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Abstract

Hand-object 3D reconstruction has become increasingly
important for applications in human-robot interaction and
immersive AR/VR experiences. A common approach for
object-agnostic hand-object reconstruction from RGB se-
quences involves a two-stage pipeline: hand-object 3D
tracking followed by multi-view 3D reconstruction. How-
ever, existing methods rely on keypoint detection techniques,
such as Structure from Motion (SfM) and hand-keypoint op-
timization, which struggle with diverse object geometries,
weak textures, and mutual hand-object occlusions, limiting
scalability and generalization. As a key enabler to generic
and seamless, non-intrusive applicability, we propose in
this work a robust, keypoint detector-free approach to es-
timating hand-object 3D transformations from monocular
motion video/images. We further integrate this with a multi-
view reconstruction pipeline to accurately recover hand-
object 3D shape. Our method, named HOSt3R, is uncon-
strained, does not rely on pre-scanned object templates or
camera intrinsics, and reaches state-of-the-art performance
for the tasks of object-agnostic hand-object 3D transfor-
mation and shape estimation on the SHOWMe benchmark.
We also experiment on sequences from the HO3D dataset,
demonstrating generalization to unseen object categories.

1. Introduction

Understanding and reconstructing hand—object interactions
in 3D is a key challenge with broad applications in robotics,
augmented/virtual reality (AR/VR), and human—computer
interaction. Whether enabling natural user interfaces, im-
mersive experiences, or safe object manipulation in col-
laborative settings, accurate 3D reconstruction of both the
hand and the object is essential. To address this challenge,
we propose a two-stage pipeline that involves hand-object
transformation estimation and multi-view reconstruction,
designed to achieve robust hand-object reconstruction from
monocular video or images capturing rigid hand-object mo-
tion (see Figure 1).
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Figure 1. Qualitative Hand-Object reconstructions on the
HO3D dataset. The first column is an RGB frame of the input
sequence, followed by 3 different views of the reconstructed hand-
object shape using HOSt3R, our proposed method.

Traditional methods for hand-object 3D reconstruction
often rely on multi-stage processes, including parametric
hand model prediction or keypoint detection, and Struc-
ture from Motion (SfM). Although effective in controlled
settings, these approaches face significant limitations when
applied to complex, real-world scenarios, particularly when
dealing with occlusions, dynamic environments, uniform
textures and diverse object shapes. Thus, there is a pressing
need for more robust and scalable solutions that can handle
these challenges without the constraints of template-based
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Figure 2. Keypoint-free hand-object 3D reconstruction: Given a monocular video sequence of a hand-object motion with an unknown
object, our method reconstructs high-fidelity 3D hand-object surfaces. Each row shows one sequence of the SHOWMe dataset: the input
image followed by three views of the reconstructed normals. Best viewed in color.

or keypoint-dependent techniques. In this work, we address
these challenges by proposing a novel approach to hand-
object reconstruction without keypoint detection that offers
improved scalability and generalization.

Existing hand-object reconstruction methods often as-
sume the availability of known object templates [12, 15,
16, 18, 20, 23, 40-42], limiting their applicability in in-
the-wild scenarios where such templates may not be avail-
able. Other approaches [4, 5, 13, 19] do not require known
object templates but are trained on datasets containing a
limited number of objects, resulting in poor generalization
for unseen objects. More recent methods [42, 43] attempt
to overcome this limitation by learning object shape priors
across six object categories and using these priors for hand-
object shape reconstruction. However, while these methods
improve generalization on novel objects, the reconstructed
shapes tend to lack high fidelity.

Several recent studies [11, 17, 31, 32] have demonstrated
the potential of a two-stage pipeline for hand-object re-
construction, using keypoint-based 6DoF hand and object
tracking followed by multiview reconstruction using im-

plicit neural representations. The quality of 6DoF tracking
is critical for achieving a detailed 3D hand-object recon-
struction. For example, [17] uses 3D hand keypoints for
6DoF tracking, while [11, 31] employ poses derived from
structure-from-motion pipelines. In contrast, in [32], we
introduced a robust hand-object transformation estimation
technique that performs well on challenging scenarios, such
as small, uniformly textured, or occluded objects, but re-
quires fine-tuning when applied to new datasets or varying
environments.

In this work, we propose a keypoint-free framework
for joint hand—object 3D reconstruction from monocu-
lar hand-object motion videos. Our approach, termed
HOSTt3R, is inspired by recent advances in scene-level re-
construction and is tailored to the challenges of hand—object
interactions. HOSt3R is designed to address key limitations
of existing methods such as failure in the presence of un-
textured objects, mutual hand—object occlusion, and varia-
tions in background or camera intrinsics, which often hinder
keypoint-based pipelines [11, 17, 31, 32].

We begin by estimating dense 3D pointmaps (i.e., 3D



points for every pixel) for pairs of input images. Using these
pointmaps, we compute the relative poses between image
pairs, and then apply pose averaging across all pairs to re-
cover global hand—object transformations. These transfor-
mations are used to initialize a neural implicit model, which
jointly optimizes hand—object shape and motion using dif-
ferentiable volumetric techniques.

Building upon DUSt3R [36], we adapt its two-stage
pointmap estimation and alignment strategy to the more
complex setting of hand—object scenes. While DUSt3R
achieved breakthrough results in 3D scene reconstruc-
tion, its reliance on scene graph optimization introduces
high memory requirements, making it impractical for large
datasets or long video sequences. We address this limi-
tation by focusing on pairwise point cloud estimation for
hand-object pixels, followed by pose averaging, which en-
ables our method to scale efficiently without the memory
overhead of full scene graph optimization. By combin-
ing the pairwise estimation network with a pose averaging
framework, we can scale to longer sequences. Finally, we
incorporate the transformations computed in a multi-view
reconstruction pipeline to further enhance the accuracy and
detail of the recovered hand-object shapes, see examples
in Fig. 2.

In summary, our key contributions are as follows:

1. We propose a keypoint-free framework for hand-object
transformation estimation that is robust to a variety of
objects and camera parameter changes.

2. We integrate the estimated hand-object transformations
within a multi-view reconstruction pipeline to achieve
template-free hand-object 3D shape reconstruction.

3. We benchmark the performance of our hand-object re-
construction method on the SHOWMe benchmark.

4. We also demonstrate the generalization ability of the
proposed framework on the HO3D dataset.

2. Related work

Hand-Object reconstruction methods. Hand-object (HO)
reconstruction from a single RGB image or monocular
video presents significant challenges due to mutual occlu-
sion between the hand and object, complex motion, and
variability in object shape and appearance. The availability
of depth information or a known 3D object models can facil-
itate shape estimation. Early works [1, 24, 34, 35, 44] used
RGB-D or multi-view inputs to simplify the reconstruction
process, but recent advances have focused on using monoc-
ular RGB images to achieve similar outcomes.
Hand-object reconstruction approaches generally fall
into two categories: parametric model-based techniques and
implicit representation-based methods. Parametric model-
based approaches [3, 14, 20, 22, 26, 28] typically rely on
predefined object templates or category-specific models to
estimate hand and object poses. Some methods combine

parametric models with implicit representations [4, 42] to
enhance reconstruction detail. For example, [42] assumes
known 3D templates and employs Signed Distance Func-
tions (SDFs) to reconstruct hand and object shapes with
greater fidelity. Similarly, [27] builds separate models for
hand and object shapes, but this approach requires camera
calibration and online training, limiting its use to known ob-
ject templates.

In contrast, implicit representation-based methods [19,
27] represent shapes as continuous functions, allowing
more flexible and expressive reconstructions. For instance,
[4] reconstructs generic hand-held objects without relying
on a pre-defined templates, though the method struggles to
generalize across diverse object geometries. These meth-
ods face limitations in shape generalization, as they often
require training on specific object sets [19].

Monocular video-based methods have also gained at-
tention for joint hand-object reconstruction. For example,
[15] leverages photometric consistency over time to im-
prove accuracy, while [16] explores optimization-based ap-
proaches. [22] uses spatial-temporal consistency to select
pseudo-labels for self-training. However, a key limitation of
these methods is the reliance on object template meshes dur-
ing inference, which effectively reduces the reconstruction
task to a 6-DoF pose estimation problem. In contrast, our
method eliminates the need for object templates, enabling
the reconstruction of arbitrary hand-object shapes with high
precision.

Keypoint-based hand-object transformation. Most
hand-object reconstruction methods from multiple RGB
images [11, 17, 31, 43] follow a two-stage pipeline:
(i) hand-object transformation estimation and (ii) shape
estimation from the obtained transformations. Any method
that uses either detected 2D hand keypoints [25, 29, 37] or
salient keypoints [30] on the image to estimate hand-object
transformations is considered keypoint-based.

Several works [17, 31, 43] employ off-the-shelf hand
keypoint detectors [29, 37] to compute initial hand—object
transformations. These approaches perform well when the
hand remains visible (typically in sequences involving small
objects) but they fail when the hand is occluded by larger
objects. Other methods [11, 31] rely on Structure-from-
Motion (SfM) pipelines based on detected image keypoints.

While effective for scenes with textured or feature-rich
objects, this strategy fails in the presence of small or uni-
formly textured objects due to a lack of salient features. In
contrast to these keypoint-based approaches, we propose a
method that does not rely on keypoint detection. Instead,
we estimate dense 3D pointmaps, where every pixel is as-
sociated with a 3D point, and solve a 2D-to-3D matching
problem. This enables robust pose estimation even in the
absence of distinctive keypoints.



Keypoint-free hand-object transformation. An emerg-
ing direction in hand—object reconstruction is to directly
regress camera parameters [38, 39] as initialization for a
global photometric optimization [31, 32]. This approach
generally offers better performance and robustness than
keypoint-based methods, in scenes with small or uniformly
textured objects. However, direct pose regression remains
challenging and prone to inaccuracies, as it must disen-
tangle complex interactions between camera intrinsics, ex-
trinsics, and the underlying 3D scene structure [36]. To
address this, we draw inspiration from [36] and tackle
pose prediction via pointmap regression: a simple over-
parameterization of these three quantities that enables easy
training and inference, offering strong robustness and gen-
eralization capabilities.

3. Rigid transformation estimation framework

3.1. Pairwise pointmap estimation network

Pointmap. A pointmap X € RWXH*3 jg a pixelwise

prediction where each prediction represents a 3D point in
space. When associated with its corresponding RGB im-
age [ of resolution W x H, this pointmap establishes a
direct and unique mapping between the image pixels and
the 3D points in the scene. Specifically, for each pixel in
the image, indexed by coordinates (i, j), there is a corre-
sponding 3D point X; ;, such that every pixel I; ; in the
image is uniquely linked to a 3D point X; ;. Formally,
this can be expressed as I; ; <> X;; for all pixel coor-
dinates i, € N"W*H_ This mapping assumes that each
camera ray intersects with exactly one 3D point, which im-
plies that cases involving translucent or semi-transparent
surfaces, where a camera ray might pass through multi-
ple 3D points, are not considered in this scenario. The
pointmap, therefore, provides a straightforward representa-
tion of the 3D structure of the scene, with each pixel in the
image corresponding to a unique location in 3D space. This
assumption simplifies the interpretation and processing of
the pointmap.

To train the network with strong supervision, we need
ground-trtuh pointmap for every input image. To that end,
we consider a camera with intrinsic parameters defined by
the matrix K € R3*3. Given this matrix, the pointmap X
of the observed scene can be directly computed from the
ground-truth depth map D € RW*# where W and H are
the width and height of the image, respectively. The rela-
tionship between the pointmap X and the depth map D is
given by:

1D;
X, ;=K' |jDi;|. (1)
D

4,J

Here, (i,7) € N> represent the x-y pixel coordinates in

the image, and X is expressed in the camera’s coordinate
frame.

Further, we denote X™™ as the pointmap X™ from
camera n expressed in the reference frame of image m. This
transformation is described by:

Xvm=p, P, tH(X"), )

where P™, P" € R3** are the world-to-camera pose ma-
trices for views m and n, respectively, and H : (z,y,2) —
(z,y, z,1) is the homogeneous coordinate mapping.

Pointmap estimation network. We build a pairwise
pointmap estimation network f that takes two RGB input
images I, I, € RW>*H*3 a5 input and produces two cor-
responding pointmaps X !, X211 € RWXHX3 along with
associated confidence maps C1'!, C%1 € RW*H Tt is im-
portant to note that both pointmaps are expressed within
the same reference frame as I; to ensure consistency across
generated outputs. The network f’s architecture is inspired
by [36, 38] so that we can benefit from the pretraining of
both [38] and [36]. [38] is trained for cross-view image
completion and [36] is trained for 2D to 3D matching prob-
lem. We follow the same architecture for pairwise pointmap
estimation as shown in Fig. 3. Networks f is composed of
two symmetrical branches, one of each image comprising
an image encoder, decoder, and then the regression module
called “Head”, a sequence of MLP layers. The two input
images are first divided into an equal number of patches of
size 16x16. Then these patches are processed through a
shared ViT encoder [10] to compute patch embedding (also
called as ‘token’) representations F; and Fo:

E, = Encoder(Iy), Es= Encoder(Is). 3)

The decoder is a transformer network with cross-
attention followed by self-attention. In self-attention, each
token attends to every other token of the same view and in
cross-attention, a token from the first view attends to every
other token from the second view. The decoder module is
comprised of blocks of individual decoders and information
is always shared between the two image decoders:

Z} = DecoderBlock; (Z}_,,2% ), )
Z? = DecoderBlock; (Z7_, Z}4), ©)
fori = 1,..., B for a decoder with B blocks and initial-

ized with encoder tokens Z} := E' and Z¢ := E*. Here,
DecoderBlock; (Z!, Z?) denotes the i-th block in branch
v € {1,2}, Z! and Z? are the input tokens, with D? the
tokens from the other branch. Finally, each image decoder
block output is then fed to a “Head” MLP network to regress
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Figure 3. Pairwise pointmaps estimation network. Given two views of the same hand-object pair (I1, I2), the network processes both
views through a shared Vision Transformer (ViT) encoder. Each view’s features are decoded using distinct decoders that share mutual
information. These features are then passed through the ‘Head” module to predict the pointmap X and the confidence score map C' for
each view. The pointmaps for both views are predicted within the coordinate system of the first view’s image, and the network is trained
by minimizing the error between the ground truth and the predicted pointmaps.

a pointmap and an associated confidence map:

1,1 ~1,1

X C
2,1 2,1

X C

=Head' (Z3,...,2Z5) . (6)
= Head” (Z3,...,23). (7)

Training Objective. The network f is trained using 3D
points regression loss with confidence aware terms.

It builds upon a standard regression loss fr, Where
we use the Euclidean distance between the ground-truth
and predicted pointmaps. Let us denote the ground-truth
pointmaps as X ! and X%, with two corresponding sets
of hand-object pixels D', D? = {i',... i*} on which the
ground-truth is defined. The regression loss for a hand-
object mask M, pixel ¢ in view v € {1,2} is defined as
below:

. X;U’l Xy,l
lregr(v, 1) = M - | ; — 12 | 3

M; indicates whether the pixel belongs to the hand-
object (M; = 1) or to the background (M; = 0). If M; =0
then pixel ¢ is ignored for the loss calculation. We nor-
malize the predicted and ground-truth pointmaps by scal-
ing factors to handle scale ambiguity between the predic-
tions and ground truth pointmaps. The scaling factors for
ground truth and predictions are z = norm(X !, X21) and
z = norm(X 11, X21), respectively. This basically repre-
sents pointmap as the distance of all pointmaps from the
origin:

norm(X*', X?) =

Yo D IXL O

1 2
D+ ‘D ve{1,2} i€Dv

To make ., confidence aware, we enable the joint pre-
diction of score for each pixel which indicates the confi-
dence of the pointmap prediction. The final loss is the con-
fidence weighted regression loss from Eq. (8) for all hand-
object pixels:

leont = > Y CP M ege(v,4) — alog CfF, - (10)

ve{1,2} i€Dv

Here, C}"" represents the confidence score for the i-th
pixel prediction, while « serves as a hyper-parameter con-
trolling the regularization term. To guarantee that the confi-
dence score remains strictly positive, it is typically defined
as O7' = 14 exp(CPh) > 0.

3.2. Relative pose computation from pointmaps

The aligned pointmaps from the two views have several use-
ful properties: they are expressed in a common coordinate
system, are spatially aligned, and maintain pixel-level cor-
respondence. As a result, the estimated pointmaps can be
used to compute the relative pose between the two views.
Given two images I; and I, with corresponding estimated
pointmaps X! and X% (in I; coordinate system), we can
compute the relative pose between the two views as follows:

1. Compute Focal Length from Depth (X 1'1):
f = estimateFocalLength(X>1). (11)

2. Set Principal Point at the Center:

W H
(C:mcy) = <27 2) y (12)
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Figure 4. Pose averaging is a process of estimating absolute poses from a set of relative poses. In the graph, each node Ry represents
absolute transformation (rotation and translation) to be optimized, edges represent the measured relative transformation R;;. Pose averaging
over this graph yields global absolute hand-object transformations of all nodes, plotted as red camera cones in a single coordinate frame.

where W and H represent the width and height of the im-

age, respectively.
3. Solve PnP with RANSAC: To estimate the relative

pose between the two views, solve the PnP (Perspective-n-
Point) problem using RANSAC:

[R,t] = PnP_RANSAC (pixel_coords(H, W), X*' K),

(13)
where:
[0
K=10 f ¢ (14)
0 0 1

Here, R and ¢ represent the relative rotation and transla-
tion between the two images I; and Is.

3.3. Pose averaging on relative poses

The relative pose computed using the output of network f
is in an arbitrary local coordinate system. However, for 3D
hand-object reconstruction from an input hand-object mo-
tion sequence, we need to compute global hand-object abso-
lute transformations. To this end, we create a pairwise graph
from a set of images I, Io, ..., I for a given sequence. We
first construct a connectivity graph G(V, E') where N im-
ages form vertices V' and each edge ¢ = (n,m) € E indi-
cates that images I,, and [,,, share hand-object visual infor-
mation. To create a graph, we first create all possible image
pairs (a fully connected graph) and then use the classifier
from [32] to filter out the invalid image pairs to reduce the
fully connected graph to a sparse graph. The idea is to retain
the image pair edges that share enough hand-object visual
information. The process of estimating rotation and transla-
tion for this type of problem is separable [9], and we explain
how to apply this to the camera pose problem as follows.

Rotation Averaging. Given a sequence of frames
{I,I5,...In}, we estimate and refine the relative poses,
then construct a directed pairwise graph G(V, £), where the
N frames correspond to the graph’s vertices, and each edge
e = (i,7) € & encodes the relative rotational relationship
between frames I; and I;. To compute the global rotations
from this graph, we apply the Shonan rotation averaging
method [9], which frames the problem as a factor graph.
In this graph, each node represents an unknown absolute
rotation to be determined, and the edges, or factors, corre-
spond to the previously estimated relative rotations, which
are noisy. The objective is to minimize the sum of the
Frobenius norms between the predicted and the measured
relative rotations:

min

(15)
ReSO(p)™

> kiyllR; — BBy,
(i,9)€€
from SO(3) to SO(p) where p > 3 until the termination,

k;; is the concentration parameter for assumed noise model.

Translation Averaging. Translation averaging involves
estimating the absolute translations from the previously ob-
tained absolute rotations Rizlu ~ and the relative transla-
tions Eij. To achieve this, we employ the Gaussian Fac-
tor Graph optimization framework [8], which minimizes the
sum of squared Euclidean distances between the estimated
translations (t;,t;) and the measured relative translations
t;;, while also enforcing constraints based on the relative
translation measurements:

> ||Rictiy = (t — ta)

(i,5)€€

. 2
min H (16)
to,t1,..,tN

The optimization problem is subsequently addressed us-
ing a linear system solver from GTSAM [7], with the anchor



Rigid Transformation Error
Det. Rate (%) T @(15cm&15°)(%) 1T  @(30cm&30°)(%) t

Method Rot Error | Trans Error |
DOPE [37] + fixed hand pose 28.97 0.23f
DOPE [37] + median filtering 28.7 0.22
DOPE [37] + PoseBERT [2] 28.0 0.22
COLMAP [30] 15.9¢ 0.061
SHOWMe [32] 20.9 0.12
HOSt3R (ours) 182 0.08

99.0 30.2 69.1
100.0 30.4 69.2
100.0 19.5 58.2

78.3 59.5 67.2
100.0 46.0 80.0
100.0 50.5 86.3

Table 1. Rigid transformation estimation comparison. The ‘Rot. error’ is the geodesic distance expressed in degrees with the ground-
truth rigid transformation. The “Trans error’ is the MSE. T means the metrics are computed for the frames for which the pose is successfully

recovered.

factor set by fixing the first pose’s position at the origin.
An illustration of the pose averaging process is provided in
Fig. 4.

4. Experimental results

In this section, we first describe how the estimated
hand-object transformations are integrated into a multi-
view stereo (MVS) pipeline to reconstruct the 3D shape of
the hand and object. We then detail the datasets used for
training and evaluation, and finally present quantitative and
qualitative results for both hand—object transformation and
3D shape estimation.

Integration with multi-view reconstruction. We esti-
mate pairwise relative poses and perform pose averaging
across a hand—object scene graph to obtain global transfor-
mations in a common coordinate system. These transforma-
tions are then integrated into the multi-view 3D hand—object
reconstruction pipeline introduced in [32]. Specifically,
we use the estimated rigid transformations as initializa-
tion for an implicit neural representation method, which
reconstructs both the surface geometry and color of the
hand-object scene. During reconstruction, we also refine
the transformations through joint optimization to correct for
any initial inaccuracies. For each sequence, we sample 60
evenly spaced frames, e.g. selecting every 15th frame in a
900-frame video, to perform the 3D reconstruction.

Datasets. We initialize our pairwise pointmap estimation
network with the pre-trained weights of DUSt3R [36], origi-
nally trained on indoor scene datasets. We then fine-tune the
network on a synthetically generated dataset. For synthetic
data generation, we adapt the pipeline from ObMan [13],
which produces parametric hand (MANO) grasp poses for
approximately 2.7K everyday object models across 8 ob-
ject categories. We modify this pipeline to generate multi-
view data with varied camera intrinsics, extrinsics, and
hand-object occlusion ratios. The resulting dataset includes
multi-view RGB images, camera intrinsics and extrinsics,

and depth maps. Pointmaps are derived from depth maps
and intrinsics using Equation 1. A depiction of the gen-
erated multi-view dataset is provided in the supplementary
material.

Quantitative results. Following the evaluation protocol
of [31, 32] we evaluate both rigid transformation estima-
tion and joint hand-object shape reconstruction. We adopt
the same experimental setup in terms of data splits and the
number of frames used for evaluation. We report HOSt3R’s
rigid transformation errors on the SHOWMe dataset, us-
ing the same evaluation table as in [32] (see Tab. 1). Our
method outperforms the SHOWMe baseline by a margin of
2.7° in rotation error and 4.0cm in translation error. In addi-
tion, our method successfully recovers transformations for
all sequences, achieving a 100% detection rate. Further-
more, HOSt3R improves over SHOWMe by 4.5% in the
number of frames with translation error under 15cm and
rotation error under 15°. It also achieves the highest per-
centage of frames with both translation and rotation errors
below 30cm and 30°, respectively. While slightly under-
performing COLMAP in some metrics, our method is sig-
nificantly more robust, achieving a 100% detection rate and
86.3% correct frames under the 30cm / 30° threshold.

We then evaluate hand-object reconstruction on the
SHOWMe benchmark, following the protocol introduced
in [31, 32]. In Tab. 2, we report standard metrics includ-
ing Accuracy, Completion, and F-score. HOSt3R achieves
the best overall performance among all baselines and is on
par with the method proposed in [32]. Qualitative results are
shown in Fig. 5 for several SHOWMe sequences; additional
results are provided in the supplementary material. The
reconstructed hand—object geometry is highly detailed and
consistent across a variety of grasps, object shapes, sizes,
and textures, demonstrating the robustness and generaliza-
tion capability of the proposed HOSt3R approach.

Generalization. Our proposed method demonstrates
strong generalization to unseen hand—object sequences



Rigid Recon. Rec. rate  Acc.!  Comp.t Acc. ratio Comp. ratio Fscore
Transform Method (%) 1 (cm)) (cm))] @5mm (%)1T @5mm (%)T @5mm (%)t
GT I[HOI [42] \ 87.3 0.79 1.34 41.7 37.8 39.3
GT VH [21] 93.7 0.42 0.65 67.3 61.6 63.6
GT FDR [33] 95.8 0.35 0.49 75.8 72.0 73.5
GT HHOR [17] 100.0 0.35 0.32 81.1 83.8 82.3
DOPE [37] FDR [33] 92.7 1.02 3.18 31.7 15.7 20.0
COLMAP [30] FDR [33] 76.0 0.64 0.79 39.3 36.2 37.6
COLMAP [30] HHOR [17] 72.9 0.65 0.74 40.9 42.1 41.3
SHOWMe [32] HHOR [17] 100.0 0.61 0.62 55.6 56.0 55.6
HOSt3R (ours) HHOR [17] 100.0 0.58 0.59 56.4 57.0 56.4

Table 2. Hand-object reconstruction evaluation using ground-truth and estimated rigid transformations. ' means that the metrics are
obtained by computing on the reconstructed mesh only, the failing ones are not taken into account, making direct comparisons between
different methods unfair. DOPE refers to the variant ‘DOPE + fixed hand pose’ from Table 1.

from different datasets. We validate this capability on
sequences from the HO3D dataset, which features novel
objects, hand shapes, backgrounds, and hand—object mo-
tions. We present qualitative results on HO3D sequences
that align with our experimental settings, specifically, those
with rigid hand—object motion and a comparable number of
frames, as shown in Fig. 1. Our method successfully recon-
structs detailed hand—object shapes without requiring fine-
tuning or access to camera intrinsics. However, some parts
of the hand, particularly the fingers, are not fully recovered,
as illustrated in the last row and last column of Fig. 1. This
limitation is primarily due to insufficient viewpoint cover-
age of the fingers in the input frames, which remains a com-
mon challenge in multi-view reconstruction.

5. Discussion

We present HOSt3R, a novel method for robust hand—object
transformation and 3D reconstruction that overcomes key
limitations of prior work. By integrating a DUSt3R-inspired
pairwise relative pose estimation network within a pose
averaging framework, our approach achieves robustness
to camera variations, appearance changes, and occlusions,
without relying on keypoint detectors. This design also al-
leviates memory constraints in large-scale reconstructions.
On the SHOWMe dataset, our method significantly reduces
pose errors, achieving a 100% detection rate and 86.3% ac-
curacy under the 30cm & 30° error threshold, even in chal-
lenging conditions. It generalizes well across object types,
grasp styles, and scenes, and offers improved geometric fi-
delity compared to existing baselines. Qualitative results
on the HO3D dataset further demonstrate strong general-
ization, achieved without fine-tuning or access to camera in-
trinsics. While minor limitations remain, particularly in re-

Input RGB View 1

N/

Figure 5.
quences from the SHOWMe dataset. Each row shows one se-
quence: the first image is the RGB input, followed by three views
of the reconstructed hand-object shape using our method.

Qualitative Hand-object reconstructions on se-

covering fine finger details under sparse viewpoints, future
work could incorporate diffusion-based shape priors [6] to
improve reconstruction quality in highly occluded regions.
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