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Abstract001

Large language models (LLMs) have recently002
demonstrated remarkable success in mathe-003
matical reasoning. Despite progress in meth-004
ods like chain-of-thought prompting and self-005
consistency sampling, these advances often fo-006
cus on final correctness without ensuring that007
the underlying reasoning process is coherent008
and reliable. This paper introduces STEP-KTO,009
a training framework that combines process-010
level and outcome-level binary feedback to011
guide LLMs toward more trustworthy reason-012
ing trajectories. By providing binary evalua-013
tions for both the intermediate reasoning steps014
and the final answer, STEP-KTO encourages015
the model to adhere to logical progressions016
rather than relying on superficial shortcuts.017
Our experiments on challenging mathematical018
benchmarks show that STEP-KTO significantly019
improves both final answer accuracy and the020
quality of intermediate reasoning steps. For ex-021
ample, on the MATH-500 dataset, STEP-KTO022
achieves a notable improvement in Pass@1 ac-023
curacy over strong baselines. These results024
highlight the promise of integrating stepwise025
process feedback into LLM training, paving the026
way toward more interpretable and dependable027
reasoning capabilities.028

1 Introduction029

Large language models (LLMs) have recently030

shown remarkable capabilities in reasoning-031

intensive tasks such as coding (Chen et al., 2021;032

Li et al., 2022; Rozière et al., 2023) and solving033

complex mathematical problems (Shao et al., 2024;034

Azerbayev et al., 2024). Prompting strategies like035

chain-of-thought prompting (Nye et al., 2021; Wei036

et al., 2022; Kojima et al., 2022; Adolphs et al.,037

2022) and self-consistency sampling (Wang et al.,038

2023) enhance these models’ final-answer accuracy039

by encouraging them to articulate intermediate rea-040

soning steps. However, a significant issue remains:041

even when these methods boost final-answer cor-042

rectness, the internal reasoning steps are often unre-043

liable or logically inconsistent (Uesato et al., 2022;044

Lightman et al., 2024).045

This discrepancy between correct final answers 046

and flawed intermediate reasoning limits our abil- 047

ity to trust LLMs in scenarios where transparency 048

and correctness of each reasoning stage are crucial 049

(Lanham et al., 2023). For example, in mathe- 050

matical problem-solving, a model might produce 051

the right answer for the wrong reasons (Lyu et al., 052

2023; Zheng et al., 2024), confounding our under- 053

standing of its true capabilities (Turpin et al., 2023). 054

To address this, researchers are increasingly empha- 055

sizing the importance of guiding models to produce 056

not just correct final answers, but also verifiable 057

and faithful step-by-step solution paths (Uesato 058

et al., 2022; Shao et al., 2024; Setlur et al., 2024). 059

Prior work in finetuning has largely focused on 060

outcome-level correctness, using outcome reward 061

models to improve the probability of final-answer 062

accuracy (Cobbe et al., 2021; Hosseini et al., 2024; 063

Zhang et al., 2024). While effective, such an ap- 064

proach does not ensure that the intermediate rea- 065

soning steps are valid. Conversely, while process- 066

level supervision through process reward models 067

(PRMs) (Lightman et al., 2024; Wang et al., 2024; 068

Luo et al., 2024) can guide models to follow cor- 069

rect reasoning trajectories, prior work has mainly 070

used PRMs as a ranking method rather than a way 071

to provide stepwise feedback. As a result, relying 072

solely on process-level supervision may lead mod- 073

els to prioritize step-by-step correctness without 074

guaranteeing a correct final outcome. 075

In this paper, we introduce Stepwise Kahneman- 076

Tversky-inspired Optimization (STEP-KTO), a 077

training framework that integrates both process- 078

level and outcome-level binary feedback to pro- 079

duce coherent and correct reasoning steps along- 080

side high-quality final answers. Our approach 081

evaluates each intermediate reasoning step against 082

known correct patterns using a PRM, while simul- 083

taneously leveraging a rule-based reward signal for 084

the final answer. To fuse these signals, we em- 085

ploy a Kahneman-Tversky-inspired value function 086

(Tversky and Kahneman, 2016; Ethayarajh et al., 087

2024) that emphasizes human-like risk and loss 088
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Figure 1: STEP-KTO Training Process. Given a dataset of math problems (left), a language model (LLM)
produces both reasoning steps and a final answer. Each intermediate reasoning step is evaluated by a process reward
model (Process RM), and the final answer is assessed by an outcome reward model (Outcome RM). The binary
feedback signals from both levels (outcome-level correctness co and stepwise correctness csh) are recorded together
with the input (x) and the model’s response (y) §2.1. These signals are then used to compute the STEP-KTO loss,
guiding the LLM to not only produce correct final answers but also maintain coherent and correct reasoning steps
§2.3. Through multiple iterations of this training process §2.4, the model progressively improves both its stepwise
reasoning and final answer accuracy.

aversion, encouraging models to gradually correct089

their reasoning and avoid errors. The result is a090

training objective that aligns the entire reasoning091

trajectory with verified solutions while ensuring092

that final correctness remains a top priority.093

Figure 1 illustrates the STEP-KTO pipeline. We094

start with a base LLM and repeatedly refine it095

through iterative training. At each iteration, the096

PRM provides step-level binary feedback that helps097

the model navigate correct solution paths, while098

the outcome-level binary feedback ensures that the099

final answer is correct. The Kahneman-Tversky-100

inspired value function transforms these binary sig-101

nals into guidance that progressively reduces errors102

in the chain-of-thought. Over successive rounds,103

STEP-KTO yields systematically more accurate104

intermediate reasoning steps and steadily improves105

the final-answer accuracy.106

We evaluate STEP-KTO on challenging mathe-107

matical reasoning benchmarks including MATH-108

500 (Hendrycks et al., 2021; Lightman et al., 2024),109

AMC23 (MAA, 2023), and AIME24(MAA, 2024).110

Our experiments show that incorporating both111

process-level and outcome-level signals leads to112

substantial improvements over state-of-the-art base-113

lines that rely solely on final-answer supervision.114

For example, on MATH-500, STEP-KTO improves115

Pass@1 accuracy from 53.4% to 63.2%, while also116

producing more coherent and trustworthy step-by-117

step reasoning. Moreover, iterative training with118

STEP-KTO achieves cumulative gains, demonstrat-119

ing that balancing process- and outcome-level feed-120

back refines reasoning quality over time. In sum-121

mary, our key contributions are:122

• We propose STEP-KTO, a novel finetuning 123

framework that combines process-level and 124

outcome-level feedback, encouraging both cor- 125

rect final answers and faithful step-by-step rea- 126

soning. 127

• We show that iterative training with STEP- 128

KTO yields consistent cumulative improve- 129

ments, showing the effectiveness of combined 130

process-level and outcome-level feedback in re- 131

fining LLM reasoning. 132

• We demonstrate that STEP-KTO surpasses 133

state-of-the-art baselines on multiple math rea- 134

soning tasks, delivering higher accuracy (63.2% 135

vs 53.4% Pass@1 on MATH-500) and more 136

reliable intermediate solutions. 137

2 Methodology 138

2.1 Problem Setup and Notation 139

We adopt the notation and setup similar to Setlur 140

et al. (2024). Let D = {(xi,y
⋆
xi
)}i be a dataset 141

of math problems, where each problem x ∈ X 142

has an associated ground-truth solution sequence 143

y⋆
x = (s⋆1, s

⋆
2, . . . , s

⋆
|y⋆|) ∈ Y . A policy model πθ, 144

parameterized by θ, generates a response sequence 145

y = (s1, s2, . . . , s|y|) autoregressively given the 146

problem x, where each step sh is a reasoning step 147

separated by a special token (e.g., ”## Step”). 148

The correctness of the final answer y can be au- 149

tomatically determined by a rule-based correctness 150

function Regex(y,y⋆
x) ∈ {0, 1}, which compares 151

the model’s final derived answer to the ground-truth 152

final answer (Hendrycks et al., 2021). The model’s 153

final answer is explicitly denoted using a special 154

format in the final step s|y|, such as boxed{·}, al- 155

2



lowing the correctness function to easily extract156

and verify it. Our primary objective is to improve157

the expected correctness of the final answer:158

Ex∈D , y∼πθ(·|x)[Regex(y,y
⋆
x)].159

Ensuring a correct final answer does not guar-160

antee logically sound intermediate reasoning. To161

address this, we incorporate a stepwise binary cor-162

rectness signal Prm(x,y⋆
x, sh) ∈ {0, 1} for each163

reasoning step sh. Unlike the final-answer correct-164

ness Regex, this signal directly measures whether165

each intermediate step is locally valid and aligns166

with proper problem-solving principles, without167

strictly mirroring the reference solution steps. We168

obtain these stepwise correctness evaluations by169

prompting an LLM (Llama-3.1-70B-Instruct)170

as our process reward model (PRM), following the171

structured template in Appendix D. In summary,172

we have two levels of binary signals:173

• Outcome feedback: Regex(y,y⋆
x) ∈ {0, 1}174

indicates if the final answer derived from y is175

correct.176

• Stepwise feedback: Prm(x,y⋆
x, sh) ∈ {0, 1}177

indicates if the intermediate reasoning step sh178

is correct.179

Our goal is to integrate both of these signals into180

the training objective of πθ. By doing so, we guide181

the model to produce not only correct final answers182

but also to maintain correctness, coherence, and183

reliability throughout its reasoning trajectory. This184

integrated approach will be formalized through the185

STEP-KTO framework.186

2.2 KTO Background187

KTO (Ethayarajh et al., 2024) aims to align a pol-188

icy πθ with binary feedback using a Kahneman-189

Tversky-inspired value function (Tversky and Kah-190

neman, 2016). Rather than maximizing the log-191

likelihood of preferred outputs or directly using192

reinforcement learning, KTO defines a logistic193

value function that is risk-averse for gains and risk-194

seeking for losses.195

The original KTO loss focuses on the final-196

answer level. Let: 197

rθ(x, y) = log
πθ(y | x)
πref(y | x)

, (1) 198

z0 = KL
(
πθ(y

′ | x) ∥ πref(y
′ | x)

)
, (2) 199

v(x, y) =


λD σ

(
β(rθ(x, y)− z0)

)
if Regex(y,y⋆

x) = 1,

λU σ
(
β(z0 − rθ(x, y))

)
if Regex(y,y⋆

x) = 0.

(3)

200

Here, πref is a reference policy (typically the ini- 201

tial model checkpoint) that provides a baseline for 202

comparison, σ is the logistic function, β > 0 con- 203

trols risk aversion, and λD, λU are weighting coef- 204

ficients. The z0 term, where y′ denotes an arbitrary 205

output sequence, serves as a reference point to en- 206

sure balanced optimization. The KTO loss at the 207

outcome level is: 208

LKTO(πθ, πref) = Ex,y∼D[λy − v(x, y)], (4) 209

where λy = λD if Regex(y,y⋆
x) = 1 and λy = 210

λU if Regex(y,y⋆
x) = 0. 211

2.3 STEP-KTO 212

While KTO ensures correctness of final answers, 213

many reasoning tasks require validity at each in- 214

termediate step. We extend KTO by incorporating 215

stepwise binary feedback Prm(x,y⋆
x, sh) to assess 216

the quality of each reasoning step. We begin by 217

defining an implied reward at the step level: 218

rθ(x, sh) = log
πθ(sh | x, s<h)

πref(sh | x, s<h)
. 219

This quantity can be viewed as the incremental ad- 220

vantage of producing step sh under πθ compared to 221

πref. It captures how much more (or less) reward is 222

implied by choosing sh over the reference model’s 223

baseline likelihood, conditioned on the same con- 224

text (x, s<h). Next, we introduce a stepwise KL 225

baseline: 226

z
(step)
0 = KL

(
πθ(s

′
h | x, s′<h) ∥ πref(s

′
h | x, s′<h)

)
. 227

Analogous to z0 at the outcome level, z(step)0 serves 228

as a local reference point. It prevents the model 229

from gaining reward merely by diverging from 230

the reference and ensures that improvements are 231

grounded in genuine reasoning quality. Given the 232
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binary stepwise feedback Prm(x,y⋆
x, sh), we de-233

fine a value function that parallels the outcome-234

level case. If a step sh is deemed stepwise-235

desirable, the model should increase its implied re-236

ward rθ(x, sh) relative to z
(step)
0 (Huang and Chen,237

2024). Conversely, if sh is stepwise-undesirable,238

the model is encouraged to lower that implied re-239

ward. Formally:240

v(step)(x, sh) =

λ
(step)
D σ

(
βstep(r(x, sh)− z

(step)
0 )

)
if Prm(x,y⋆

x, sh) = 1,

λ
(step)
U σ

(
βstep(z

(step)
0 − r(x, sh))

)
if Prm(x,y⋆

x, sh) = 0.

(5)241

Here, λ
(step)
D , λ

(step)
U and βstep mirror their242

outcome-level counterparts, controlling the243

strength of the reward or penalty at the granularity244

of individual steps. By leveraging these signals,245

the stepwise value function v(step) directs the246

model’s distribution toward steps deemed correct247

and coherent, and away from those that are not.248

With these definitions, the stepwise loss is:249

Lstep(, ) = Ex,y,sh∼D(step)

[
λ(step)
y − v(step)(x, sh)

]
.

(6)250

where λ(step)
y = λ

(step)
D if Prm(x,y⋆

x, sh) = 1 and251

λ
(step)
y = λ

(step)
U if Prm(x,y⋆

x, sh) = 0.252

Combining the stepwise objective with the253

outcome-level KTO loss (Eq. 4) yields the final254

STEP-KTO objective:255

LSTEP-KTO(πθ, πref) = LKTO(πθ, πref)

+ Lstep(πθ, πref).
(7)256

This composite loss encourages the model to pro-257

duce not only correct final answers but also to re-258

fine each intermediate step. By jointly optimizing259

outcome-level and stepwise-level feedback, STEP-260

KTO ensures that the model’s entire reasoning tra-261

jectory—from the earliest steps to the final solu-262

tion—is both correct and coherent.263

2.4 Iterative Training264

We train our models using an iterative proce-265

dure inspired by previous alignment methods266

that refine a model’s parameters over multiple267

rounds (Zelikman et al., 2022; Yuan et al., 2024;268

Pang et al., 2024; Prasad et al., 2024). For269

Llama-3.3-70B-Instruct, we use it directly as270

our seed model M0. For Llama-3.1 models, we271

first perform supervised finetuning on the training272

data before using them as M0. Starting from M0,273

we refine it iteratively to obtain M1,M2, . . . ,MT274

using the following procedure:275

1. Candidate Generation: For each problem x ∈ 276

D , we sample 8 candidate solutions yk ∼ 277

πMt(· | x) using temperature T = 0.7 and nu- 278

cleus sampling with p = 0.95 (Holtzman et al., 279

2020). This stochastic decoding strategy encour- 280

ages diverse candidate solutions, aiding both pos- 281

itive and negative sample selection. 282

2. Outcome Assessment: We evaluate each can- 283

didate yk against the ground-truth solution 284

y⋆
x using the outcome correctness function 285

Regex(yk,y⋆
x). If no sampled solutions are cor- 286

rect, we include the ground-truth solution y⋆
x as 287

a positive sample, as suggested by Pang et al. 288

(2024). If all sampled solutions are correct, we 289

discard this problem in the current iteration to pri- 290

oritize learning from problems where the model 291

can still improve. 292

3. Stepwise Evaluation: For the selected solu- 293

tions, we apply the stepwise correctness function 294

Prm(x,y⋆
x, sh) to assess the quality of each rea- 295

soning step. This yields a set of binary signals 296

indicating whether each intermediate step aligns 297

with desirable reasoning patterns. 298

4. Dataset Construction: We aggre- 299

gate these annotated samples into 300

DMt = {(x,y, cout, cstep1 , . . . , cstepS−1) | y ∈ D}, 301

where cout = Regex(y,y⋆
x) is the outcome- 302

level correctness, and csteph = Prm(x,y⋆
x, sh) 303

are the stepwise correctness indicators for the 304

S − 1 intermediate steps of the solution y. 1 305

5. Parameter Update: Using DMt , we update the 306

model parameters according to the chosen align- 307

ment objective—either our STEP-KTO loss or a 308

baseline method (e.g., IRPO). 309

6. Iteration: We repeat this process for T itera- 310

tions, each time producing a new model Mt+1 311

refined from Mt. 312

While KTO and STEP-KTO does not inherently 313

require balanced positive and negative samples, we 314

impose this constraint for fairness when comparing 315

against pairwise preference-based baselines like 316

DPO. Specifically, we randomly sample at most 317

two pairs per problem per iteration, ensuring a 318

consistent number of training examples across dif- 319

ferent alignment strategies. This controlled sam- 320

pling regime facilitates direct comparisons between 321

1At each iteration t, the dataset DMt is constructed specif-
ically from Mt. Thus, M1 is trained on the dataset derived
from seed model M0 shared by all methods, M2 on the dataset
derived from M1 specifically for method testing, and so forth.
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methods and clarifies the impact of stepwise and322

outcome-level feedback on the model’s refinement323

process.324

3 Experiments325

3.1 Task and Datasets326

We evaluate our approach on established math rea-327

soning benchmarks from high school competitions,328

testing the model’s ability to solve challenging329

problems across various domains and difficulties.330

All problems require a final answer, typically a331

number, simplified expression (e.g., π
2 , 1±

√
19),332

or short text (e.g., “east”).333

• MATH-500: A 500-problem subset of the334

MATH dataset (Hendrycks et al., 2021), se-335

lected as in Lightman et al. (2024). It covers336

diverse subjects (e.g., Algebra, Geometry, Pre-337

calculus) for a broad evaluation of mathematical338

reasoning.339

• AMC23: A test set of 40 problems from the340

American Mathematics Competitions (AMC 12,341

2023)2. These problems are known for their sub-342

tlety and depth, providing a stringent reasoning343

test.344

• AIME24: A test set of 30 problems from the345

American Invitational Mathematics Examina-346

tion (AIME, 2024)3, typically requiring intri-347

cate multi-step reasoning and posing a higher-348

level challenge.349

Following standard mathematical LLM evalua-350

tion practices (Hendrycks et al., 2021), we extract351

final answers from model outputs using regular352

expressions and verify their mathematical equiva-353

lence to ground-truth solutions with SYMPY4, ac-354

commodating minor stylistic differences. We re-355

port Pass@1 (accuracy of a single greedy comple-356

tion from πθ) and Maj@8 (accuracy from the major-357

ity answer among 8 solutions sampled at T = 0.7358

(Ackley et al., 1985; Ficler and Goldberg, 2017;359

Wang et al., 2023))5. These metrics provide a360

comprehensive assessment on challenging math-361

ematical reasoning tasks, reflecting direct accuracy362

(Pass@1) and sampled robustness (Maj@8).363

2https://github.com/QwenLM/Qwen2.5-Math/blob/
main/evaluation/data/amc23/test.jsonl

3https://github.com/QwenLM/Qwen2.5-Math/blob/
main/evaluation/data/aime24/test.jsonl

4https://github.com/sympy/sympy
5Varying temperature (T = 0.5− 1.0) had limited impact

on Maj@8 in pilot experiments.

In addition to these evaluation benchmarks, all 364

experiments are conducted using a large-scale 365

prompt set, DNumina, referred to as NuminaMath 366

(LI et al., 2024). NuminaMath comprises a broad 367

range of math problems and their solutions, total- 368

ing 438k examples, spanning difficulty levels from 369

elementary to high school competition standards. 370

To ensure the integrity of final answers, we remove 371

subsets of synthetic questions and Orca Math prob- 372

lems (Mitra et al., 2024), as their correctness are 373

not verified by human. 374

3.2 Baseline Methods 375

We evaluate our proposed STEP-KTO against sev- 376

eral strong baseline approaches for mathematical 377

reasoning. All methods are trained using offline 378

iterative optimization, with online preference learn- 379

ing left as future work: 380

• RFT (Rejection Finetuning) (Yuan et al., 381

2023): Performs supervised finetuning exclu- 382

sively on solutions with correct final answers, 383

relying on outcome-level filtering without ex- 384

plicit preference signals. 385

• IRPO (Iterative Reasoning Preference Opti- 386

mization) (Pang et al., 2024): An iterative DPO 387

(Rafailov et al., 2023) variant using outcome- 388

level pairwise preferences, stabilized by an NLL 389

loss, but lacks stepwise feedback. 390

• KTO (Kahneman-Tversky Optimization) 391

(Ethayarajh et al., 2024): Employs an outcome- 392

level, Kahneman-Tversky-inspired value func- 393

tion (see §2.2) for alignment, focusing on risk 394

aversion but not incorporating stepwise signals. 395

• SimPO and IPO (Meng et al., 2024; Azar 396

et al., 2024): DPO variants that utilize simpli- 397

fied outcome-level preference mechanisms for 398

more stable optimization, without targeting step- 399

wise correctness or advanced reasoning perfor- 400

mance. 401

• Step-DPO (Lai et al., 2024): A DPO variant 402

that optimizes stepwise preferences instead of 403

outcome-level ones for granular supervision, 404

but requires significant data processing and re- 405

jection sampling for intermediate steps. 406

3.3 Main Results 407

Table 1 presents our main results, comparing STEP- 408

KTO with various baseline methods and commer- 409

cial systems across the MATH-500, AMC23, and 410

AIME24 benchmarks. We report both Pass@1 411

and Maj@8 accuracy, as described in §3. Overall, 412

5
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Method MATH-500 AMC23 AIME24
Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama-3.1-8B-Instruct
Seed model M0 53.4 55.0 35.0 37.5 3.3 6.7
Rejection Finetuning M3 53.8 56.0 30.0 32.5 10.0 6.7
IRPO M3 55.4 59.2 35.0 40.0 6.7 6.7
KTO M3 60.6 61.6 35.0 32.5 16.7 16.7
STEP-KTO (ours) M3 63.2 64.6 47.5 47.5 16.7 16.7

Llama-3.1-70B-Instruct
Seed model M0 74.6 76.2 40.0 60.0 13.3 16.7
Rejection Finetuning M1 74.8 73.6 55.0 60.0 13.3 13.3
IRPO M1 74.4 74.8 55.0 57.5 10.0 13.3
KTO M1 75.6 77.2 55.0 65.0 13.3 13.3
STEP-KTO (ours) M1 76.2 78.4 60.0 67.5 16.7 20.0

Llama-3.3-70B-Instruct M0 75.8 77.6 57.5 60.0 26.7 30.0
Rejection Finetuning M1 77.4 78.4 60.0 65.0 20.0 23.3
IRPO M1 78.6 80.8 55.0 57.5 23.3 26.7
KTO M1 78.6 79.8 60.0 65.0 20.0 23.3
STEP-KTO (ours) M1 79.6 81.6 70.0 75.0 30.0 33.3

Llama-3.1-8B-Instruct 51.4 55.2 15.0 27.5 3.3 3.3
Llama-3.1-70B-Instruct 64.8 70.4 37.5 47.5 10.0 30.0
Llama-3.1-405B-Instruct 68.8 74.4 47.5 52.5 30.0 26.6
O1 94.8 - - - 78.0 -
O1-Mini 90.0 - 90.0 90.0 33.3 46.7
Gemini 1.5 Pro 79.4 83.0 75.0 82.5 26.7 26.7
GPT-4o 73.0 76.4 57.5 70.0 10.0 16.7
Claude 3.5 Sonnet 70.0 74.4 62.5 67.5 23.3 26.7
Grok-Beta 67.0 72.2 50.0 52.5 10.0 13.3

Table 1: Math problem solving performance comparing Llama models of different sizes and proprietary models.
Results show accuracy on MATH-500, AMC23, and AIME24 test sets using both greedy decoding (Pass@1) and
majority voting over 8 samples (Maj@8). Models highlighted in blue are 8B parameter models, green are 70B
parameter models, and gray are commercial models.

STEP-KTO consistently outperforms the baselines413

that rely solely on outcome-level correctness, such414

as KTO, IRPO, SimPO, and IPO, as well as simpler415

methods like RFT.416

For instance, on MATH-500 with the 8B Llama-417

3.1-Instruct model, STEP-KTO achieves a Pass@1418

of 63.2%, improving from the baseline KTO419

model’s 60.6% and substantially surpassing IRPO420

and RFT. On AMC23, STEP-KTO attains a421

Pass@1 of 47.5%, outperforming baselines by a no-422

table margin. On AIME24, where problems require423

especially intricate multi-step reasoning, STEP-424

KTO sustains its advantage, demonstrating that425

the stepwise supervision is particularly valuable for426

more challenging tasks. Scaling to the 70B further427

improves results. Llama-3.1-70B-Instruct with428

STEP-KTO reaches a Pass@1 of 76.2% on MATH-429

500 and continues to excel on AMC23 (60.0%)430

and AIME24 (16.7%). Llama-3.3-70B-Instruct431

with STEP-KTO model pushes performance higher432

still, with STEP-KTO achieving 79.6% on MATH-433

500, 70.5% on AMC23, and 29.6% on AIME24.434

Although larger models also benefit from outcome-435

only alignment techniques, STEP-KTO still deliv-436

ers consistent gains, indicating that even power- 437

ful models trained on extensive data can be fur- 438

ther improved by targeting intermediate reasoning 439

quality. Compared to strong proprietary models, 440

STEP-KTO-enhanced Llama models remain com- 441

petitive and close the performance gap. For exam- 442

ple, while GPT-4o achieves a respectable 73.0% 443

Pass@1 on MATH-500, O1 series pushes this ac- 444

curacy to 90.0% and higher but requires a sub- 445

stantially larger inference budget. In contrast, our 446

STEP-KTO-enhanced Llama-3.1-70B-Instruct 447

model attains 76.2% Pass@1 on MATH-500 using 448

only a 5k-token budget. 449

3.4 Iterative Training 450

Table 2 illustrates how model performance 451

evolves over multiple iterative training rounds 452

(M1,M2,M3) when starting from the same seed 453

model M0 (Llama-3.1-8B-Instruct). We com- 454

pare STEP-KTO against other iterative methods 455

such as IRPO, KTO, and Rejection Finetuning. 456

Overall, STEP-KTO not only achieves higher 457

final performance but also improves more consis- 458

tently across iterations. For instance, on MATH- 459
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Method MATH-500 AMC23 AIME24
Pass@1 Maj@8 Pass@1 Maj@8 Pass@1 Maj@8

Llama-3.1-8B-Instruct
Seed model M0 53.4 55.0 35.0 37.5 3.3 6.7

IPO M1 52.6 55.8 22.5 30.0 3.3 3.3
SimPO M1 55.8 57.2 25.0 25.0 6.7 10.0
Step-DPO M1 56.8 58.4 27.5 30.0 6.7 10.0

Rejection Finetuning M1 55.0 57.0 30.0 35.0 10.0 10.0
Rejection Finetuning M2 54.0 56.2 22.5 20.0 3.3 6.7
Rejection Finetuning M3 53.8 56.0 30.0 32.5 10.0 6.7
IRPO M1 58.2 59.6 35.0 35.0 10.0 10.0
IRPO M2 57.2 62.4 32.5 40.0 6.7 10.0
IRPO M3 55.4 59.2 35.0 40.0 6.7 6.7
KTO M1 56.2 55.6 32.5 32.5 6.7 10.0
KTO M2 59.4 62.8 35.5 35.0 16.7 16.7
KTO M3 60.6 61.6 35.0 32.5 16.7 16.7
STEP-KTO (ours) M1 59.4 60.6 22.5 32.5 13.3 10.0
STEP-KTO (ours) M2 63.6 63.0 40.0 40.0 13.3 16.7
STEP-KTO (ours) M3 63.2 64.6 47.5 47.5 16.7 16.7

Table 2: Iterative training performance comparing different methods on Llama-3.1-8B-Instruct model. Results
show accuracy across multiple iterations (M1, M2, M3) of training on MATH-500, AMC23, and AIME24 test sets
using both greedy decoding (Pass@1) and majority voting over 8 samples (Maj@8).

500, STEP-KTO progresses from 59.4% Pass@1460

at M1 to 63.2% at M3, surpassing the gains ob-461

served by IRPO and KTO at the same check-462

points. Similarly, on AMC23 and AIME24, STEP-463

KTO shows steady iterative improvements, re-464

flecting the cumulative value of integrating both465

process- and outcome-level feedback. In contrast,466

Rejection Finetuning (RFT) and IRPO exhibit less467

stable gains across iterations, with performance468

sometimes plateauing or even regressing at later469

rounds. KTO does improve over iterations, but not470

as robustly as STEP-KTO, highlighting that step-471

wise feedback adds tangible benefits beyond what472

outcome-level optimization alone can achieve.473

These results underscore the importance of itera-474

tive refinement. While simply applying preference-475

based or rejection-based finetuning may yield some476

initial improvements, STEP-KTO’s combined step-477

wise and outcome-level guidance drives steady, sus-478

tained enhancements in mathematical reasoning479

quality, iteration after iteration.480

3.5 Comparison with Step-DPO481

Step-DPO (Lai et al., 2024) also targets intermedi-482

ate steps but relies on computationally intensive483

rejection sampling for error correction. STEP-484

KTO contrasts by efficiently combining stepwise485

and outcome signals for global solution coher-486

ence. Empirically, Step-DPO achieved 56.8%487

Pass@1 on MATH-500 (M1), whereas STEP-KTO488

reached 59.4%. Our Step-DPO implementation489

used Llama-3.3-70B-Instruct for error identifi-490

cation and rejection sampling (filtering unsolved 491

after 8 attempts), underscoring STEP-KTO’s ad- 492

vantage in sustained improvement via integrated 493

optimization. 494

3.6 Preference Optimization Variants 495

Table 2 compares STEP-KTO against baselines 496

over iterative training from the 8B M0. On 497

MATH-500 (M1), STEP-KTO (59.4% Pass@1) 498

outperformed IPO (52.6%), SimPO (55.8%), IRPO 499

(58.2%), and KTO (56.2%). While its initial M1 500

gains on AMC23 and AIME24 were comparable or 501

more modest, STEP-KTO demonstrated stronger 502

subsequent improvements. By M3, STEP-KTO 503

achieved 47.5% Pass@1 on AMC23, surpassing all 504

baselines, and tied for the highest Pass@1 (16.7%) 505

on AIME24, highlighting the value of integrating 506

stepwise and outcome-level signals. 507

3.7 Evaluating Reasoning Quality 508

8B Model Stepwise Errors in Correct Solutions

KTO STEP-KTO

M0 27.3% 27.3%
M1 24.6% 22.9%
M2 22.6% 20.8%
M3 21.1% 19.9%

Table 3: Reasoning Quality Analysis comparing the
ratio of solutions that arrive at correct final answers
despite containing erroneous intermediate steps on the
MATH-500.

To assess the internal consistency of solutions 509

with correct final answers, we evaluate the propor- 510
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tion of solutions that, despite having correct final511

answer Regex(y,y⋆
x) = 1, contain at least one512

erroneous intermediate step. We use the Process-513

Bench (Zheng et al., 2024) as our evaluation frame-514

work, which is prompted to identify the earliest515

error in the generated solution y, as detailed in its516

benchmark construction. Additionally, we utilize517

the critique capabilities of the QwQ-32B-Preview518

model (Qwen, 2024) to identify the first error in the519

reasoning. We prompt QwQ using the prompt de-520

tailed in Appendix D. We then measure the percent-521

age of correctly answered problems where QwQ522

identifies at least one erroneous intermediate step.523

Table 3 shows the percentage of correctly an-524

swered solutions containing errors in reasoning525

steps, starting from the initial 8B seed model M0,526

which produces reasoning steps containing errors527

in 27.3% of its correctly answered solutions on the528

MATH-500 test set. Both STEP-KTO and KTO529

reduce the prevalence of such errors across itera-530

tions, with STEP-KTO showing a greater and more531

consistent reduction from 27.3% at M0 to 19.9%532

at M3, compared to KTO’s more modest improve-533

ment to 21.1%.534

4 Related Work535

Outcome-Oriented Methods. Many efforts refine536

LLMs using only final outputs. Instruction tuning537

(Ouyang et al., 2022; Touvron et al., 2023) and538

outcome-level feedback via Reinforcement Learn-539

ing from Human Feedback (RLHF) (e.g., Instruct-540

GPT (Ouyang et al., 2022)) or direct preference op-541

timization (DPO (Rafailov et al., 2023), KTO (Etha-542

yarajh et al., 2024), SimPO (Meng et al., 2024),543

IPO (Azar et al., 2024)) improve final answer accu-544

racy using human or synthetic labels. AI-generated545

feedback (RLAIF (Lee et al., 2023)) or predefined546

rules (Constitutional AI (Bai et al., 2022b)) aim to547

reduce human annotation. While refinements like548

CGPO (Xu et al., 2024) offer richer signals, they549

primarily evaluate entire outputs. A key limitation550

is that correct final answers do not guarantee sound551

intermediate reasoning (Wu et al., 2024), poten-552

tially yielding untrustworthy solution paths (Turpin553

et al., 2023; Lanham et al., 2023).554

Process-Level Feedback and Verification. Pro-555

cess Reward Models (PRMs) (Lightman et al.,556

2024; Uesato et al., 2022; Xiong et al., 2024; Luo557

et al., 2024) focus on stepwise correctness, assign-558

ing local feedback to guide models toward logi-559

cally consistent solutions. This is prevalent in math560

reasoning, supported by datasets like PRM800K 561

(Lightman et al., 2024), CriticBench (Lin et al., 562

2024), and ProcessBench (Zheng et al., 2024) that 563

facilitate step-level evaluations. PRM-based tech- 564

niques influence decoding (Li et al., 2023; Chuang 565

et al., 2024; Wang et al., 2024), re-ranking (Cobbe 566

et al., 2021), filtering (Dubey et al., 2024; Shao 567

et al., 2024), and iterative loops like STaR (Zelik- 568

man et al., 2022) and ReST (Gülçehre et al., 2023; 569

Singh et al., 2024). Synthetic feedback helps scale 570

annotations (Wang et al., 2024; Lightman et al., 571

2024; Chiang and Lee, 2024; Huang and Chen, 572

2024). Yet, focusing solely on process may not 573

yield correct final answers, as local rewards can be 574

exploited or chains may fail to converge (Gao et al., 575

2024). 576

Integrating Outcome- and Process-Level Sig- 577

nals. Recognizing the limitations of supervising 578

only outcomes or processes, recent studies com- 579

bine both signals. FactTune (Tian et al., 2024) and 580

FactAlgin (Huang and Chen, 2024) integrate PRMs 581

with factuality evaluators for alignment, enhancing 582

factual accuracy. In math reasoning, Uesato et al. 583

(2022) and Shao et al. (2024) also leveraged com- 584

bined step and outcome feedback. While the prin- 585

ciple of multi-granularity supervision is broadly 586

applicable, especially to math reasoning, these com- 587

bined approaches can still face challenges in scal- 588

ing, balancing feedback types, and avoiding prema- 589

ture performance plateaus (Bai et al., 2022a; Xu 590

et al., 2023; Singh et al., 2024). 591

5 Conclusion 592

This work proposes STEP-KTO, a training frame- 593

work that leverages both outcome-level and 594

process-level binary feedback to guide large lan- 595

guage models toward more coherent, interpretable, 596

and dependable reasoning. By integrating step- 597

wise correctness signals into the alignment process, 598

STEP-KTO improves the quality of intermediate 599

reasoning steps while maintaining or even enhanc- 600

ing final answer accuracy. Our experiments on 601

challenging mathematical reasoning benchmarks 602

demonstrate consistent gains in performance, par- 603

ticularly under iterative training and for complex 604

reasoning tasks. These findings underscore the 605

value of aligning not only final outcomes but also 606

the entire reasoning trajectory. We envision STEP- 607

KTO as a stepping stone toward more reliable rea- 608

soning in LLMs. 609
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Limitations610

Despite STEP-KTO’s promise, several limitations611

persist. First, outcome-level feedback can be noisy;612

for instance, automated math answer verification613

may misjudge valid but unconventional represen-614

tations, limiting training signal precision. Second,615

STEP-KTO currently presumes access to ground-616

truth solutions for outcome and (implicitly) for617

guiding stepwise correctness. Generating meaning-618

ful stepwise feedback is challenging without high-619

quality reference reasoning or in domains with in-620

herently ambiguous intermediate steps. Learning621

from weaker signals or pure preferences remains622

an open area. Finally, our experiments assume623

some baseline correctness. If initial outcomes are624

consistently incorrect and intermediate steps are625

invalid, STEP-KTO’s ability to bootstrap perfor-626

mance is uncertain. Such scenarios might require627

complementary techniques like curriculum learn-628

ing or stronger initialization before stepwise feed-629

back becomes effective.630
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A Implementation Details 1006

We use AdamW (β1 = 0.9, β2 = 0.95, weight decay = 0.1) with a linear warmup for the first 100 steps 1007

and a cosine decay schedule that reduces the learning rate to 0.1× its initial value. The starting learning 1008

rate is 1.0× 10−6, and we apply global norm gradient clipping of 1.0. The effective global batch size is 1009

set to approximately one million tokens, and we train for about 2000 steps, periodically evaluating our 1010

models during training on the hold-out test set from MATH (Hendrycks et al., 2021)6 to select the best 1011

checkpoint for each method. For IRPO, we use an NLL weight of 0.2. We set β = 0.1 for all methods. 1012

All training jobs are run on 64 H100 GPUs. 1013

B Decontamination 1014

To prevent data leakage between training and test sets, we perform standard decontamination by normal- 1015

izing text (converting to lowercase and removing non-alphanumeric characters) and checking for exact 1016

string matches between test questions and training prompts (Dubey et al., 2024). We remove any matching 1017

examples from the training data. This process is applied to all datasets in our evaluation. Even if mild 1018

contamination were present, we expect any resulting performance inflation to be small and consistent 1019

across all conditions, leaving the relative comparisons between our methods largely unaffected. 1020

C Details of API Usage for Proprietary Models 1021

In our experiments, we evaluated several proprietary models via their respective APIs: O1 1022

(metrics are self-reported), O1-Mini (o1-mini-2024-09-12, MATH-500 is self-reported 7), 1023

Gemini 1.5 Pro (gemini-1.5-pro-002), GPT-4o (gpt-4o-2024-08-06), Claude 3.5 Sonnet 1024

(claude-3-5-sonnet-20241022), and Grok-Beta. These experiments took place on November 15 and 1025

16, 2024. For each model, questions were used directly as user prompts. For greedy decoding, we set the 1026

temperature to 0.0 to ensure deterministic outputs, except for o1 models where we used temperature 1.0 1027

due to API restrictions (only temperature 1.0 is allowed) and took the first sample. For sampling, we set 1028

the temperature to 0.7 and performed 8 generations per question to enable majority voting. 1029

Response Generation for Proprietary Models

User:
Please answer the following question step-by-step. Once you have the final answer,
place it on a new line as: The final answer is \$\boxed{answer}\$.
Question: {{ question }}

1030

6MATH-500 questions are excluded.
7Numbers from https://github.com/openai/simple-evals
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D Prompts1031

Prompt templates 8 for generating solutions are given below in Appendix D.1032

Response Generation Template from (Dubey et al., 2024)

User:
Solve the following math problem efficiently and clearly:

For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

For complex problems (3 steps or more):
Use this step-by-step format:

## Step 1: [Concise description]
[Brief explanation and calculations]

## Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: \$\boxed{answer}\$. I hope it is correct.

Where [answer] is just the final number or expression that solves the problem.

Problem: {{ question }}
1033

Prompt for Llama-3.1-70B-Instruct to provide stepwise feedback on candidate solutions y. The1034

model analyzes each step sh of a potential solution against the correct answer y⋆, evaluating the reasoning1035

and accuracy of each step. The feedback is structured in JSON format with fields for step number,1036

reflection on the reasoning, and a binary decision on whether the step contributes positively to reaching1037

the solution.1038

8The prompt template was from https://huggingface.co/datasets/meta-llama/Llama-3.1-70B-Instruct-evals
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Generation Prompt for Stepwise Feedback

User:
Please analyze the following problem and its potential solution step-by-step.
Provide feedback on each step and determine if it contributes positively to reaching the
correct solution.

<problem>
{{ problem }}
</problem>

<correct solution>
{{ answer }}
</correct solution>

<potential answer>
{% for step in steps %}
<step {{ loop.index }}>
{{ step }}
</step {{ loop.index }}>
{% endfor %}
</potential answer>

Analyze your **potential solution** as if you had originally generated it.
Carefully review each step, considering its reasoning, accuracy, and execution.
Assess whether the step contributes positively to reaching the correct solution.
Where necessary, refine the step to address any flaws or gaps. Use the correct answer
as a ground truth reference to guide your analysis.

Provide your output in JSON format, where each element represents a step of the solution.
Use the fields below:

- **step**: The step order number in the reasoning process.
- **reflection**: A concise evaluation of the accuracy of the reasoning in this step
(point out why it helps or hinders the solution).
- **decision**: The evaluation of the step, either "positive" or "negative".

The expected output format follows:

```json
[

{
"step": 1,
"reflection": "[evaluation of step 1 reasoning]",
"decision": "positive"

},
{

"step": 2,
"reflection": "[evaluation of step 2 reasoning]",
"decision": "negative"

},
...\\

]
```

# Notes

- Assign **"negative"** only to steps that are clearly incorrect and prevent the
solution from progressing.
- Use the correct answer as one of the ground truth references.
- Ensure the reflections remain concise, with the total explanation under 200 words
across all steps combined.
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Process Critique Prompt from ProcessBench (Zheng et al., 2024)

User:
The following is a math problem and a solution (split into paragraphs, enclosed with
tags and indexed from 0):

<problem>
{{ problem }}
</problem>

<solution>
{% for step in steps %}
<step {{ loop.index }}>
{{ step }}
</step {{ loop.index }}>
{% endfor %}
</solution>

Your task is to review and critique the solution paragraph by paragraph. Once you
identify an error in a paragraph, return the index of the paragraph where the
earliest error occurs. Otherwise, return the index of -1 (which typically denotes
"not found").

Please put your final answer (i.e., the index) in \boxed{{}}.
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E Qualitative Examples 1041

We analyze several examples from Llama-3.3-70B-Instruct STEP-KTO M1 on MATH-500 to un- 1042

derstand how Step-KTO helps improve mathematical reasoning. The examples demonstrate three key 1043

scenarios where Step-KTO provides effective feedback: (1) when all steps and the final answer are 1044

correct, (2) when intermediate steps contain errors but lead to the correct final answer, and (3) when both 1045

intermediate steps and the final answer are incorrect. 1046

Step-KTO Generation Example 1: Final Answer is Right and All Steps are Right

problem: For a point $P,$ let $d_1,$ $d_2$ and $d_3$ represents the distances from $P$
to the planes $x - z = 0,$ $x - 2y + z = 0,$ and $x + y + z = 0.$ Let $S$ be
the set of points $P$ such that\n\\[d_1ˆ2 + d_2ˆ2 + d_3ˆ2 = 36.\\]Find the region
of the volume enclosed by $S.$

answer: "288 \\pi",
subject: "Precalculus",
level: 4,
unique_id: "test/precalculus/1056.json"

Model prediction:
## Step 1: Understand the problem and the equation given
The problem provides an equation $d_1ˆ2 + d_2ˆ2 + d_3ˆ2 = 36$ where $d_1,$ $d_2,$ and
$d_3$ represent the distances from a point $P$ to the planes $x - z = 0,$ $x - 2y + z
= 0,$ and $x + y + z = 0$ respectively. We need to find the region of the volume enclosed by
the set $S$ of points $P$ that satisfy this equation.

## Step 2: Calculate the distance of a point to each plane
The distance $d$ from a point $(x_0, y_0, z_0)$ to a plane $Ax + By + Cz + D = 0$ is given by
the formula $d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{Aˆ2 + Bˆ2 + Cˆ2}}$. Applying this formula
to each plane, we get:
- $d_1 = \frac{|x - z|}{\sqrt{1ˆ2 + (-1)ˆ2}} = \frac{|x - z|}{\sqrt{2}}$
- $d_2 = \frac{|x - 2y + z|}{\sqrt{1ˆ2 + (-2)ˆ2 + 1ˆ2}} = \frac{|x - 2y + z|}{\sqrt{6}}$
- $d_3 = \frac{|x + y + z|}{\sqrt{1ˆ2 + 1ˆ2 + 1ˆ2}} = \frac{|x + y + z|}{\sqrt{3}}$

## Step 3: Substitute the distance formulas into the given equation
Substituting $d_1,$ $d_2,$ and $d_3$ into the equation $d_1ˆ2 + d_2ˆ2 + d_3ˆ2 = 36$, we get:
$\left(\frac{x - z}{\sqrt{2}}\right)ˆ2 + \left(\frac{x - 2y + z}{\sqrt{6}}\right)ˆ2 +
\left(\frac{x + y + z}{\sqrt{3}}\right)ˆ2 = 36$

## Step 4: Simplify the equation
Expanding and simplifying, we have:
$\frac{(x - z)ˆ2}{2} + \frac{(x - 2y + z)ˆ2}{6} + \frac{(x + y + z)ˆ2}{3} = 36$

## Step 5: Further simplification and rearrangement
Multiplying through by 6 to clear the denominators gives:
$3(x - z)ˆ2 + (x - 2y + z)ˆ2 + 2(x + y + z)ˆ2 = 216$

## Step 6: Expand the terms
Expanding each term yields:
$3(xˆ2 - 2xz + zˆ2) + (xˆ2 - 4xy + 4yˆ2 + zˆ2 + 2xz - 4yz) + 2(xˆ2 + 2xy + 2xz + yˆ2 + 2yz + zˆ2) = 216$

## Step 7: Combine like terms
Combining like terms, we get:
$3xˆ2 - 6xz + 3zˆ2 + xˆ2 - 4xy + 4yˆ2 + zˆ2 + 2xz - 4yz + 2xˆ2 + 4xy + 4xz + 2yˆ2 + 4yz + 2zˆ2 = 216$

## Step 8: Simplify further
This simplifies to:
$6xˆ2 + 6yˆ2 + 6zˆ2 + 0xy + 0xz + 0yz = 216$

## Step 9: Divide by 6
Dividing the entire equation by 6 gives:
$xˆ2 + yˆ2 + zˆ2 = 36$

## Step 10: Interpret the result
The equation $xˆ2 + yˆ2 + zˆ2 = 36$ represents a sphere with radius 6 centered at the origin (0,0,0).

The final answer is: $\boxed{288\pi}$
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Step-KTO Generation Example 2: Final Answer is Right but Step 2 is Wrong

problem: For how many real values of $\sqrt{120-\sqrt{x}}$ is an integer?
answer: "11"
subject: "Algebra"
level: 5
unique_id: "test/algebra/1282.json"

Model prediction:
## Step 1: Understand the problem and identify the condition for $\sqrt{120-\sqrt{x}}$ to be an
integer. We need $\sqrt{120-\sqrt{x}}$ to be an integer, which means $120-\sqrt{x}$ must be a perfect
square.

## Step 2: List all perfect squares less than or equal to 120.
The perfect squares less than or equal to 120 are: 0, 1, 4, 9, 16, 25, 36, 49, 64,
81, 100, and 121. However, since we are considering $120-\sqrt{x}$, the relevant
perfect squares are from 0 to 120, which are 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
and 121 is not included because it exceeds 120.

## Step 3: Calculate the possible values of $\sqrt{x}$.
For each perfect square $y$ from the list, we calculate $\sqrt{x} = 120 - y$. This
gives us the possible values of $\sqrt{x}$ as: 120, 119, 116, 111, 104, 95, 84, 71, 56, 39, 20.

## Step 4: Consider the validity of each possible value of $\sqrt{x}$.
Since $\sqrt{x}$ cannot be negative and must be real, all calculated values in step
3 are valid because they are all positive or zero. However, we should also consider
that $\sqrt{x}$ itself must be real, meaning $x \geq 0$. Given that $\sqrt{x} = 120
- y$, the smallest value of $\sqrt{x}$ is when $y = 100$, giving $\sqrt{x} = 20$.
For $y = 121$, $\sqrt{x}$ would be negative, which is not valid for real $x$. Thus,
we only consider perfect squares up to 100.

## Step 5: Count the number of valid values of $\sqrt{x}$ that make
$\sqrt{120-\sqrt{x}}$ an integer.
From step 3 and considering the correction in step 4, we see that for each perfect
square up to 100 (inclusive), we get a valid $\sqrt{x}$. Thus, we count the number
of perfect squares from 0 to 100, which are 11 (0, 1, 4, 9, 16, 25, 36, 49, 64, 81,
100).

The final answer is: $\boxed{11}$

QwQ Critique:
\boxed{2}

The error in the solution occurs in the 2nd paragraph, where the reasoning incorrectly
states "The perfect squares less than or equal to 120 are: 0, 1, 4, 9, 16, 25, 36, 49,
64, 81, 100, and 121." It's incorrect because 121 is greater than 120, not less than or
equal to, and shouldn't be included in the list.
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Step-KTO Generation Example 3: Final Answer is Wrong

Problem: Find the greatest integer less than $(\sqrt{7} + \sqrt{5})ˆ6.$
(Do not use a calculator!)

answer: "13535"
subject: "Intermediate Algebra"
level: 3
unique_id: "test/intermediate_algebra/607.json"

Model prediction:
## Step 1: Understand the problem and identify the key elements
We need to find the greatest integer less than $(\sqrt{7} + \sqrt{5})ˆ6$ without using a
calculator. This involves expanding the given expression and simplifying it to a form where
we can estimate its value.

## Step 2: Apply the Binomial Theorem to expand the expression
The Binomial Theorem states that for any non-negative integer $n$, \((a + b)ˆn =
\sum_{k=0}ˆ{n} \binom{n}{k}aˆ{n-k}bˆk\). Applying this to our problem with $a =
\sqrt{7}$, $b = \sqrt{5}$, and $n = 6$, we get \((\sqrt{7} + \sqrt{5})ˆ6 =
\binom{6}{0}(\sqrt{7})ˆ6 + \binom{6}{1}(\sqrt{7})ˆ5(\sqrt{5}) +
\binom{6}{2}(\sqrt{7})ˆ4(\sqrt{5})ˆ2 + \binom{6}{3}(\sqrt{7})ˆ3(\sqrt{5})ˆ3 +
\binom{6}{4}(\sqrt{7})ˆ2(\sqrt{5})ˆ4 + \binom{6}{5}(\sqrt{7})(\sqrt{5})ˆ5 +
\binom{6}{6}(\sqrt{5})ˆ6\).

## Step 3: Calculate each term of the expansion
Calculating each term:
- \(\binom{6}{0}(\sqrt{7})ˆ6 = 1 \cdot 7ˆ3 = 343\)
- \(\binom{6}{1}(\sqrt{7})ˆ5(\sqrt{5}) = 6 \cdot 7ˆ2 \cdot 7 \cdot \sqrt{5} = 6
\cdot 49 \cdot 7 \cdot \sqrt{5} = 2058\sqrt{5}\)
- \(\binom{6}{2}(\sqrt{7})ˆ4(\sqrt{5})ˆ2 = 15 \cdot 7ˆ2 \cdot 5 = 15 \cdot 49 \cdot 5
= 3675\)
- \(\binom{6}{3}(\sqrt{7})ˆ3(\sqrt{5})ˆ3 = 20 \cdot 7 \cdot 7 \cdot 5 \cdot \sqrt{5}
= 20 \cdot 49 \cdot 5 \cdot \sqrt{5} = 4900\sqrt{5}\)
- \(\binom{6}{4}(\sqrt{7})ˆ2(\sqrt{5})ˆ4 = 15 \cdot 7 \cdot 5ˆ2 = 15 \cdot 7 \cdot 25
= 2625\)
- \(\binom{6}{5}(\sqrt{7})(\sqrt{5})ˆ5 = 6 \cdot \sqrt{7} \cdot 5ˆ2 \cdot \sqrt{5} =
6 \cdot \sqrt{7} \cdot 25 \cdot \sqrt{5} = 150\sqrt{35}\)
- \(\binom{6}{6}(\sqrt{5})ˆ6 = 1 \cdot 5ˆ3 = 125\)

## Step 4: Combine like terms and simplify
Combining like terms, we notice that terms with \(\sqrt{5}\) and \(\sqrt{35}\) will
contribute to non-integer values, but we can simplify the expression by recognizing
that the integer part of the expansion will come from the terms without square roots
(since they are multiplied by integers) and the terms with square roots will contribute
to the fractional part. The terms without square roots are \(343 + 3675 + 2625 + 125 =
6768\).

## Step 5: Estimate the value of the expression with square roots
To estimate the value of the terms with square roots, we note that \(2058\sqrt{5}
\approx 2058 \cdot 2.236 = 4599.33\), \(4900\sqrt{5} \approx 4900 \cdot 2.236 =
10943.4\), and \(150\sqrt{35} \approx 150 \cdot 5.916 = 886.4\). Summing these
approximations gives us an estimate of the non-integer contributing terms: \(4599.33 +
10943.4 + 886.4 \approx 15429.13\).

## Step 6: Combine the integer and non-integer parts
Adding the integer part (from step 4) to the estimated value of the non-integer part
(from step 5), we get \(6768 + 15429.13 \approx 22197.13\).

## Step 7: Determine the greatest integer less than the result
The greatest integer less than \(22197.13\) is \(22197\).

The final answer is: $\boxed{22197}$
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