen their factual
groundings by providing external context.
However, language models often face chal-
lenges in locating and integrating extensive in-
formation, diminishing their effectiveness in
solving complex questions. Query-focused
compression tackles this issue by filtering out
information irrelevant to the query, but cur-
rent methods still struggle in realistic scenarios
where crucial information may not be located
with a single-step approach. To overcome this
limitation, we introduce COMPACT, a novel
framework that employs an active strategy to
condense extensive documents without losing
key information. COMPACT flexibly operates
as a cost-efficient plug-in module with any
off-the-shelf retriever or reader model, achiev-
ing extremely high compression rates (44x).
Our experiments demonstrate that COMPACT
brings significant improvements in both com-
pression rate and QA performance on multi-
hop question-answering datasets.

1 Introduction

Retrieval-augmented generation empowers lan-
guage models to solidify their factual ground-
ings, presenting relevant contexts to answer ques-
tions (Khandelwal et al., 2019; Lewis et al., 2020;
Karpukhin et al., 2020a; Izacard et al., 2023).
While this approach extends the knowledge scope
of language models beyond their inherent capabili-
ties, it also introduces a number of challenges when
it comes to handling long contexts (Li et al., 2024;
An et al., 2024; Qian et al., 2024). First, models
often struggle to find key information from these
extensive contexts, which diminishes their abilities
to reference documents (Liu et al., 2024). Also,
models often fail to integrate information across
multiple documents, which is a natural situation in
real-world scenarios (Cheng et al., 2024). To this
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Figure 1: Performance of HotpotQA with different top-
k documents. We set the reader as LLaMA3-8B. Our
COMPACT framework demonstrates solid performance
improvements that align with those of gold documents.
This highlights that COMPACT effectively leverages the
benefits of increased top-k, unlike other methods which
struggle to maintain their performance due to increased
noisy context.

end, there is a growing need for methods that can
assist models with handling long contexts.

One way to overcome these challenges is by
compressing contexts into more compact forms (Li
et al., 2023; Pan et al., 2024). The main goal of
compression is to reduce the amount of tokens from
the original text without losing too much informa-
tion. As it focuses on retaining all the crucial con-
texts from the source documents, the compressed
output can be applied to various tasks without com-
promising the integrity of the information.

However, simply compressing retrieved contexts
can be suboptimal for question-answering (QA)
tasks (Joshi et al., 2017; Kwiatkowski et al., 2019),
where important details may be filtered out during
the compression process (Li et al., 2023). Main-
taining redundant information without compres-



sion can also harm performance, as they may serve
as distractors that can induce models to generate
incorrect responses. To handle these limitations,
query-focused compression emerges as an effective
approach in QA. This approach reduces the context
length by focusing on information relevant to the
question (Xu et al., 2024; Cao et al., 2024).

However, existing query-focused compres-
sors (Jiang et al., 2023c; Xu et al., 2024) still strug-
gle to take advantage of information located behind
lengthy contexts, leaving out potential opportuni-
ties for reader models to improve their answers.
Figure 1 highlights the difficulty of utilizing re-
trieved documents of extensive lengths. The in-
crease in retrieval recall parallel to the number of
retrieved documents shows that even lower-ranked
documents may still include valuable information.
Simply using more documents can result in a sig-
nificant amount of noisy context, making it chal-
lenging for language models to effectively leverage
additional information.

Furthermore, existing methods lack the ability to
integrate information across multiple documents,
which is required in real-world scenarios (Gutiér-
rez et al., 2024). Figure 2 depicts an example: the
question is "What ‘Virtual Choir’-noted conductor
has created works for the Austin-based ensemble
Conspirare?". To answer this, not only do we need
to retrieve information implied within the ques-
tion ("conductors worked for the Austin-based en-
semble Conspirare"), we should also holistically
connect and synthesize information across multi-
ple documents (" ‘Virtual Choir’-noted conductor").
In other words, the quality of answers hinges on
the ability of models to dynamically integrate in-
formation across multiple documents, which is an
underexplored area in compression.

To this end, we propose COMPACT, a novel
framework that can address these challenges by
using an active strategy to compress extensive doc-
uments and retain crucial information. This ap-
proach has two key components: active compres-
sion and early termination. During compression,
the model actively encapsulates input documents
by jointly analyzing previously compressed con-
texts with newly provided segments. This ensures
that only the most relevant information to the ques-
tion is preserved at each step, creating a dense and
compact context. At each step, the model then
decides whether to terminate the compression pro-
cess. This decision is made based on the relevance
and completeness of the information gathered to

answer the query.

Our approach offers two distinct advantages.
First, it effectively captures essential context from
long documents by incorporating segments along
with the previously compressed context. This is
crucial for complex QA tasks that require in-depth
reasoning and synthesis of information such as
multi-hop QA. Second, it condenses large volumes
of documents with a high compression rate, but
without missing essential information. We conduct
experiments on five question-answering datasets
to evaluate our COMPACT framework. The results
demonstrate that our framework brings significant
improvement in compression rate and end-QA per-
formance in several multi-document benchmarks.
This represents the effectiveness of our compres-
sion method, as it preserves necessary context with-
out losing critical information.

Our contributions are as follows: (1) We pro-
pose COMPACT, a novel framework that employs
an active strategy for compressing extensive doc-
uments. Our framework dynamically filters and
preserves relevant information by jointly consid-
ering previously compressed contexts with newly
provided segments. (2) We address the limitations
of existing compression methods by ensuring the
integration of information across multiple docu-
ments. (3) Our approach effectively manages the
challenges associated with handling long contexts,
particularly in complex QA tasks that require in-
depth reasoning and synthesis of information. (4)
Our framework achieves a high compression rate
(44x) which demonstrates its cost-efficiency, espe-
cially when collaborating with API calls such as
GPT-3.5-turbo. (5) We demonstrate the effective-
ness of our COMPACT framework through com-
prehensive experiments on five question-answering
QA benchmarks.

2 Preliminaries

2.1 Multi-Document Question Answering

Multi-document (or multi-hop) question answering
(QA) involves the task of answering questions that
require gathering information from multiple docu-
ments. (Yang et al., 2018; Ho et al., 2020b; Chen
et al., 2020; Trivedi et al., 2022; Mavi et al., 2022)
This is more complex than single-document QA,
since models must find and combine information
from different sources. However, limited context
windows hinder performance, in spite of the need
for models to reference multiple sources.
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Figure 2: Overall COMPACT framework as a plug-in module between the retriever and the reader LLM. After
splitting retrieved documents into segments, our model sequentially compresses these segments into compacted
contexts. By checking the termination condition at each step, we actively incorporate the information of the newly
provided segment while preserving essential backgrounds in compressed contexts. If the segments do not offer
complete information to answer the question (1st, 2nd segments), the model continues to the next step to acquire
new information. Once all supporting clues are fully captured (N-th segment), the iteration ends.

2.2 Compression

To alleviate the cost of inference, several studies
have proposed compression methods. Mu et al.
presents a compression method, called gisting,
which allows models to compress prompts into
shorter transformer activations. Ge et al. (2024)
proposes training objectives related to compression
that enable language models to learn to restore con-
texts. Several works have focused on compressing
long context inputs. For example, Chevalier et al.
(2023) progressively compress long documents into
intermediate summary vectors. Li et al. (2023) and
Jiang et al. (2023b) utilize conditional probabilities
of LLMs to assess the importance of information.
Concurrent with our work, Zhang et al. (2024) have
developed an iterative framework using Chain-of-
Agents to enable information aggregation and con-
text reasoning over long-context tasks. However,
our work focuses on addressing a crucial aspect:
capturing pivotal information between segments in
retrieved documents while compressing contexts.

2.3 Task Formulation

In retrieval-augmented generation, a model M pre-
dicts an output y conditioned on an input x and

k retrieved passages Dy = {di, ..., dk}le. For
the task of question answering, the input z typi-
cally consists of a question ¢ with an instruction 1.
Thus, M generates an answer y based on = and the
retrieved documents Dy, as follows: M (y|x, Dy).

To mitigate the costs of M caused by processing
a large number of tokens, several approaches have
been recently proposed to compress the documents
into a shorter context (Wang et al., 2023; Xu et al.,
2024). Building on these approaches, our goal is
described as follows:

argmax Py (y | Cr, x)
™
and C; is defined as:

Cr =m(q,Dy) with (Cr) < I(Dy)
where [ represents the number of tokens and 7
is a function that compresses documents Dy, into
a shorter context C'; based on the question q. It is
important to note that we do not aim to optimize
the model M or the retriever. Instead, our primary
focus is on compressing the provided contexts into
a concise format, ensuring the essential information

is retained to answer the question.
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Previous Previous Previous Previous
Output (O) Output (X) Output (O) Output (X)

HotpotQA 7.2K 7.2K 7.2K 7.2K

Dataset Total

28.8K

Table 1: Statistics of our Dataset Construction.

3 COMPACT

We introduce COMPACT, a novel compression
framework that actively compresses documents un-
til it finds all necessary evidence for answering a
question. To condense a large amount of infor-
mation from documents, we devise an iterative ar-
chitecture where the compressed contexts are up-
dated at each iteration. In this section, we initially
provide a comprehensive explanation of our frame-
work. Subsequently, we detail the data construction
for training our model.

3.1 How to Compress

We reconsider compression as sequential updates
of compressed contexts based on the previous in-
formation. Figure 2 clearly shows the concept of
our framework. Given a question and documents
Dy, = {dy, ..., dk}le from a retrieval system, we
first group the documents as follows:
St = {discj1, dixjr2, - A1) %}

where S; is a t-th segment consisting of j docu-
ments, and j represents the predefined number of
documents to be compressed at each iteration. We
then begin compressing each segment iteratively
until it satisfies the end condition. It can be formu-
lated as follows:

Cta Et = W(Qa Sta thl)

Here, ¢ is a given question to answer. C; and E}
represent the compressed context and a condition
token at step ¢, respectively. C} is used as part of
the input for the next step. During compression,
the model actively integrates information related to
the question by analyzing both the previously com-
pressed context and the newly provided segments.
This approach ensures that only the most relevant
information is preserved at each stage, resulting in
a compact context. As the resulting context is de-
signed to retain query-related information, it serves
as a comprehensive memory of all iterations up to
the current step.
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Figure 3: Distribution of iterations where models de-
termine the compressed contexts to be complete. We
compare the distribution between GPT-40 (Yellow) and
COMPACT (Green). We also measure the percentage of
correctness in complete cases.

3.2 Early Termination

Instead of completing all iterations, we introduce a
specific end condition that early terminates the iter-
ations. We implement this by including a condition
token E in the generation process. The purpose of
the condition token F is to assess whether an input
segment S, combined with the previous context
C}_1, provides sufficient details to answer the ques-
tion. If the token indicates the provided context is
sufficient, the iteration terminates; otherwise, the
iterations continue to gather lacking information
until all missing details are obtained.

This adaptive termination offers three primary
benefits. First, we prevent redundant contexts from
entering the compressed contexts or acting as a
distraction. Second, we can avoid meaningless
iterations, thereby drastically lowering the compu-
tational burdens of our iterative architecture. More-
over, the adaptive feature allows the model to dy-
namically adjust to the complexity of the question
and the information density of the passages. This
flexibility allows the model to be both effective and
efficient across a wide range of scenarios, from sim-
ple queries to more complex, multi-hop questions
requiring extensive context integration.

3.3 Dataset Construction

Our model aims to compress documents into query-
compacted contexts while concurrently determin-
ing the termination of the iterations. To cultivate
this capability, we instruct a superior LLM to fol-
low the three-step processes.

Sentence-Level Selection. We begin by asking
the LLM to identify sentences, particularly focus-



ing on relevant clues that may help the answer the
question. If certain sentences provide relevant in-
formation or implicitly clarify ambiguous points,
the LLLM is prompted to generate these sentences
from the provided documents.

Query-focused Compression. We generate a
summary of the selected sentences, emphasizing
clues that can help answer the question. we explic-
itly restrict the LLM from making assumptions or
attempting to draw conclusions without supporting
evidence, as instructed: "DO NOT make assump-
tions or attempt to answer the question; your job
is to summarize only."” This restriction is crucial
because our main objective is to condense relevant
information from the provided documents, not to
answer the questions directly. Skipping logical
steps to directly answer the question, as if relying
on parametric knowledge, can harm the compres-
sion performance by increasing the likelihood of
missing necessary information.

Determining the Early Termination. We also
prompt the LLM to evaluate its own compressed
contexts based solely on the provided information,
without any additional background context. We
direct the LLM to generate a condition token (e.g.,
[COMPLETE] or [INCOMPLETE]) along with the
rationale for its judgment.

Overall, we construct a synthetic dataset for
training using the LLM with the instructions that
describe the three-step processes. we conduct the
data construction in two scenarios: realistic and
distractor. In realistic scenarios, the provided docu-
ments are the results of a retrieval system. However,
it is difficult to collect early termination cases due
to the infrequent appearance of gold documents.
To address this issue, we also conducted data col-
lection in distractor scenarios which include prede-
fined documents that contain all supporting facts
needed to answer the question. After filtering the
collected datasets from both scenarios, we build a
training dataset consisting of 28k instances catego-
rized into four distinct groups. Table 1 shows the
categories of the dataset.

4 Experiment

4.1 Experimental Setup

Dataset Construction We employ GPT-40 API
(2024-05-13) as the LLM to collect our dataset.
We only use a subset of HotpotQA (Yang et al.,
2018) train set for data collection. To retrieve doc-

uments, we use Contriever (Izacard et al., 2022),
fine-tuned on MS-MARCO (Bajaj et al., 2016), as
our retrieval system on the 2018 Wikipedia cor-
pus (Karpukhin et al., 2020b). We set the default
number of documents per segment as 5. Since it
is rare to find additional evidence beyond the top
30 documents, we set the top-k to 30, allowing for
a maximum of 6 iterations per query. To prevent
lengthy API responses, the maximum number of
generated tokens is limited to 700.

Training & Inference Leveraging the collected
dataset, we perform supervised fine-tuning to train
our model. Without using specific labeling or meth-
ods for particular iterations, we focus on teaching
the model to effectively update the previous con-
text based on the question and given documents at
the current steps. we use instruction-tuned Mistral-
7B (Jiang et al., 2023a) as our base model. At infer-
ence, we process the same number of segments and
inputs as training. Further information is provided
in the Appendix A.2.

4.2 Datasets

We evaluate COMPACT on both single-document
and multi-document question-answering (QA)
datasets. For single-document QA, we use Nat-
ural Question (NQ) (Kwiatkowski et al., 2019) and
TriviaQA (TQA) (Joshi et al., 2017). For multi-
document QA, we evaluate on HotpotQA (Yang
et al., 2018), MuSiQue (Trivedi et al., 2022), and
2WikiMultiHopQA (Ho et al., 2020a). The evalu-
ation is conducted on the dev set of each dataset,
except for TriviaQA, which is evaluated on the test
set. As mentioned, we comprise the training data
only from HotpotQA. Therefore, we conducted
zero-shot evaluation on the other datasets without
accessing their training set.

4.3 Baselines

In Table 2, we compare COMPACT to several base-
line methods. To ensure a fair comparison, we
feed compressed contexts from each baseline to
the same reader model, LLaMA3-8b (Al@Meta,
2024). We consider the following baselines:

* Oracle. We provide the reader with docu-
ments that contain an answer of questions. if
such documents are not available, we include
five documents as a default.

* Raw Document. We simply concatenate the
top-k retrieved documents.



Baselines HotpotQA MuSiQue 2WikiMQA NQ TriviaQA
Comp. EM F1 Comp. EM F1 Comp. EM F1 Comp. EM F1 Comp. EM F1
Oracle 10.8x 399 512 103x 1421 2366 11.0x 374 432 - - - - - -
Raw Document 1x 32,5 431 1x 6.8 16.0 1x 31.6 37.2 1x 40.0 52.1 1x 70.7 715
Long-Context LLM
InternLM2-chat-7B 1x 8.0 203 1x 1.0 6.8 1x 93 195 1x 7.6 226 1x 12.1 315
Mistral-7B-Instruct-v0.2 1x 9.5 226 1x 1.0 7.9 1x 1.2 154 1x 43 209 1x 353 504
FILM 1x 324 437 Ix 6.9 15.7 1x 264 31.7 1x 38.2 50.8 1x 62.7 71.7
GPT-3.5-turbo 1x 32.8 438 Ix 7.3 16.1 1x 28.6 339 1x 40.8 54.6 1x 699 774
Compressor

AutoCompressors 354x 184 284 34.7x 39 119 362x 19.0 245 344x 173 31.8 345x 553 643
LongLLMLingua 34x 256 353 34x 4.8 13.5 3.6x 279 329 35x 277 406 33x 640 708
RECOMP (extractive) 343x 297 399 32.7x 6.7 157 359x 299 349 327x 346 451 392x 67.6 74.1
COMPACT (Ours) 44.7x  35.0 46.5 36.0x 8.4 177 48.5x 30.1 359 443x 378 496 469x 656 748

Table 2: Main results. We set the reader as LLaMA3-8b (AI@Meta, 2024) for a fair comparison. We retrieve top-30
documents to compute the scores. We use three Multi-hop and two single-hop question-answering datasets. Since
our training datasets consist of HotpotQA dataset, we perform zero-shot evaluation on the rest of the datasets. Comp.

refers to the compression rate which is denoted as follows: compression rate =

* Long-Context LLM. We select a number of
LLMs that support long context windows,
including Mistral-7B-Instruct-v0.2 (Jiang
et al., 2023a), GPT-3.5-turbo (OpenAl, 2023),
InternLM2-chat-7B (Cai et al., 2024), and
FILM (An et al., 2024).

* Compressor. We compare COMPACT with
three compression-based methods. Auto-
Compressors (Chevalier et al., 2023) process
segments of long context into soft prompts,
which are prepended to the next segment
as summary vectors. RECOMP (Xu et al.,
2024) suggests extractive/abstractive meth-
ods to compress documents into textual sum-
maries. LongLLMLingua (Jiang et al., 2023c)
takes a perplexity-based approach to filter out
tokens with less importance.

4.4 Results

We assess the performance of COMPACT using
three metrics: Compression rate (Comp.), Exact
Match (EM), and F1 score (F1). Overall, COM-
PACT exhibits strong performance across all bench-
marks, while achieving the highest compression
rate across all baselines. Specifically, COMPACT
outperforms other compression-based methods in
all three metrics, demonstrating its ability to pro-
cess abundant information efficiently. Compared
to long-context LLMs, COMPACT shows compara-
ble performance in NQ and TriviaQA, while out-
performing all three multi-document question an-
swering benchmarks. This shows how COMPACT
excels at tasks that require integrating information
within multiple documents.
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Figure 4: End QA performance using diverse retriever
setups. We use BM25 (Left) and Contriever (Right) to
retrieve top-k documents.

5 Analysis

We also analyze the quality of our compressed text,
both qualitatively and quantitatively, to evaluate
its usefulness through diverse reader LLLMs. Fi-
nally, we investigate ways to facilitate the usage
of compressors by reducing the inference time of
COMPACT in both realistic and benchmark experi-
mental setups.

5.1 Compressor as a Plug-in Module

In Figure 2, we depict the compressor as a plug-in
module. Our design highlights the ease of replac-
ing it with new models as the retriever or reader
evolves. Our goal is to determine if our COMPACT
can flexibly perform compressing the context pro-
vided by diverse retrievers and efficiently preserve
useful information regardless of various readers.

Generalizability across Retrievers. In Fig-
ure 4, we describe the overall results. We
use BM25 (Robertson et al., 2009) and Con-
triever (Izacard et al., 2022), the most common and
useful setups to replace our retrieved documents.
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Figure 5: Performance of HotpotQA with different top-
k documents. We set the reader as GPT-3.5-Turbo.

We use the HotpotQA (Yang et al., 2018) dev set
to compute the recall and F1 performances.

Surprisingly, in the top-5 documents, we observe
that our COMPACT framework achieves a higher
score compared to the gold documents given BM25
retrieved documents. Our framework also shows
a saturated performance while retrieving up to 40
documents. However, we want to highlight that
the score (48.7) shows significantly higher perfor-
mance compared to other compressor models. Ad-
ditionally, for the Contriever setup, where the re-
triever initially fails to retrieve useful documents,
increasing the top-k leads to performance improve-
ments. As we intended, these observations demon-
strate that our COMPACT framework shows robust-
ness across various retriever setups.

Generalizability across Readers. We try to fig-
ure out that our COMPACT framework truly pro-
vides useful compressed text to solve the multi-hop
question answering. Thus, we assess our com-
pressed text with diverse reader LLMs to prove
it provides useful information regardless of spe-
cific reader models such as LLaMA?2 13B (Tou-
vron et al., 2023), LLaMA-3-8b (Al@Meta, 2024),
and GPT-3.5-Turbo (OpenAl, 2023). We randomly
sample 500 instances from the HotpotQA dataset
and describe the reader performance of using top-
30 retrieved documents. We compare our results
with several baselines: providing pivotal informa-
tion to solve questions (gold documents), prepend-
ing top-30 documents (raw documents), and other
compression methods such as RECOMP (Xu et al.,
2024) and LongL.LMLingua (Jiang et al., 2023c).

Table 4: Average Length of Compressed Text per Itera-
tion for HotpotQA and Musique.

In Figure 5, we demonstrate that our COMPACT
framework sufficiently provides high-quality com-
pressed text to solve multi-hop questions. Further-
more, our framework proves its effectiveness on
the widely used top-k retrieved documents such as
k € {5, 10, 20, 30, 40}. Notably, until providing
top-20 documents, there is little difference between
the raw documents and our score. However, at the
top-30 and top-40, performance degradation occurs
as more documents are included as input, increas-
ing irrelevant context. In contrast, our COMPACT
framework shows lower performance degradation
even with increased context. Additionally, COM-
PACT framework achieves a higher compression
rate (44x) signifies that the number of input tokens
is significantly reduced resulting in cost-efficiency
using API calls. We provide LLaMA2-13B and
LLaMA3-8B performance in Table 6.

5.2 Ablation Studies

Component Effectiveness. Our key point of
COMPACT framework is using the compressed text
(CT) and evaluation (Eval.) from previous out-
puts. The evaluation consists of the rationale for
the compressed text and the condition token that
determines early termination based on this ratio-
nale. We describe the detailed performance in Ta-
ble 3. If we only provide the evaluation text, the
compression rate increases dramatically, but the
end performance (F1) significantly drops (Row 1).
Additionally, when comparing cases where both
compressed text and evaluation are provided ver-
sus compressed text only, there is no significant
difference in performance (Row 2 & 3).



We also identify that as the reader LLM ad-
vances, the rationale provided by our COMPACT
framework can negatively impact the performance.
For instance, when using the LLaMA2-7B (Tou-
vron et al., 2023) as the reader LLM, the perfor-
mance achieves 45.0 given the previous output.
However, when only the compressed text is pro-
vided, the performance drops to 44.2. To accurately
analyze the trend of these findings, a detailed ex-
ploration through comparison with different reader
LLMs will be reserved for future work.

Average Length of Compressed Text per Itera-
tion. In Table 4, we provide the detailed length
information of compressed text per iteration. From
a compression perspective, our COMPACT frame-
work compresses text from 30 retrieved documents
into under 200 tokens. We observe that it maintains
a high compression rate on average throughout it-
erations. To ensure the practicality of providing
context with fewer tokens, we also provide an ad-
ditional point. Among the models with over 1 mil-
lion downloads on Huggingface!, 102 out of 154
are language models. Of these, 77.5% can feed
inputs of 512 tokens or fewer. Despite ongoing re-
search on LLMs capable of handling long contexts,
it is evident that many users still frequently employ
models with smaller token inputs. Therefore, it
seems like a positive direction to examine how the
compressed text and evaluation provided by our
framework can enhance the performance of classi-
fication models like BERT (Kenton and Toutanova,
2019), which accept inputs with fewer tokens.

5.3 Inference Latency

While COMPACT offers a significant cost-saving
advantage by reducing the token usage in the reader,
we also consider a potential increase in inference
latency due to the active iteration of our framework.
To investigate this, we measure the time taken to
answer the question with our framework and other
baselines. Given that the inference speed can vary
depending on the composition of retrieved docu-
ments and types of queries, we assess the time on
the multi-hop (e.g., HotpotQA (Yang et al., 2018))
question-answering dataset.

In Table 5, we measure diverse inference time:
inference GPU time, compression GPU time, total
GPU time (inference + compression), throughput
(examples per second), and corresponding F1 score.
We agree that our COMPACT framework has a cru-

"https://huggingface.co/Models

Inference  Compression Total Throughput

Baselines

GPUTime GPUTime GPUTime (example/sec)
No Documents 1.5m - 1.5m 5.58 31.7
Raw Documents 11.5m - 11.5m 0.72 42.5
LongLLMLingua 3.3m 32.3m 35.6m 0.23 355
RECOMP 1.9m 2.1m 4.0m 2.10 415
COMPACT (5 docs) 1.4m 178.7m 180.1m 0.05 473
COMPACT (10 docs) 1.9m 92.9m 94.8m 0.09 454

Table 5: Inference time for HotpotQA dataset. Our it-
erative inference lets us consider the trade-off between
massive inference time and high performance (compres-
sion rate and end QA performance).

cial limitation for inference time in processing the
compression. However, our COMPACT framework
provides high-quality compressed text regardless
of retriever and reader. Furthermore, we prove its
effectiveness through the trained HotpotQA dataset
and other zero-shot evaluations.

How to Speed up Inference in COMPACT Frame-
work (Varying Segment Size). Extending the
segment size is a way to improve inference speed ef-
ficiently. Instead of retraining the model to handle
more documents, we simply increase the number
of documents provided per iteration. Specifically,
we apply 10 documents to COMPACT, which was
originally trained to compress only 5 documents.
We observe performance degradation when look-
ing at segments of different sizes than those seen
during training, but we still observe a high level of
performance. Adopting this approach can yield ad-
vantages during inference time in our framework.

6 Conclusion

We introduce COMPACT, a novel framework that
employs an active strategy to compress extensive
documents. Our framework effectively captures im-
portant context and compresses documents of large
volumes without losing pivotal information. COM-
PACT can serve as a convenient plug-in module that
can fully collaborate with advanced off-the-shelf
retrievers and readers. Our framework achieves a
high compression rate (44x), which significantly
increases the cost-efficiency when collaborating
with external API calls. Our experiments show that
COMPACT shows significant improvements in com-
pression rates and QA performance on multi-hop
question-answering datasets such as HotpotQA and
MuSiQue.

Limitations

Our main concern is about the inference time
required to compress top-k retrieved documents.
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We acknowledge that our COMPACT framework
spends considerable time compressing the retrieved
documents. However, with the combination of a
strong retrieval system, there is also potential for
significant time savings if sufficient contexts are
provided earlier. Also, our effort to address com-
plex question types through compression is pioneer-
ing in this field. This aspect makes our research
valuable, as it sets the foundation for future work to
build upon and potentially resolve these issues. We
hope that subsequent research will continue to re-
fine these methods, further enhancing the efficiency
of inference latency of our framework.

Additionally, we found that there are non-trivial
errors when judging the completeness of com-
pressed contexts. We use GPT-40 API to collect
the training data with our custom instructions. For
example, during data collection, even when the
documents provide oracle evidence to answer the
question, GPT-40 outputs a [COMPLETE] condi-
tion token at a rate of 39.88%. This indicates that
even GPT-40, which we believed to perform the
best in our situation, struggles with accurately de-
termining completeness of contexts. Although we
attempt to address the issue by filtering the error
cases, there may still be instances where the model
incorrectly judges completeness.

Moreover, we only train our model in Mistral-
7B-Instruct-v0.2 due to resource limitations. We
need to verify whether our COMPACT framework
works well across a range of model sizes, both
smaller (< 7B) and larger (> 7B). It is challenging
to assert that our framework operates efficiently
when the compression model is significantly larger
than the reader LLM used afterward. It would
be beneficial to conduct experiments during the
rebuttal period to confirm these aspects.

Ethics Statement

In environmental cost, our training process can use
a significant amount of energy as the process is
computationally expensive. In our manuscript, we
attempt to minimize these effects by pre-training
on one Mistral model and only do the necessary
supervised fine-tuning to minimize the computa-
tion cost. Furthermore, a potential risk of this work
is that the generated dataset can contain biases of
API calls such as stereotypes of racism and gender.
To our knowledge, there haven’t been significant
issues reported when creating datasets related to
question answering. However, it would be benefi-

cial to apply methods that robustly train or validate
against such concerns.
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A Example Appendix
A.1 HuggingFace Models Statistics

Sequence Length Language Models (%)

128 14.7
512 62.8
> 1024 22.5

Table 6: Huggingface Models Statistics. 77.5% of mod-
els cannot receive at least top-5 documents as input. We
select frequently-used models downloaded at least 1M
in https://huggingface.co/Models.

A.2 Training & Inference Details

We use 8 Nvidia A100 with 80GB memory to
train our COMPACT framework. Our code is writ-
ten in PyTorch (Paszke et al., 2019) and Hug-
gingFace (Wolf et al., 2019). We use super-
vised fine-tuning through published alignment-
handbook (Tunstall et al., 2023). We train the
model with Adam optimizer (Kingma and Ba,
2015), using a learning rate of 2e-6, a batch size
of 128, and 0.1 warm up ratio for 4 epochs. For
inference, we use batch decoding to speed up our
inference time.

A.3 Details of Baselines

Long-context LLMs. (1) InternLM2-chat-
7B (Cai et al., 2024) has shown near-perfect
performance on the Needle-in-the-Haystack task,
which tests how well a model utilizes information
within a long context. (2) Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023a) has recently shown
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Avg. # of # of
Supporting Documents Pre-defined Context

NaturalQuestions (Kwiatkowski et al., 2019) 79,168 8,757 3,610 - -

Dataset Train Dev Test

TriviaQA (Joshi et al., 2017) 78,785 8,837 11,313 - -

HotpotQA (Yang et al., 2018) 90,447 7,405 - 2 10
MuSiQue (Trivedi et al., 2022) 39,876 4,834 4918 1.89 (Dev) 20
2WikiMultiHopQA (Ho et al., 2020a) 167,454 12,576 12,576 2.44 (Dev) 10

Table 7: Statistics of multi-hop and single-hop question answering datasets.

Recall@k Raw docs == CompAct (Ours) Recall@k Raw docs =—e= CompAct (Ours)
RECOMP Gold docs RECOMP Gold docs
60 60
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Figure 6: Performance of HotpotQA with different top-k£ documents. We set the reader as LLaMA2-13B (Left) and
LLaMA3-8B (Right).

strong performance across various benchmarks and
supports a 32k context window. (3) FILM-7B (An
et al., 2024), trained with a synthetic long-context
question-answering dataset, has shown strong
performance on tasks that require information
awareness in the long context. (4) We also experi-
ment with GPT-3.5-turbo, a popular proprietary
LLM that supports a 16k context window.

Compressors. (5) AutoCompressors (Chevalier
et al., 2023) process segments of long context into
soft prompts, which are prepended to the next
segment as summary vectors. We use 50 sum-
mary tokens for every 2,048 tokens, following the
setup from the original paper. (6) Longl.LMLin-
gua (Jiang et al., 2023c) takes a perplexity-based
approach to filter out tokens with less importance.
(7) RECOMP (Xu et al., 2024) suggests an ex-
tractive compressor that extracts relevant sentences
using a dual encoder model, and an abstractive
compressor that summarizes documents using an
encoder-decoder model. We experiment with the
extractive compressor setting.
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First Iteration:

1. Generate a summary of source documents to answer the question. Ensure the summary is under 200 words and does not
include any pronouns. DO NOT make assumptions or attempt to answer the question; your job is to summarize only.

2. Evaluate the summary based solely on the information of it, without any additional background context: if it lacks
sufficient details to answer the question, print INCOMPLETE]. If it provides all necessary details, print [COMPLETE].
You should provide the reason of the evaluation.

Question: [QUESTION]

Source documents: [SOURCE DOCUMENTS]

Summary:

Subsequent Iterations:

1. Generate a summary of the source documents and the previous summary to answer the question based on the evaluation
of the previous summary. The evaluation indicates the missing information needed to answer the question. Ensure the
summary is under 200 words and does not include any pronouns. DO NOT make assumptions or attempt to answer the
question; your job is to summarize only.

2. Evaluate the summary based solely on the information of it, without any additional background context: if it lacks
sufficient details to answer the question, print [INCOMPLETE]. If it provides all necessary details, print [COMPLETE].
You should provide the reason of the evaluation.

Question: [QUESTION]

Evaluation of previous summary: [EVALUATION OF PREVIOUS SUMMARY]

Previous summary: [PREVIOUS SUMMARY]

Source documents: [SOURCE DOCUMENTS]

Summary:

Table 8: Prompts used in COMPACT
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Sentence Selection (First Step):

Source sentences: [SOURCE SENTENCES]

Reference sentences: [REFERENCE SENTENCES]

Question: [QUESTION]

1. Follow instructions below. Choose 0 to 3 sentences that directly address the critical points needed to answer the question.
Additionally, include O to 3 sentences that provide useful context, even if they do not directly answer the question. Ensure

that you avoid selecting multiple sentences with overlapping content. (prefix: Sentences)

2. Generate a summary of chosen sentences (prefix: Summary). Ensure the summary is under 200 words and does not
include any pronouns. DO NOT make assumptions or attempt to answer the question; your job is to summarize only.

3. Evaluate the summary based solely on the information of it, without any additional background context: if it lacks
sufficient details to answer the question, print INCOMPLETE]. If it provides all necessary details, print [COMPLETE].
You should provide the reason of evaluation (prefix: Evaluation)

Sentences:

Summary Generation (Second Step):

Source sentences: [SOURCE SENTENCES]

Question: [QUESTION]

1. Generate a summary of the source documents and the previous summary to answer the question based on the evaluation
of the previous summary. The evaluation indicates the missing information needed to answer the question. Ensure the
summary is under 200 words and does not include any pronouns. DO NOT make assumptions or attempt to answer the
question; your job is to summarize only.

2. Evaluate the summary based solely on the information of it, without any additional background context: if it lacks
sufficient details to answer the question, print INCOMPLETE]. If it provides all necessary details, print [COMPLETE].

You should provide the reason of evaluation.

Sentences:

Table 9: Prompts for dataset construction
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Question: Who was the eldest brother of the Mexican drug trafficker born 12 March 1952?

Model: COMPACT (Ours)
Iter 1

Document (Rank 3): Benjamin Arellano Félix (born 12 March 1952) is a Mexican drug trafficker and former leader of
the Mexican criminal organization known as the Tijuana Cartel or "Arellano-Félix Organization". Benjamin Arellano
Félix, who worked closely with his brothers, was one of Mexico’s most powerful drug lords and the supplier of one-third
of the U.S.’s cocaine. Benjamin had six brothers: He also has four sisters. Two of them, Alicia and Enedina, are most
active in the cartel’s affairs. Benjamin was first arrested on 18 June 1982, in Downey, California, for receiving 100 kilos of
cocaine smuggled through the San

Compressed Text: Benjamin Arellano Félix, born on 12 March 1952, is a Mexican drug trafficker and former leader of
the Tijuana Cartel. He had six brothers, including He, and four sisters. He also has four sisters.

Evaluation: The summary provides information about Benjamin Arellano Félix and his siblings but does not specify who
the eldest brother is. [INCOMPLETE]

Iter 2

Document (Rank 7): Francisco Rafael Arellano Félix (24 October 1949 - 18 October 2013) was a Mexican drug lord
and former leader of the Tijuana Cartel, a drug trafficking organization. He was the oldest of seven brothers and headed
the criminal organization early in the 1990s alongside them. Through his brother Benjamin Francisco Rafael joined the
Tijuana Cartel in 1989 following the arrest of Miguel Angel Félix Gallardo, one of the most prominent drug czars in
Mexico during the 1980s. When the Arellano Félix took control of the organization in the early 1990s, tensions with the
rival Sinaloa Cartel

Compressed Text: Francisco Rafael Arellano Félix, born on 24 October 1949, was a Mexican drug lord and former
leader of the Tijuana Cartel. He was the oldest of seven brothers and headed the criminal organization early in the 1990s
alongside them. Benjamin Arellano Félix, born on 12 March 1952, is a Mexican drug trafficker and former leader of the
Tijuana Cartel. He had six brothers, including He, and four sisters. He also has four sisters.

Evaluation: The summary provides all necessary details to answer the question. It identifies Francisco Rafael Arellano
Félix as the oldest brother of Benjamin Arellano Félix, who was born on 12 March 1952. [COMPLETE]

Answer: Francisco Rafael Arellano Félix (Correct)

Model: RECOMP (Xu et al., 2024)

Summary: Miguel Rodriguez Orejuela He is the younger brother of Gilberto Rodriguez Orejuela.

Roberto de Jests Escobar Gaviria Roberto de Jesis Escobar Gaviria Roberto de Jestis Escobar Gaviria (born January 13,
1947), nicknamed El Osito (Little Bear), was the brother of the drug kingpin, Pablo Escobar, and the former accountant of
the Medellin Cartel, which was responsible for up to 80 percent of the cocaine smuggled into the United States.

Answer: Fabio Ochoa Vasquez (Wrong)

Table 10: A compression example of COMPACT and comparison with another compressor (RECOMP)
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