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Abstract

Auto-regressive large language models (LLMs) show impressive capacities to
solve many complex reasoning tasks while struggling with some simple logical
reasoning tasks such as inverse search: when trained on “A → B” (e.g., Tom is
the parent of John), LLM fails to directly conclude “B ← A” (e.g., John is the
child of Tom) during inference even if the two sentences are semantically identical,
which is known as the “reversal curse”. In this paper, we theoretically analyze the
reversal curse via the training dynamics of (stochastic) gradient descent for two
auto-regressive models: (1) a bilinear model that can be viewed as a simplification
of a one-layer transformer; (2) one-layer transformers under certain assumptions.
Our analysis reveals that for both models, the reversal curse is a consequence
of the (effective) model weights asymmetry, i.e., the increase of weights from a
token A to token B during training does not necessarily cause the increase of the
weights from B to A, which is caused by the training dynamics under certain
choice of loss function and the optimization space of model parameters. Moreover,
our analysis can be naturally applied to other logical reasoning tasks such as
chain-of-thought (COT), which provides a new perspective different from previous
work that focuses on expressivity. Finally, we conduct experiments to validate our
theory on multi-layer transformers under different settings. Our code is available at
https://github.com/marlo-z/reversal_curse_analysis/.

1 Introductions

Large language models (LLMs) have shown great performance in solving complex reasoning tasks that
require multiple reasoning steps through in-context learning (ICL), such as zero-shot learning [1, 2],
few-shot learning [3, 4, 5], or via further fine-tuning [6, 7, 8]. However, without the above inference-
time techniques or model fine-tuning (probably combined with data manipulations), an auto-regressive
LLM might struggle with simple logical reasoning tasks that require multiple reasoning steps learned
during training separately [9], where the reversal curse [10] serves as a well-known example.

*Equal contributions.
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The reversal curse refers to the phenomenon that an auto-regressive LLM that learns “A→ B” (e.g.,
Tom is the parent of John) during training fails to generalize to the reverse direction “B ← A” (e.g.,
John is the child of Tom) even if the pair of relationship “→” and “←” are reverse to each other
and the two sentences are semantically identical. Although some previous works propose different
methods to mitigate the reversal curse, including reversing the training dataset [11, 12] and training on
different objectives such as autoregressive blank infilling [13], these methods might negatively affect
the model performance on other tasks since they either alter the dataset or the model architecture.
Without dataset manipulation or changing the auto-regressive nature (causal structure) of the model,
there are two other candidate solutions to mitigate the reversal curse.

First, one might constrain the model parameters to satisfy a higher-level regularity for specific
relationships. For example, a reversal-type regularity can be viewed as a pair of relationships (→,
←) and two sets A,B such that a model trained on “A → B” will also increase its probability
of “B ← A” for all A ∈ A, B ∈ B, which induces a subspace of model parameters that satisfy
this regularity. If one can train the model within this subspace, then training on “A→ B” can, by
definition, help to learn “B ← A”. However, for a general LLM, it is extremely challenging to
find the subspace and manually hard-code the constraint during optimization even for one pair of
relationships, not to mention there are numerous relationships. Since it is intractable to manually
hard-code the constraints to the model parameter, one can alternatively expect the model to learn the
higher-level regularity by training samples under unconstrained optimization. However, this is also
hard, according to our analysis, through the popular cross-entropy (CE) loss that aims to maximize
the next token prediction probability for the models studied in our paper.

Second, one can use a different loss function which is “symmetric”, rather than the popular CE loss.
However, the “symmetric” loss might drive the model to learn meaningless sentences. For example,
when trained on the sentence “John is tall”, a “symmetric” loss function might drive the model to
learn “tall is John”, which is not what we expect. To prevent the model from the above undesired
behavior, in practice, CE loss is still widely-used.

Therefore, in this paper, we analyze the reversal curse via training dynamics of the widely-used
unconstrained optimization for the CE loss. We summarize our main contributions as follows:

• We theoretically analyze the reversal curse where training or test sequences have the form “A→ B”
or “B ← A” via training dynamics of (stochastic) gradient descent under two auto-regressive
models: a bilinear model (Section 3) and one-layer transformers under certain assumptions similar
to [14] (Section 4). The analysis of both models reveals that the widely-used unconstrained
optimization for CE loss leads to model weights asymmetry, i.e., the increase of (effective) weights
(after reparameterization) from the token A to token B1 during training does not necessarily
cause the increase of the weights from B to A, which further causes the reversal curse. Although
the (effective) weights from A to B and from B to A might be related to some extent due to
reparameterization, their correlation is weak and thus show asymmetry as empirically verified in
Section 5.

• The techniques we used to analyze the reversal curse can be applied to other logical reasoning
tasks. In particular, we use the above framework to analyze chain-of-thought (COT) [4], and we
show that a model trained on “A→ B” and “B → C” separately struggles to directly conclude
“A ; C” without COT even if it is logically true (Section 4.2). Different from the previous work
[15] that theoretically studies COT through the expressivity of transformers, our work provides a
new perspective through training dynamics.

• We also empirically validate our theoretical results on multi-layer transformers (Section 5).

The asymmetry of auto-regressive model weights caused by widely-used unconstrained optimization
for CE loss indicates that auto-regressive LLMs might not automatically deduce certain types
of conclusions using separate knowledge learned during training under current popular training
paradigms: to make a model predicting token B where the input token is A, the model might need to
see B following A in the same sequence during the training set. This also highlights the importance
of ICL, data augmentation, or planning for LLMs with the current popular causal transformer-based
structures to solve complex reasoning tasks.

1The weights from A to B can be viewed as the logits of token B when the input is A.
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1.1 Related works

LLM Reasoning. The strong performance of LLMs on reasoning tasks [3, 7, 16, 2, 17, 4, 18, 19]
has prompted many studies on the reasoning capabilities of LLMs. [20] argues that transformers
perform implicit Bayesian inference in ICL. [21] shows that transformers implement a specific type
of circuits called “induction heads” that are key to the ICL abilities of LLMs. [22] proves that causal
structures are encoded in transformer layers during the training dynamics. [23] identifies a backward
chaining mechanism of transformers in deductive reasoning. Apart from in-context reasoning, LLMs
still demonstrate limitations in other types of reasoning tasks [24, 25, 26].

Reversal Curse. [10] identifies the phenomenon of reversal curse. This drawback of LLMs
is also demonstrated in [27]. [9] studies a similar phenomenonin which LLMs face difficulty in
manipulating already learned knowledge. Several paper studies eliminating the reversal curse by
extending causal attention to bidirectional attention [13], training on reversed samples [12], permuting
semantic units [11], or introducing reverse logic data [28]. Given all the empirical works, theoretical
analysis of the reversal curse phenomenon remains scarce.

Expressivity of LLMs. There is a long line of works [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 21, 45] studying the behavior of LLMs through the expressivity of transformers. It
has been shown that transformers can implement simple functions such as sparse linear functions,
two-layer neural networks, and decision trees [42], gradient descent [37, 44, 46], automata [47],
Turing machines [48], variational inference [49], and bandit algorithms [50]. Different from [15] that
study COT via expressivity, we analyze reversal curse and COT via training dynamics.

Training dynamics of LLMs. There are rich literatures in the optimization of attention layers [51,
52, 53, 54, 55, 56, 57]. [58, 59] study the dynamics of a single linear attention layer in in-context
linear regression. [60] proves convergence of one-layer transformers in random feature regime. [61]
shows the convergence of gradient descent on one-layer transformers in in-context linear regression
with orthogonal data. [14] studies the convergence of one-layer transformers in a class of next-token
prediction tasks. [62] studies training dynamics of multi-layer transformers. [22] studies gradient
descent on a class of two-layer transformers in in-context learning tasks with latent causal structures.
Our paper studies the reversal curse via training dynamics under both bilinear settings and one-layer
transformers. For one-layer transformers, we use the same framework as [14] without the need for
certain technical assumptions such as long input sequences, different learning rates for different
parameters (except for Appendix C.3), or weak correlations that are required for [14]. Besides, we
focus on the generalization ability of models for logical reasoning tasks while [14] mainly focus on
optimization, and we identify the asymmetry and intransitivity properties of model weights, which
are the core reasons for the failure of LLM for certain types of logical reasoning. Moreover, our
analysis of the bilinear model only requires the embedding to be almost orthonormal, while [14]
essentially assumed the embedding vectors to be fixed and one-hot.

2 Preliminaries

Basic notations. For any integer N > 0, we use [N ] to denote the set {1, 2, . . . , N}. Let R, N
denote the set of real numbers and natural numbers, respectively. For real variables x1, . . . , xn, we
use poly(x1, . . . , xn) to denote the polynomial of x1, . . . , xn. We use f(n) ≲ g(n) if there exists a
constant C > 0 s.t. f(n) ≤ Cg(n),∀n; we say g(n) ≳ f(n) if f(n) ≲ g(n).

We use ei to denote one-hot vectors where only the i-th entry of ei equals one and all other entries are
zero. We use 1 to denote all-one vectors, 0 to denote zero vectors or zero matrices, and I to denote
the identity matrix. We will also add subscripts when we want to explicitly show the dimension, such
as 0d, Id for d-dimensional zero vector and d× d identity matrix. We use ⊗ to denote tensor product
of vectors or matrices and use x⊗2 and A⊗2 to denote x⊗ x and A⊗A for vector x and matrix A.

We use N (µ,Σ) (or adding subscripts such as Nd(·, ·) if we want to show dimensions explicitly) to
denote the (multi-variate) Gaussian distribution with mean µ and covariance Σ. Also, we use ∆(X )
to denote the set of distributions over a set X and use E[·] to denote expectation. For any dataset
D = {x1, x2, . . . , xn} where xi ∈ X and a function f : X → R, we define the empirical expectation
over the dataset as ED[f ] =

1
n

∑n
i=1 f(xi). See additional notations in Appendix A.
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Entities Forward Backward Direct Indirect Others

A, B, C, Ai, Bi, Ci → ← → ; R1, R2

Table 1: Notations for tokens in Section 4. “→” and “←” denote forward and backward relationships
for the reversal curse. “→” and “;” denote direct and indirect implication for COT. R1 and R2 are
relationship tokens in Section 4.3. A, B, C, Ai, Bi, Ci denote tokens representing entities.

Auto-regressive models. Define the vocabulary V = [M ] for a positive integer M > 0 which is
the size of the vocabulary. Let x = (x1, x2, . . . , xT ) be a sequence of tokens of length T where each
token xt ∈ V, ∀t ∈ [T ]. See Table 1 for notations of different tokens used in Section 4. We study
auto-regressive models pθ(·|x) ∈ ∆(V) parameterized by θ that take the sequence x as input and
predict the distribution of the next token xT+1 ∈ V . For both models that we study in this paper,
the next token probability is modeled as the softmax applied to the logits lθ(·|x) ∈ RM of each
token in the vocabulary, i.e., pθ(y|x) = exp(lθ(y|x))∑

v∈V exp(lθ(v|x)) , ∀y ∈ V . Also, each token v ∈ V has a

corresponding (fixed or learnable) embedding vector uv ∈ Rd.

3 Bilinear Models

We start analyzing the reversal curse under bilinear models, which can be viewed as simplified
one-layer transformers with input length one and decoder layer only. Also, in this section, we assume
the embeddings of each token are fixed, so we directly use the embedding vector to represent a token.

Datasets. Assume the vocabulary has size m where each token v1, v2, . . . , vm
i.i.d.∼ Nd(0d,

1
dId).

Let V = {v1, . . . , vm} and let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be disjoint random subsets
of V . Assume all training and test sequences have a length of two. For any 2 ≤ i ≤ n, the training
dataset contains both sequence (xi, yi) and (yi, xi). In addition, the training set contains (x1, y1)
while the test set only contain one example (y1, x1). During training, the model learns both (xi, yi)
and (yi, xi) for i ≥ 2 to conclude that (xi, yi) is equivalent to (yi, xi). For example, X is a set of
names and Y is a set of books. The sequence (xi, yi) means “xi is the author of yi”, and the sentence
(yi, xi) means “yi is written by xi”. We test whether the model is able to infer an unseen sequence
(y1, x1) given the training data which includes the other direction (x1, y1).

Bilinear model. We consider a bilinear model parameterized by Θ ∈ Rd×d of which the
input contains single token x ∈ V . The logits of the next token y ∈ V is defined as
lΘ(y|x) = x⊤Θy which is bilinear in x and y, and thus the next token probability is pΘ(y|x) =

exp(lΘ(y|x))∑
v∈V exp(lΘ(v|x)) . The training loss for the bilinear model is the cross-entropy loss L(Θ) =
1

2n−1 (
∑n

i=1− log pΘ(yi|xi) +
∑n

i=2− log pΘ(xi|yi)) and the test loss (reversal loss) is Lrev(Θ) =

− log pΘ(x1|y1). We study the training dynamics of gradient flow dΘt

dt = −∇L(Θt) with the initial-
ization Θ0 that can be either randomly sampled fromN (0⊗2, σ2I⊗2) or set as a pretrained parameter
satisfying 1

2m < pΘ0(yi|xi), pΘ0(xi|yi) < 2
m for all i ∈ [n]. The following theorem shows a

separation during training dynamics.

Theorem 1 (Separation of training dynamics (informal statement of Theorem 5)). Fix any δ, ϵ ∈ (0, 1).
For small σ and d ≥ poly(n,m, 1/ϵ, log(1/δ)), with probability at least 1− δ, we have

Lrev(Θt)/Lrev(Θ0) ≥ (L(Θt)/L(Θ0))
ϵ, ∀t ≥ 0.

Theorem 1 shows that the reversal loss is lower bounded by the training loss. Note that for large d
and small ϵ close to 0, (L(Θt)/L(Θ0))

ϵ is close to 1 and thus Lrev(Θt) ≳ Lrev(Θ0) which implies
that pΘ(x1|y1) remains small during training. We summarize the above argument in Theorem 2.

Theorem 2 (Lower bound of reversal loss (informal statement of Theorem 6). Fix arbitrary c > 0 and
C ≤ log(m/2). Suppose σ is small and d ≥ poly(n,m, log(1/δ), log c, 1/logC). With probability
at least 1− δ, it holds that Lrev(Θτ ) ≥ C, where τ denotes the first time such that L(Θt) ≤ c.
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The proofs of Theorems 1 and 2 are deferred to Appendix B. Theorem 2 implies that for large d2,
while the training loss can be trained to be arbitrarily small, the reversal loss remains large. In
other words, the model fails to infer an unseen sequence (y1, x1) given the training data which
includes the other direction (x1, y1). Furthermore, even if the model is fine-tuned on new data
from a pre-trained parameter Θ0 that initially grasps the concept of reversal and satisfies 1

2m <

pΘ0(yi|xi), pΘ0(xi|yi) < 2
m for new data, it fails to extend this understanding to new, unseen data.

A core reason that the reversal curse happens on the above bilinear model is that the parameter matrix
Θt is asymmetric. Consequently, the logits lΘt

(y|x) = x⊤Θty and lΘt
(x|y) = y⊤Θtx generally

differ. Consider a special case where each vi is a one-hot vector. Then lΘ(y|x) = x⊤Θy = Θij and
lΘ(x|y) = y⊤Θx = Θji for x = ei, y = ej . Training on (x, y) can increase Θij but not Θji, which
means the model does not automatically learn the reversal direction (y, x) from (x, y). In Section 4,
we will show that for one-layer transformers, the reversal curse is mainly caused by the same reason,
i.e., the asymmetry of the model weights.

4 One-Layer Transformers

In Section 3, we analyzed the reversal curse under a bilinear model. In this section, we analyze the
reversal curse for one-layer transformers in a similar setting to [14] via training dynamics. We also
extend our analysis to chain-of-thought in Section 4.2.

Basic notations. Let V = [M ] be the vocabulary. For any token x ∈ [M ], we also use the
corresponding one-hot vector x = ex ∈ RM to represent it. Let U = [u1,u2, . . . ,uM ]⊤ ∈ RM×d

be the embedding matrix, where ux ∈ Rd is the embedding of token x ∈ [M ]. Note that U⊤x = ux.
Consider the i-th training sample in the dataset, x[i] = (x1[i], . . . , xT [i][i], xT [i]+1[i]), a sequence of
tokens of length T [i] + 1. Here, xT [i]+1[i] is the next token (or equivalently the label) to be predicted,
xT [i][i] is the query token, and (x1[i], . . . , xT [i]−1[i]) are contextual tokens. For token xt[i], we
also use its one-hot vector xt[i] = ext[i] ∈ RM to represent it. Define the contextual token matrix
X[i] = [x1[i], . . . ,xT [i]−1[i]]

⊤ ∈ R(T [i]−1)×M . We omit all i in notations when the context is clear.

One-layer transformer. For a training sample x = (x1, . . . , xT , xT+1), its contextual token
matrix X = [x1, . . . ,xT−1]

⊤ and thus XU = [ux1
, . . . ,uxT−1

]⊤ contains the contextual token
embeddings. We study one-layer transformers in the same setting as [14]. In particular, for an input
token sequence (x1, . . . , xT ), after the one-layer self-attention, we can obtain ũT = U⊤LN(X⊤bT )

where btT =
exp(u⊤

xT
WQW⊤

Kuxt/
√
d)∑T−1

t′=1
exp(u⊤

xT
WQW⊤

Kux
t′
/
√
d)

, bT = [b1T , . . . , bT−1,T ]
⊤ contains attention scores

(after softmax) that query token xT attend to each contextual token3, LN(x) = x/∥x∥2 is the ℓ2-
normalization operator, and WQ,WK ∈ Rd×dk are trainable query and key matrices respectively. The
logit of x ∈ [M ] is then calculated by a decoder layer, i.e., lθ(x|x1, . . . , xT ) = u⊤

x WV ũT , where θ
encodes all parameters in the transformer, and WV ∈ Rd×d can be viewed as a reparameterization of
value and output matrices. Finally, the next token prediction probability is obtained by

pθ(x|x1, . . . , xT ) =
exp(lθ(x|x1, . . . , xT ))∑

x′∈[M ] exp(lθ(x|x1, . . . , xT ))
=

exp(u⊤
x WV ũT )∑

x′∈[M ] exp(u
⊤
x′WV ũT )

.

We use the cross-entropy loss function to train the model over the whole training set Dtrain, i.e.,
maxU,WK ,WQ,WV

J ≜ EDtrain [log pθ(xT+1|x1, . . . , xT )].

Reparameterization. Similar to [14], we define Z = UWQW
⊤
KU⊤/

√
d ∈ RM×M and Y =

UW⊤
V U⊤ ∈ RM×M and are interested in their dynamics after reperameterization. Then, the attention

score (after softmax) and next token probability become

btT =
exp(x⊤

TZxt)∑T−1
t′=1 exp(x

⊤
TZxt′)

, pθ(x|x1, . . . , xT ) =
exp

(
x⊤Y ⊤LN(X⊤bT )

)∑
x′ exp

(
x′⊤Y ⊤LN(X⊤bT )

) , (1)

2Empirically, d only needs to be of the order of logarithm of the vocabulary size. See Appendices E.2.1
and E.2.2 for additional results.

3Note that we assume the query token will not attend to itself as in [14].
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and the objective can be written as

max
Y,Z

J = EDtrain [x
⊤
T+1Y

⊤LN(X⊤bT )− log
∑

x′∈[M ]

x′⊤Y ⊤LN(X⊤bT )]. (2)

Let ηY , ηZ be the learning rate of matrices Y and Z respectively. Then the gradient of Y and Z can
be characterized by the following lemma:
Lemma 1 (Gradient of Y and Z for 1-layer transformer, Lemma 1 of [14]). The gradient of Y and
Z w.r.t. (2) of batch size 1 and learning rate ηY and ηZ can be written as

Ẏ = ηY LN(X⊤bT )(xT+1 −α)⊤, Ż = ηZxT (xT+1 −α)⊤Y ⊤ P⊥
X⊤bT

∥X⊤bT ∥2
X⊤ diag(bT )X, (3)

where P⊥
v ≜ I − vv⊤/∥v∥22 projects any vector to orthogonal complement of v, α =

[α1, α2, . . . , αM ]⊤ ∈ RM with α = exp
(
Y ⊤LN(X⊤bT )

)
/1⊤ exp

(
Y ⊤LN(X⊤bT )

)
.

Proof. Ẏ , Ż can be obtained by direct calculation. One can refer to the proof of Lemma 1 of [14].

4.1 Main results for the reversal curse

In this section, we analyze the reversal curse where data points are three-token sentences “A→ B” or
“B← A”. For each sentence, A and B are two distinct tokens that represent two entities, and “→” and
“←” are two special tokens representing a pair of relationships inverse to each other.

Datasets. Let Ntrain > 0, N (1)
test > 0 and N

(2)
test > 0 and denote Ntotal = Ntrain +N

(1)
test +N

(2)
test . Let

Ai, Bi ∈ V,∀i ∈ [Ntotal] be 2Ntotal distinct tokens representing distinct entities. Let→,←∈ V be two
additional different tokens that represent two inverse relationships. Specifically, we have Ai → Bi
and Bi ← Ai for all i ∈ [Ntotal]. For notation convenience, we define the following three index sets

Itrain = [Ntrain], I(1)test = [Ntrain +N
(1)
test ]\Itrain, I(2)test = [Ntotal]\(Itrain ∪ I(1)test ).

The training set Dtrain consists of all Ai → Bi and Bi ← Ai for i ∈ Itrain. In addition, Dtrain contains
Ai → Bi for i ∈ I(1)test and Bi ← Ai for i ∈ I(2)test . For convenience, we let N = |Dtrain| to be the size of
the training set. The test set Dtest consists of Bi ← Ai for i ∈ I(1)test and Ai → Bi for i ∈ I(2)test . Under
our construction of the dataset, the LLM will learn the relationship between Ai and Bi for i ∈ Itrain in
both directions to deduce that→ is reverse to←, and learn the relationship between Ai and Bi for
i ∈ I(1)test ∪ I

(2)
test in one direction and will be tested for the other.

We use pθ(Ai|Bi ←) and pθ(Bi|Ai →) to more compactly represent pθ(x3 = Ai|x1 = Bi, x2 =←)
and pθ(x3 = Bi|x1 = Ai, x2 =→), respectively. Our goal is to prove through the training dynamics
of one-layer transformers that the test probability remains negligible during training. In particular,
we are interested in pθ(Ai|Bi ←),∀i ∈ I(1)test and pθ(Bi|Ai →),∀i ∈ I(2)test .

For convenience, we assume zero-initialization Y (0) = 0 and Z(0) = 0. This is the same as [14] and
is reasonable since empirically, Y and Z are usually initialized as inner products of d-dimensional
vectors with i.i.d Gaussian entries, and thus are almost zero (Lemma 8 in Appendix B). The following
proposition shows the initial train/test probabilities are uniform over the vocabulary V .
Proposition 4.1 (Initial probability under zero initializaion). Assume the transformer is under
zero-initialization θ(0) = (Y (0), Z(0)) with Y (0) = 0 and Z(0) = 0. For any i ∈ [Ntotal], we have

pθ(0)(Bi|Ai →) = pθ(0)(Ai|Bi ←) = 1/M.

The proof is deferred to Appendix C.1.1. Proposition 4.1 shows that initially, the probability of
predicting any B (or A, respectively) given any A→ (or B←, respectively) as input is uniform over
the whole vocabulary. When Y (0) and Z(0) are not exactly 0 but close to 0, the initial prediction
will still be close to the uniform distribution, which is similar to Lemma 6. Next we analyze the
dynamics of pθ(t)(Bi|Ai →) and pθ(t)(Ai|Bi ←).
Proposition 4.2 (Next token probability). For input sequence (x1, x2), the next token probability
under parameters θ(t) is pθ(t)(x|x1, x2) = exp (Y (t)x1,x) /

∑
x′∈[M ] exp (Y (t)x1,x′), where Y (t)i,j

is the entry of the matrix Y (t) at row i and column j.
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The proof is also deferred to Appendix C.1.1. According to Proposition 4.2, the next token probability
when the entity in the input is x1 is determined by the x1-th row of the matrix Y (t). Another nice
property indicated by Proposition 4.2 is that we don’t need to keep track of the dynamics of Z(t),
which could greatly simplify the analysis. The following lemma shows the dynamics of Y (t).
Lemma 2 (Dynamics of Y (t)). Assume we run SGD with batch size 1 4, and assume M ≫ 100 and

1
M0.99 ≪ ηY < 1. Let t ≳ N lnM

ηY
and let Y (t)i denote the i-th row of Y (t) and Y (t)ij denote the

(i, j)-th entry of Y (t). Then for training sequence (x1, x2, x3) ∈ Dtrain at time t, we have

Y (t)x1,x3 ≳ ln (MηY t/N) , and Y (t)x1,x ≲ − ln (MηY t/N) /M, ∀x ̸= x3,

and for any test sequence (x1, x2, x3) ∈ Dtest, we have Y (t)x1,x = 0,∀x ∈ [M ].

The proof of Lemma 2 is presented in Appendix C.1.2. Lemma 2 implies the asymmetry of the model
weights Y (t): for two tokens x1, x3, when x1 appears as a contextual token and x3 serves as the
next token in the same training sequence, the model weights Y (t)x1,x3 gets increased during training
while Y (t)x3,x1 will not get increased. Combining Proposition 4.2, we can obtain our main theorem
for the reversal curse.
Theorem 3 (Reversal curse). Assume we run SGD with batch size 1, and assume M ≫ 100 and

1
M0.99 ≪ ηY < 1. Let t ≳ N lnM

ηY
denote the time step which also satisfies ln t ≳ ln(NM/ηY ). For

training sequence (x1, x2, x3) ∈ Dtrain at time t, we have

pθ(t)(x3|x1, x2) ≥ 1− (M − 1)(MηY t/N)−c → 1, as t→∞

for some constant c > 0, and for any test sequence (x1, x2, x3) ∈ Dtest that is not included in the
training set Dtrain, we have pθ(t)(x3|x1, x2) ≤ 1/M .

Theorem 3 shows that although the direction presented in the training set can be learned nearly
perfectly, the model’s next token prediction of the reverse direction is almost a random guess. The
proof is deferred to Appendix C.1.3. We also empirically validate the above results for multi-layer
transformers in Section 5.

4.2 Chain-of-thought

In this section, we extend our analysis in Section 4.1 to study other logical relationships. In particular,
we study chain-of-thought (COT) [4] and show its importance via training dynamics. COT encourages
LLMs to output a series of intermediate reasoning steps to increase their performance. Consider
the simplest example, where the model learns two facts that A → B and B → C, and we want to
test whether the model is able to directly conclude that A ; C. COT indicates that if an LLM is
only trained on A → B and B → C, it would be easier for the model to deduce A ; C during the
inference time if the model can first output the intermediate steps A → B and B → C, instead of
directly predicting the next token C given the input “A ;”. The failure of directly deducing A ; C is
also empirically observed by [9].

Theoretically, [15] shows the importance of COT for some complex reasoning tasks through the
lens of the expressivity of transformers. In this section, we show the importance of COT through
a different angle, i.e., training dynamics. We show that for the above simplest two-step reasoning,
without COT, the model is not able to directly predict C given the input “A ;” even if it learns A→ B
and B→ C.
Theorem 4 (Importance of chain-of-thought, informal statement of Theorem 7). Under certain
assumptions as stated in Theorem 7, for any Ai, Bi, Ci s.t. Ai → Bi and Bi → Ci are in the training
set but Ai ; Ci is not, we have

pθ(t)(Bi|Ai →)→ 1, pθ(t)(Ci|Bi →)→ 1, pθ(t)(Ci|Ai ;) ≤ 1/M, as t→∞.

We defer the details of the dataset construction and proof to Appendix C.2. Theorem 4 shows that
although the LLM learns Ai → Bi and Bi → Ci nearly perfectly, it cannot directly deduce Ai ; Ci.
Analogous to the asymmetry of causal transformer weights as we discussed in Section 4.1, our
analysis of COT reveals another property, i.e., intransitivity: training the weights associated with A to
B and B to C does not necessarily increase the weights associated with A to C.

4The lemma holds even if the batch size is larger than 1 and the analysis is essentially the same.
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We also emphasize that the model fails to directly deduce Ai ; Ci when the two intermediate steps
Ai → Bi and Bi → Ci are trained separately. If the two steps are concatenated into a single training
sequence, it is possible that the model learns Ai ; Ci directly [19].

4.3 Roles of the attention score matrix

During the analysis of Sections 4.1 and 4.2, we show that the reversal curse and the importance of
COT are largely due to the asymmetry and intransitivity of causal transformer weights (in our case,
the weight matrix Y (t)). However, it seems that the dynamics of the attention score matrix Z(t) do
not impact the model performance. Below, we briefly discuss the role of the attention score matrix
Z(t).

In (1), the attention score is used to calculate the weights btT , where a contextual token xt with a
larger attention score attended by the query token xT has a larger weight. Note that we use the same
formulation as the previous work [14] where the query token will not attend to itself. Therefore, for a
three-token training sequence, the weights b12 is always one since there is only one contextual token
x1, no matter whether the value of the attention score is high or low.

However, consider a slightly different setting, where the relationship is represented by two tokens. In
that case, x1 = Ai, x2 = R1, x3 = R2, x4 = Bi, and there are two contextual tokens Ai and R1. The
role of the attention score is then to select the important token, i.e., Ai, by putting more weights on it.
Theorem 2 of [14] showed that under certain assumptions, the query token R2 will attend more to
“distinct tokens” Ai and less to the “common token” R1. Therefore, the query token R2 will eventually
put all weights to Ai, and the remaining analysis remains the same as in Sections 4.1 and 4.2. See
Appendix C.3 for a more rigorous analysis.

5 Experiments

In this section, we conduct experiments to further validate our theoretical results in Section 4 on
multi-layer transformers. We show experimental results of the reversal curse in this section and COT
in Appendix D. Note that in Sections 3 and 4, we theoretically proved the reversal curse for both the
bilinear model and one-layer transformer under certain assumptions. Now, we empirically show that
the reversal curse still happens even for multi-layer transformers. In Appendix E.2.3, we also provide
empirical results that the reversal curse does not happen in ICL settings.
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Figure 1: Experiment results of reversal curse under default configuration (see Table 3). The curves
represent the (average) negative log probability of the model predicting the next token to be Bi when
the input is “Ai →”, or to be Ai when the input is “Bi ←”. While the sentences in the training set
can be learned nearly perfectly (as shown by the training curve where the next token probability
converges to one), the model is not able to predict the correct next token in the validation set better
than a uniformly random guess. Both curves are averaged over 10 random seeds.

8



Forward direction logits (Train) Reverse direction logits (Train)

Seen direction logits (Val) Unseen direction logits (Val)

60

40

20

0

20

40

60

80

Figure 2: Visualization of the weights (logits) of the model with default configurations trained after
3000 epochs for the reversal curse experiment. For the top-left matrix, the i-th row corresponds to
an entity token Ai for a training pair, and the i-th column corresponds to an entity token Bi for a
training pair. The (i, j)-th entry represents the model weights from the token Ai to Bj , i.e., the logits
of Bj when the input sequence consists of only Ai. Similarly, for the bottom-left matrix, the row
corresponds to the input entity tokens of the seen direction (the direction included in the training set)
of validation pairs, and the column corresponds to output entity tokens. The two matrices on the
right are obtained by swapping row tokens and column tokens of their corresponding left matrices.
Note that the diagonals of the bottom-right matrix are all close to zero, while the diagonals of other
matrices all have large values. This implies that if a pair of tokens (A, B) only appear in the training
set in one direction, then the model weights associated with the other direction will hardly get trained.

Dataset construction. Below, we describe how we generate our synthetic dataset for experiments
on the reversal curse. We choose the vocabulary V = {0, 1, . . . , N} for a specified N > 0. We
randomly sample two disjoint sets of entities A,B ⊂ V with |A|= |B|= |V|/4, and reserve two
additional tokens for relationships→ and←, respectively. 5 Next, we specify a bijection from A
to B uniformly at random. For each Ai ∈ A and its corresponding Bi ∈ B, we can obtain a pair of
sequence (Ai → Bi, Bi ← Ai). We split the set of all pairs into training pairs and validation pairs. For
each training pair, both sequences will be included in the training set, while for the validation pair,
we randomly select one sequence for the training set and the other for the validation set. Therefore,
the model will learn both directions for the training pairs and only one direction for each validation
pair while being tested in the unseen direction.

Model architectures. We train multi-layer transformers based on GPT-2 architecture [63]. Figure 1
shows the results where the model has 24 layers, 12 attention heads per layer, uses absolute positional
encoding, and we choose the vocabulary size of 800. The training set size is 340, and the validation set
size is 60 (resulting from 140 training pairs and 60 validation pairs). We also conducted experiments
with various model configurations and vocabulary sizes in Appendix E.2. Besides, all hyperparameters
and different model configurations are presented in Appendix E.1.

Results. Figure 1 shows that during the training, the next token probability for training data
increases a lot while the next token probability for validation data remains unchanged or gets even
smaller. This is consistent with our theoretical results of Theorem 3.

According to our theoretical analysis, the reversal curse happens due to the asymmetry of model (re-
parameterized) weights (i.e., logits of a token given another token as input), and we also empirically
validate the asymmetry for multi-layer transformers. Figure 2 shows the model weights from a token
x1 to x3 is trained large for a training sequence (x1, x2, x3) as represented by the diagonals of the

5By default, each entity consists of one token. See multi-token experiments in Appendices E.2 and E.3
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first three matrices, while the weights from a token x1 to x3 remains nearly zero for a validation
sequence (x1, x2, x3) as represented by the diagonals of the last matrix, which is consistent with
Lemma 2. This implies that if a pair of tokens (A, B) only appear in the training set in one direction,
then the model weights associated with the other direction will hardly get trained.

6 Conclusions

In this paper, we study the reversal curse theoretically via training dynamics of (1) a bilinear model,
which is a simplification of the one-layer transformer; (2) one-layer transformers under certain
technical assumptions similar to [14]. Our theoretical results suggest that a core reason the reversal
curse happens in auto-regressive LLMs is the asymmetry of the model weights, and we apply our
technique to prove the necessity of COT for one-layer transformers, which is mainly due to the
intransitivity of model weights. The asymmetry and intransitivity of model weights caused by
unconstrained optimization of CE loss indicate that an auto-regressive LLM might mainly focus
on learning text sequences during training separately instead of automatically deducing indirect
conclusions under the current popular training paradigms. This highlights the importance of ICL,
data augmentation, or planning for current auto-regressive LLMs to solve complex reasoning tasks.

As for future directions, it would be interesting and important to study: (1) What is a unified way
to characterize and study the reversal curse, COT, and other similar logical reasoning tasks? (2)
Our paper mainly focuses on three-token sequences, where each entity or relationship is represented
by a single token. While we empirically explored the setting where each entity might consist of
multiple tokens and distinct entities might share a few tokens, it would be interesting to analyze the
multiple-token setting theoretically. (3) We theoretically analyzed the bilinear model and one-layer
transformer, and it would be an important future direction to extend the analysis to multi-layer
transformers.
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A Additional Notations

Let δij = 1 for i = j and δij = 0 for i ̸= j. For a squared matrix A ∈ Rd×d, its trace is
Tr(A) =

∑d
i=1 Aii. For two matrices A,B ∈ Rm×n of the same shape, their inner product is

defined as ⟨A,B⟩ = Tr(AB⊤). For any matrix A ∈ Rm×n, its (Frobenius) norm is defined as
∥A∥=

√
⟨A,A⟩. For any vector x = (x1, . . . , xd)

⊤ ∈ Rd or a matrix A ∈ Rm×n, we define
the zero-norm as ∥x∥0=

∑d
i=1 1{xi ̸= 0} or ∥A∥0=

∑m
i=1

∑n
j=1 1{Aij ̸= 0} where 1{·} is the

indicator function.

B Missing Proofs of Section 3

Theorem 5 (Separation of training dynamics, formal statement of Theorem 1). Fix arbitrary δ, ϵ ∈
(0, 1). Let v1, . . . , vm be independently sampled from Nd(0d,

1
dId). Let x1, . . . , xn and y1, . . . , yn

be sampled uniformly at random from {v1, . . . , vm} without replacement. Define

L(Θ) =
1

2n− 1

(
n∑

i=1

− log pΘ(yi|xi) +

n∑
i=2

− log pΘ(xi|yi)

)
Lrev(Θ) = − log pΘ(x1|y1).

Consider the gradient flow Θt : t ≥ 0

dΘt

dt
= −∇L(Θt).

where Θ0 ∼ N (0⊗2, σ2 · I⊗2) or Θ0 satisfies 1
2m < pΘ0(yi|xi), pΘ0(xi|yi) < 2

m for all i ∈ [n].
Suppose σ ≤ 1

100 ln(64m2/δ) and

d ≥ 106n4m2 log4(2m) log(64m2n2/δ)

ϵ2
.

With probability at least 1− δ, we have

Lrev(Θt)

Lrev(Θ0)
≥
(
L(Θt)

L(Θ0)

)ϵ

, ∀t ≥ 0.

Proof. Let v =
√

400n2m2 log(64m2n2/δ)
d . By Lemma 3 and Lemma 4, with probability at least 1− δ,

Lrev(Θt) ≥ Lrev(Θ0) ·
(
1 +

L(Θ0) · t
8(2n− 1) log2(2m)

)−8v(2n−1) log2(2m)

.

≥ Lrev(Θ0) ·
(
L(Θt)

L(Θ0)

)8v(2n−1) log2(2m)

By definition of d, we have 8v(2n− 1) log2(2m) ≤ ϵ. Notice that L(Θt)
L(Θ0)

< 1, thus

Lrev(Θt) ≥ Lrev(Θ0) ·
(
L(Θt)

L(Θ0)

)ϵ

.

Theorem 6 (Lower bound of reversal loss, formal statement of Theorem 2). Fix arbitrary c > 0 and
C ≤ log(m/2). Under the setting of Theorem 5, suppose σ ≤ 1

100 ln(64m2/δ) and

d ≥ 106n4m2 log4(2m) log(64m2n2/δ) ·
log2 c

log(2m)

log2 C
log(m/2)

.

With probability at least 1− δ,

Lrev(Θτ ) ≥ C.

where τ denotes the first time such that L(Θt) ≤ c.
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Proof. By continuity, L(Θτ ) = c. By Theorem 5, when

d ≥ 106n4m2 log4(2m) log(64m2n2/δ)

ϵ2
(4)

with probability at least 1− δ,

Lrev(Θτ ) ≥ Lrev(Θ0) ·
(
L(Θτ )

L(Θ0)

)ϵ

≥ Lrev(Θ0) ·
(

c

L(Θ0)

)ϵ

.

Under this event, applying Lemma 6, we can obtain

Lrev(Θτ ) ≥ log(m/2) ·
(

c

log(2m)

)ϵ

.

To ensure that the right hand side is C, we set ϵ =
log C

log(m/2)

log c
log(2m)

. One may check that the definition of

d satisfies Eq. (4). It follows that

Lrev(Θτ ) ≥ C.

B.1 Training dynamics

Lemma 3 (Dynamics of the forward loss). Let x1, . . . , xn, y1, . . . , yn, L(Θ), and Θt (t ≥ 0)
be defined as in Theorem 5. When σ ≤ 1

100 ln(16n2/δ) and d ≥ 1600n3m2 log(8m2n2/δ), with
probability at least 1− δ, we have

L(Θt) ≤
1

t
8(2n−1) log2(2m)

+ 1
L(Θ0)

, ∀t ≥ 0.

Furthermore,

inf {pΘt
(xi|yi), pΘt

(yi|xi) : t ≥ 0, i ∈ [n]} > 1

2m
.

Proof. For convenience, we assume x1, . . . , xn = v1, . . . , vn and y1, . . . , yn = vn+1, . . . v2n
WLOG.

Let ϵ =
√

400n2m2 log(8m2n2/δ)
d . Then ϵ ≤ 1

2
√
n

. Define li(Θ) = − log pΘ(yi|xi) and lrevi (Θ) =

− log pΘ(xi|yi). Let α(t)
i,j = −pΘt

(vj |vi) + δi,j−n, β
(t)
i,j = −pΘt

(vj |vi) + δi−n,j . By Lemma 5,

dL(Θt)

dt
=

〈
∇L(Θt),

dΘt

dt

〉
= −⟨∇L(Θt),∇L(Θt)⟩

= −

∥∥∥∥∥ 1

2n− 1

(
n∑

i=1

xi(yi − EpΘt (·|xi)[y])
⊤ +

n∑
i=2

yi(xi − EpΘt (·|yi)[x])
⊤

)∥∥∥∥∥
2

= −

∥∥∥∥∥∥ 1

2n− 1

 n∑
i=1

m∑
j=1

α
(t)
i,jviv

⊤
j +

2n∑
i=n+2

m∑
j=1

β
(t)
i,j viv

⊤
j

∥∥∥∥∥∥
2

.

15



Similarly, we have

dli(Θt)

dt

=

〈
∇li(Θt),

dΘt

dt

〉
= −⟨∇li(Θt),∇L(Θt)⟩

= −

〈
xi(yi − EpΘt (·|xi)[y])

⊤,
1

2n− 1

(
n∑

i=1

xi(yi − EpΘt (·|xi)[y])
⊤ +

n∑
i=2

yi(xi − EpΘt (·|yi)[x])
⊤

)〉

= −

〈
m∑
j=1

αi,jviv
⊤
j ,

1

2n− 1

 n∑
i=1

m∑
j=1

α
(t)
i,jviv

⊤
j +

2n∑
i=n+2

m∑
j=1

β
(t)
i,j viv

⊤
j

〉 ,

and

dlrevi (Θt)

dt

=

〈
∇lrevi (Θt),

dΘt

dt

〉
= −⟨∇lrevi (Θt),∇L(Θt)⟩

= −

〈
yi(xi − EpΘt (·|yi)[x])

⊤,
1

2n− 1

(
n∑

i=1

xi(yi − EpΘt (·|xi)[y])
⊤ +

n∑
i=2

yi(xi − EpΘt (·|yi)[x])
⊤

)〉

= −

〈
m∑
j=1

β
(t)
i+n,jvi+nv

⊤
j ,

1

2n− 1

 n∑
i=1

m∑
j=1

α
(t)
i,jviv

⊤
j +

2n∑
i=n+2

m∑
j=1

β
(t)
i,j viv

⊤
j

〉 .

Applying Lemma 7, with probability at least 1− δ/2, for any t ≥ 0 we have∣∣∣∣∣∣dL(Θt)

dt
+

1

(2n− 1)2

 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

∣∣∣∣∣∣
≤ϵ · 1

(2n− 1)2

 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

 ,

(5)

and ∣∣∣∣∣∣dli(Θt)

dt
+

1

2n− 1

m∑
j=1

(α
(t)
i,j )

2

∣∣∣∣∣∣
≤ ϵ · 1

2n− 1

 m∑
j=1

(α
(t)
i,j )

2

1/2 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

1/2

,

(6)

∣∣∣∣∣∣dl
rev
i (Θt)

dt
+

1

2n− 1

m∑
j=1

(β
(t)
i+n,j)

2

∣∣∣∣∣∣
≤ ϵ · 1

2n− 1

 m∑
j=1

(β
(t)
i+n,j)

2

1/2 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

1/2

.

Furthermore, Lemma 6 implies that with probability at least 1− δ/2

1

2m
< pΘ0(yi|xi), pΘ0(xi|yi) <

2

m
. (7)

The following arguments are based on the event that the above inequalities hold.
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We first show that

inf {pΘt
(xi|yi), pΘt

(yi|xi) : t ≥ 0, i ∈ [n]} > 1

2m
.

We prove this by contradiction. Let

τ = inf

{
t ≥ 0 : ∃i ∈ [n], s.t.min{pΘt(yi|xi), pΘt(xi|yi)} ≤

1

2m

}
.

By Eq. (7), it is obvious that τ > 0. Assume without loss of generality that pΘτ
(y1|x1) ≤ 1

2m .
It follows that there exists δ > 0 such that pΘt

(y1|x1) is a decreasing function in (τ − δ, τ) and
pΘt(y1|x1) = min {pΘt(xi|yi), pΘt(yi|xi) : i ∈ [n]} for any t ∈ (τ − δ, τ). It follows that for
t ∈ (τ − δ, τ),

dl1(Θt)

dt
≤ 1

2n− 1

− m∑
j=1

(α
(t)
1,j)

2 + ϵ ·

 m∑
j=1

(α
(t)
1,j)

2

1/2 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

1/2


≤ 1

2n− 1

− m∑
j=1

(α
(t)
1,j)

2 + ϵ ·

 m∑
j=1

(α
(t)
1,j)

2

1/2(
2

n∑
i=1

(α
(t)
i,i+n)

2 + 2
2n∑

i=n+2

(β
(t)
i,i−n)

2

)1/2


≤ 1

2n− 1

 m∑
j=1

(α
(t)
1,j)

2

1/2

·

−
 m∑

j=1

(α
(t)
1,j)

2

1/2

+ ϵ ·
(
4n(α

(t)
1,n+1)

2
)1/2

≤ 0

where the first inequality is from Eq. (6); the second inequality is due to
∑

j ̸=i+n|α
(t)
i,j |= α

(t)
i,i+n =

1 − pΘt
(yi|xi),

∑
j ̸=i|β

(t)
i+n,j |= β

(t)
i+n,i = 1 − pΘt

(xi|yi) for all i ∈ [n]; the third inequality is
because pΘt

(y1|x1) = min {pΘt
(xi|yi), pΘt

(yi|xi) : i ∈ [n]}. However, pΘt
(y1|x1) is a decreasing

function in (τ − δ, τ), a contradiction. Therefore, we conclude that

inf {pΘt
(xi|yi), pΘt

(yi|xi) : t ≥ 0, i ∈ [n]} > 1

2m
.

Now we show

L(Θt) ≤
1

t
8(2n−1) log2(2m)

+ 1
L(Θ0)

, ∀t ≥ 0.

By Eq. (5),

dL(Θt)

dt
≤ − 1− ϵ

(2n− 1)2

 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2


≤ − 1− ϵ

(2n− 1)2

(
n∑

i=1

(1− pΘt(yi|xi))
2 +

n∑
i=2

(1− pΘt(xi|yi))2
)

≤ − 1− ϵ

(2n− 1)3

(
n∑

i=1

(1− pΘt(yi|xi)) +

n∑
i=2

(1− pΘt(xi|yi))

)2

≤ − 1− ϵ

8(2n− 1) log2(2m)
L(Θt)

2

≤ − 1

8(2n− 1) log2(2m)
L(Θt)

2,

where the second inequality is due to
∑

j ̸=i+n|α
(t)
i,j |= α

(t)
i,i+n = 1 − pΘt

(yi|xi),
∑

j ̸=i|β
(t)
i+n,j |=

β
(t)
i+n,i = 1 − pΘt

(xi|yi) for all i ∈ [n]; the third inequality applies Cauchy-Schwarz inequality;
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the last inequality uses the fact that pΘt(xi|yi), pΘt(yi|xi) > 1
2m for any t ≥ 0, i ∈ [n] and the

inequality 1− x ≥ log x
2 log(1/(2m)) for x ∈ ( 1

2m , 1).

By Lemma 10, we conclude that ∀t ≥ 0,

L(Θt) ≤
1

t
8(2n−1) log2(2m)

+ 1
L(Θ0)

,

which completes the proof.

Lemma 4 (Dynamics of the reversal loss). Let x1, . . . , xn, y1, . . . , yn, Lrev(Θ), and Θt (t ≥ 0)
be defined as in Theorem 5. When σ ≤ 1

100 ln(16n2/δ) and d ≥ 400n2m2 log(8m2n2/δ)/ϵ2, with
probability at least 1− δ,

Lrev(Θt) ≥ Lrev(Θ0) ·
(
1 +

L(Θ0) · t
8(2n− 1) log2(2m)

)−8ϵ(2n−1) log2(2m)

.

Proof. Similar to Lemma 3, we assume x1, . . . , xn = v1, . . . , vn and y1, . . . , yn = vn+1, . . . v2n
WLOG. Let α(t)

i,j = −pΘt
(vj |vi) + δi,j−n, β

(t)
i,j = −pΘt

(vj |vi) + δi−n,j . By Lemma 5,

dLrev(Θt)

dt

=

〈
∇Lrev(Θt),

dΘt

dt

〉
= −

〈
y1(x1 − EpΘt (·|y1)[x])

⊤,
1

2n− 1

(
n∑

i=1

xi(yi − EpΘt (·|xi)[y])
⊤ +

n∑
i=2

yi(xi − EpΘt (·|yi)[x])
⊤

)〉

= −

〈
m∑
j=1

β
(t)
n+1,jvn+1v

⊤
j ,

1

2n− 1

 n∑
i=1

m∑
j=1

α
(t)
i,jviv

⊤
j +

2n∑
i=n+2

m∑
j=1

β
(t)
i,j viv

⊤
j

〉 .

Applying Lemma 7, with probability at least 1− δ/2, for any t ≥ 0 we have∣∣∣∣dLrev(Θt)

dt

∣∣∣∣ ≤ ϵ · 1

2n− 1

 m∑
j=1

(β
(t)
n+1,j)

2

1/2 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

1/2

, (8)

and ∣∣∣∣∣∣dL(Θt)

dt
+

1

(2n− 1)2

 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

∣∣∣∣∣∣
≤ϵ · 1

(2n− 1)2

 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

 ,

as well as ∣∣∣∣∣∣dli(Θt)

dt
+

1

2n− 1

m∑
j=1

(α
(t)
i,j )

2

∣∣∣∣∣∣
≤ ϵ · 1

2n− 1

 m∑
j=1

(α
(t)
i,j )

2

1/2 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

1/2

,

∣∣∣∣∣∣dl
rev
i (Θt)

dt
+

1

2n− 1

m∑
j=1

(β
(t)
i+n,j)

2

∣∣∣∣∣∣
≤ ϵ · 1

2n− 1

 m∑
j=1

(β
(t)
i+n,j)

2

1/2 n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

1/2

.
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Furthermore, Lemma 6 implies that with probability at least 1− δ/2,

1

2m
≤ pΘ0(yi|xi), pΘ0(xi|yi) ≤

2

m
. (9)

The following arguments are based on the event that the above inequalities hold.

By Eq. (8),

dLrev(Θt)

dt
≥ −ϵ · 1

2n− 1


m∑
j=1

(β
(t)
n+1,j)

2

︸ ︷︷ ︸
At


1/2

n∑
i=1

m∑
j=1

(α
(t)
i,j )

2 +

2n∑
i=n+2

m∑
j=1

(β
(t)
i,j )

2

︸ ︷︷ ︸
Bt


1/2

.

Notice that

Bt ≤ 2

n∑
i=1

(1− pΘt
(yi|xi))

2 + 2

n∑
i=2

(1− pΘt
(xi|yi))2

≤ 2

(
n∑

i=1

(1− pΘt
(yi|xi) +

n∑
i=2

(1− pΘt
(xi|yi))

)2

≤ 2(2n− 1)2L(Θt)
2

≤ 2(2n− 1)2

(
1

t
8(2n−1) log2(2m)

+ 1
L(Θ0)

)2

where the first inequality uses
∑

j ̸=i+n|α
(t)
i,j |= α

(t)
i,i+n = 1− pΘt(yi|xi),

∑
j ̸=i|β

(t)
i+n,j |= β

(t)
i+n,i =

1−pΘt
(xi|yi) for all i ∈ [n]; the third inequality uses the fact that 1−x ≤ − log x; the last inequality

applies Lemma 3.

Similarly,

At ≤ 2(1− pΘt
(x1|y1))2 ≤ 2Lrev(Θt)

2.

Combining, we have

dLrev(Θt)

dt
≥ − ϵ · 1

2n− 1
· 2Lrev(Θt) · (2n− 1) · 1

t
8(2n−1) log2(2m)

+ 1
L(Θ0)

≥ − 8ϵ(2n− 1) log2(2m) · Lrev(Θt) ·
1

t+ 8(2n−1) log2(2m)
L(Θ0)

.

By Lemma 10, we conclude that ∀t ≥ 0,

Lrev(Θt) ≥ Lrev(Θ0) ·
(
1 +

L(Θ0) · t
8(2n− 1) log2(2m)

)−8ϵ(2n−1) log2(2m)

,

This completes the proof.

Lemma 5 (Gradient of the loss function). Define

L(Θ) =
1

2n− 1

(
n∑

i=1

− log pΘ(yi|xi) +

n∑
i=2

− log pΘ(xi|yi)

)
,

Lrev(Θ) = − log pΘ(x1|y1).
Then we have

∇L(Θ) = − 1

2n− 1

(
n∑

i=1

xi(yi − EpΘ(·|xi)[y])
⊤ +

n∑
i=2

yi(xi − EpΘ(·|yi)[x])
⊤

)
,

∇Lrev(Θ) = − y1(x1 − EpΘ(·|y1)[x])
⊤.
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Proof. We have

∇(− log pΘ(y|x))

= − ∇pΘ(y|x)
pΘ(y|x)

= − 1

pΘ(y|x)
·
xy⊤ exp(x⊤Θy)

(∑
y∈V exp(x⊤Θy)

)
− exp(x⊤Θy)

(∑
y∈V xy⊤ exp(x⊤Θy)

)
(∑

y∈V exp(x⊤Θy)
)2

= − 1

pΘ(y|x)

pΘ(y|x)xy⊤ − pΘ(y|x)
∑
y∈V

pΘ(y|x)xy⊤


= − x

y −
∑
y∈V

pΘ(y|x)y

⊤

= − x
(
y − Ey∼pΘ(·|x)[y]

)⊤
.

The statements follow immediately.

B.2 Initialization

Lemma 6 (Initial distributions are all close to uniform). Fix any δ ∈ (0, 1). Let x1, x2, . . . , xn
i.i.d.∼

Nd(0d,
1
dId). Let Θ ∈ Rd×d, where each Θij

i.i.d.∼ N (0, σ2) independent of x1, . . . , xn. For any
i, j ∈ [n], define

pΘ(xj |xi) =
exp(lΘ(xj |xi))∑n
k=1 exp(lΘ(xk|xi))

, where lΘ(xj |xi) = x⊤
i Θxj .

Then when σ2 ≤ 1
100 ln(4n2/δ) and d ≥ 400 log(1/(2δn2))/ϵ2, with probability at least 1− δ,

|pΘ(xj |xi)− 1/n|≤ 1

2n
, ∀i, j ∈ [n].

Proof. Let v = 0.2. By Lemma 8, with probability at least 1− δ, we have

|⟨xi, xj⟩ − δij |≤ v, ∀i, j ∈ [n].

Conditioned on the above high-probability event, we can further obtain that for any j ∈ [n]

pΘ(xj |xi) =
exp(lΘ(xj |xi))∑n
k=1 exp(lΘ(xk|xi))

≤ exp(v)∑n
k=1 exp(−v)

=
exp(2v)

n
,

and

pΘ(xj |xi) =
exp(lΘ(xj |xi))∑n
k=1 exp(lΘ(xk|xi))

≥ exp(−v)∑n
k=1 exp(v)

=
exp(−2v)

n
,

It follows that
1

2n
< pΘ(xj |xi) <

3

2n
=⇒ |pΘ(xj |xi)− 1/n|< 1

2n
.

which completes the proof.

B.3 Subspace embedding

Lemma 7 (ℓ1-subspace embedding of Gaussian second-order tensors). Let z1, . . . , zn be indepen-
dently sampled from Nd(0d, 1

dId). Let I1, I2 ⊆ [n] × [n] be two index sets. Let I0 = I1 ∩ I2. If
d ≥ 64 log(2n2/δ)/ϵ2, then with probability at least 1− δ,∣∣∣∣∣∣
〈 ∑

(i,j)∈I1

αi,jziz
⊤
j ,

∑
(i,j)∈I2

βi,jziz
⊤
j

〉
−

∑
(i,j)∈I0

αi,jβi,j

∣∣∣∣∣∣ ≤ ϵ ·

 ∑
(i,j)∈I1

|αi,j |

 ∑
(i,j)∈I2

|βi,j |
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holds for any αi,j , βi,j . Furthermore, if d ≥ 64k2 log(2n2/δ)/ϵ2, then with probability at least 1− δ,∣∣∣∣∣∣
〈 ∑

(i,j)∈I1

αi,jziz
⊤
j ,

∑
(i,j)∈I2

βi,jziz
⊤
j

〉
−

∑
(i,j)∈I0

αi,jβi,j

∣∣∣∣∣∣ ≤ ϵ ·

 ∑
(i,j)∈I1

α2
i,j

1/2 ∑
(i,j)∈I2

β2
i,j

1/2

holds for any αi,j , βi,j such that ∥α∥0≤ k, ∥β∥0≤ k.

Proof. Using Lemma 8 and Cauchy-Schwarz inequality, we have∣∣∣∣∣∣
〈 ∑

(i,j)∈I1

αi,jziz
⊤
j ,

∑
(i,j)∈I2

βi,jziz
⊤
j

〉
−

∑
(i,j)∈I0

αi,jβi,j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

(i,j)∈I0

αi,jβi,j(∥zi∥2∥zj∥2−1) +
∑

(i,j)∈I1,(k,l)∈I2,(i,j) ̸=(k,l)

αi,jβk,lz
⊤
i zkz

⊤
j zl

∣∣∣∣∣∣
≤
√

64 log(2n2/δ)

d
·

 ∑
(i,j)∈I

|αi,jβi,j |+
∑

(i,j)∈I1,(k,l)∈I2,(i,j)̸=(k,l)

|αi,jβk,l|


=

√
64 log(2n2/δ)

d
·

 ∑
(i,j)∈I1

|αi,j |

 ·
 ∑

(i,j)∈I2

|βi,j |


≤
√

64k2 log(2n2/δ)

d
·

 ∑
(i,j)∈I2

α2
i,j

1/2 ∑
(i,j)∈I2

β2
i,j

1/2

.

The statements follow directly from plugging in suitable values of d.

Lemma 8 (Almost orthonormal). Let x1, x2, . . . , xn
i.i.d.∼ Nd(0d,

1
dId). For any ϵ, δ ∈ (0, 1), when

d ≥ 16 log(2n2/δ)/ϵ2, it holds that with probability at least 1− δ,
|⟨xi, xj⟩ − δij |≤ ϵ, ∀i, j ∈ [n].

Proof. Fix i ̸= j ∈ [n]. Notice
|⟨xi, xj⟩|= |⟨xi + xj , xi + xj⟩ − ⟨xi − xj , xi − xj⟩|/4

≤ (|⟨xi + xj , xi + xj⟩ − 1|+|⟨xi − xj , xi − xj⟩ − 1|)/4.
Using Lemma 9, we have that with probability at least 1− δ/n2,

|⟨xi, xj⟩|≤ ϵ.

Furthermore, fix i ∈ [n], with probability at least 1− δ/n2,
|⟨xi, xi⟩ − 1|≤ ϵ.

The statement then follows from union bound over i, j ∈ [n].

Lemma 9 (Almost normal for a fixed vector). For a d-dimensional random vector x ∼ Nd(0d,
1
dId)

and any v ∈ (0, 1/2),

P (|⟨x, x⟩ − 1|≥ v) ≤ 2e−v2d/16.

In particular, when d ≥ 16 log(1/(2δ))/v2, we have
P (|⟨x, x⟩ − 1|≥ v) ≤ δ

Proof. Let x = (x1, . . . , xd). By Lemma 11 (letting x = v2d/16),

P (|⟨x, x⟩ − 1|≥ v) ≤ P

(∣∣∣∣∣
d∑

i=1

(
√
d · xi)

2 − d

∣∣∣∣∣ ≥ vd

)
≤ 2e−v2d/16.

The second inequality follows from simple arithmetics.
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B.4 Useful results

Lemma 10 (ODE bound). Let c1, c2, c3 > 0. Suppose the function f1, f2 : R+ → R satisfies
f1(0) > 0, f2(0) > 0 and

df1(t)

dt
≤ − c1 · f1(t)2,

df2(t)

dt
≥ − c2 · f2(t) ·

1

t+ c3
.

Then

f1(t) ≤
1

c1t+
1

f1(0)

,

f2(t) ≥ f2(0) ·
(
1 +

t

c3

)−c2

.

Proof. The conditions imply that

df−1
1 (t)

dt
= − 1

f2
1 (t)

· df1(t)
dt

≥ c1,

d log f2(t)

dt
=

1

f2(t)
· df2(t)

dt
≥ −c2/(t+ c3).

It follows that

f−1
1 (t) ≥ c1t+ f−1

1 (0),

log f2(t) ≥ − c2 log(1 + t/c3) + log f2(0).

Rearranging the above inequalities, one can obtain the desired results.

Lemma 11 (χ2-concentration bound, Lemma 1 of [64]). Let g1, . . . , gt be i.i.d. N (0, 1) random
variables. Then for any x ≥ 0,

Pr

[
t∑

i=1

g2i ≥ t+ 2
√
tx+ 2x

]
≤ exp(−x),

and

Pr

[
t∑

i=1

g2i ≤ t− 2
√
tx

]
≤ exp(−x).

C Missing Proofs of Section 4

In this section, we show missing proofs in Section 4.

C.1 Proofs of Section 4.1

C.1.1 Proofs of Proposition 4.1 and Proposition 4.2

We first show the proofs of Proposition 4.1 and Proposition 4.2, respectively.

Proof of Proposition 4.1. Actually, for any three tokens x1, x2, x3, it holds that

pθ(0)(x3|x1, x2) =
exp

(
x⊤
3 Y (0)⊤LN(X⊤b2)

)∑
x′∈[M ] exp

(
x′⊤Y (0)⊤LN(X⊤b2)

) =
exp (0)∑

x′∈[M ] exp (0)
= 1/M,

since Y (0) = 0.
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Proof of Proposition 4.2. Note that the input sequence length T = 2. By (1),

pθ(t)(x|x1, x2) =
exp

(
x⊤Y (t)⊤LN(X⊤b2)

)∑
x′∈[M ] exp

(
x′⊤Y (t)⊤LN(X⊤b2)

)
where b2 = [b12] and b12 = 1. Also, X = [x1]

⊤ is a one-hot row vector. Therefore, LN(X⊤b2) =
LN(x1b12) = LN(x1) = x1, and thus

pθ(t)(x|x1, x2) =
exp

(
x⊤Y (t)⊤x1

)∑
x′∈[M ] exp

(
x′⊤Y (t)⊤x1

) =
exp (Y (t)x1,x)∑

x′∈[M ] exp (Y (t)x1,x′)

where Y (t)i,j is the entry of the matrix Y (t) at row i and column j.

C.1.2 Proof of Lemma 2

Proof of Lemma 2. We first calculate the gradient of Y when the current batch is a sequence
(x1, x2, x3). Note that the input sequence length T = 2 and by the proof of Proposition 4.2,
we have LN(X⊤bT ) = LN(X⊤b2) = x1. By Lemma 1, we have

Ẏ = ηY LN(X⊤bT )(xT+1 −α)⊤ = ηY x1(x3 −α)⊤

where α = [α1, α2, . . . , αM ]⊤ ∈ RM with α = exp
(
Y ⊤
x1

)
/1⊤ exp

(
Y ⊤
x1

)
. Note that x1(x3 −α)⊤

is a matrix with only x1-th row non-zero since x1 is one-hot. Therefore, the update of each row of Y
are independent and only x1-th row of Y gets updated at the current time step.

Now we consider any fixed x1 ∈ V . Let tx1,i be the time step that the x1-th row of Y gets updated
(i.e., the first token of the training data is x1 for the current batch) for the i-th time and let tx1,0 = 0
for notation convenience, then

Y (tx1,i)x1 = Y (tx1,i−1)x1 + ηY (x3 −α)⊤.

For convenience, we denote y(i) = Y (tx1,i)
⊤
x1

, and thus

y(i) = y(i− 1) + ηY (x3 −α(i− 1)) (10)

where y(0) = 0 and α(i − 1) = exp(y(i − 1))/1⊤ exp(y(i − 1)). Note that for a fixed x1, x3 is
also fixed by our construction of the dataset. By Lemma 5 of [14], we can obtain that

y(i) = (M − 1)h∗(i)ξx3 ,

where ξx3
= M

M−1 (x3 − 1
M 1) and h∗(i) can be derived recursively as

h∗(i) = h∗(i− 1) +
ηY

(M − 1) + exp(Mh∗(i− 1))

with h∗(0) = 0. Combining Lemma 7 and 9 in [14], we have

h∗(i) ≳
1

M
ln(MηY i), ∀i ≳ lnM

ηY
. (11)

Note that the update of each row of Y are independent, the training set has size N , and the batch size
is 1, we have

Y (t)⊤x1
= (M − 1)h∗ (⌈t/N⌉) ξx3

where the training data at time step t is (x1, x2, x3). Combining (11), we can obtain that

Y (t)x1,x3 ≳ (M − 1) · M

M − 1
(1− 1

M
) · 1

M
ln (MηY ⌈t/N⌉) ≥ ln

(
MηY t

N

)
and

Y (t)x1,x ≲ (M − 1) · M

M − 1
(− 1

M
) · 1

M
ln (MηY ⌈t/N⌉) ≤ −

1

M
ln

(
MηY t

N

)
, ∀x ̸= x3.

On the other hand, for any sequence (x1, x2, x3) in the test set, since the x1-th row of Y has never
been updated, we have

Y (t)x1,x = Y (0)x1,x = 0, ∀x ∈ [M ].
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C.1.3 Proof of Theorem 3

Proof. We first consider training sequence (x1, x2, x3) at time t. By Proposition 4.2, we have

pθ(t)(x3|x1, x2) =
exp (Y (t)x1,x3

)∑
x′∈[M ] exp (Y (t)x1,x′)

and by Lemma 2, we have

Y (t)x1,x3 ≥ c ln

(
MηY t

N

)
, and Y (t)x1,x ≤ −

c

M
ln

(
MηY t

N

)
, ∀x ̸= x3

for some constant c > 0. Therefore,

pθ(t)(x3|x1, x2) ≥
exp

(
c ln

(
MηY t

N

))
exp

(
c ln

(
MηY t

N

))
+ (M − 1) ln

(
− c

M ln
(

MηY t
N

))
≥

(
MηY t

N

)c
(

MηY t
N

)c
+ (M − 1)

=1− M − 1(
MηY t

N

)c
+ (M − 1)

≥1− M − 1

2
(

MηY t
N

)c
where the last inequality holds since

ln t ≳ ln(NM/ηY ) =⇒ t ≥ N(M − 1)1/c

MηY
=⇒

(
MηY t

N

)c

≥M − 1.

Finally, for any sequence (x1, x2, x3) ∈ Dtest, since Y (t)x1,x = 0,∀x ∈ [M ] according to Lemma 2,
we have

pθ(t)(x3|x1, x2) =
exp (Y (t)x1,x3)∑

x′∈[M ] exp (Y (t)x1,x′)
=

exp(0)

M · exp(0)
= 1/M,

which completes the proof.

C.2 Additional details and proof of Section 4.2

Datasets. Let Ntrain > 0, Ntest > 0 be two positive integers and let Ntotal = Ntrain + Ntest. Let
Ai, Bi, Ci ∈ V,∀i ∈ [Ntotal] be 3Ntotal distinct tokens. Let→,; ∈ V = [M ] be two additional differ-
ent tokens that represent “direct implication” and “indirect implication” respectively. Specifically,
we have Ai → Bi, Bi → Ci and Ai ; Ci for all i ∈ [Ntotal]. For notation convenience, we define the
following two index sets

Itrain = {1, 2, . . . , Ntrain}, Itest = {Ntrain + 1, . . . , Ntotal}.
The training set Dtrain consists of all Ai → Bi, Bi → Ci and Ai ; Ci for i ∈ Itrain. In addition, Dtrain
contains Ai → Bi and Bi → Ci for i ∈ Itest. For convenience, we let N = |Dtrain| to be the size of the
training set. The test set Dtest consists of Ai ; Ci for i ∈ Itest. Under our construction of the dataset,
the LLM will learn the relationship between Ai, Bi and Ci for i ∈ Itrain in both direct and indirect
implication, and learn the relationship between Ai, Bi and Ci for i ∈ Itest only in direct implication
and will be tested for indirect implication.

Similar to the reversal curse in Section 4.1, we aim to prove through the training dynamics of one-
layer transformers that the test probability remains negligible during training. In particular, we are
interested in

pθ(x3 = Ci|x1 = Ai, x2 =;), i ∈ Itest.

We also use pθ(Bi|Ai →), pθ(Ci|Bi →) and pθ(Ci|Ai ;) to more compactly represent pθ(x3 =
Bi|x1 = Ai, x2 =→), pθ(x3 = Ci|x1 = Bi, x2 =→) and pθ(x3 = Ci|x1 = Ai, x2 =;), respectively.

The following theorem shows the importance of the chain-of-thought method:
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Theorem 7 (Importance of chain-of-thought, formal statement of Theorem 4). Assume we run SGD
with batch size 1, and assume M ≫ 100 and 1

M0.99 ≪ ηY < 1. Let t ≳ N lnM
ηY

denote the time step
which also satisfies ln t ≳ ln(NM/ηY ). For any test index i ∈ Itest, we have

pθ(t)(Bi|Ai →) ≥ 1− M − 1

2
(

MηY t
N

)c , pθ(t)(Ci|Bi →) ≥ 1− M − 1

2
(

MηY t
N

)c
for some constant c > 0 and

pθ(t)(Ci|Ai ;) ≤ 1

M
.

Proof. Recall that by Proposition 4.2, we have

pθ(t)(x3|x1, x2) =
exp (Y (t)x1,x3)∑

x′∈[M ] exp (Y (t)x1,x′)

and by Lemma 2, we have

Y (t)Ai,Bi ≥ c ln

(
MηY t

N

)
, and Y (t)Ai,x ≤ −

c

M
ln

(
MηY t

N

)
, ∀x ̸= Bi

for some constant c > 0. Therefore, using the same proof as Theorem 3, we have

pθ(t)(Bi|Ai →) ≥ 1− M − 1

2
(

MηY t
N

)c .
Additionally, according to the proof of Lemma 2, Y (t)Ai,x has the same value across all x ̸= Bi,
which implies

pθ(t)(Ci|Ai ;) ≤ 1

M
.

Similarly, applying Lemma 2 to Y (t)Bi , we can obtain that

pθ(t)(Ci|Bi →) ≥ 1− M − 1

2
(

MηY t
N

)c .

C.3 Analysis of the reversal curse for the four-token sequences

In this section, we analyze the reversal curse where data points are four-token sentences “AR1R2B” or
“BR1R2A”. For each sentence, A and B are two distinct tokens that represent two entities, and R1, R2
are two special tokens jointly representing a relationship that is inverse to itself (e.g., R1R2 represents
“is the friend of”, then AR1R2B means “A is the friend of B” and BR1R2A means “B is the friend of A” ).

Datasets. Let Ntrain > 0 and Ntest > 0 and denote Ntotal = Ntrain + Ntest. Let Ai, Bi ∈
V,∀i ∈ [Ntotal] be K ≜ 2Ntotal distinct tokens representing distinct entities. WLOG, we assume
Ai, Bi ∈ [K],∀i ∈ [Ntotal]. Let R1, R2 ∈ V be two additional different tokens that jointly represent a
relationship that is inverse to itself. Specifically, we have AiR1R2Bi and BiR1R2Ai for all i ∈ [Ntotal].
For notation convenience, we define the following two index sets

Itrain = [Ntrain], Itest = [Ntotal]\Itrain.

The training set Dtrain consists of all AiR1R2Bi and BiR1R2Ai for i ∈ Itrain. In addition, Dtrain contains
AiR1R2Bi for i ∈ Itest. For convenience, we let N = |Dtrain| to be the size of the training set. The
test set Dtest consists of BiR1R2Ai for i ∈ Itest. Under our construction of the dataset, the LLM will
learn the relationship between Ai and Bi for i ∈ Itrain in both directions to deduce that the relationship
“R1R2” is reverse to itself, and learn the relationship between Ai and Bi for i ∈ Itest in one direction and
will be tested for the other. WLOG, we assume for each training sequence (x1, R1, R2, x4) ∈ Dtrain,
x4 ∈ [N ].
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Now we assume that the learning rate ηY ≫ ηZ and therefore can treat X⊤bT as fixed when
analyzing the dynamics of Y . For any sequence (x1, x2 = R1, x3 = R2, x4 = n) in training or test
dataset with T = 3, we define fn = LN(X⊤bT ). Then the gradient of Y in (3) becomes

Ẏ = ηY fn(xT+1 −α)⊤ = ηY fn(en −α)⊤.

Note that for three-token sequences, fn is a one-hot vector, and thus Ẏ has only one non-zero
row, and each row of Y can be analyzed independently. For the four-token sequences, we use the
same reparameterization strategy as in [14], where we denote W = [w1,w2, . . . ,wK ]⊤ ≜ F⊤Y ∈
RK×M with F = [f1, . . . ,fK ] ∈ RM×K .

Note that the parameter W can be viewed as a combination of Y and Z where Z is fixed. The
following lemma shows the dynamics of W , assuming we are performing gradient updates on W
instead of Y .
Lemma 12 (Dynamics of W ). Assume we perform gradient updates directly on W instead of Y with
learning rate ηY and batch size 1, and assume M ≫ 100 and 1

M0.99 ≪ ηY < 1. Let t ≳ N lnM
ηY

and let W (t)i denote the i-th row of W (t) and W (t)ij denote the (i, j)-th entry of W (t). Then for
training sequence (x1, R1, R2, x4) ∈ Dtrain at time t, we have

W (t)x4,x4 ≳ ln (MηY t/N) , and W (t)x4,x ≲ − ln (MηY t/N) /M, ∀x ̸= x4,

and for any test sequence (x1, R1, R2, x4) ∈ Dtest, we have W (t)x4,x = 0,∀x ∈ [M ].

Proof. According to Lemma 3 of [14], for training sequence (x1, R1, R2, x4) ∈ Dtrain at time t, only
the x4-th row of W will be updated and the gradient

ẇx4(t) = ηY (x4 −αx4(t))

where α(t) = exp(wx4
(t))/(1⊤ exp(wx4

(t))). Therefore, the dynamics of W is nearly identical to
the dynamics of Y in Lemma 2, and we can use the proof of Lemma 2 to conclude the results.

With the dynamics of W , we can obtain the following result:
Proposition C.1 (Reversal curse for the four-token sequences). Assume we perform gradient updates
directly on W instead of Y with learning rate ηY and batch size 1, and assume M ≫ 100 and

1
M0.99 ≪ ηY < 1. Let t ≳ N lnM

ηY
denote the time step which also satisfies ln t ≳ ln(NM/ηY ). For

training sequence (x1, R1, R2, x4) ∈ Dtrain at time t, we have

pθ(t)(x4|x1, R1, R2) ≥ 1− M − 1

(MηY t/N)c
→ 1, as t→∞

for some constant c > 0, and for any test sequence (x1, R1, R2, x4) ∈ Dtest that is not included in the
training set Dtrain, we have

pθ(t)(x4|x1, R1, R2) ≤ 1/M.

Proof. For any sequence (x1, x2 = R1, x3 = R2, x4) where T = 3,

pθ(t)(x|x1, R1, R2) =
exp

(
x⊤Y (t)⊤LN(X⊤bT )

)∑
x′∈[M ] exp

(
x′⊤Y (t)⊤LN(X⊤bT )

)
=

exp
(
x⊤Y (t)⊤fx4

)∑
x′∈[M ] exp

(
x′⊤Y (t)⊤fx4

)
=

exp
(
x⊤wx4

(t)
)∑

x′∈[M ] exp
(
x′⊤wx4(t)

)
=

exp (W (t)x4,x)∑
x′∈[M ] exp (W (t)x4,x′)

.

The above next token probability formulation is almost identical to Proposition 4.2 after replacing Y
with W . Combining the dynamics of W as shown in Lemma 12, we can use the proof of Theorem 3
to conclude the result.
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Finally, we discuss the role of Z in the four-token-sequence settings. Note that Proposition C.1
assumes gradient update on W instead of Y . While we are not able to perform gradient updates on
W directly, it is equivalent to modifying the gradient of Y to be

Ẏ = ηY (fn − FE′en)(en −αn)
⊤

according to Lemma 3 of [14], where the next token xT+1 = n, E′ = (I+E)−1−I , E = F⊤F −I ,
and F = [f1, . . . ,fN ] ∈ RM×N which only contains the next token that appears in the training set.
Compared to the original gradient of Y

Ẏ = ηY fn(en −αn)
⊤,

one can obtain that the modification of the gradient of Y is small if λ1(E) is small.

Note that Eii = ∥fi∥22−1 = 0 and Eij = f⊤
i fj . Also, for any sequence (x1 = n′, x2 = R1, x3 =

R2, x4 = n) in training set,

fn = LN(X⊤bT ) =
b13en′ + b23eR1√

b213 + b223
,

where
b13 = exp(ZR2,n′), b13 = exp(ZR2,R1).

Note that R1 is a common token that appears in each training sentence, and n′ is a distinct token that
only appears in one training sentence as a contextual token. By Theorem 2 of [14], under certain
technical assumptions, ŻR2,n′ > 0 and ŻR1,n < 0 and one can expect ZR2,n′ −ZR1,n to be sufficiently
large after sufficient time of training. Therefore,

fn = b̃13en′ + b̃23eR1

with b̃23 close to 0. Consider a simple case where for each n ∈ [N ], fn =
√
1− c2en′ + ceR1 for c

sufficiently small. Then

Eij = f⊤
i fj = (

√
1− c2ei′ + ceR1)

⊤(
√
1− c2ej′ + ceR1) = c2.

Therefore, one can calculate that λ1(E) = c2(N − 1). When c ≪ 1√
N

, we have λ1(E) ≪ 1, and
thus the gradient update of W and gradient update of Y are almost the same.

D Experiments for chain-of-thought

In this section, we conduct experiments for COT on multi-layer transformers to validate theoretical
results in Section 4.2.

Dataset construction. Similar to Section 5, we randomly sample three disjoint sets of entities
A,B, C ⊂ V , and reverse two additional tokens for → and ;, respectively. Next, we specify a
bijection from A to B, and a bijection from B to C randomly. For each Ai ∈ A and its corresponding
Bi ∈ B and Ci ∈ C, we can obtain a triple of sequences (Ai → Bi, Bi → Ci, Ai ; Ci), and split the
set of all triples into training triples and validation triples. All three sequences of a training triple will
be added to the training set, while for a validation triple, we add Ai → Bi and Bi → Ci to the training
set and add Ai ; Ci to the validation set. Therefore, the model will learn both direct and indirect
implications for the training triples and only learn the direct implications for each validation triple
while being tested on the indirect implication.

Results. Figure 3 shows the experiment results for COT using the same model architecture and
configurations as in Figure 1 (the training set size is 540, and the validation set size is 60 resulting
from 140 training triples and 60 validation triples), which is consistent with Theorem 7. One can
refer to Appendix E.3 for additional experiments with various model configurations and vocabulary
sizes. We also empirically validate the intransitivity of model weights (i.e., logits) for multi-layer
transformers in Figure 4, which shows that for a validation triple (Ai, Bi, Ci) of which only the direct
implication “Ai → Bi” and “Bi → Ci” appears in the training set, although the weights from Ai to Bi
and from Bi to Ci are trained large as indicated by the diagonals of the first two bottom matrices, the
weights from Ai to Ci gets hardly trained as indicated by the diagonals of the last matrix. We also
emphasize that another reason that COT is necessary is that all tokens Ai, Bi, and Ci are different
tokens with randomly initialized embedding and thus irrelevant. When these tokens are relevant and
show specific patterns, the validation loss can also get better. See more details in Appendix E.4.
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Figure 3: Experiment results of COT under default configuration (see Table 3). The curves represent
the (average) negative log probability of the model predicting the next token to be: (1) Bi given the
input “Ai →”, (2) Ci given the input “Bi →”, or (3) Ci given the input “Ai ;”. Similar to the reversal
curse experiment, while the sentences in the training set can be learned nearly perfectly, the model is
not able to predict the correct next token in the validation set better than a uniformly random guess.
Both curves are averaged over 10 random seeds.

E Additional Experimental Results

In this section, we show additional experimental results for Section 5.

E.1 Details of model architectures and hyperparameters

For both the reversal curse and COT experiments, we used the GPT2 model architecture [63]6 and
trained the model with the AdamW optimizer for 3000 epochs of batch size 64. See Table 2 for a
full list of hyperparameters. We also conducted experiments under various model configurations and
vocabulary sizes to show that the results in Section 5 and appendix D are consistent under different
settings. See Table 3 for a complete list of different configurations, where the default choices are
boldened. For each curve in all figures, the results are averaged over 10 trials, and the error bar is
calculated using standard deviation. We run each trial on an Nvidia A100 GPU and it typically takes
0.5-1.5 hours for each trial.

Parameters Values
Learning Rate 0.01
Weight Decay λ 0.9
(β1, β2) (0.9, 0.999)
Batch Size 64
Number of Epochs 3000

Table 2: Full list of hyperparameters for AdamW optimizer and training.

E.2 Additional experimental results for the reversal curse

In this section, we show additional experimental results for the reversal curse under different con-
figurations, including different vocabulary sizes (Figure 5), different number of layers (Figure 6),

6Apache License 2.0
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Figure 4: Visualization of the weights (logits) of the model with default configurations trained after
3000 epochs for COT experiment. The matrices are similar to Figure 2. The row tokens for the top
matrices are Ai, Bi, Ai and column tokens are Bi, Ci, Ci for training triples respectively. Similarly, the
bottom matrices correspond to validation triples. For validation triples (Ai, Bi, Ci), the weights from
Ai to Ci get hardly trained as indicated by the diagonals of the last matrix.

Parameters Values
Number of Layers 12, 24, 48
Number of Heads 12
Vocabulary Size 20, 50, 200, 800, 2000
Entity Length 1, 2, 3
Positional Encoding Type None, Absolute, Relative
Token, Positional Embedding Learnable, Frozen

Table 3: The list of different configurations for experiments in Appendices E.2 and E.3. Default
choices are boldened for each row.

different positional encoding (Figure 7), different entity lengths (Figure 8) and whether token and
positional embeddings are trainable or fixed (Figure 9). Our experimental results consistently show
that the reversal curse happens under different settings.

We provide additional experimental results that (1) the reversal curse still happens even if the
embedding dimension is much smaller than the vocabulary size in Appendix E.2.1; (2) the embeddings
of different tokens are nearly orthogonal; (3) the reversal curse does not happen under the in-context
learning settings.

E.2.1 The reversal curse under small embedding dimensions

Although for theoretical analysis in Section 3, we assumed the embedding dimension is polynomial
in the vocabulary size, in practice, the embedding dimension only needs to be the order of logarithm
of the vocabulary size. Figure 10 shows that for a much smaller embedding size, the reversal curse
still happens.
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(a) Vocabulary size 20
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(b) Vocabulary size 50
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(c) Vocabulary size 200
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(d) Vocabulary size 2000

Figure 5: Results for reversal curse for different vocabulary sizes. All other configurations are set as
default values as in Table 3. The training set sizes for the above four experiments are 9, 20, 85, 850
respectively, and the validation set sizes are 1, 4, 15, 150 respectively.
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(a) 12 layers
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(b) 48 layers

Figure 6: Results for reversal curse for different numbers of layers of the transformer. All other
configurations are set as default values as in Table 3.
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(a) No positional encoding
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(b) Relative positional encoding

Figure 7: Results for reversal curse with no positional encoding or relative positional encoding. For
relative positional encoding, we follow the Rotary Position Embedding (RoPE) method proposed by
[65]. We use the implementation of this repo, MIT license. All other configurations are set as default
values as in Table 3.
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(a) Entity length 2
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(b) Entity length 3

Figure 8: Results for reversal curse with different entity lengths. Each entity Ai or Bi consists of
multiple tokens and different entities may have overlapped tokens. The “Train” curve represents
the negative log probability of predicting the first token of the output entity, and “Train (word)”
represents the negative log probability of predicting all tokens one by one of the output entity. All
other configurations are set as default values as in Table 3. The training set sizes for the above two
experiments are 680 and 250, respectively, and the validation set sizes are 120 and 50, respectively.
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Figure 9: Results for reversal curse with fixed token embedding and fixed positional embedding. All
other configurations are set as default values as in Table 3.

E.2.2 Near orthogonal embeddings

Note that in Section 3, our analysis relies on the fact that embeddings of different tokens are nearly
orthogonal, and in Section 4, the embeddings are effectively one-hot. In Figure 11, We show that
in practice, even if the embedding dimension is much smaller than the vocabulary size, the near
orthogonality condition still holds.

E.2.3 The reversal curse does not happen in ICL settings

We also emphasize that the reversal curse does not happen in ICL settings, which means if “A→ B”
is provided as part of the prompt, then the model is able to answer “B ← A”. Figure 12 shows
preliminary results of ICL. All the sentences in the dataset have the format of “AiRBj ⇔ BjR−1Ai”,
which is a seven-token sentence where R and R−1 is a pair of relationships inverse to each other, and
“⇔” is another reserved token representing equivalence. There are ten different Bj and n different
Ai where n = 100 for the left figure in Figure 12 and n = 200 for the right figure. For each Ai, we
construct ten sentences using different Bj , and we randomly chose three of them to be included in
the validation set and seven other sentences in the training set. The result of Figure 12 shows that the
reversal curse does not happen during the ICL setting.
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Figure 10: Results for reversal curse for different numbers of layers and different embedding
dimensions. All other configurations are set as default values as in Table 3.
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Figure 11: A heat map of cosine similarity between token embeddings (all Ai and Bi) after 3000
epochs training under different settings. The settings are the same as Figure 10. Under different
numbers of layers or embedding dimensions, most of the non-diagonal entries are close to 0, which
shows that the embeddings of different tokens are nearly orthogonal.

E.3 Additional experimental results for chain-of-thought

In this section, we show additional experimental results for COT under different configurations,
including different vocabulary sizes (Figure 13), different number of layers (Figure 14), different
positional encoding (Figure 15), different entity lengths (Figure 16) and whether token and positional
embeddings are trainable or fixed (Figure 17). Note that our experimental results consistently show
the necessity of COT under different settings.

E.4 Chain-of-thought with relevant tokens

In Appendix D, we briefly mentioned that the irrelevance of different entity tokens is one of the
reasons that COT is necessary. Now, we show that if the entity tokens are correlated and show specific
patterns, it is possible for a model to deduce indirect implications automatically.

Instead of using single tokens Ai, Bi, Ci to represent each entity, now we use two tokens Ai, Bi, Ci to
represent entities, where A, B and C are three common tokens shared by each triple, and token i are
distinct for each triple. Figure 18 shows that for the above version of COT where tokens in the same
chain are correlated, the model is able to “deduce” Ai ; Ci after training on Ai → Bi, Bi → Ci
and other training samples.
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Figure 12: Training and validation loss under in-context learning (ICL) settings. All sentences consist
of seven tokens and have the form of “AiRBj ⇔ BjR−1Ai”. The loss is calculated on the last token.
For the left figure, the training set size is 700, the validation set size is 300, and the vocabulary size is
400; for the right figure, the training set size is 1400, the validation set size is 600, and the vocabulary
size is 800. All other configurations are set as default values as in Table 3. The result shows that the
reversal curse does not happen in ICL settings, i.e., if “AiRBj” is provided as part of the prompt, then
the model is able to recognize “BjR−1Ai”.
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(a) Vocabulary size 20
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(b) Vocabulary size 50
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(c) Vocabulary size 200
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(d) Vocabulary size 2000

Figure 13: Results for COT for different vocabulary sizes. All other configurations are set as default
values as in Table 3. The training set sizes for the above four experiments are 14, 32, 135, 1350
respectively, and the validation set sizes are 1, 4, 15, 150 respectively.
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(a) 12 layers
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(b) 48 layers

Figure 14: Results for COT for different number of layers of the transformer. All other configurations
are set as default values as in Table 3.
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(a) No positional encoding
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(b) Relative positional encoding

Figure 15: Results for COT with no positional encoding or relative positional encoding. For relative
positional encoding, we follow the Rotary Position Embedding (RoPE) method proposed by [65].
All other configurations are set as default values as in Table 3.
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(a) Entity length 2
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(b) Entity length 3

Figure 16: Results for COT with different entity lengths. The setting and curves are similar to
Figure 8. All other configurations are set as default values as in Table 3. The training set sizes for the
above two experiments are 1080 and 400, respectively, and the validation set sizes are 120 and 50.
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Figure 17: Results for COT with fixed token embedding and fixed positional embedding. All other
configurations are set as default values as in Table 3.
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(a) Training set size 160
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(b) Training set size 250
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(c) Training set size 400
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(d) Training set size 1600

Figure 18: Results for COT where each entity is represented by two tokens, i.e., Ai, Bi, or Ci. The
validation set sizes are 50. The model is able to “deduce” unseen Ai ; Ci by learning underlying
patterns.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Sections 1 and 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Sections 3 and 4 and appendices B and C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5 and appendices D and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Our code is available at https://github.com/marlo-z/reversal_
curse_analysis/.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and appendices D and E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Appendix E.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix E.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 1 and Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is available at https://github.com/marlo-z/reversal_
curse_analysis/.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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