STEP-KTO: Optimizing Mathematical Reasoning through Stepwise Binary
Feedback

Anonymous ACL submission

Abstract

Large language models (LLMs) have recently
demonstrated remarkable success in mathe-
matical reasoning. Despite progress in meth-
ods like chain-of-thought prompting and self-
consistency sampling, these advances often fo-
cus on final correctness without ensuring that
the underlying reasoning process is coherent
and reliable. This paper introduces STEP-KTO,
a training framework that combines process-
level and outcome-level binary feedback to
guide LLMs toward more trustworthy reason-
ing trajectories. By providing binary evalua-
tions for both the intermediate reasoning steps
and the final answer, STEP-KTO encourages
the model to adhere to logical progressions
rather than relying on superficial shortcuts.
Our experiments on challenging mathematical
benchmarks show that STEP-KTO significantly
improves both final answer accuracy and the
quality of intermediate reasoning steps. For ex-
ample, on the MATH-500 dataset, STEP-KTO
achieves a notable improvement in Pass@1 ac-
curacy over strong baselines. These results
highlight the promise of integrating stepwise
process feedback into LLM training, paving the
way toward more interpretable and dependable
reasoning capabilities.

1 Introduction

Large language models (LLMs) have recently
shown remarkable capabilities in reasoning-
intensive tasks such as coding (Chen et al., 2021;
Li et al., 2022; Roziere et al., 2023) and solving
complex mathematical problems (Shao et al., 2024;
Azerbayev et al., 2024). Prompting strategies like
chain-of-thought prompting (Nye et al., 2021; Wei
et al., 2022; Kojima et al., 2022; Adolphs et al.,
2022) and self-consistency sampling (Wang et al.,
2023) enhance these models’ final-answer accuracy
by encouraging them to articulate intermediate rea-
soning steps. However, a significant issue remains:
even when these methods boost final-answer cor-
rectness, the internal reasoning steps are often unre-
liable or logically inconsistent (Uesato et al., 2022;
Lightman et al., 2024).

This discrepancy between correct final answers
and flawed intermediate reasoning limits our abil-
ity to trust LLMs in scenarios where transparency
and correctness of each reasoning stage are crucial
(Lanham et al., 2023). For example, in mathe-
matical problem-solving, a model might produce
the right answer for the wrong reasons (Lyu et al.,
2023; Zheng et al., 2024), confounding our under-
standing of its true capabilities (Turpin et al., 2023).
To address this, researchers are increasingly empha-
sizing the importance of guiding models to produce
not just correct final answers, but also verifiable
and faithful step-by-step solution paths (Uesato
et al., 2022; Shao et al., 2024; Setlur et al., 2024).

Prior work in finetuning has largely focused on
outcome-level correctness, using outcome reward
models to improve the probability of final-answer
accuracy (Cobbe et al., 2021; Hosseini et al., 2024;
Zhang et al., 2024). While effective, such an ap-
proach does not ensure that the intermediate rea-
soning steps are valid. Conversely, while process-
level supervision through process reward models
(PRMs) (Lightman et al., 2024; Wang et al., 2024;
Luo et al., 2024) can guide models to follow cor-
rect reasoning trajectories, prior work has mainly
used PRMs as a ranking method rather than a way
to provide stepwise feedback. As a result, relying
solely on process-level supervision may lead mod-
els to prioritize step-by-step correctness without
guaranteeing a correct final outcome.

In this paper, we introduce Stepwise Kahneman-
Tversky-inspired Optimization (STEP-KTO), a
training framework that integrates both process-
level and outcome-level binary feedback to pro-
duce coherent and correct reasoning steps along-
side high-quality final answers. Our approach
evaluates each intermediate reasoning step against
known correct patterns using a PRM, while simul-
taneously leveraging a rule-based reward signal for
the final answer. To fuse these signals, we em-
ploy a Kahneman-Tversky-inspired value function
(Tversky and Kahneman, 2016; Ethayarajh et al.,
2024) that emphasizes human-like risk and loss

prompt and
golden answer

Seed model

- N
C . Process RM)

Step 1
v

Step 2

Step 3
¥
Answer
|
v
Outcome

Step-KTO training

S

Figure 1: STEP-KTO Training Process. Given a dataset of math problems (left), a language model (LLM)
produces both reasoning steps and a final answer. Each intermediate reasoning step is evaluated by a process reward
model (Process RM), and the final answer is assessed by an outcome reward model (Outcome RM). The binary
feedback signals from both levels (outcome-level correctness c® and stepwise correctness cj,) are recorded together
with the input (x) and the model’s response (y) §2.1. These signals are then used to compute the STEP-KTO loss,
guiding the LLM to not only produce correct final answers but also maintain coherent and correct reasoning steps
§2.3. Through multiple iterations of this training process §2.4, the model progressively improves both its stepwise

reasoning and final answer accuracy.

aversion, encouraging models to gradually correct
their reasoning and avoid errors. The result is a
training objective that aligns the entire reasoning
trajectory with verified solutions while ensuring
that final correctness remains a top priority.

Figure 1 illustrates the STEP-KTO pipeline. We
start with a base LLM and repeatedly refine it
through iterative training. At each iteration, the
PRM provides step-level binary feedback that helps
the model navigate correct solution paths, while
the outcome-level binary feedback ensures that the
final answer is correct. The Kahneman-Tversky-
inspired value function transforms these binary sig-
nals into guidance that progressively reduces errors
in the chain-of-thought. Over successive rounds,
STEP-KTO yields systematically more accurate
intermediate reasoning steps and steadily improves
the final-answer accuracy.

We evaluate STEP-KTO on challenging mathe-
matical reasoning benchmarks including MATH-
500 (Hendrycks et al., 2021; Lightman et al., 2024),
AMC23 (MAA, 2023), and AIME24(MAA, 2024).
Our experiments show that incorporating both
process-level and outcome-level signals leads to
substantial improvements over state-of-the-art base-
lines that rely solely on final-answer supervision.
For example, on MATH-500, STEP-KTO improves
Pass@1 accuracy from 53.4% to 63.2%, while also
producing more coherent and trustworthy step-by-
step reasoning. Moreover, iterative training with
STEP-KTO achieves cumulative gains, demonstrat-
ing that balancing process- and outcome-level feed-
back refines reasoning quality over time. In sum-
mary, our key contributions are:

* We propose STEP-KTO, a novel finetuning
framework that combines process-level and
outcome-level feedback, encouraging both cor-
rect final answers and faithful step-by-step rea-
soning.

* We show that iterative training with STEP-
KTO yields consistent cumulative improve-
ments, showing the effectiveness of combined
process-level and outcome-level feedback in re-
fining LLM reasoning.

* We demonstrate that STEP-KTO surpasses
state-of-the-art baselines on multiple math rea-
soning tasks, delivering higher accuracy (63.2%
vs 53.4% Pass@1 on MATH-500) and more
reliable intermediate solutions.

2 Methodology

2.1 Problem Setup and Notation

We adopt the notation and setup similar to Setlur
et al. (2024). Let Z = {(x;,y3,)}: be a dataset
of math problems, where each problem x € 2
has an associated ground-truth solution sequence
yr = (s7,85,... ’Sry*l) € %. A policy model 7y,
parameterized by 0, generates a response sequence
y = (s1,52,...,8]y|) autoregressively given the
problem x, where each step sy, is a reasoning step
separated by a special token (e.g., "## Step”).

The correctness of the final answer y can be au-
tomatically determined by a rule-based correctness
function Regex(y, y%) € {0, 1}, which compares
the model’s final derived answer to the ground-truth
final answer (Hendrycks et al., 2021). The model’s
final answer is explicitly denoted using a special
format in the final step s, such as boxed{-}, al-

lowing the correctness function to easily extract
and verify it. Our primary objective is to improve
the expected correctness of the final answer:

Ewe@, y~mp(-|x) [Regex(y, y;)] .

Ensuring a correct final answer does not guar-
antee logically sound intermediate reasoning. To
address this, we incorporate a stepwise binary cor-
rectness signal Prm(x, y%, s) € {0, 1} for each
reasoning step sp. Unlike the final-answer correct-
ness Regex, this signal directly measures whether
each intermediate step is locally valid and aligns
with proper problem-solving principles, without
strictly mirroring the reference solution steps. We
obtain these stepwise correctness evaluations by
prompting an LLM (Llama-3.1-70B-Instruct)
as our process reward model (PRM), following the
structured template in Appendix D. In summary,
we have two levels of binary signals:

* Outcome feedback: Regex(y,y%) € {0,1}
indicates if the final answer derived from y is
correct.

* Stepwise feedback: Prm(x, y%, s;) € {0,1}
indicates if the intermediate reasoning step sy
is correct.

Our goal is to integrate both of these signals into
the training objective of mg. By doing so, we guide
the model to produce not only correct final answers
but also to maintain correctness, coherence, and
reliability throughout its reasoning trajectory. This
integrated approach will be formalized through the
STEP-KTO framework.

2.2 KTO Background

KTO (Ethayarajh et al., 2024) aims to align a pol-
icy g with binary feedback using a Kahneman-
Tversky-inspired value function (Tversky and Kah-
neman, 2016). Rather than maximizing the log-
likelihood of preferred outputs or directly using
reinforcement learning, KTO defines a logistic
value function that is risk-averse for gains and risk-
seeking for losses.

The original KTO loss focuses on the final-

answer level. Let:
mo(y | =) ,)
Wref(y | 53)
20 =KL(mo(y' |) || met(y/ | 2)), ()
Ap o (B(re(z,y) — 20))
if Regex(y,y3) = 1,

v o (B(z0 — ro(x,y)))
if Regex(y, yx) = 0.
3)

TQ(ZU, y) = 10g

U(.T,y) =

Here, 7 is a reference policy (typically the ini-
tial model checkpoint) that provides a baseline for
comparison, o is the logistic function, 8 > 0 con-
trols risk aversion, and Ap, A\ are weighting coef-
ficients. The zo term, where 3’ denotes an arbitrary
output sequence, serves as a reference point to en-
sure balanced optimization. The KTO loss at the
outcome level is:

Lxro(mg, mref) = Egyun[Ay —v(z,y)], (4)

where Ay, = Ap if Regex(y,y;) = 1 and \, =
v if Regex(y, y%) = 0.

2.3 STEP-KTO

While KTO ensures correctness of final answers,
many reasoning tasks require validity at each in-
termediate step. We extend KTO by incorporating
stepwise binary feedback Prm(x, y%, sp) to assess
the quality of each reasoning step. We begin by
defining an implied reward at the step level:

mo(sn | ,5<n)
Tref(Sn | 2, 5<n)

ro(x, sp) = log

This quantity can be viewed as the incremental ad-
vantage of producing step sy, under mg compared to
Tref. It captures how much more (or less) reward is
implied by choosing sj, over the reference model’s
baseline likelihood, conditioned on the same con-
text (z, s<p,). Next, we introduce a stepwise KL
baseline:

Z(()stEp) — KL(WQ(S% | z, 5,<h) | Wref(s?z | @, ‘9,<h))-

Analogous to zg at the outcome level, 2" serves
as a local reference point. It prevents the model
from gaining reward merely by diverging from
the reference and ensures that improvements are
grounded in genuine reasoning quality. Given the

binary stepwise feedback Prm(x, y%, s5,), we de-
fine a value function that parallels the outcome-
level case. If a step s; is deemed stepwise-
desirable, the model should increase its implied re-
ward 7¢(x, s3,) relative to z(()‘gte”) (Huang and Chen,
2024). Conversely, if s, is stepwise-undesirable,
the model is encouraged to lower that implied re-
ward. Formally:

| D) o (Buen(r(,s1) — 2°P)) i Pram(e, g sn) = 1,
V1P) (g, 5,) =

/\St’gm U([n’ﬂep(z(()“em —r(z, sh))) if Prm(x, y%, s5) = 0.
%)
Here,)\Stezo), /\Step) and Bstep mitror their

outcome-level counterparts, controlling the
strength of the reward or penalty at the granularity
of individual steps. By leveraging these signals,
the stepwise value function v(**P) directs the
model’s distribution toward steps deemed correct
and coherent, and away from those that are not.
With these definitions, the stepwise loss is:
Laep(s) = Eqpy 5, ~Dster) [)\?(ftep) — plster) (g 3h)]~
(6)

where A(yStep) =)\(Etem if Prm(x, y, sp) = 1 and
)\Z(ftep) = /\Stem if Prm(x, y%, sp) = 0.

Combining the stepwise objective with the
outcome-level KTO loss (Eq. 4) yields the final
STEP-KTO objective:

Zs1ep-KTO (70, Tret) = ZLKTO(T0) Tref) o
+ a?gtep(ﬂ'@a 7Tref)-

This composite loss encourages the model to pro-
duce not only correct final answers but also to re-
fine each intermediate step. By jointly optimizing
outcome-level and stepwise-level feedback, STEP-
KTO ensures that the model’s entire reasoning tra-
jectory—from the earliest steps to the final solu-
tion—is both correct and coherent.

2.4 Iterative Training

We train our models using an iterative proce-
dure inspired by previous alignment methods
that refine a model’s parameters over multiple
rounds (Zelikman et al., 2022; Yuan et al., 2024;
Pang et al.,, 2024; Prasad et al., 2024). For
Llama-3.3-7@0B-Instruct, we use it directly as
our seed model M. For Llama-3.1 models, we
first perform supervised finetuning on the training
data before using them as Mj. Starting from My,
we refine it iteratively to obtain My, Mo, ..., Mr
using the following procedure:

4. Dataset

1. Candidate Generation: For each problem x €
2, we sample 8 candidate solutions y* ~
7, (- |) using temperature 7" = 0.7 and nu-
cleus sampling with p = 0.95 (Holtzman et al.,
2020). This stochastic decoding strategy encour-
ages diverse candidate solutions, aiding both pos-

itive and negative sample selection.

2. Outcome Assessment: We evaluate each can-

didate y* against the ground-truth solution
Yy, using the outcome correctness function
Regex(y*, yZ). If no sampled solutions are cor-
rect, we include the ground-truth solution y}, as
a positive sample, as suggested by Pang et al.
(2024). If all sampled solutions are correct, we
discard this problem in the current iteration to pri-
oritize learning from problems where the model
can still improve.

3. Stepwise Evaluation: For the selected solu-

tions, we apply the stepwise correctness function
Prm(x, y}, sp) to assess the quality of each rea-
soning step. This yields a set of binary signals
indicating whether each intermediate step aligns
with desirable reasoning patterns.

Construction: We aggre-
gate these annotated samples into
D, = {(x,y, ", &P .,csstfq) |y € 2},
where ¢°“ = Regex(y,y%) is the outcome-
level correctness, and ¢;'? = Prm(z, y%, s3)
are the stepwise correctness indicators for the

S — 1 intermediate steps of the solution y. !

5. Parameter Update: Using Z,,, we update the

model parameters according to the chosen align-
ment objective—either our STEP-KTO loss or a
baseline method (e.g., IRPO).

6. Iteration: We repeat this process for 7' itera-

tions, each time producing a new model M,
refined from M.

While KTO and STEP-KTO does not inherently
require balanced positive and negative samples, we
impose this constraint for fairness when comparing
against pairwise preference-based baselines like
DPO. Specifically, we randomly sample at most
two pairs per problem per iteration, ensuring a
consistent number of training examples across dif-
ferent alignment strategies. This controlled sam-
pling regime facilitates direct comparisons between

'At each iteration ¢, the dataset Py, is constructed specif-
ically from M;. Thus, M is trained on the dataset derived
from seed model M shared by all methods, M> on the dataset
derived from M specifically for method testing, and so forth.

methods and clarifies the impact of stepwise and
outcome-level feedback on the model’s refinement
process.

3 Experiments

3.1 Task and Datasets

We evaluate our approach on established math rea-
soning benchmarks from high school competitions,
testing the model’s ability to solve challenging
problems across various domains and difficulties.
All problems require a final answer, typically a
number, simplified expression (e.g., %, 1+ \/E),
or short text (e.g., “east”).

* MATH-500: A 500-problem subset of the
MATH dataset (Hendrycks et al., 2021), se-
lected as in Lightman et al. (2024). It covers
diverse subjects (e.g., Algebra, Geometry, Pre-
calculus) for a broad evaluation of mathematical
reasoning.

* AMC23: A test set of 40 problems from the
American Mathematics Competitions (AMC 12,
2023)?. These problems are known for their sub-
tlety and depth, providing a stringent reasoning
test.

* AIME24: A test set of 30 problems from the
American Invitational Mathematics Examina-
tion (AIME, 2024)3, typically requiring intri-
cate multi-step reasoning and posing a higher-
level challenge.

Following standard mathematical LLM evalua-
tion practices (Hendrycks et al., 2021), we extract
final answers from model outputs using regular
expressions and verify their mathematical equiva-
lence to ground-truth solutions with SYMPY*, ac-
commodating minor stylistic differences. We re-
port Pass@1 (accuracy of a single greedy comple-
tion from 7g) and Maj @8 (accuracy from the major-
ity answer among 8 solutions sampled at 7" = 0.7
(Ackley et al., 1985; Ficler and Goldberg, 2017;
Wang et al., 2023))°. These metrics provide a
comprehensive assessment on challenging math-
ematical reasoning tasks, reflecting direct accuracy
(Pass@1) and sampled robustness (Maj@8).

2https://gi’chub.com/QwenLM/QwenZ.5—Math/blob/
main/evaluation/data/amc23/test. jsonl

2’https://github.com/QwenLM/QwenZ.5—Math/blob/
main/evaluation/data/aime24/test. jsonl

*https://github.com/sympy/sympy

SVarying temperature (7' = 0.5 — 1.0) had limited impact
on Maj@8 in pilot experiments.

In addition to these evaluation benchmarks, all
experiments are conducted using a large-scale
prompt set, Pnumina, referred to as NuminaMath
(LI et al., 2024). NuminaMath comprises a broad
range of math problems and their solutions, total-
ing 438k examples, spanning difficulty levels from
elementary to high school competition standards.
To ensure the integrity of final answers, we remove
subsets of synthetic questions and Orca Math prob-
lems (Mitra et al., 2024), as their correctness are
not verified by human.

3.2 Baseline Methods

We evaluate our proposed STEP-KTO against sev-
eral strong baseline approaches for mathematical
reasoning. All methods are trained using offline
iterative optimization, with online preference learn-
ing left as future work:

* RFT (Rejection Finetuning) (Yuan et al.,
2023): Performs supervised finetuning exclu-
sively on solutions with correct final answers,
relying on outcome-level filtering without ex-
plicit preference signals.

* IRPO (Iterative Reasoning Preference Opti-
mization) (Pang et al., 2024): An iterative DPO
(Rafailov et al., 2023) variant using outcome-
level pairwise preferences, stabilized by an NLL
loss, but lacks stepwise feedback.

* KTO (Kahneman-Tversky Optimization)
(Ethayarajh et al., 2024): Employs an outcome-
level, Kahneman-Tversky-inspired value func-
tion (see §2.2) for alignment, focusing on risk
aversion but not incorporating stepwise signals.

* SimPO and IPO (Meng et al., 2024; Azar
et al., 2024): DPO variants that utilize simpli-
fied outcome-level preference mechanisms for
more stable optimization, without targeting step-
wise correctness or advanced reasoning perfor-
mance.

* Step-DPO (Lai et al., 2024): A DPO variant
that optimizes stepwise preferences instead of
outcome-level ones for granular supervision,
but requires significant data processing and re-
jection sampling for intermediate steps.

3.3 Main Results

Table 1 presents our main results, comparing STEP-
KTO with various baseline methods and commer-
cial systems across the MATH-500, AMC23, and
AIME24 benchmarks. We report both Pass@1
and Maj@8 accuracy, as described in §3. Overall,

https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/data/amc23/test.jsonl
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/data/amc23/test.jsonl
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/data/aime24/test.jsonl
https://github.com/QwenLM/Qwen2.5-Math/blob/main/evaluation/data/aime24/test.jsonl
https://github.com/sympy/sympy

Method MATH-500 AMC23 AIME24
Pass@1l Maj@8 Pass@l Maj@8 Pass@l Maj@8
Llama-3.1-8B-Instruct
Seed model M 53.4 55.0 35.0 37.5 3.3 6.7
Rejection Finetuning M3 53.8 56.0 30.0 32.5 10.0 6.7
IRPO M3 55.4 59.2 35.0 40.0 6.7 6.7
KTO M3 60.6 61.6 35.0 325 16.7 16.7
STEP-KTO (ours) M3 63.2 64.6 47.5 47.5 16.7 16.7
Llama-3.1-70B-Instruct
Seed model M) 74.6 76.2 40.0 60.0 13.3 16.7
Rejection Finetuning M; 74.8 73.6 55.0 60.0 13.3 133
IRPO M; 74.4 74.8 55.0 57.5 10.0 13.3
KTO M, 75.6 77.2 55.0 65.0 13.3 13.3
STEP-KTO (ours) My 76.2 78.4 60.0 67.5 16.7 20.0
Llama-3.3-70B-Instruct My 75.8 77.6 57.5 60.0 26.7 30.0
Rejection Finetuning M; 77.4 78.4 60.0 65.0 20.0 23.3
IRPO M; 78.6 80.8 55.0 57.5 233 26.7
KTO M, 78.6 79.8 60.0 65.0 20.0 23.3
STEP-KTO (ours) My 79.6 81.6 70.0 75.0 30.0 33.3
Llama-3.1-8B-Instruct 514 55.2 15.0 27.5 33 33
Llama-3.1-70B-Instruct 64.8 70.4 37.5 47.5 10.0 30.0
Llama-3.1-405B-Instruct 68.8 74.4 47.5 52.5 30.0 26.6
()] 94.8 - - - 78.0 -
O1-Mini 90.0 - 90.0 90.0 333 46.7
Gemini 1.5 Pro 79.4 83.0 75.0 82.5 26.7 26.7
GPT-40 73.0 76.4 57.5 70.0 10.0 16.7
Claude 3.5 Sonnet 70.0 74.4 62.5 67.5 233 26.7
Grok-Beta 67.0 722 50.0 52.5 10.0 13.3

Table 1: Math problem solving performance comparing Llama models of different sizes and proprietary models.
Results show accuracy on MATH-500, AMC23, and AIME24 test sets using both greedy decoding (Pass@1) and
majority voting over 8 samples (Maj@8). Models highlighted in blue are 8B parameter models, green are 70B

parameter models, and gray are commercial models.

STEP-KTO consistently outperforms the baselines
that rely solely on outcome-level correctness, such
as KTO, IRPO, SimPO, and IPO, as well as simpler
methods like RFT.

For instance, on MATH-500 with the 8B Llama-
3.1-Instruct model, STEP-KTO achieves a Pass@1
of 63.2%, improving from the baseline KTO
model’s 60.6% and substantially surpassing IRPO
and RFT. On AMC23, STEP-KTO attains a
Pass@1 of 47.5%, outperforming baselines by a no-
table margin. On AIME24, where problems require
especially intricate multi-step reasoning, STEP-
KTO sustains its advantage, demonstrating that
the stepwise supervision is particularly valuable for
more challenging tasks. Scaling to the 70B further
improves results. L1ama-3.1-70B-Instruct with
STEP-KTO reaches a Pass@1 of 76.2% on MATH-
500 and continues to excel on AMC23 (60.0%)
and AIME24 (16.7%). L1ama-3.3-70B-Instruct
with STEP-KTO model pushes performance higher
still, with STEP-KTO achieving 79.6% on MATH-
500, 70.5% on AMC?23, and 29.6% on AIME24.
Although larger models also benefit from outcome-
only alignment techniques, STEP-KTO still deliv-

ers consistent gains, indicating that even power-
ful models trained on extensive data can be fur-
ther improved by targeting intermediate reasoning
quality. Compared to strong proprietary models,
STEP-KTO-enhanced Llama models remain com-
petitive and close the performance gap. For exam-
ple, while GPT-40 achieves a respectable 73.0%
Pass@1 on MATH-500, O1 series pushes this ac-
curacy to 90.0% and higher but requires a sub-
stantially larger inference budget. In contrast, our
STEP-KTO-enhanced L1ama-3.1-70B-Instruct
model attains 76.2% Pass@1 on MATH-500 using
only a 5k-token budget.

3.4 Iterative Training

Table 2 illustrates how model performance
evolves over multiple iterative training rounds
(M7, My, M3) when starting from the same seed
model My (L1ama-3.1-8B-Instruct). We com-
pare STEP-KTO against other iterative methods
such as IRPO, KTO, and Rejection Finetuning.
Overall, STEP-KTO not only achieves higher
final performance but also improves more consis-
tently across iterations. For instance, on MATH-

Method MATH-500 AMC23 AIME24
Pass@1l Maj@8 Pass@l Maj@8 Pass@l Maj@8
Llama-3.1-8B-Instruct

Seed model M 534 55.0 35.0 37.5 3.3 6.7
IPO M; 52.6 55.8 22.5 30.0 33 33
SimPO M, 55.8 57.2 25.0 25.0 6.7 10.0
Step-DPO M; 56.8 58.4 27.5 30.0 6.7 10.0
Rejection Finetuning M 55.0 57.0 30.0 35.0 10.0 10.0
Rejection Finetuning Mo 54.0 56.2 22.5 20.0 33 6.7
Rejection Finetuning M3 53.8 56.0 30.0 32.5 10.0 6.7
IRPO M; 58.2 59.6 35.0 35.0 10.0 10.0
IRPO M, 57.2 62.4 32,5 40.0 6.7 10.0
IRPO M3 554 59.2 35.0 40.0 6.7 6.7
KTO M, 56.2 55.6 32,5 325 6.7 10.0
KTO M 59.4 62.8 35.5 35.0 16.7 16.7
KTO M3 60.6 61.6 35.0 325 16.7 16.7
STEP-KTO (ours) M; 59.4 60.6 22.5 32.5 13.3 10.0
STEP-KTO (ours) M> 63.6 63.0 40.0 40.0 13.3 16.7
STEP-KTO (ours) M3z 63.2 64.6 47.5 47.5 16.7 16.7

Table 2: Iterative training performance comparing different methods on L1ama-3.1-8B-Instruct model. Results
show accuracy across multiple iterations (M7, Mo, M3) of training on MATH-500, AMC23, and AIME24 test sets
using both greedy decoding (Pass@ 1) and majority voting over 8 samples (Maj@8).

500, STEP-KTO progresses from 59.4% Pass@1
at M; to 63.2% at Ms, surpassing the gains ob-
served by IRPO and KTO at the same check-
points. Similarly, on AMC23 and AIME24, STEP-
KTO shows steady iterative improvements, re-
flecting the cumulative value of integrating both
process- and outcome-level feedback. In contrast,
Rejection Finetuning (RFT) and IRPO exhibit less
stable gains across iterations, with performance
sometimes plateauing or even regressing at later
rounds. KTO does improve over iterations, but not
as robustly as STEP-KTO, highlighting that step-
wise feedback adds tangible benefits beyond what
outcome-level optimization alone can achieve.

These results underscore the importance of itera-
tive refinement. While simply applying preference-
based or rejection-based finetuning may yield some
initial improvements, STEP-KTO’s combined step-
wise and outcome-level guidance drives steady, sus-
tained enhancements in mathematical reasoning
quality, iteration after iteration.

3.5 Comparison with Step-DPO

Step-DPO (Lai et al., 2024) also targets intermedi-
ate steps but relies on computationally intensive
rejection sampling for error correction. STEP-
KTO contrasts by efficiently combining stepwise
and outcome signals for global solution coher-
ence. Empirically, Step-DPO achieved 56.8%
Pass@1 on MATH-500 (M), whereas STEP-KTO
reached 59.4%. Our Step-DPO implementation
used L1ama-3.3-70B-Instruct for error identifi-

cation and rejection sampling (filtering unsolved
after 8 attempts), underscoring STEP-KTO’s ad-
vantage in sustained improvement via integrated
optimization.

3.6 Preference Optimization Variants

Table 2 compares STEP-KTO against baselines
over iterative training from the 8B M. On
MATH-500 (M7), STEP-KTO (59.4% Pass@1)
outperformed IPO (52.6%), SimPO (55.8%), IRPO
(58.2%), and KTO (56.2%). While its initial M;
gains on AMC23 and AIME24 were comparable or
more modest, STEP-KTO demonstrated stronger
subsequent improvements. By M3, STEP-KTO
achieved 47.5% Pass@1 on AMC23, surpassing all
baselines, and tied for the highest Pass@1 (16.7%)
on AIME24, highlighting the value of integrating
stepwise and outcome-level signals.

3.7 Evaluating Reasoning Quality

8B Model Stepwise Errors in Correct Solutions
KTO STEP-KTO

My 27.3% 27.3%

M, 24.6% 22.9%

M, 22.6% 20.8%

Ms3 21.1% 19.9%

Table 3: Reasoning Quality Analysis comparing the
ratio of solutions that arrive at correct final answers
despite containing erroneous intermediate steps on the
MATH-500.

To assess the internal consistency of solutions
with correct final answers, we evaluate the propor-

tion of solutions that, despite having correct final
answer Regex(y,y}) = 1, contain at least one
erroneous intermediate step. We use the Process-
Bench (Zheng et al., 2024) as our evaluation frame-
work, which is prompted to identify the earliest
error in the generated solution vy, as detailed in its
benchmark construction. Additionally, we utilize
the critique capabilities of the QwQ-32B-Preview
model (Qwen, 2024) to identify the first error in the
reasoning. We prompt QwQ using the prompt de-
tailed in Appendix D. We then measure the percent-
age of correctly answered problems where QwQ
identifies at least one erroneous intermediate step.

Table 3 shows the percentage of correctly an-
swered solutions containing errors in reasoning
steps, starting from the initial 8B seed model M),
which produces reasoning steps containing errors
in 27.3% of its correctly answered solutions on the
MATH-500 test set. Both STEP-KTO and KTO
reduce the prevalence of such errors across itera-
tions, with STEP-KTO showing a greater and more
consistent reduction from 27.3% at My to 19.9%
at M3, compared to KTO’s more modest improve-
ment to 21.1%.

4 Related Work

Outcome-Oriented Methods. Many efforts refine
LLMs using only final outputs. Instruction tuning
(Ouyang et al., 2022; Touvron et al., 2023) and
outcome-level feedback via Reinforcement Learn-
ing from Human Feedback (RLHF) (e.g., Instruct-
GPT (Ouyang et al., 2022)) or direct preference op-
timization (DPO (Rafailov et al., 2023), KTO (Etha-
yarajh et al., 2024), SimPO (Meng et al., 2024),
IPO (Azar et al., 2024)) improve final answer accu-
racy using human or synthetic labels. Al-generated
feedback (RLAIF (Lee et al., 2023)) or predefined
rules (Constitutional AI (Bai et al., 2022b)) aim to
reduce human annotation. While refinements like
CGPO (Xu et al., 2024) offer richer signals, they
primarily evaluate entire outputs. A key limitation
is that correct final answers do not guarantee sound
intermediate reasoning (Wu et al., 2024), poten-
tially yielding untrustworthy solution paths (Turpin
et al., 2023; Lanham et al., 2023).

Process-Level Feedback and Verification. Pro-
cess Reward Models (PRMs) (Lightman et al.,
2024; Uesato et al., 2022; Xiong et al., 2024; Luo
et al., 2024) focus on stepwise correctness, assign-
ing local feedback to guide models toward logi-
cally consistent solutions. This is prevalent in math

reasoning, supported by datasets like PRM800OK
(Lightman et al., 2024), CriticBench (Lin et al.,
2024), and ProcessBench (Zheng et al., 2024) that
facilitate step-level evaluations. PRM-based tech-
niques influence decoding (Li et al., 2023; Chuang
et al., 2024; Wang et al., 2024), re-ranking (Cobbe
et al., 2021), filtering (Dubey et al., 2024; Shao
et al., 2024), and iterative loops like STaR (Zelik-
man et al., 2022) and ReST (Giil¢ehre et al., 2023;
Singh et al., 2024). Synthetic feedback helps scale
annotations (Wang et al., 2024; Lightman et al.,
2024; Chiang and Lee, 2024; Huang and Chen,
2024). Yet, focusing solely on process may not
yield correct final answers, as local rewards can be
exploited or chains may fail to converge (Gao et al.,
2024).

Integrating Outcome- and Process-Level Sig-
nals. Recognizing the limitations of supervising
only outcomes or processes, recent studies com-
bine both signals. FactTune (Tian et al., 2024) and
FactAlgin (Huang and Chen, 2024) integrate PRMs
with factuality evaluators for alignment, enhancing
factual accuracy. In math reasoning, Uesato et al.
(2022) and Shao et al. (2024) also leveraged com-
bined step and outcome feedback. While the prin-
ciple of multi-granularity supervision is broadly
applicable, especially to math reasoning, these com-
bined approaches can still face challenges in scal-
ing, balancing feedback types, and avoiding prema-
ture performance plateaus (Bai et al., 2022a; Xu
et al., 2023; Singh et al., 2024).

5 Conclusion

This work proposes STEP-KTO, a training frame-
work that leverages both outcome-level and
process-level binary feedback to guide large lan-
guage models toward more coherent, interpretable,
and dependable reasoning. By integrating step-
wise correctness signals into the alignment process,
STEP-KTO improves the quality of intermediate
reasoning steps while maintaining or even enhanc-
ing final answer accuracy. Our experiments on
challenging mathematical reasoning benchmarks
demonstrate consistent gains in performance, par-
ticularly under iterative training and for complex
reasoning tasks. These findings underscore the
value of aligning not only final outcomes but also
the entire reasoning trajectory. We envision STEP-
KTO as a stepping stone toward more reliable rea-
soning in LLMs.

Limitations

Despite STEP-KTO’s promise, several limitations
persist. First, outcome-level feedback can be noisy;
for instance, automated math answer verification
may misjudge valid but unconventional represen-
tations, limiting training signal precision. Second,
STEP-KTO currently presumes access to ground-
truth solutions for outcome and (implicitly) for
guiding stepwise correctness. Generating meaning-
ful stepwise feedback is challenging without high-
quality reference reasoning or in domains with in-
herently ambiguous intermediate steps. Learning
from weaker signals or pure preferences remains
an open area. Finally, our experiments assume
some baseline correctness. If initial outcomes are
consistently incorrect and intermediate steps are
invalid, STEP-KTQ’s ability to bootstrap perfor-
mance is uncertain. Such scenarios might require
complementary techniques like curriculum learn-
ing or stronger initialization before stepwise feed-
back becomes effective.

Acknowledgements

We thank the anonymous reviewers for their help-
ful comments. This paper’s writing received mi-
nor language-polishing suggestions from ChatGPT.
In addition, parts of our experimental code were
drafted or refactored with assistance from Meta Al
all final implementations were manually reviewed
and verified by the authors.

References

David H. Ackley, Geoffrey E. Hinton, and Terrence J.
Sejnowski. 1985. A learning algorithm for boltz-
mann machines. Cogn. Sci., 9(1):147-169.

Leonard Adolphs, Kurt Shuster, Jack Urbanek, Arthur
Szlam, and Jason Weston. 2022. Reason first, then
respond: Modular generation for knowledge-infused
dialogue. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, Abu Dhabi,
United Arab Emirates, December 7-11, 2022, pages
7112-7132. Association for Computational Linguis-
tics.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Rémi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Artifi-
cial Intelligence and Statistics, 2-4 May 2024, Palau
de Congressos, Valencia, Spain, volume 238 of Pro-
ceedings of Machine Learning Research, pages 4447—
4455. PMLR.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen Marcus McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean
Welleck. 2024. Llemma: An open language model
for mathematics. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, and
1 others. 2022a. Training a helpful and harmless
assistant with reinforcement learning from human
feedback. arXiv preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
and 32 others. 2022b. Constitutional Al: harmless-
ness from Al feedback. CoRR, abs/2212.08073.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. CoRR, abs/2107.03374.

Cheng-Han Chiang and Hung-yi Lee. 2024. Merging
facts, crafting fallacies: Evaluating the contradic-
tory nature of aggregated factual claims in long-form
generations. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 2734-2751,
Bangkok, Thailand. Association for Computational
Linguistics.

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon
Kim, James R. Glass, and Pengcheng He. 2024.
DoLa: Decoding by contrasting layers improves fac-
tuality in large language models. In The Tivelfth
International Conference on Learning Representa-
tions.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Koreneyv,
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82
others. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

https://doi.org/10.1207/S15516709COG0901_7
https://doi.org/10.1207/S15516709COG0901_7
https://doi.org/10.1207/S15516709COG0901_7
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.527
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.527
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.527
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.527
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.527
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://openreview.net/forum?id=4WnqRR915j
https://doi.org/10.48550/ARXIV.2212.08073
https://doi.org/10.48550/ARXIV.2212.08073
https://doi.org/10.48550/ARXIV.2212.08073
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://doi.org/10.18653/v1/2024.findings-acl.160
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://openreview.net/forum?id=Th6NyL07na
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/ARXIV.2407.21783

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Model align-
ment as prospect theoretic optimization. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
In Proceedings of the Workshop on Stylistic Variation,
pages 94-104, Copenhagen, Denmark. Association
for Computational Linguistics.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu,
Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. 2024. On designing effective RL re-
ward at training time for LLM reasoning. CoRR,
abs/2410.15115.

Caglar Giilcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language modeling.
CoRR, abs/2308.08998.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the MATH dataset. In Proceedings
of the Neural Information Processing Systems Track
on Datasets and Benchmarks 1, NeurIPS Datasets
and Benchmarks 2021, December 2021, virtual.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C.
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. CoRR, abs/2402.06457.

Chao-Wei Huang and Yun-Nung Chen. 2024. FactAl-
ign: Long-form factuality alignment of large lan-
guage models. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pages
16363-16375, Miami, Florida, USA. Association for
Computational Linguistics.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Advances in
Neural Information Processing Systems, volume 35,
pages 22199-22213. Curran Associates, Inc.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqgiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
llms. CoRR, abs/2406.18629.

10

Tamera Lanham, Anna Chen, Ansh Radhakrishnan,
Benoit Steiner, Carson Denison, Danny Hernan-
dez, Dustin Li, Esin Durmus, Evan Hubinger, Jack-
son Kernion, Kamile Lukosiute, Karina Nguyen,
Newton Cheng, Nicholas Joseph, Nicholas Schiefer,
Oliver Rausch, Robin Larson, Sam McCandlish,
Sandipan Kundu, and 11 others. 2023. Measuring
faithfulness in chain-of-thought reasoning. CoRR,
abs/2307.13702.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. RLAIF: scaling
reinforcement learning from human feedback with
Al feedback. CoRR, abs/2309.00267.

Jia LI, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024. Numinamath. [https://huggingface.co/
AI-MO/NuminaMath-CoT] (https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf).

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter
Pfister, and Martin Wattenberg. 2023. Inference-
time intervention: Eliciting truthful answers from
a language model. In Thirty-seventh Conference on
Neural Information Processing Systems.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’ Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, and 7 others. 2022. Competition-
level code generation with alphacode. Science,
378(6624):1092-1097.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo andG
Haowei Liu, and Yujiu Yang. 2024. Criticbench:
Benchmarking Ilms for critique-correct reasoning. In
Findings of the Association for Computational Lin-
guistics, ACL 2024, Bangkok, Thailand and virtual
meeting, August 11-16, 2024, pages 1552—-1587. As-
sociation for Computational Linguistics.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi.
2024. Improve mathematical reasoning in language
models by automated process supervision. CoRR,
abs/2406.06592.

https://openreview.net/forum?id=iUwHnoENnl
https://openreview.net/forum?id=iUwHnoENnl
https://openreview.net/forum?id=iUwHnoENnl
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.18653/v1/W17-4912
https://doi.org/10.48550/ARXIV.2410.15115
https://doi.org/10.48550/ARXIV.2410.15115
https://doi.org/10.48550/ARXIV.2410.15115
https://doi.org/10.48550/ARXIV.2308.08998
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.18653/v1/2024.findings-emnlp.955
https://doi.org/10.18653/v1/2024.findings-emnlp.955
https://doi.org/10.18653/v1/2024.findings-emnlp.955
https://doi.org/10.18653/v1/2024.findings-emnlp.955
https://doi.org/10.18653/v1/2024.findings-emnlp.955
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2406.18629
https://doi.org/10.48550/ARXIV.2307.13702
https://doi.org/10.48550/ARXIV.2307.13702
https://doi.org/10.48550/ARXIV.2307.13702
https://doi.org/10.48550/ARXIV.2309.00267
https://doi.org/10.48550/ARXIV.2309.00267
https://doi.org/10.48550/ARXIV.2309.00267
https://doi.org/10.48550/ARXIV.2309.00267
https://doi.org/10.48550/ARXIV.2309.00267
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.91
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.91
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.91
https://doi.org/10.48550/ARXIV.2406.06592
https://doi.org/10.48550/ARXIV.2406.06592
https://doi.org/10.48550/ARXIV.2406.06592

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In Proceedings of the 13th In-
ternational Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics, IJCNLP 2023 -Volume 1: Long Papers,
Nusa Dua, Bali, November 1 - 4, 2023, pages 305—
329. Association for Computational Linguistics.

MAA. 2023.
(amc).

American mathematics competitions

MAA. 2024. American invitational mathematics exami-
nation (aime).

Yu Meng, Mengzhou Xia, and Danqgi Chen. 2024.
Simpo: Simple preference optimization with a
reference-free reward. CoRR, abs/2405.14734.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. CoRR,
abs/2402.14830.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-
Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten
Bosma, David Luan, Charles Sutton, and Augustus
Odena. 2021. Show your work: Scratchpads for inter-
mediate computation with language models. CoRR,
abs/2112.00114.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730-27744.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho,
He He, Sainbayar Sukhbaatar, and Jason Weston.
2024. Tterative reasoning preference optimization.
CoRR, abs/2404.19733.

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang,
Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal, Sain-
bayar Sukhbaatar, Jason Weston, and Jane Yu. 2024.
Self-consistency preference optimization. Preprint,
arXiv:2411.04109.

Qwen. 2024. Qwq-32b preview. https://qwenlm.
github.io/blog/qwg-32b-preview/. Accessed:
2024-06-17.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

11

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, and
6 others. 2023. Code llama: Open foundation models
for code. CoRR, abs/2308.12950.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob FEisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar. 2024.
Rewarding progress: Scaling automated process veri-
fiers for LLM reasoning. CoRR, abs/2410.08146.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Peter J Liu, James Harrison, Jae-
hoon Lee, Kelvin Xu, Aaron Parisi, and 1 others.
2024. Beyond human data: Scaling self-training for
problem-solving with language models. Transac-
tions on Machine Learning Research. Expert Certifi-
cation.

Katherine Tian, Eric Mitchell, Huaxiu Yao, Christo-
pher D Manning, and Chelsea Finn. 2024. Fine-
tuning language models for factuality. In The Twelfth
International Conference on Learning Representa-
tions.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explanations
in chain-of-thought prompting. In Advances in Neu-
ral Information Processing Systems 36: Annual Con-
ference on Neural Information Processing Systems
2023, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023.

Amos Tversky and Daniel Kahneman. 2016. Advances
in Prospect Theory: Cumulative Representation of
Uncertainty, pages 493-519. Springer International
Publishing, Cham.

Jonathan Uesato, Nate Kushman, Ramana Kumar,
H. Francis Song, Noah Y. Siegel, Lisa Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins.
2022. Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024. Math-shepherd: Verify and reinforce LLMs

https://doi.org/10.18653/V1/2023.IJCNLP-MAIN.20
https://doi.org/10.18653/V1/2023.IJCNLP-MAIN.20
https://doi.org/10.18653/V1/2023.IJCNLP-MAIN.20
https://doi.org/10.48550/ARXIV.2405.14734
https://doi.org/10.48550/ARXIV.2405.14734
https://doi.org/10.48550/ARXIV.2405.14734
https://doi.org/10.48550/ARXIV.2402.14830
https://doi.org/10.48550/ARXIV.2402.14830
https://doi.org/10.48550/ARXIV.2402.14830
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://doi.org/10.48550/ARXIV.2404.19733
https://arxiv.org/abs/2411.04109
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2410.08146
https://doi.org/10.48550/ARXIV.2410.08146
https://doi.org/10.48550/ARXIV.2410.08146
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://doi.org/10.48550/ARXIV.2402.03300
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=WPZ2yPag4K
https://openreview.net/forum?id=WPZ2yPag4K
https://openreview.net/forum?id=WPZ2yPag4K
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://doi.org/10.1007/978-3-319-20451-2_24
https://doi.org/10.1007/978-3-319-20451-2_24
https://doi.org/10.1007/978-3-319-20451-2_24
https://doi.org/10.1007/978-3-319-20451-2_24
https://doi.org/10.1007/978-3-319-20451-2_24
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.18653/v1/2024.acl-long.510
https://doi.org/10.18653/v1/2024.acl-long.510

step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426-9439, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurlPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Ja-
son Weston, and Sainbayar Sukhbaatar. 2024. Think-
ing llms: General instruction following with thought
generation. CoRR, abs/2410.10630.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-
berg, Zhen Qin, Daniele Calandriello, Misha Khal-
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh,
Chi Jin, Tong Zhang, and Tianqgi Liu. 2024. Build-
ing math agents with multi-turn iterative preference
learning. CoRR, abs/2409.02392.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason
Weston. 2023. Some things are more CRINGE than
others: Preference optimization with the pairwise
cringe loss. CoRR, abs/2312.16682.

Tengyu Xu, Eryk Helenowski, Karthik Abinav
Sankararaman, Di Jin, Kaiyan Peng, Eric Han, Shao-
liang Nie, Chen Zhu, Hejia Zhang, Wenxuan Zhou,
Zhouhao Zeng, Yun He, Karishma Mandyam, Arya
Talabzadeh, Madian Khabsa, Gabriel Cohen, Yuan-
dong Tian, Hao Ma, Sinong Wang, and Han Fang.
2024. The perfect blend: Redefining RLHF with
mixture of judges. CoRR, abs/2409.20370.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son Weston. 2024. Self-rewarding language models.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Chuangi Tan, and Chang Zhou. 2023. Scaling
relationship on learning mathematical reasoning with
large language models. CoRR, abs/2308.01825.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. STaR: Bootstrapping reasoning
with reasoning. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurlPS

12

2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024.
Generative verifiers: Reward modeling as next-token
prediction. CoRR, abs/2408.15240.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

https://doi.org/10.18653/v1/2024.acl-long.510
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2410.10630
https://doi.org/10.48550/ARXIV.2410.10630
https://doi.org/10.48550/ARXIV.2410.10630
https://doi.org/10.48550/ARXIV.2410.10630
https://doi.org/10.48550/ARXIV.2410.10630
https://doi.org/10.48550/ARXIV.2409.02392
https://doi.org/10.48550/ARXIV.2409.02392
https://doi.org/10.48550/ARXIV.2409.02392
https://doi.org/10.48550/ARXIV.2409.02392
https://doi.org/10.48550/ARXIV.2409.02392
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2312.16682
https://doi.org/10.48550/ARXIV.2409.20370
https://doi.org/10.48550/ARXIV.2409.20370
https://doi.org/10.48550/ARXIV.2409.20370
https://openreview.net/forum?id=0NphYCmgua
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
https://doi.org/10.48550/ARXIV.2308.01825
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2408.15240
https://doi.org/10.48550/ARXIV.2408.15240
https://doi.org/10.48550/ARXIV.2408.15240

A Implementation Details

We use AdamW (51 = 0.9, B2 = 0.95, weight decay = 0.1) with a linear warmup for the first 100 steps
and a cosine decay schedule that reduces the learning rate to 0.1 x its initial value. The starting learning
rate is 1.0 x 1076, and we apply global norm gradient clipping of 1.0. The effective global batch size is
set to approximately one million tokens, and we train for about 2000 steps, periodically evaluating our
models during training on the hold-out test set from MATH (Hendrycks et al., 2021)° to select the best
checkpoint for each method. For IRPO, we use an NLL weight of 0.2. We set § = 0.1 for all methods.
All training jobs are run on 64 H100 GPUs.

B Decontamination

To prevent data leakage between training and test sets, we perform standard decontamination by normal-
izing text (converting to lowercase and removing non-alphanumeric characters) and checking for exact
string matches between test questions and training prompts (Dubey et al., 2024). We remove any matching
examples from the training data. This process is applied to all datasets in our evaluation. Even if mild
contamination were present, we expect any resulting performance inflation to be small and consistent
across all conditions, leaving the relative comparisons between our methods largely unaffected.

C Details of API Usage for Proprietary Models

In our experiments, we evaluated several proprietary models via their respective APIs: Ol
(metrics are self-reported), O1-Mini (01-mini-2024-09-12, MATH-500 is self-reported N,
Gemini 1.5 Pro (gemini-1.5-pro-002), GPT-40 (gpt-40-2024-08-06), Claude 3.5 Sonnet
(claude-3-5-sonnet-20241022), and Grok-Beta. These experiments took place on November 15 and
16, 2024. For each model, questions were used directly as user prompts. For greedy decoding, we set the
temperature to 0.0 to ensure deterministic outputs, except for ol models where we used temperature 1.0
due to API restrictions (only temperature 1.0 is allowed) and took the first sample. For sampling, we set
the temperature to 0.7 and performed 8 generations per question to enable majority voting.

Response Generation for Proprietary Models

User:

Please answer the following question step-by-step. Once you have the final answer,
place it on a new line as: The final answer is \$\boxed{answer}\$.
Question: {{ question }}

SMATH-500 questions are excluded.
"Numbers from https: //github.com/openai/simple-evals

13

https://github.com/openai/simple-evals

D Prompts

Prompt templates ® for generating solutions are given below in Appendix D.

Response Generation Template from (

User:

Solve the following math problem efficiently and clearly:

For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

For complex problems (3 steps or more):
Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

Regardless of the approach, always conclude with:
Therefore, the final answer is: \$\boxed{answer}\$. I hope it is correct.
Where [answer] is just the final number or expression that solves the problem.

Problem: {{ question }}

Prompt for L1lama-3.1-70B-Instruct to provide stepwise feedback on candidate solutions y. The
model analyzes each step sy, of a potential solution against the correct answer y*, evaluating the reasoning
and accuracy of each step. The feedback is structured in JSON format with fields for step number,
reflection on the reasoning, and a binary decision on whether the step contributes positively to reaching
the solution.

8The prompt template was from https://huggingface.co/datasets/meta-1lama/Llama-3.1-70B-Instruct-evals

14

https://huggingface.co/datasets/meta-llama/Llama-3.1-70B-Instruct-evals

Generation Prompt for Stepwise Feedback

User:

Please analyze the following problem and its potential solution step-by-step.
Provide feedback on each step and determine if it contributes positively to reaching the
correct solution.

<problem>

{{ problem }}
</problem>

<correct solution>

{{ answer }}

</correct solution>

<potential answer>

{% for step in steps %}
<step {{ loop.index }}>
{{ step 3}

</step {{ loop.index }}>
{% endfor %}

</potential answer>

Analyze your #**potential solution** as if you had originally generated it.

Carefully review each step, considering its reasoning, accuracy, and execution.
Assess whether the step contributes positively to reaching the correct solution.
Where necessary, refine the step to address any flaws or gaps. Use the correct answer
as a ground truth reference to guide your analysis.

Provide your output in JSON format, where each element represents a step of the solution.
Use the fields below:

- %*xstepx*: The step order number in the reasoning process.
- *xreflection**: A concise evaluation of the accuracy of the reasoning in this step
(point out why it helps or hinders the solution).

- *xdecision*x: The evaluation of the step, either "positive

n

or "negative”.

The expected output format follows:

“json
L
{
"step”: 1,
"reflection”: "[evaluation of step 1 reasoningl”,
"decision”: "positive”
}!
{
"step": 2,
"reflection”: "[evaluation of step 2 reasoningl”,
"decision”: "negative”
}!
S\
Notes

- Assign **"negative"x* only to steps that are clearly incorrect and prevent the
solution from progressing.

- Use the correct answer as one of the ground truth references.

- Ensure the reflections remain concise, with the total explanation under 200 words
across all steps combined.

15

Zheng et al. 2024

User:

The following is a math problem and a solution (split into paragraphs, enclosed with
tags and indexed from 0):

<problem>

{{ problem }}
</problem>

<solution>

{% for step in steps %}
<step {{ loop.index }}>
{{ step }}

</step {{ loop.index }3}>
{% endfor %}

</solution>

Your task is to review and critique the solution paragraph by paragraph. Once you
identify an error in a paragraph, return the index of the paragraph where the
earliest error occurs. Otherwise, return the index of -1 (which typically denotes

"not found”).

Please put your final answer (i.e., the index) in \boxed{{}}.

16

E Qualitative Examples

We analyze several examples from Llama-3.3-70B-Instruct STEP-KTO M; on MATH-500 to un-
derstand how Step-KTO helps improve mathematical reasoning. The examples demonstrate three key
scenarios where Step-KTO provides effective feedback: (1) when all steps and the final answer are
correct, (2) when intermediate steps contain errors but lead to the correct final answer, and (3) when both
intermediate steps and the final answer are incorrect.

Step-KTO Generation Example 1: Final Answer is Right and All Steps are Right

problem: For a point $P,$ let $d_1,$ $d_2% and d_3 represents the distances from P
to the planes $x - 2z = 0,%$ $x - 2y + z = 0,3 and $x + y + z = 0.$ Let S be
the set of points P such that\n\\[d_1"2 + d_2"2 + d_3"2 = 36.\\JFind the region
of the volume enclosed by $S.$

answer: "288 \\pi",

subject: "Precalculus”,

level: 4,

unique_id: "test/precalculus/1056.json"

Model prediction:

Step 1: Understand the problem and the equation given

The problem provides an equation $d_1°2 + d_2"2 + d_3"2 = 36$ where $d_1,$ $d_2,$ and

d_3 represent the distances from a point P to the planes $x - z = 0,$ $x - 2y + z

=0,%$ and $x + y + z = 0% respectively. We need to find the region of the volume enclosed by
the set S of points P that satisfy this equation.

Step 2: Calculate the distance of a point to each plane

The distance d from a point (x_0, y_0, z_0) to a plane $Ax + By + Cz + D = 0$ is given by
the formula $d = \frac{|Ax_@ + By_0 + Cz_0 + D|}{\sqrt{A"2 + B*2 + C"2}}$. Applying this formula
to each plane, we get:

- $d_1 = \frac{|x - z|}\sqrt{1"2 + (-1)"2}} = \frac{|x - z|}{\sqrt{2}3}$
- $d_2 = \frac{|x - 2y + z|}M\sqgrt{1"2 + (-2)"2 + 1°2}} = \frac{|x - 2y + z|}{\sqrt{6}1}$
- $d_3 = \frac{|x +y + z|}{\sgrt{1"2 + 172 + 1°2}} = \frac{|x + y + z|}{\sqrt{3}1}$

Step 3: Substitute the distance formulas into the given equation

Substituting $d_1,$ $d_2,$ and d_3 into the equation $d_1°2 + d_2"2 + d_3"2 = 36%, we get:
$\left(\frac{x - z}{\sqgrt{2}}\right) 2 + \left(\frac{x - 2y + z}{\sqrt{6}}\right) 2 +
\left(\frac{x + y + z}{\sqrt{3}}\right) "2 = 36%

Step 4: Simplify the equation
Expanding and simplifying, we have:
$\frac{(x - z)"2}{2} + \frac{(x - 2y + z)"2}{6} + \frac{(x +y + z)"2}{3} = 36%

Step 5: Further simplification and rearrangement
Multiplying through by 6 to clear the denominators gives:
$3(x - z2)"2 + (x -2y +z)"2+2(x +y + 2z)2=216%

Step 6: Expand the terms
Expanding each term yields:
$3(X"2 - 2xz +2"2) + (X"2 - 4xy + 4y"2 + 2"2 + 2xz - 4yz) + 2(X"2 + 2Xy + 2xz + y"2 + 2yz + z"2) = 216$%

Step 7: Combine like terms
Combining like terms, we get:
$3x"2 - 6xz + 32"2 + X2 - 4xy + 4y 2 + 2"2 + 2xz - 4yz + 2X"2 + 4Xy + 4xz + 2y"2 + 4yz + 22"2

216%

Step 8: Simplify further
This simplifies to:
$6x"2 + 6y"2 + 6z°2 + Oxy + Oxz + Qyz = 216%

Step 9: Divide by 6
Dividing the entire equation by 6 gives:
$x"2 + y'2 + z°2 = 36%

Step 10: Interpret the result
The equation $x"2 + y*"2 + z"2 = 36$ represents a sphere with radius 6 centered at the origin (0,90,0).

The final answer is: $\boxed{288\pi}$

17

Step-KTO Generation Example 2: Final Answer is Right but Step 2 is Wrong

problem: For how many real values of $\sqrt{120-\sqgrt{x}}$ is an integer?
answer: "11"

subject: "Algebra”

level: 5

unique_id: "test/algebra/1282.json”

Model prediction:

Step 1: Understand the problem and identify the condition for $\sqrt{120-\sqrt{x}}$ to be an
integer. We need $\sqrt{120-\sqrt{x}3}$ to be an integer, which means $120-\sqrt{x}$ must be a perfect
square.

Step 2: List all perfect squares less than or equal to 120.

The perfect squares less than or equal to 120 are: @, 1, 4, 9, 16, 25, 36, 49, 64,
81, 100, and 121. However, since we are considering $120-\sqrt{x}$, the relevant
perfect squares are from @ to 120, which are @, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
and 121 is not included because it exceeds 120.

Step 3: Calculate the possible values of \sqrt{x}.
For each perfect square y from the list, we calculate $\sqrt{x} = 120 - y$. This
gives us the possible values of \sqrt{x} as: 120, 119, 116, 111, 104, 95, 84, 71, 56, 39, 20.

Step 4: Consider the validity of each possible value of \sqrt{x}.

Since \sqrt{x} cannot be negative and must be real, all calculated values in step
3 are valid because they are all positive or zero. However, we should also consider
that $\sqrt{x3}$ itself must be real, meaning $x \geq 0$. Given that $\sqrt{x} = 120
- y$, the smallest value of \sqgrt{x} is when $y = 100$, giving $\sqrt{x} = 20$.
For $y = 121%, \sqrt{x} would be negative, which is not valid for real x. Thus,
we only consider perfect squares up to 100.

Step 5: Count the number of valid values of \sqrt{x} that make
$\sqgrt{120-\sqrt{x}}$ an integer.

From step 3 and considering the correction in step 4, we see that for each perfect
square up to 100 (inclusive), we get a valid \sqrt{x}. Thus, we count the number
of perfect squares from @ to 100, which are 11 (@, 1, 4, 9, 16, 25, 36, 49, 64, 81,
100).

The final answer is: $\boxed{11}$

QwQ Critique:
\boxed{2}

The error in the solution occurs in the 2nd paragraph, where the reasoning incorrectly

states "The perfect squares less than or equal to 120 are: 0, 1, 4, 9, 16, 25, 36, 49,

64, 81, 100, and 121." It's incorrect because 121 is greater than 120, not less than or
equal to, and shouldn't be included in the list.

18

Step-KTO Generation Example 3: Final Answer is Wrong

Problem: Find the greatest integer less than $(\sqrt{7} + \sqrt{5})"6.$%
(Do not use a calculator!)

answer: "13535"

subject: "Intermediate Algebra”

level: 3

unique_id: "test/intermediate_algebra/607.json"

Model prediction:

Step 1: Understand the problem and identify the key elements

We need to find the greatest integer less than $(\sqrt{7} + \sqrt{5})"6$ without using a
calculator. This involves expanding the given expression and simplifying it to a form where
we can estimate its value.

Step 2: Apply the Binomial Theorem to expand the expression

The Binomial Theorem states that for any non-negative integer n, \((a + b)"n =
\sum_{k=03}"{n} \binom{n}{k}a"{n-k}b"k\). Applying this to our problem with $a =
\sqrt{7}$, $b = \sqrt{53}$, and $n = 6%, we get \((\sqrt{7} + \sqrt{5})"6 =
\binom{63}{0}(\sqrt{73}) "6 + \binom{63}{1}(\sqrt{73}) "5(\sqrt{5}) +
\binom{63}{2}(\sqrt{73}) "4(\sqrt{53}) "2 + \binom{63}{3}(\sqrt{7}) "3(\sqrt{5}) "3 +
\binom{63}{4}(\sqrt{73}) "2(\sqrt{53}) "4 + \binom{63}{5}(\sqrt{7}) (\sqrt{53})"5 +
\binom{63}{6}(\sqrt{53}) "6\).

Step 3: Calculate each term of the expansion

Calculating each term:

- \(\binom{6}{0}(\sqrt{7})"6 = 1 \cdot 7"3 = 343\)

= \(\binom{63}{13(\sqrt{73}) "5(\sqrt{53}) = 6 \cdot 7°2 \cdot 7 \cdot \sqrt{5} = 6

\cdot 49 \cdot 7 \cdot \sqrt{5} = 2058\sqrt{5}\)

- \(\binom{63}{2}(\sqrt{7}) “4(\sqrt{53}) "2 = 15 \cdot 7°2 \cdot 5 = 15 \cdot 49 \cdot 5
= 3675\)

= \(\binom{63}{3}(\sqrt{7}) "3(\sqrt{5}) "3 = 20 \cdot 7 \cdot 7 \cdot 5 \cdot \sqrt{5}
= 20 \cdot 49 \cdot 5 \cdot \sqrt{5} = 4900\sqrt{5}\)

= \(\binom{63}{4}(\sqrt{7}) “"2(\sqrt{5}) "4 = 15 \cdot 7 \cdot 5°2 = 15 \cdot 7 \cdot 25
= 2625\)

= \(\binom{63}{53(\sqrt{7}) (\sqrt{53})"5 = 6 \cdot \sqrt{7} \cdot 52 \cdot \sqrt{5} =
6 \cdot \sqrt{7} \cdot 25 \cdot \sqrt{5} = 150\sqrt{353}\)

- \(\binom{63}{6}(\sqrt{5}) "6 = 1 \cdot 5°3 = 125\)

Step 4: Combine like terms and simplify

Combining like terms, we notice that terms with \(\sqrt{53}\) and \(\sqrt{35}\) will
contribute to non-integer values, but we can simplify the expression by recognizing
that the integer part of the expansion will come from the terms without square roots
(since they are multiplied by integers) and the terms with square roots will contribute
to the fractional part. The terms without square roots are \(343 + 3675 + 2625 + 125 =
6768\).

Step 5: Estimate the value of the expression with square roots

To estimate the value of the terms with square roots, we note that \(2058\sqrt{5}
\approx 2058 \cdot 2.236 = 4599.33\), \(4900\sqrt{5} \approx 4900 \cdot 2.236 =
10943.4\), and \(150\sqrt{35} \approx 150 \cdot 5.916 = 886.4\). Summing these
approximations gives us an estimate of the non-integer contributing terms: \(4599.33 +
10943.4 + 886.4 \approx 15429.13\).

Step 6: Combine the integer and non-integer parts
Adding the integer part (from step 4) to the estimated value of the non-integer part
(from step 5), we get \ (6768 + 15429.13 \approx 22197.13\).

Step 7: Determine the greatest integer less than the result
The greatest integer less than \(22197.13\) is \(22197\).

The final answer is: $\boxed{22197}$

19

	Introduction
	Methodology
	Problem Setup and Notation
	KTO Background
	Step-KTO
	Iterative Training

	Experiments
	Task and Datasets
	Baseline Methods
	Main Results
	Iterative Training
	Comparison with Step-DPO
	Preference Optimization Variants
	Evaluating Reasoning Quality

	Related Work
	Conclusion
	Implementation Details
	Decontamination
	Details of API Usage for Proprietary Models
	Prompts
	Qualitative Examples

