
Selective Sampling and Imitation Learning
via Online Regression

Ayush Sekhari1∗ Karthik Sridharan2 Wen Sun2 Runzhe Wu2†

1MIT, 2Cornell University

Abstract

We consider the problem of Imitation Learning (IL) by actively querying noisy
expert for feedback. While imitation learning has been empirically successful,
much of prior work assumes access to noiseless expert feedback which is not
practical in many applications. In fact, when one only has access to noisy expert
feedback, algorithms that rely on purely offline data (non-interactive IL) can be
shown to need a prohibitively large number of samples to be successful. In contrast,
in this work, we provide an interactive algorithm for IL that uses selective sampling
to actively query the noisy expert for feedback. Our contributions are twofold: First,
we provide a new selective sampling algorithm that works with general function
classes and multiple actions, and obtains the best-known bounds for the regret and
the number of queries. Next, we extend this analysis to the problem of IL with
noisy expert feedback and provide a new IL algorithm that makes limited queries.
Our algorithm for selective sampling leverages function approximation, and relies
on an online regression oracle w.r.t. the given model class to predict actions, and to
decide whether to query the expert for its label. On the theoretical side, the regret
bound of our algorithm is upper bounded by the regret of the online regression
oracle, while the query complexity additionally depends on the eluder dimension of
the model class. We complement this with a lower bound that demonstrates that our
results are tight. We extend our selective sampling algorithm for IL with general
function approximation and provide bounds on both the regret and the number of
queries made to the noisy expert. A key novelty here is that our regret and query
complexity bounds only depend on the number of times the optimal policy (and
not the noisy expert, or the learner) go to states that have a small margin.

1 Introduction

From the classic supervised learning setting to the more complex problems like interactive Imitation
Learning (IL) [Ross et al., 2011], high-quality labels or supervision is often expensive and hard to
obtain. Thus, one wishes to develop algorithms that do not require a label for every data sample
presented during the learning process. Active learning or selective sampling is a learning paradigm
that is designed to reduce query complexity by only querying for labels at selected data points, and
has been extensively studied in both theory and practice [Agarwal, 2013, Dekel et al., 2012, Hanneke
and Yang, 2021, Zhu and Nowak, 2022, Cesa-Bianchi et al., 2005, Hanneke and Yang, 2015].

In this work, we study selective sampling and its application to interactive Imitation Learning [Ross
et al., 2011]. Our goal is to design algorithms that can leverage general function approximation
and online regression oracles to achieve small regret on predicting the correct labels, and at the
∗Authors are listed in alphabetical order of their last names.
†Emails: sekhari@mit.edu, {ks999, ws455, rw646}@cornell.edu

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

same time minimize the number of expert queries made (query complexity). Towards this goal,
we first study selective sampling which is an online active learning framework, and provide regret
and query complexity bounds for general function classes (used to model the experts). Our key
results in selective sampling are obtained by developing a connection between the regret of the online
regression oracles and the regret of predicting the correct labels. Additionally, we bound the query
complexity using the eluder dimension [Russo and Van Roy, 2013] of the underlying function class
used to model the expert. We complement our results with a lower bound indicating that a dependence
on an eluder dimension like complexity measure is unavoidable in the query complexity in the worst
case. In particular, we provide lower bounds in terms of the star number of the function class—a
quantity closely related to the eluder dimension. Our new selective sampling algorithm, called SAGE,
can operate under fairly general modeling assumptions, loss functions, and allows for multiple labels
(i.e., multi-class classification).

We then extend our selective sampling algorithm to the interactive IL framework proposed by Ross
et al. [2011] to reduce the query complexity. While the DAgger algorithm proposed by Ross et al.
[2011] has been extensively used in various robotics applications (e.g., Ross et al. [2013], Pan et al.
[2018]), it often requires a large number of expert queries. There have been some efforts on reducing
the expert query complexity by leveraging ideas from active learning (e.g., Laskey et al. [2016],
Brantley et al. [2020]), however, these prior attempts do not have theoretical guarantees on bounding
expert’s query complexity. In this work, we provide the first provably correct algorithm for interactive
IL with general function classes, called RAVIOLI, which not only achieves strong regret bounds
in terms of maximizing the underlying reward functions, but also enjoys a small query complexity.
Furthermore, we note that RAVIOLI operates under significantly weaker assumptions as compared to
the prior works, like Ross et al. [2011], on interactive IL. In particular, we only assume access to a
noisy expert, as compared to the prior works that assume that the expert is noiseless. In fact, for the
noisy setting, we show that one can not even hope to learn from purely offline expert demonstrations
unless one has exponentially in horizon H many samples. Such a strong separation does not hold in
the noiseless setting.

Our bounds depend on the margin of the noisy expert, which intuitively quantifies the confidence
level of the expert. In particular, the margin is large for states where the expert is very confident in
terms of providing the correct labels, while on the other hand, the margin is small on the states where
the expert is less confident and subsequently provides more noisy labels as feedback. Such kind of
margin condition was missing in prior works, like Ross et al. [2011], which assumes that the expert
can provide confident labels everywhere. Additionally, we note that our margin assumption is quite
mild as we only assume that the expert has a large margin under the states that could be visited by the
noiseless expert (however, the states visited by the learner, or by following the noisy expert, may not
have a small margin).

We then extend our results to the multiple expert setting where the learner has access to M many
experts/teachers who may have different expertise at different parts of the state space. In particular,
there is no expert who can singlehandedly perform well on the underlying environment, but an
aggregation of their policies can lead to good performance. Such an assumption holds in various
applications and has been recently explored in continuous control tasks like robotics and discrete
tasks like chess and Minigrid [Beliaev et al., 2022]. Similar to the single expert setting, we model the
expertise of the experts in multiple expert setting using the concept of margins. Different experts have
different margin functions, capturing the fact that experts may have different expertise at different
parts of the state space. Prior work from Cheng et al. [2020] also considers multiple experts in IL and
provides meaningful regret bounds, however, their assumption on the experts is much stronger than
us: they assume that for any state, there at least exists one expert who can achieve high reward-to-go
if the expert took over the control starting from this state till the end of the episode. Furthermore,
Cheng et al. [2020] considers the setting where one can also query for the reward signals, whereas we
do not require access to any reward signals.

2 Contributions and Overview of Results
2.1 Selective Sampling

Online selective sampling models the interaction between a learner and an adversary over T rounds.
At the beginning of each round of the interaction, the adversary presents a context xt to the learner.
After receiving the context, the learner makes a prediction ŷt ∈ [K], where K denotes the number of

2

actions. Then, the learner needs to make a choice of whether or not to query an expert who is assumed
to have some knowledge about the true label for all the presented contexts. The experts knowledge
about the true label is modeled via the ground truth modeling function f⋆, which is assumed to
belong to a given function class F but is unknown to the learner. If the learner decides to query for
the label, then the expert will return a noisy label yt sampled using f⋆. If the learner does not query,
then the learner does not receive any feedback in this round. The learner makes an update based on
the latest information it has, and moves on to the next round of the interaction. The goal of the learner
is to compete with the expert policy π⋆, that is defined using the experts model f⋆. In the selective
sampling setting, we are concerned with two things: the total regret of the learner w.r.t. the policy π⋆,
and the number of expert queries that the learner makes. Our key contributions are as follows:

● We provide a new selective sampling algorithm (Algorithm 1) that relies on an online regression
oracle w.r.t. F (where F is the given model class) to make predictions and to decide whether to
query for labels. Our algorithm can handle multiple actions, adversarial contexts, arbitrary model
class F , and fairly general modeling assumptions (that we discuss in more detail in Section 3),
and enjoys the following regret bound and query complexity:

RegT = Õ (inf
ε
{εTε +

Reg(F ;T)
ε

}) and NT = Õ(inf
ε
{Tε +

Reg(F ;T) ⋅E(F , ε; f⋆)
ε2

}).

(1)

where Reg(F ;T) denotes the regret bound for the online regression oracle on F , E(F , ε; f⋆)
denotes the eluder dimension of F , and Tε denotes the number of rounds at which the margin of
the experts predictions is smaller than ε (the exact notion of margin is defined in Section 3).

● We show via a lower bound that, without additional assumptions, the dependence on the eluder
dimension in the query complexity bound (1) is unavoidable if we desire a regret bound of the
form (1), even when Tε = 0. The details are located in Section 3.2.

● For the stochastic setting, where the context {xt}t≤T are sampled i.i.d. from a fixed unknown
distribution, we provide an alternate algorithm (Algorithm 3) that enjoys the same regret bound
as (1) but whose query complexity scales with the disagreement coefficient of F instead of the
eluder dimension (Theorem 2). Since the disagreement coefficient is always smaller than the
eluder dimension, Theorem 2 yields an improvement in the query complexity.

2.2 Imitation Learning

We then move to the more challenging Imitation Learning (IL) setting, where the learner operates in
an episodic finite horizon Markov Decision Process (MDP), and can query a noisy expert for feedback
(i.e. the expert action) on the states that it visits. The interaction proceeds in T episodes of length
H each. In episode t, at each time step h ∈ [H] and on the state xt,h, the learner chooses an action
ŷt,h and transitions to state xt,h+1. However, the learner does not receive any reward signal. Instead,
the learner can actively choose to query an expert who has some knowledge about the correct action
to be taken on xt,h, and gives back noisy feedback yt,h about this action. Similar to the selective
sampling setting, the experts knowledge about the true label is modeled via the ground truth modeling
function f⋆h , which is assumed to belong to a given function class Fh but is unknown to the learner.
The goal of the learner is to compete with the optimal policy π⋆ of the (noiseless) expert. Our key
contributions in IL are:

● In Section 4, we first demonstrate an exponential separation in terms of task horizon H in the
sample complexity, for learning via offline expert demonstration only vs interactive querying of
experts, when the feedback from the expert is noisy.

● We then provide a general IL algorithm (in Algorithm 2) that relies on online regression oracles
w.r.t. {Fh}h≤H to predict actions, and to decide whether to query for labels. Similar to the
selective sampling setting, the regret bound for our algorithm scales with the regret of the online
regression oracles, and the query complexity bound has an additional dependence on the eluder
dimension. Furthermore, our algorithm can handle multiple actions, adversarially changing
dynamics, arbitrary model class F , and fairly general modeling assumptions.

● A key difference from our results in selective sampling is that the term Tε that appears in our
regret and query complexity bounds in IL denote the number of time steps in which the expert

3

policy π⋆ has a small margin (instead of the number of time steps when the learner’s policy has a
small margin). In fact, the learner and the expert trajectories could be completely different from
each other, and we only pay in the margin term if the expert trajectory at that time step would
have a low margin. See Section 4 for the exact definition of margin.

● In Section 4.1, we provide extensions to our algorithm when the learner can query M experts at
each round. In particular, we do not assume that any of the experts is singlehandedly optimal for
the entire state space, but that there exist aggregation functions of these experts’ predictions that
perform well in practice, and with which we compete.

3 Selective Sampling

In the problem of selective sampling, on every round t, nature (or an adversary) produces a context
xt. The learner then receives this context and predicts a label ŷt ∈ [K] for that context. The learner
also computes a query condition Zt ∈ {0,1} for that context. If Zt = 1, the learner requests for label
yt ∈ [K] corresponding to the xt, and if not, the learner receives no feedback on the label for that
round. Let F be a model class such that each model f ∈ F maps contexts x to scores f(x) ∈ RK . In
this work we assume that while contexts can be chosen arbitrarily, the label yt corresponding to a
context xt is drawn from a distribution over labels specified by the score f⋆(xt) where f⋆ ∈ F is a
fixed model unknown to the learner. We assume that a link function ϕ ∶ RK ↦∆(K) maps scores to
distributions and assume that the noisy label yt is sampled as

yt ∼ ϕ(f⋆(xt)). (2)

In this work, we assume that the link function ϕ(v) = ∇Φ(v) for some Φ ∶ RK ↦ R (see Agarwal
[2013] for more details) which satisfies the following assumption.

Assumption 1. The function Φ is λ-strongly-convex and γ-smooth, i.e. for all u,u′ ∈ RK ,

λ

2
∥u′ − u∥2

2
≤ Φ(u′) −Φ(u) − ⟨∇Φ(u), u′ − u⟩ ≤ γ

2
∥u′ − u∥2

2
.

Our main contribution in this section is a selective sampling algorithm that uses online non-parametric
regression w.r.t. the model class F as a black box. Specifically, define the loss function corresponding
to the link function ϕ as ℓϕ(v, y) = Φ(v) − v[y] where v ∈ RK and y ∈ [K]. We assume that the
learner has access to an online regression oracle for the loss ℓϕ (which is a convex loss) w.r.t. the
class F , that for any sequence {(x1, y1), . . . , (xT , yT)} guarantees the regret bound

T

∑
s=1

ℓϕ(fs(xs), ys) − inf
f∈F

T

∑
s=1

ℓϕ(f(xs), ys) ≤ Regℓϕ(F ;T). (3)

When ϕ is identity (under which the models in F directly map to distributions over the labels), then
ℓϕ denotes the standard square loss, and we need a bound on the regret w.r.t. the square loss, denoted
by Regsq(F ;T). When ϕ is the Boltzman distribution mapping (given by Φ being the softmax
function) then ℓϕ is the logistic loss, and we need an online logistic regression oracle for F . Minimax
rates for the regret bound in (3) are well known:

● Square-loss regression: Rakhlin and Sridharan [2014] characterized the minimax rates for online
square loss regression in terms of the offset sequential Rademacher complexity of F , which
for example, leads to regret bound Regsq(F ;T) = O(log ∣F ∣) for finite function classes F , and
Regsq(F ;T) = O(d log(T)) when F is a d-dimensional linear class. More examples can be
found in Rakhlin and Sridharan [2014, Section 4]. We refer the readers to Krishnamurthy et al.
[2017], Foster et al. [2018a] for efficient implementations.

● Logistic-loss regression: When F is finite, we have the regret bound Reg(F ;T) ≤ O(log ∣F ∣)
[Cesa-Bianchi and Lugosi, 2006, Chapter 9]. For learning linear predictors, there exists efficient
improper learner with regret bound Reg(F ;T) ≤ O(d log ∣T ∣) [Foster et al., 2018b]. More
examples can be found in Foster et al. [2018b, Section 7] and Rakhlin and Sridharan [2015].

When one deals with complex model classes F such that the labeling concept class corresponding to
F could possibly have infinite VC dimension (like it is typically the case), then one needs to naturally

4

rely on a margin-based analysis [Tsybakov, 2004, Shalev-Shwartz and Ben-David, 2014, Dekel et al.,
2012]. For p ∈ RK , we use the following well-known notion of margin for multiclass settings3:

Margin(p) = ϕ(p)[k⋆] −max
k′≠k⋆

ϕ(p)[k′] where k⋆ ∈ argmax
k

ϕ(p)[k], (4)

A key quantity that appears in our results is the number of xt’s that fall within an ε margin region,

Tε =
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε}.

Tε denotes the number of times where even the Bayes optimal classifier is confused about the
correct label on xt, and has confidence less than ε. The algorithm relies on an online regression
oracle mentioned above to produce the predictor ft at every round. The predicted label ŷt =
SelectAction(ft(xt)) = argmaxk ϕ(ft(xt))[k] is picked based on the score ft(xt) (where ŷt is
the label with the largest score). The learner updates the regression oracle on only those rounds in
which it makes a query. Our main algorithm for selective sampling is provided in Algorithm 1.4

Algorithm 1 Selective SAmplinG with Expert Feedback (SAGE)
Input: Parameters δ, γ, λ, T , function class F , and online regression oracle Oracle w.r.t ℓϕ.

1: Set Ψℓϕ
δ (F , T) =

4
λ
Regℓϕ(F ;T) + 112

λ2 log(4 log2(T)/δ), Compute f1 ← Oracle1(∅).
2: for t = 1 to T do
3: Nature chooses xt.
4: Learner plays the action ŷt = SelectAction(ft(xt)).
5: Learner computes

∆t(xt) ∶= max
f∈F
∥f(xt) − ft(xt)∥ s.t.

t−1
∑
s=1

Zs∥f(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T). (5)

6: Learner decides whether to query: Zt = 1{Margin(ft(xt)) ≤ 2γ∆t(xt)}.
7: if Zt = 1 then
8: Learner queries the label yt on xt.
9: ft+1 ← Oraclet({xt, yt}).

10: else
11: ft+1 ← ft.

Our goal in this work is twofold: Firstly, we would like Algorithm 2 to have a low regret w.r.t. the
optimal model f⋆, defined as

RegT =
T

∑
t=1

1{ŷt ≠ yt} −
T

∑
t=1

1{SelectAction(f⋆(xt)) ≠ yt}

Simultaneously, we also aim to make as few label queries NT = ∑T
t=1Zt as possible. Before delving

into our results, we first recall the following variant of eluder-dimension [Russo and Van Roy, 2013,
Foster et al., 2020, Zhu and Nowak, 2022].
Definition 1 (Scale-sensitive eluder dimension (normed version)). Fix any f⋆ ∈ F , and define
Ẽ(F , β; f⋆) to be the length of the longest sequence of contexts x1, x2, . . . xm such that for all i,
there exists fi ∈ F such that

∥fi(xi) − f⋆(xi)∥ > β, and ∑
j<i
∥fi(xj) − f⋆(xj)∥2 ≤ β2.

The value function eluder dimension is defined as E(F , β′; f⋆) = supβ≥β′ Ẽ(F , β; f⋆).

Bounds on the eluder dimension for various function classes are well known, e.g. when F is finite,
E(F , β′; f⋆) ≤ ∣F ∣ − 1, and when F is the set of d-dimensional function with bounded norm, then
E(F , β′; f⋆) = O(d). We refer the reader to Russo and Van Roy [2013], Mou et al. [2020], Li et al.
[2022] for more examples. The following theorem is our main result for selective sampling:

3Throughout the paper, we assume that the ties in argmax or argmin are broken arbitrarily, but consistently.
4Unless explicitly specified, the action set is given by A = [K] = {1, . . . ,K} where K ≥ 2.

5

Theorem 1. Let δ ∈ (0,1). Under the modeling assumptions above (in (2), (3) and (4)), with
probability at least 1 − δ, Algorithm 1 obtains the regret bound

RegT = Õ(inf
ε
{εTε +

γ2

λε
Regℓϕ(F ;T) + γ2

λ2ε
log(1/δ)}), and,

NT = Õ(inf
ε
{Tε +

γ2

λε2
⋅Regℓϕ(F ;T) ⋅E(F , ε/4γ; f⋆) + γ2

λ2ε2
log(1/δ)}).

A few points are in order:

● It must be noted that for most settings we consider, as an example if model class F is finite, one
typically has that Reg(F ;T) ≤ log ∣F ∣. Thus, in the case where one has a hard margin condition
i.e. Tε0 = 0 for some ε0 > 0, we get RegT ≤ O (

log ∣F ∣
ε0
) and NT ≤ O (E(F,ε;f⋆) log ∣F ∣

ε20
).

● Our regret bound does not depend on the eluder dimension. However, the query complexity bound
has a dependence on eluder dimension. Thus, for function classes for which the eluder dimension
is large, the regret bound is still optimal while the number of label queries may be large.

3.1 Selective Sampling in the Stochastic Setting

So far we assumed that the contexts {xt}t≥0 could be chosen in a possibly adversarial fashion, and
thus our bound on the number of label queries scales with the eluder dimension. However, it turns
out that if the contexts are drawn i.i.d. from some (unknown) distribution µ, then one can improve
the query complexity to scale with the value function disagreement coefficient of F (defined below)
which is always smaller than the eluder dimension (Lemma 6).
Definition 2 (Scale sensitive disagreement coefficient (normed version), Foster et al. [2020]). Let
F ⊆ {X ↦ RK}. For any f⋆ ∈ F , and β0, ε0 > 0 , the value function disagreement coefficient
θval(F , ε0, β0; f

⋆) is defined as

sup
µ

sup
β>β0,ε>ε0

{ ε
2

β2
⋅Prx∼µ(∃f ∈ F ∣ ∥f(x) − f⋆(x)∥ > ε, ∥f − f⋆∥µ ≤ β)} ∨ 1

where ∥f∥µ =
√
Ex∼µ[∥f(x)∥2].

The key idea that gives us the above improvement, of replacing the eluder dimension by disagreement
coefficient in the query complexity bound, is to use epoching for the query condition, while still using
an online regression oracle to make predictions. The exact algorithm is given in Appendix E.4.
Theorem 2. Let δ ∈ (0,1), and consider the modeling assumptions in (2), (3) and (4). Furthermore,
suppose that xt is sampled i.i.d. from µ, where µ is a fixed distribution. Then, with probability at
least 1 − δ, Algorithm 3 obtains the bounds5

RegT = Õ(inf
ε
{εTε +

γ2

λε
Regℓϕ(F ;T)}), and,

NT = Õ(inf
ε
{Tε +

γ2

λε2
⋅Regℓϕ(F ;T) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T)/T ; f⋆)}).

We note that Algorithm 3 automatically adapts to Tsybakov noise condition with respect to µ.
Corollary 1 (Tsybakov noise condition, Tsybakov [2004]). Suppose there exists constants c, ρ ≥ 0 s.t.
Prx∼µ(Margin(f⋆(x)) ≤ ε) ≤ cερ for all ε ∈ (0,1), and consider the same modeling assumptions
as in Theorem 2. Then, with probability at least 1 − δ, Algorithm 3 obtains the bound

RegT = Õ((Regℓϕ(F ;T))
ρ+1
ρ+2 ⋅ (T) 1

ρ+2), and,

NT = Õ((Regℓϕ(F ;T) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T)/T ; f⋆))
ρ

ρ+2 ⋅ T 2
ρ+2).

where the Õ(⋅) notation hides poly-logarithmic factors of γ, λ, c, ρ and log(T /δ).

A detailed comparison of our results with the relevant prior works is given in Appendix E.
5In the rest of the paper, the notation Õ hides additive log(1/δ)-factors which, for constant δ and in all the

results, are asymptotically dominated by the other terms presented in the displayed bounds.

6

3.2 Lower Bounds (Binary Action Case)

We supplement the above upper bound with a lower bound in terms of the star number of F (defined
below). The star number is bounded from above by the eluder dimension which appears in our upper
bounds (Lemma 6). While star number may not be lower bounded by eluder dimension in general,
for many commonly considered classes, star number is of the same order as the eluder dimension
[Foster et al., 2020]. For the sake of a clean presentation, we restrict our lower bound to the binary
actions case, although one can easily extend the lower bound to the multiple actions case.
Definition 3 (scale-sensitive star number). For any ζ ∈ (0,1) and β ∈ (0, ζ/2), define sval(F , ζ, β)
as the largest m such that there exists target function f⋆ ∈ F and sequence x1, . . . , xm ∈ X s.t.
∀i ∈ [m], ∣f⋆(xi)∣ > ζ, ∃fi ∈ F s.t.,

(1)∑
j≠i
(fi(xj)−f⋆(xj))2 < β2 (2) ∣fi(xi)∣ > ζ/2 and fi(xi)f⋆(xi) < 0 (3) ∣fi(xi)−f⋆(xi)∣ ≤ 2ζ

The below theorem provides a lower bound on number of queries, in terms of star number for any
algorithm that guarantees a non-trivial regret bound.
Theorem 3. Given a function class F and some desired margin ζ > 0, define β ∈ (0, ζ/2) be
the largest number such that β2 ≤ min{ζ2/sval(F , ζ, β), ζ2/16}. Then, for any algorithm that
guarantees regret bound of E[RegT] ≤ 64 ζT

sval(F,ζ,β) on all instances with margin ζ/2, there exists a
distribution µ over X and a target function f⋆ ∈ F with margin6 ζ such that the number of queries
NT made by the algorithm on that instance in T rounds of interaction satisfy

E[NT] = Ω(
sval(F , ζ, β)

40ζ2
).

The above lower bound demonstrates that for any algorithm that has a sublinear regret guarantee, a
dependence on an additional complexity measure like the star number (or the eluder dimension) is
unavoidable in the number of queries in the worst case. This suggests that our upper bound cannot
be further improved beyond the discrepancy between the star number and eluder dimension. The
following corrolary illustrates the above lower bound.

Corollary 2. There exists a class F with ∣F ∣ =
√
T , and sval(F , ζ, β) = O(

√
T) for any β = O(1)

and ζ = O(1), such that any algorithm that makes less than
√
T number of label queries, will have a

regret of at least E[RegT] ≥
√
T on some instance with margin ζ.

4 Imitation Learning (H > 1) with Selective Queries to an Expert

The problem of Imitation Learning (IL) consists of learning policies in MDPs when one has access
to an expert (aka the teacher) that can make suggestions on which actions to take at a given state.
IL has enjoyed tremendous empirical success, and various different interaction models have been
considered. In the simplest IL setting, studied under the umbrella of offline RL [Levine et al., 2020]
or Behavior Cloning [Ross and Bagnell, 2010, Torabi et al., 2018], the learner is given an offline
dataset of trajectories (state and action pairs) from an expert and aims to output a well-performing
policy. Here, the learner is not allowed any interaction with the expert, and can only rely on the
provided dataset of expert demonstrations for learning. A much stronger IL setting is the one where
the learner can interact with the expert, and rely on its feedback on states that it reaches by executing
its own policies.

In their seminal work, Ross et al. [2011] proposed a framework for interactive imitation learning
via reduction to online learning and classification tasks. This has been extensively studied in the IL
literature (e.g., Ross and Bagnell [2014], Sun et al. [2017], Cheng and Boots [2018]). The algorithm
DAgger from [Ross et al., 2011] has enjoyed great empirical success. On the theoretical side, however,
performance guarantees for DAgger only hold under the assumption that, when queried, the expert
makes action suggestions from a very good policy π⋆ that we would like to compete with. However,
in practice, human demonstrators are far from being optimal and suggestions from experts should be
modeled as noisy suggestions that only correlate with π⋆. It turns out that IL where one only has

6When A = {1,2}, recall that Margin(f(x)) = ∣Pr(y = 2 ∣ f(x)) −Pr(y = 1 ∣ f(x))∣ = ∣f(x)∣.

7

access to noisy expert suggestions is drastically different from the noiseless setting. For instance,
in the sequel, we show that there can be an exponential separation in terms of the dependence on
horizon H in the sample complexity of learning purely from offline demonstration vs learning with
online interactions.

Formally, we consider interactive IL in an episodic finite horizon Markov Decision Process (MDP),
where the learner can query a noisy expert for feedback (i.e., action) on the states that it visits.
The game proceeds in T episodes. In each episode t, the nature picks the initial state xt,1 for
h = 1; then for every time step h ∈ [H], the learner proposes an action ŷt,h ∈ [K] given the current
state xt,h; then the system proceeds by selecting the next state xt;h+1 ← Tt,h(xt,h, ŷt,h), where
Tt,h ∶ X × Y ↦ X denotes the deterministic dynamics at timestep h of round t and is unknown
to the learner. The learner then decides whether to query the expert for feedback. If the learner
queries, it receives a recommended action from the expert, and otherwise the learner does not receive
any additional information. The game moves on to the next time step h + 1, and moves to the
next episode t + 1 when it reaches to time step H in the current episode. We now describe the
expert model. With f⋆h being the underlying score function at time step h, the expert feedback is
sampled from a distribution ϕ(f⋆h(x)) ∈∆(K), with ϕ ∶ RK ↦ RK being some link function (e.g.,
ϕ(p)[i] ∝ exp(p[i])). The goal of the leaner is to perform as well as the Bayes optimal policy7

defined as π⋆h(x) ∶= argmaxa∈[K] ϕ(f⋆h(x)). In particular, the learner aims to find a sequence of
policies {πt}t≤T that have a small cumulative regret defined w.r.t. some (unknown) reward function
under possibly adversarial (and unknown) transition dynamics {Tt,h}h≤H,t≤T . At the same time,
the learner wants to minimize the number of queries made to the expert. Formally, we consider
counterfactual regret defined as

RegT =
T

∑
t=1

H

∑
h=1

r(xπ⋆
t,h, π

⋆
h(xπ⋆

t,h)) −
T

∑
t=1

T

∑
h=1

r(xt,h, ŷt,h)

where xt,h are the states reached by the learner corresponding to the chosen actions and the dynamics,
and xπ⋆

t,h denotes the states that would have been generated if we executed π⋆ from the beginning of
the episode under the same dynamics. The query complexity NT is the total number of queries to the
expert across all H steps in T episodes.

Given the selective sampling results we provided in the earlier section, one may be tempted to apply
them to the imitation learning problem. However, there is a caveat. A key to the reduction in Ross
et al. [2011] is to apply Performance Difference Lemma (PDL) to reduce the problem of IL to online
classification under the sequence of state distributions induced by the policies played by the learning
algorithm. Hence, if one blindly applied this reduction, then in the margin term, one would need
to account for the states that the learner visits (which could be arbitrary). Thus, for DAgger to
have meaningful bounds, we would require a large margin over the entire state space. This is too
much to ask for in practical applications. Consider the example of learning autonomous driving
from a human driver as the expert. It is reasonable to believe that human drivers can confidently
provide the right actions when they are driving themselves or are faced with situations they are more
familiar with. However, assuming that the human driver is going to be confident in an unfamiliar
situation (e.g., an emergency situation that is not often encountered by the human driver), is a strong
assumption. Towards that end, we make a significantly weaker, and much more realistic, margin
assumption that the expert has a large margin only on the state distribution induced by π⋆, and not on
the state distribution of the learner or the noisy expert.8 In particular, we define Tε,h to denote the
total number of episodes where the comparator policy π⋆ visits a state with low margin at time step
h, i.e., Tε,h = ∑T

t=1 1{Margin(f⋆h(xπ⋆
t,h)) ≤ ε}.

We now proceed to our main results in this section. Learning from a noisy expert is indeed very
challenging. In fact, learning from noisy expert feedback may even be statistically intractable in
the non-interactive IL setting, where the learner is only limited to accessing offline noisy expert
demonstrations for learning, e.g. in offline RL, Behavior Cloning, etc. The following lower bound
formalizes this. In fact, the same lower bound also shows that AggreVaTe [Ross and Bagnell, 2014]
style algorithms would not succeed under noisy expert feedback, AggreVaTe relies on roll-outs
obtained by running the (noisy) expert suggestions.

7Note that the comparator policy π⋆ reflects the experts models, and may not be the optimal policy for the
underlying MDP.

8The precise definition of the Margin for IL is given in the appendix.

8

Proposition 1 (Lower bound for learning from non-interactive noisy demonstrations). There exists
an MDP, for every h ≤H , a function class Fh with ∣Fh∣ ≤ 2H , a noisy expert whose optimal policy
π⋆(x) = argmaxa(f⋆h(x)[a]) for some f⋆h ∈ Fh with Tε,h = 0 for any ε ≤ 1/4, such than any
non-interactive algorithm needs Ω(2H) many noisy expert trajectory demonstrations to learn, with
probability at least 3/4, a policy π̂ that is 1/8-suboptimal w.r.t. π⋆.

Proposition 1 implies that in order to learn with a reasonable sample complexity (that is polynomial in
H), a learner must be able to interactively query the expert. In Algorithm 2, we provide an interactive
imitation learning algorithm (with selective querying) that can learn from noisy expert feedback. The
regret bound and query complexity bounds for Algorithm 2 are:

Algorithm 2 InteRActiVe ImitatiOn Learning VIa Active Expert Querying (RAVIOLI)
Input: Params δ, γ, λ, T , function classes {Fh}h≤H , online regression oracle Oracleh w.r.t. ℓϕ for

h ∈ [H].
1: Set Ψℓϕ

δ (Fh, T) = 4
λ
Regℓϕ(Fh;T) + 112

λ2 log(4H log2(T)/δ).
2: Compute f1,h = Oracle1,h(∅) for h ∈ [H].
3: for t = 1 to T do
4: Nature chooses the state xt,1.
5: for h = 1 to H do
6: Learner plays ŷt,h = SelectAction(ft,h(xt,h))
7: Learner transitions to the next state in this round xt,h+1 ← Tt,h(xt,h, ŷt,h).
8: Learner computes

∆t,h ∶= max
f∈Fh

∥f(xt,h) − ft,h(xt,h)∥ s.t.
t−1
∑
s=1

Zs,h∥f(xs,h) − fs,h(xs,h)∥2 ≤ Ψ
ℓϕ
δ (Fh, T). (6)

9: Learner decides whether to query: Zt,h = 1{Margin(ft,h(xt,h)) ≤ 2γ∆t,h}.
10: if Zt,h = 1 then
11: Learner queries the label yt,h for xt,h.
12: ft+1,h ← Oraclet+1,h({xt,h, yt,h})
13: else
14: ft+1,h ← ft,h

Theorem 4. Let δ ∈ (0,1). Under the modeling assumptions above, with probability at least 1 − δ,
Algorithm 2 obtains:

RegT = Õ(inf
ε
{H

H

∑
h=1

Tε,h +
Hγ2

λε2

H

∑
h=1

Regℓϕ(Fh;T)}), and,

NT = Õ(inf
ε
{H

H

∑
h=1

Tε,h +
Hγ2

λε2

H

∑
h=1

Regℓϕ(Fh;T) ⋅E(Fh, ε/8γ; f⋆h)}).

Since the above bound holds for any sequence of dynamics {Th,t}h≤H,t≤T , the result of Theorem 4
also holds for the stochastic IL setting where the transition dynamic is stochastic but fixed during the
interaction. In particular, setting Th,t ∼ Th sampled i.i.d. from a fixed stochastic dynamics {Th}h≤H
recovers a similar bound for the stochastic setting.

4.1 Learning from Multiple Experts

In Dekel et al. [2012], the problem of selective sampling from multiple experts is considered with the
main motivation being that we can consider each expert as being confident (and correct) in certain
states or scenarios, and we would like to learn from their joint feedback. The goal there is to perform
not only as well as the best of them individually but even as well as the best combination of them.
Consider the example of learning to drive from human demonstrations, we might have one human
demonstrator who is an expert in highway driving, another human who is an expert in city driving,
and the third one in off-road conditions. Each expert is confident in their own terrain, but we would
like to learn a policy that can perform well in all terrains.

The formal model is similar to the single-expert case, but we now have M experts. For every time
step h ≤H , the m-th expert has an underlying ground truth model f⋆,mh ∈ Fm

h that it uses to produce

9

its label, i.e. for a given state xh it draws its label as ymh ∼ ϕ(f
⋆,m
h (xh)), where ϕ is the link function.

On rounds in which the learner queries for the experts feedback, it gets back a label from each of
the M experts, i.e. {y1h, . . . , yMh }. While on every query the learner gets a different label from each
expert, its objective is to perform as well as a comparator policy that is defined w.r.t. some ground
truth aggregation function that we define next.

The aggregation function A ∶∆([K])M ↦∆([K]), known to the learner, combines the recommen-
dation of the M experts to obtain a ground truth label for the corresponding state. In particular, on a
given state xh, the label yh is samples as:

yh ∼ A (ϕ(f⋆,1h (xh)), . . . , ϕ(f⋆,Mh (xh))). (7)

Given the aggregation function A and the above label generation process, the policy π⋆ that we wish
to compete with in our regret bound is simply the Bayes optimal predictor given by

π⋆(xh) = SelectAction(A (ϕ(f⋆,1h (xh)), . . . , ϕ(f⋆,Mh (xh)))), (8)

where SelectAction ∶ ∆(K) ↦ [K] is given by SelectAction(p) = argmaxk∈[K] p[K]. Some
illustrative examples of aggregation functions are given in Appendix F.5. Our main Theorem 5 below
bounds the number of label queries to the experts, and regret with respect to this π⋆, and is obtained
using the imitation learning algorithm given in Algorithm 4 in Appendix F.5.

Our bounds depend on a margin term Tε,h, that captures the number of rounds in which the Bayes
optimal predictor π⋆ can flip its label if our estimates of the M experts are off by at most ε (in ℓ∞
norm). Similar to the single expert case, we only pay in the margin term for time steps in which the
counterfactual trajectory w.r.t. the policy π⋆ has a small-margin. We note that while the trajectories
taken by the learner or the noisy experts may go through states that have a large-margin, the margin
term Tε,h that appears in our bounds only accounts for time steps when the comparator policy π⋆ (the
optimal aggregation of expert recommendations) would go to a small-margin region, which could be
much smaller. For the ease of notation, we defer the exact definition of margin, and the term Tε,h to
Appendix F.5, and state the main result below:
Theorem 5. Let δ ∈ (0,1). Under the modeling assumptions above for the multiple experts setting,
with probability at least 1 − δ, the imitation learning Algorithm 4 (given in the appendix) obtains:

RegT = Õ(inf
ε
{H

H

∑
h=1

Tε,h +
H

λε2

M

∑
m=1

H

∑
h=1

Regℓϕ(Fm
h ;T)}), and,

NT = Õ(inf
ε
{H

H

∑
h=1

Tε,h +
H

λε2

H

∑
h=1

M

∑
m=1

Regℓϕ(Fm
h ;T) ⋅E(Fm

h , ε/8; f⋆,mh)}).

In Appendix A, we evaluate our IL algorithm on the Cartpole environment, with single and multiple
experts. We found that our algorithm can match the performance of passive querying algorithms
while making a significantly lesser number of expert queries. Finally, note that setting H = 1 in the
above result, recovers an algorithm, and a similar result for selective sampling with multiple experts.

Conclusion

In this paper, or goal is to develop algorithms for online IL with active queries with small regret and
query complexity bounds. Towards that end, we started by considering the selective sampling setting
(IL with H = 1), and provided a selective sampling algorithm that can work with general function
classes F and modeling assumptions, and relies on access to an online regression oracle w.r.t. F
to make its predictions (Section 3). The provided regret and query complexity bounds depend on
the margin of the expert model. We then extended our selective sampling algorithm to interactive
IL (Section 4). For IL, we showed that the margin term that appears in the regret and the query
complexity depends on the margin of the expert on counterfactual trajectories that would have been
observed on following the expert policy (that we wish to compare to), instead of the trajectories
that the learner observes. Thus, if the expert always chooses actions that leads to states where it is
confident (i.e. has less margin), the margin term will be smaller. We also considered extensions to
learning with multiple experts.

10

Acknowledgements

AS thanks Sasha Rakhlin and Dylan Foster for helpful discussions. AS acknowledges support from
the Simons Foundation and NSF through award DMS-2031883, as well as from the DOE through
award DE-SC0022199. WS acknowledges support from NSF grant IIS-2154711. KS acknowledges
support from NSF CAREER Award 1750575, and LinkedIn-Cornell grant.

References
Alekh Agarwal. Selective sampling algorithms for cost-sensitive multiclass prediction. In Interna-

tional Conference on Machine Learning, pages 1220–1228. PMLR, 2013.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5):
834–846, 1983.

Mark Beliaev, Andy Shih, Stefano Ermon, Dorsa Sadigh, and Ramtin Pedarsani. Imitation learning
by estimating expertise of demonstrators. In International Conference on Machine Learning, pages
1732–1748. PMLR, 2022.

Kiante Brantley, Wen Sun, and Mikael Henaff. Disagreement-regularized imitation learning. In
International Conference on Learning Representations, 2019.

Kianté Brantley, Amr Sharaf, and Hal Daumé III. Active imitation learning with noisy guidance.
arXiv preprint arXiv:2005.12801, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Zhangjie Cao, Zihan Wang, and Dorsa Sadigh. Learning from imperfect demonstrations via adversar-
ial confidence transfer. In 2022 International Conference on Robotics and Automation (ICRA),
pages 441–447. IEEE, 2022.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolo Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient
prediction. IEEE Transactions on Information Theory, 51(6):2152–2162, 2005.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, and John Langford. Learning
to search better than your teacher. In International Conference on Machine Learning, pages 2058–
2066. PMLR, 2015.

Ching-An Cheng and Byron Boots. Convergence of value aggregation for imitation learning. In
International Conference on Artificial Intelligence and Statistics, pages 1801–1809. PMLR, 2018.

Ching-An Cheng, Andrey Kolobov, and Alekh Agarwal. Policy improvement via imitation of multiple
oracles. Advances in Neural Information Processing Systems, 33:5587–5598, 2020.

Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active learning from
single and multiple experts. The Journal of Machine Learning Research, 13(1):2655–2697, 2012.

Maximilian Du, Suraj Nair, Dorsa Sadigh, and Chelsea Finn. Behavior retrieval: Few-shot imitation
learning by querying unlabeled datasets. arXiv preprint arXiv:2304.08742, 2023.

Dylan Foster, Alekh Agarwal, Miroslav Dudík, Haipeng Luo, and Robert Schapire. Practical
contextual bandits with regression oracles. In International Conference on Machine Learning,
pages 1539–1548. PMLR, 2018a.

Dylan J Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, and Karthik Sridharan. Logistic
regression: The importance of being improper. In Conference On Learning Theory, pages 167–208.
PMLR, 2018b.

11

Dylan J Foster, Alexander Rakhlin, David Simchi-Levi, and Yunzong Xu. Instance-dependent
complexity of contextual bandits and reinforcement learning: A disagreement-based perspective.
arXiv preprint arXiv:2010.03104, 2020.

Steve Hanneke and Liu Yang. Minimax analysis of active learning. J. Mach. Learn. Res., 16(1):
3487–3602, 2015.

Steve Hanneke and Liu Yang. Toward a general theory of online selective sampling: Trading off
mistakes and queries. In International Conference on Artificial Intelligence and Statistics, pages
3997–4005. PMLR, 2021.

Yilun Hao, Ruinan Wang, Zhangjie Cao, Zihan Wang, Yuchen Cui, and Dorsa Sadigh. Masked
imitation learning: Discovering environment-invariant modalities in multimodal demonstrations.
arXiv preprint arXiv:2209.07682, 2022.

Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
function. arXiv preprint arXiv:2305.15363, 2023.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In In
Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John Langford. Active
learning for cost-sensitive classification. In International Conference on Machine Learning, pages
1915–1924. PMLR, 2017.

Michael Laskey, Sam Staszak, Wesley Yu-Shu Hsieh, Jeffrey Mahler, Florian T Pokorny, Anca D
Dragan, and Ken Goldberg. Shiv: Reducing supervisor burden in dagger using support vectors for
efficient learning from demonstrations in high dimensional state spaces. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), pages 462–469. IEEE, 2016.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Gene Li, Pritish Kamath, Dylan J Foster, and Nati Srebro. Understanding the eluder dimension.
Advances in Neural Information Processing Systems, 35:23737–23750, 2022.

Shahar Mendelson. Rademacher averages and phase transitions in glivenko-cantelli classes. IEEE
transactions on Information Theory, 48(1):251–263, 2002.

Wenlong Mou, Zheng Wen, and Xi Chen. On the sample complexity of reinforcement learning with
policy space generalization. arXiv preprint arXiv:2008.07353, 2020.

Khanh Nguyen and Hal Daumé III. Active imitation learning from multiple non-deterministic
teachers: Formulation, challenges, and algorithms. arXiv preprint arXiv:2006.07777, 2020.

Ian Osband and Benjamin Van Roy. Model-based reinforcement learning and the eluder dimension.
Advances in Neural Information Processing Systems, 27, 2014.

Yunpeng Pan, Ching-An Cheng, Kamil Saigol, Keuntak Lee, Xinyan Yan, Evangelos Theodorou, and
Byron Boots. Agile autonomous driving using end-to-end deep imitation learning. In Robotics:
science and systems, 2018.

Alexander Rakhlin and Karthik Sridharan. Online non-parametric regression. In Conference on
Learning Theory, pages 1232–1264. PMLR, 2014.

Alexander Rakhlin and Karthik Sridharan. Online nonparametric regression with general loss
functions. arXiv preprint arXiv:1501.06598, 2015.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pages 661–668. JMLR
Workshop and Conference Proceedings, 2010.

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-regret
learning. arXiv preprint arXiv:1406.5979, 2014.

12

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings,
2011.

Stéphane Ross, Narek Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, Debadeepta
Dey, J Andrew Bagnell, and Martial Hebert. Learning monocular reactive uav control in cluttered
natural environments. In 2013 IEEE international conference on robotics and automation, pages
1765–1772. IEEE, 2013.

Daniel Russo and Benjamin Van Roy. eluder dimension and the sample complexity of optimistic
exploration. Advances in Neural Information Processing Systems, 26, 2013.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and fast rates. Advances
in neural information processing systems, 23, 2010.

Wen Sun, Arun Venkatraman, Geoffrey J Gordon, Byron Boots, and J Andrew Bagnell. Deeply
aggrevated: Differentiable imitation learning for sequential prediction. In International conference
on machine learning, pages 3309–3318. PMLR, 2017.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv preprint
arXiv:1805.01954, 2018.

Alexander B Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of
Statistics, 32(1):135–166, 2004.

Yinglun Zhu and Robert Nowak. Efficient active learning with abstention. arXiv preprint
arXiv:2204.00043, 2022.

13

Contents of Appendix

A Experiments 15

B Further Discussion on Related Works 17

C Discussion on Computationally Efficiency 17

D Useful Tools and Notation 19

D.1 Basic Probabilistic Tools . 19

D.2 Online Learning . 19

D.3 Eluder Dimension, Disagreement Coefficient, and Star Number 20

E Selective Sampling: Learning from Single Expert 23

E.1 Comparison to Related Works . 23

E.2 Proof Sketch for Selective Sampling and Binary Labels 23

E.3 Proof of Theorem 1 . 25

E.3.1 Supporting Technical Results . 25

E.3.2 Regret Bound . 28

E.3.3 Total Number of Queries . 29

E.4 Proof of Theorem 2 . 30

E.4.1 Supporting Technical Results . 32

E.4.2 Regret Bound . 36

E.4.3 Total Number of Queries . 38

E.5 Proof of Corollary 1 . 39

E.6 Proofs for Lower Bounds in Section 3.2 . 40

F Imitation Learning: Learning from Single Expert 42

F.1 Imitation Learning Tools . 42

F.2 Proof of Proposition 1 . 42

F.3 Proof of Theorem 4 . 43

F.3.1 Supporting Technical Results . 43

F.3.2 Regret Bound . 45

F.3.3 Total Number of Queries . 47

F.4 Proof for the Stochastic Setting . 49

F.5 Proof of Theorem 5 . 50

F.5.1 Supporting Technical Results . 52

F.5.2 Regret Bound . 53

F.5.3 Total Number of Queries . 54

14

A Experiments

We conduct experiments to verify our theory. To this end, we first introduce the simulator, Cart
Pole [Barto et al., 1983, Brockman et al., 2016], and then explain the implementation of our algorithm
and the baselines. Finally, we present the results.

Cart Pole. Cart Pole is a classical control problem, in which a pole is attached by an un-actuated
joint to a cart. The goal is to balance the pole by applying force to the cart either towards the left or
towards the right (so binary action). The episode is terminated once either the pole is out of balance
or the cart deviates too far from the origin. A reward of 1 is obtained in each time step (however, the
algorithm does not get any reward signal). The observations are four-dimensional, with the values
representing the cart’s position, velocity, the pole’s angle, and angular velocity. The action is binary,
indicating the force is either to the left or to the right.

Expert policies generation. We first generate an optimal policy π⋆ (that attains the maximum
possible reward of 500) by policy gradient. We notice that when running the optimal policy π⋆, the
absolute value of the cart’s position only lies in [0,2]. Hence, to generate M experts, we first divide
this interval into M sub-intervals [a0, a1],[a1, a2],. . . ,[an−1, aM] (a0 = 0 and aM = 2) by geometric
progression. For the i-th expert, it plays the same action as π⋆ when the absolute value of the cart’s
position is in the interval [ai−1, ai] and plays uniformly at random outside of this interval. We
find that using such generation, each expert individually cannot achieve a good performance (when
M > 1), while a proper combination of them can still be as strong as π⋆. We conduct experiment
for M = 1,2,3, and 5, respectively. Given this design of expert generation, when the cart is in the
sub-interval [ai−1, ai], the only expert with non-zero margin is exactly the i-th expert.

Implementation. The algorithm is similar to Algorithm 4 but with some modification for practical
purpose. First, we use a neural network (single hidden layer neural network,with 4 neurons in the
hidden layer) as our function class {Fm

h }h≤H,m≤M . Second, we specify SelectAction to pick the
action of the most confident expert, i.e.,

SelectAction(f1
t,h(x), . . . , fM

t,h(x)) ∶= sign(f î
t,h(x)) where î = argmax

i∈[M]
∣f i

t,h(x)∣.

Since we are considering binary action, we assume f i
t,h(x) ∈ [−1,1], and the action space is {−1,1}.

Third, to compute ∆m
t,h efficiently, we apply the Lagrange multiplier to (60) to arrive at the following

equivalent problem:

∆m
t,h(xt,h) ∶= min

f∈Fm
h

max
α≥0

−∥f(xt,h) − fm
t,h(xt,h)∥

+ α(
t−1
∑
s=1

Zs,h∥f(xs,h) − fm
s,h(xs,h)∥

2 −Ψℓϕ
δ (F

m
h , T)) .

Then we treat the Lagrange multiplier α as a constant, which converts the problem into the following:

∆m
t,h(xt,h) ∶= min

f∈Fm
h

−∥f(xt,h) − fm
t,h(xt,h)∥ + α

t−1
∑
s=1

Zs,h∥f(xs,h) − fm
s,h(xs,h)∥

2
. (9)

The study of varying α is shown in Figure 1. We found that small values (e.g., α = 1) mostly lead to
poor performance, while the results are fairly similar for large values. In our key experiments, we
choose α = 50 when the number of experts is 1, 2 or 3, and choose 200 for 5-expert experiments. We
note that since computing (9) for each time step involves repetitively fitting neural networks, which is
time-consuming, we do a warm start at each round. In particular, we set the initial weights for the
neural network of each round to be the weights of the trained network from the previous round. We
also implemented early stopping that stops the iteration if the loss does not significantly decrease
for multiple consecutive iterations. The online regression oracle Oracle is instantiated as applying
gradient descent for certain steps on the mean squared loss over all data collected so far, using warm
start for speedup as well.

We first conduct experiments on a single expert setting. In Figure 2 we plot the curves of return and
number of queries with respect to iterations for our method, and compare to DAgger (which passively
makes queries at every time step; Ross and Bagnell [2014]). We note that while our algorithm does

15

0 200 400 600 800
Number of Queries

0

200

400
Re

tu
rn

1 expert

0 250 500 750 1000
Number of Queries

0

200

400

2 experts

= 1 = 10 = 50 = 200

0 500 1000 1500
Number of Queries

0

200

400

3 experts

0 1000 2000 3000 4000
Number of Queries

0

200

400

5 experts

Figure 1: Learning curves of return with respect to the number of queries for different values of α
and different numbers of experts.

not converge to the optimal value as fast as DAgger, the number of queries made by our algorithm is
significantly fewer, which means that our method is indeed balancing the speed of learning and the
number of queries.

0 25 50 75
Iteration

0

200

400

Re
tu

rn

0 25 50 75
Iteration

0

2000

4000

6000

8000

Nu
m

be
r o

f Q
ue

rie
s

Ours Passive
Figure 2: Learning curves of the return and the number of queries for 1 expert.

In additional to DAgger, we also compare to the following baselines:

● Passive learning. By passive learning, we mean running our algorithms with Zt,h = 1,
i.e., making queries whenever possible. Based on different styles of expert feedback, we
divide the passive learning baselines into two: noisy experts and noiseless experts. For the
former we get the noisy label ymt,h for xt,h (generated by ymt,h ∼ ϕ(f

⋆,m
h (xt,h))), and for the

latter we directly get the action of the optimal policy (i.e. the action π⋆h(xt,h)). Intuitively,
noiseless feedback is more helpful than the noisy one.

● MAMBA. We compare our algorithm with (a slight variant of) MAMBA [Cheng et al.,
2020]. At each time step, it creates copies of the environment and run each expert policy
on these copies, and then it selects the action of the expert policy with the highest return.
For simplicity, we refer to this algorithm as MAMBA. Note that MAMBA assumes that one
has access to the underlying reward function. Thus this baseline is using significantly more
information than our approach.

● Best expert. We also compared our algorithm with the best expert policy.

The main results are shown in Figure 3. We first noticed that our algorithm outperforms passive
learning with noisy experts in all settings. Moreover, we beat the noiseless version when there is only
one expert. Intuitively, getting feedback from noiseless experts is a very strong assumption and it
is not surprising to see that the performance is improved with this stronger feedback. Note that our
algorithm is only getting noisy labels as feedback. We also note that, despite the fact that MAMBA
achieves better results than the best expert policy (in terms of the value function), it is still worse than
our algorithm. Indeed, MAMBA does not even learn a policy that can solve the task when M ≥ 2.
This is because by our construction of experts, there is no single expert that is capable of solving the
task alone. Note that MAMBA performs well in the one expert case because in that case, the (single)
expert can reliably solve the control task.

16

0 250 500 750 1000
Number of Queries

0

200

400
Re

tu
rn

1 expert

0 250 500 750 1000
Number of Queries

0

200

400

2 experts

Ours Passive (noisy experts) Passive (noiseless experts) Best expert MAMBA

0 250 500 750 1000
Number of Queries

0

200

400

3 experts

0 500 1000 1500 2000
Number of Queries

0

200

400

5 experts

Figure 3: Learning curves of return with respect to the number of queries for different algorithms and
numbers of experts.

B Further Discussion on Related Works

Selective Sampling. There is a large bank of both theoretical and empirical work for active learning
and selective sampling. Perhaps the work closest to ours is the work of Zhu and Nowak [2022].
In this paper, the authors consider binary classification problem and provide bounds on number of
queries and bound on excess risk in the active learning framework. Their algorithm also relies on
regression oracle. However, there are many key differences: Firstly, their guarantees for regret for
selective sampling problem (see for instance Theorem 10 on page 28 of Zhu and Nowak [2022])
has a dependence on disagreement coefficient in the regret bound as well as number of queries. On
the contrary, as we show in our work, one only needs to pay for eluder dimension or disagreement
coefficient in query complexity and not in regret bound. Furthermore, we supplement our result
with lower bound showing that unless one has label complexity that depends on star number (and
hence can be also related to worst case disagreement coefficient), one can not get a small enough
regret bound. So the separation between regret bound (that is independent of eluder dimension/star
number/disagreement coefficient) and query complexity (that depends on those quantities) is real.
Secondly, the results in [Zhu and Nowak, 2022] dont automatically adapt to the margin region and in
general there is no way to estimate the parameters of Tsybakov’s noise condition. Finally, their regret
bounds depend on pseudo dimension and are thus generally suboptimal for complex F .

Imitation Learning. IL has enjoyed tremendous research from both theoretical and empirical
perspective in the last decade; notable references include Ross et al. [2011], Ross and Bagnell [2014],
Sun et al. [2017], Chang et al. [2015], Brantley et al. [2019, 2020], Nguyen and Daumé III [2020].
Ross et al. [2011] initiated research on using online regression oracles to model the expert feedback,
and provided regret bounds for IL. The key differences between our work and prior theoretical works
on IL are as follows: Firstly, we consider active querying, and provide query complexity bounds
for our algorithms. Secondly, and more importantly, we consider interactive IL with noisy expert
feedback whereas prior works was restricted to exact expert feedback. Finally, our regret and query
complexity bounds scale with the number of times when the comparator policy (induced by the
expert) goes to the states where expert has a small margin (instead of the number of times when the
learner goes to such states). In many cases, the margin error term corresponding to the comparator
policy could be much smaller. On the empirical side, there is a long line of research that provided
algorithms and empirical heuristics for making IL sample efficient by modeling the experts in both
single expert and multiple expert settings [Beliaev et al., 2022, Cao et al., 2022, Hejna and Sadigh,
2023, Du et al., 2023, Hao et al., 2022]; however most of these algorithm do not come with any
rigorous guarantees.

C Discussion on Computationally Efficiency

Given the theoretical nature of this paper, our focus is to understand the statistically efficient (query
complexity), and to develop algorithms, for selective sampling and imitation learning with general
model classes F , given access to an online regression oracle w.r.t. F . For a general function class,
our algorithm is computationally inefficient. However, in many cases, our algorithm (or its slight
modification) can also be implemented efficiently. We describe some scenarios below:

17

● 1D-Linear models: When f ∶ X ↦ R is linear, the optimization objective in (5) in
Algorithm 1 (or (6) in Algorithm 2) can be efficiently by instead solving the objectives

∆
(1)
t (xt) =max

f∈F
f(xt) − ft(xt) s.t.

t−1
∑
s=1

Zs∣f(xs) − fs(xs)∣ ≤ Ψ,

and

∆
(2)
t (xt) =max

f∈F
−(f(xt) − ft(xt)) s.t.

t−1
∑
s=1

Zs∣f(xs) − fs(xs)∣ ≤ Ψ

and then picking the maximum absolute value. Both of these new objectives are linear
functions, with convex constraints, and thus can be solved efficiently using a standard solver
(e.g. CvXOPT).

● Differentiable parameterizations: When class F could be parameterized in a differentiable
way, e.g. using a neural network, we can simply add the constraints as a penalty (with the
appropriate multiplicative scale parameter) to convert (5) into an unconstrained optimization
problem w.r.t the parameters θ (of the differentiable parameterization) and then solve it using
SGD algorithm. While this is only a heuristic, it works well in practice and is precisely what
we do for our experiments in A with 2 layer neural networks.

● Efficient Implementation of (5) via calls to a Regression Oracles w.r.t. F . Below we
discuss some scenarios and minor modifications of our algorithms under which the compu-
tation of ∆t (as in (5) in Algorithm 1 or (6) in Algorithm 2) can be performed efficiently via
calls to a regression oracle w.r.t. F . Suppose that F is closed under convexification. We
consider two scenarios:

● Binary Actions Setting: In this case, we can simply choose F to be a class of 1D functions,
since we can model the expert using a function f⋆ ∶ X ↦ R ∈ F where for any x, f⋆(x)
denotes the probability of choosing the first action. The probability of choosing the second
action would then be 1 − f⋆(x). In this case, (5) in Algorithm 1 simply reduces to

∆′t(xt) =max
f∈F
∣f(xt) − ft(xt)∣ s.t.

t−1
∑
s=1

Zs∣f(xs) − fs(xs)∣ ≤ Ψ.

The above can be implemented efficiently using the techniques from Foster et al. [2018a]. In
particular, let rmax denote the maximum value that f(x) can take. We can solve the above
objective using the BINSEARCH procedure in Foster et al. [2018a] where we perform a
binary search over a weight parameter w, by solving for each w the optimization problems:

argmin
f∈F
(w ⋅ (f(xt) − ft(xt) − 2rmax)2 +

t−1
∑
s=1

Zs∣f(xs) − fs(xs)∣)

and

argmin
f∈F
(w ⋅ (f(xt) − ft(xt) + 2rmax)2 +

t−1
∑
s=1

Zs∣f(xs) − fs(xs)∣)

both of which can be efficiently implemented using square loss regression oracles to F . We
refer to Foster et al. [2018a] for more details.

● Multiple Actions Setting: Suppose that F is a product class of {Fk} for different actions
k ∈ [K]. We can get an oracle-efficient algorithm for a slight modification of (5), at a price
of an extra multiplicative K factor in the query complexity bound. Consider the ∆t(xt)
given by maxf∈F ∥f(xt)−ft(xt)∥∞ s.t. ∑t−1

s=1Zs∥f(xs)−fs(xs)∥2 ≤ Ψ, which is equal to
maxk∈[K]maxf∈F ∣fk(xt)−ft,k(xt)∣ s.t. ∑t−1

s=1Zs∥f(xs)−fs(xs)∥2 ≤ Ψ, which can again
be implemented via calls to a square loss regression oracle w.r.t. F by using BINSEARCH
procedure in Foster et al. [2018a] (similar to what we did for the Binary actions case above).

18

D Useful Tools and Notation

Additional notation. Throughout the paper, we assume that the ties are broken arbitrarily but
consistently. Vector-valued variables are denoted with small alphabets like u, v, etc, and matrix-
valued variables are denoted with capital alphabets like F,G, etc. For any two distributions D1

and D2, we define KL(D1∥D2) to denote the KL divergence between D1 and D2. Furthermore,
kl(b1∥b2) denotes the KL divergence between Bernoulli(b1) and Bernoulli(b2). Finally, we assume
that ∥f(x)∥ ≤ B ≤ 1 for any f ∈ F and x ∈ X .

The following lemma is used throughout the appendix, and its proof is trivial.
Lemma 1. Let E1 and E2 be any two events such that E1 Ô⇒ E2 then 1{E1} ≤ 1{E2}.

D.1 Basic Probabilistic Tools

Lemma 2 (Theorem 1 in Srebro et al. [2010]). Let T > 0, and let F = {X × Y} be an arbitrary
function class, and ℓ be an γ-smooth and non-negative loss such that ∣ℓ(f(x), y)∣ ≤ B for all
x ∈ X , y ∈ Y, f ∈ F . For any δ > 0, we have with probability at least 1 − δ over a random sample of
size T , for any f ∈ F ,

T E(x,y)∼µ[ℓ(f(x), y)] ≤ 2
T

∑
t=1

ℓ(f(xt), yt) + c1(HT log3(T)Rad2T (F) +B log(1/δ))

where c1 < 105 is a numeric constant, and RadT (F) denotes the Rademacher complexity of the class
F .

The precise value of the numeric constant c1 in the above can be derived from Srebro et al. [2010]
and Mendelson [2002]. Note that for finite function classes, we have RadT (F) = O(

√
log(∣F ∣)/T)

and thus the second term above is bounded by Õ(log(∣F ∣)). In general, we have that TRad2T (F) =
Õ(Regsq(F ;T)) [Rakhlin and Sridharan, 2014], and thus the second term is always dominated by
the other terms in our regret and query complexity bounds.

The following inequalities are well-known; we use the version stated in Zhu and Nowak [2022].
Lemma 3 (Freedman’s inequality). Let {Xt}t≤T be a real-valued martingale different sequence
adapted to the filtration Ft, and let Et[⋅] ∶= E[⋅ ∣ Ft−1]. If ∣Xt∣ ≤ B almost surely, then for any
η ∈ (0,1/B), the following holds with probability at least 1 − δ:

T

∑
t=1

Xt ≤ η
T

∑
t=1

Et[X2
t] +

B log(1/δ)
η

.

Lemma 4. Let {Xt}t≤T be a sequence of positive valued random variables adapted to the filtration
Ft, and and let Et[⋅] ∶= E[⋅ ∣ Ft−1]. If Xt ≤ B almost surely, then with probability at least 1 − δ,

T

∑
t=1

Xt ≤
3

2

T

∑
t=1

Et[Xt] + 4B log(2/δ),

and
T

∑
t=1

Et[Xt] ≤ 2
T

∑
t=1

Xt + 8B log(2/δ).

D.2 Online Learning

Lemma 5. Suppose that the labels are generated according to the (2) where the link function satisfies
Assumption 1. Additionally, assume that the regression oracle satisfies the guarantee (3). Then, for
any δ ≤ 1/e and T ≥ 3, with probability at least 1 − δ, we have for all t ≤ T ,

t

∑
s=1
∥fs(xs) − f⋆(xs)∥2 ≤ Ψℓϕ

δ (F , T) ∶=
4

λ
Regℓϕ(F ;T) + 112

λ2
log(4 log2(T)/δ),

where B is defined such that supx f(x) ≤ B.

19

Proof. Using Agarwal [2013, Lemma 2] along with an Union bound implies that for all t ≤ T ,

t

∑
s=1
∥fs(xs) − f⋆(xs)∥2 ≤

4

λ

t

∑
s=1
(ℓϕ(fs(xs), ys) − ℓϕ(f⋆(xs), ys)) +

112

λ2
log(4 log2(T)/δ).

Plugging in the regret bound (3) in the above, we get that

t

∑
s=1
∥fs(xs) − f⋆(xs)∥2 ≤

T

∑
s=1
∥fs(xs) − f⋆(xs)∥2 ≤

4

λ
Regℓϕ(F ;T) + 112

λ2
log(4 log2(T)/δ).

D.3 Eluder Dimension, Disagreement Coefficient, and Star Number

For the sake of completeness, we recall the scalar versions of scale-sensitive eluder dimension, and
disagreement coefficient introduced in Russo and Van Roy [2013], Foster et al. [2020], which is
defined for a class F ⊆ {X ↦ R} of scalar valued functions.

Definition 4 (Scale-sensitive eluder dimension (scalar version), Russo and Van Roy [2013], Foster
et al. [2020]). Let F ⊆ {X ↦ R}. Fix any f⋆ ∈ F , and define E′(F , β; f⋆) to be the length of the
longest sequence of contexts x1, x2, . . . xm such that for all i, there exists fi ∈ F such that

∣fi(xi) − f⋆(xi)∣ > β, and ∑
j<i
(fi(xj) − f⋆(xj))2 ≤ β2.

We define the scale-sensitive eluder dimension as E(F , β0; f
⋆) ∶= supβ0≥β E

′(F , β; f⋆).

We next provide some examples of function classes with bounded eluder dimension. The examples
(a) − (c) first appeared in Russo and Van Roy [2013], and (d) first appeared in Osband and Van Roy
[2014].

(a) For any function class F ∶ {X ↦ R} and f⋆ ∈ F , E(F , β0; f
⋆) ≤ O(∣X ∣).

(b) For the class F of linear functions on a known feature map ϕ i.e. , F = {f ∣ f(x) =
⟨θf , ϕ(x)⟩ , θf ∈ Rd, ∥θf∥ ≤ 1}, we have E(F , β0; f

⋆) ≤ O(d log(1/ε)).
(c) For the class F of generalized linear functions on a known feature map ϕ i.e. , F =
{f ∣ f(x) = g(⟨θf , ϕ(x)⟩) , θf ∈ Rd, ∥θf∥ ≤ 1} where g is an increasing contin-
uously differentiable function, we have E(F , β0; f

⋆) ≤ O(dr2 log(L/ε)) where r =
supθ,x g′(⟨θ,x⟩)/infθ,x g′(⟨θ,x⟩) and L = supθ,x g′(⟨θ, ϕ(x)⟩).

(d) For the class F of quadratic functions on a known feature map ϕ i.e. F = {f ∣ f(x) =
ϕ(x)⊺Σfϕ(x) , Σf ∈ Rd×d, ∥Σf∥F ≤ 1}.

We next recall the definition of scale-sensitive disaggrement coefficient which appears in our bounds
for the case of stochastic contexts.

Definition 5 (Scale-sensitive disagreement coefficient (scalar version), Foster et al. [2020]). Let
F ⊆ {X ↦ R}. For any f⋆ ∈ F , and γ0, ε0 > 0 , the value function disagreement coefficient
θval(F , ε0, γ0; f⋆) is defined as

sup
µ

sup
γ>γ0,ε>ε0

{ ε
2

γ2
⋅Prx∼µ(∃f ∈ F ∣ ∣f(x) − f⋆(x)∣ > ε, ∥f − f⋆∥µ ≤ γ)} ∨ 1

where ∥f∥ =
√
Ex∼µ[f2(x)].

As we will show in Lemma 6 below, the scale-sensitive disagreement coefficient of F is always
bounded by the eluder dimension of F upto a constant factor on the dependence on ε0 and γ0.
However, the disagreement coefficient can be significantly smaller than the eluder dimension because
it can leverage additional distributional structure. We refer the reader to Foster et al. [2020] for
bounds on the eluder dimension, and the disagreement coefficient for various function classes. In the
following, we extend the above definitions to vector-valued functions to account for the vector-valued
function classes that we consider in this work.

20

Definition 6 (Scale-sensitive eluder dimension (normed version)). Let F ⊆ {X ↦ RK}. Fix any
f⋆ ∈ F , and define Ẽ(F , β; f⋆) to be the length of the longest sequence of contexts x1, x2, . . . xm

such that for all i, there exists fi ∈ F such that

∥fi(xi) − f⋆(xi)∥ > β, and ∑
j<i
∥fi(xj) − f⋆(xj)∥2 ≤ β2.

We define the scale-sensitive eluder dimension as E(F , β′; f⋆) = supβ≥β′ Ẽ(F , β; f⋆).

We note that the normed eluder dimension can be lower bounded in terms of the eluder di-
mension of scalar-valued function class obtained by projecting the output of the functions in
F along different coordinates. Let Fj = {Pjf ∣ Pjf(x) = f(x)[j], f ∈ F}, then clearly,
for any f⋆ ∈ F , E(F , β; f⋆) ≥ supj∈[d]E(PjF , β;Pjf

⋆). Furthermore, we always have that
E(F , β; f⋆) ≤ κ∑d

j=1E(PjF , β;Pjf
⋆), where κ hides poly(d) factors. We next define the normed

version of disagreement coefficient for vector-valued functions.
Definition 7 (Scale sensitive disagreement coefficient (normed version), Foster et al. [2020]). Let
F ⊆ {X ↦ RK}. For any f⋆ ∈ F , and β0, ε0 > 0 , the value function disagreement coefficient
θval(F , ε0, β0; f

⋆) is defined as

sup
µ

sup
β>β0,ε>ε0

{ ε
2

β2
⋅Prx∼µ(∃f ∈ F ∣ ∥f(x) − f⋆(x)∥ > ε, ∥f − f⋆∥µ ≤ β)} ∨ 1

where ∥f∥µ =
√
Ex∼µ[∥f(x)∥2].

We additionally also define the following bivariate version of eluder dimension for vector-valued
functions.
Definition 8 (Scale-sensitive eluder dimension (bivariate version)). Let F ⊆ {X ↦ RK}. Fix any
f⋆ ∈ F , and define Ě′(F , β; f⋆) to be the length of the longest sequence of contexts and actions
(x1, y1), (x2, y2) . . . (xm, ym) such that for all i, there exists fi ∈ F such that

∣fi(xi)[yi] − f⋆(xi)[yi]∣ > β, and ∑
j<i
(fi(xj)[yj] − f⋆(xj)[yj])2 ≤ β2.

We define the scale sensitive eluder dimension (mixed version) as Ě(F , β; f⋆) ∶=
supβ≥β0

Ě′(F , β0; f
⋆).

We next define the strong variant of scale-sensitive star number.
Definition 9 (scale-sensitive star number (strong version), Foster et al. [2020]). Let F ⊆ {X ↦ RK}.
For any f⋆ ∈ F and β > 0, let šval(F , β) denote the length of the longest sequence of contexts
{x1, . . . , xm} such that for all i, there exists fi ∈ F such that

∥fi(xi) − f⋆(xi)∥ > β, and ∑
j≠i
∥fi(xj) − f⋆(xj)∥2 ≤ β2.

We define the scale-sensitive star number as šval(F , β) ∶= supβ>β0
šval(F , β0).

The next result provides a relation between the star number, disagreement coefficient and the eluder
dimension.
Lemma 6 (Foster et al. [2020]). Suppose F ⊆ {X ↦ RK} is a uniform Glivenko-Cantelli
class. For any f⋆ ∈ F and γ, ε > 0, we have sval(F , β; f⋆) ≤ E(F , β; f⋆), θval(F , ε, γ; f⋆) ≤
4(sval(F , γ; f⋆))2 and θval(F , ε, γ; f⋆) ≤ 4E(F , γ; f⋆).

The following two technical lemmas are useful in bounding the total number of queries made by our
selective sampling and imitation learning algorithms. We first provide a technical result which bounds
the number of times we can find a function f ′ in a refinement Ft of F , such that f ′ is sufficiently far
away from f⋆ ∈ F . This result is a variant of Russo and Van Roy [2013, Lemma 3], and first appears
in Foster et al. [2020, Lemma E.4].
Lemma 7. Let {xt, yt, Zt}Tt=1 be sequence of tuples, where xt ∈ X and Zt ∈ {0,1}. Fix any f⋆ ∈ F ,
and define the set Ft = {f ∈ F ∣ ∑t−1

s=1Zs(f(xs)[ys] − f⋆(xs)[ys])2 ≤ β2}. Then, for any ζ > 0,
T

∑
t=1

Zt1{∃f ′ ∈ Ft ∶ (f ′(xt)[yt] − f⋆(xt)[yt]) ≥ ζ} ≤ (
β2

ζ2
+ 1)Ě(F , ζ; f⋆).

21

Proof. We first note that we can always remove a tuple {(xt, yt), Zt} whenever Zt = 0 without any
effect on the conclusion. Hence, we can assume Zt = 1 for all t ∈ [T] without loss of generality.
Then the rest of the proof essentialy follows from Foster et al. [2020, Lemma E.4]. For completeness,
we state the full proof here.

For simplicity of presentation, we say (xt, yt) is ζ-independent of (x1, y1), . . . , (xt−1, yt−1) if there
exists f ∈ F such that ∣f(xt)[yt] − f⋆(xt)[yt]∣ ≥ ζ and ∑t−1

s=1(f(xs)[ys] − f⋆(xs)[ys])2 ≤ ζ2.
Otherwise, we say x is ζ-dependent. The proof consists of the following two claims.

First, we claim that for any t ∈ [T], if there exists f ∈ Ft such that ∣f(xt)[yt] − f⋆(xt)[yt]∣ ≥
ζ, then xt is ζ-dependent on at most β2/ζ2 disjoint sequences of (x1, y1), . . . , (xt−1, yt−1). To
show this, let’s say xt is ζ-dependent on a particular subsequence (xi1 , yi1), . . . , (xik , yik) while
∣f(x)[y] − f⋆(x)[y]∣ ≥ ζ. Then it must holds that

k

∑
j=1
(f(xij)[yij] − f⋆(xij)[yij])

2

≥ ζ2.

If there are M such disjoint subsequence, then we can add them up and obtain the following:

t−1
∑
s=1
(f(xs)[ys] − f⋆(xs)[ys])

2

≥Mζ2.

By the construction of Ft, the left-hand side above is at most β2. Hence we conclude that β2 ≥Mζ2,
which implies M ≤ β2/ζ2.

Second, we claim that for any k and any sequence (x1, y1), . . . , (xk, yk), there exists j ≤
k such that xj is ζ-dependent on at least N ∶= ⌊k / Ě(F , ζ; f⋆)⌋ disjoint subsequences of
(x1, y1), . . . , (xj−1, yj−1). This can be proved by construction. Let B1, . . . ,BN be N subsequences
of (x1, y1), . . . , (xk, yk) and are initialized with Bi = {(xi, yi)}. Then we repeat the following
process for j = N + 1,N + 2 . . . , k.

● We first check if xj is ζ-dependent on Bi for all i ∈ [N]. If so, we are done.

● Otherwise, pick an arbitrary i ∈ [N] for which xj is ζ-independent of Bi and append
(xj , yj) to Bi, i.e., Bi ← Bi ∪ {(xj , yj)}.

If we don’t reach any j while running the above process for which the first statement above is
satisfied, we should end up with ∑N

i=1 ∣Bi∣ = k ≥ N ⋅ Ě(F , ζ; f⋆). We note that by construction
∣Bi∣ ≤ Ě(F , ζ; f⋆) and thus ∣Bi∣ = Ě(F , ζ; f⋆) for all i ∈ [N], which implies xk must be ζ-dependent
on all Bi.

Finally, let xi1 , . . . , xik be the subsequence where, for all s ∈ [k], there exists f ∈ Fis such that
∣f(xis)[yis] − f⋆(xis)[yis]∣ ≥ ζ. By our first claim we know each element of this subsequence is
ζ-dependent on at most β2/ζ2 disjoint subsequences. By the second claim, we know that there exists
an element that is ζ-dependent on at least ⌊k / Ě(F , ζ; f⋆)⌋ disjoint subsequences. So we must have
⌊k / Ě(F , ζ; f⋆)⌋ ≤ β2/ζ2. Hence, k ≤ (β2/ζ2 + 1) ⋅ Ě(F , ζ; f⋆).

The following is an extension of Lemma 7 that holds for the normed version of eluder dimension
given in Definition 1. The proof is essentially the same so we skip it for conciseness.
Lemma 8. Let {xt, Zt}Tt=1 be sequence of tuples, where xt ∈ X and Zt ∈ {0,1}. Fix any f⋆ ∈ F ,
and define the set Ft = {f ∈ F ∣ ∑t−1

s=1Zs∥f(xs) − f⋆(xs)∥2 ≤ β2}. Then, for any ζ > 0,

T

∑
t=1

Zt1{∃f ′ ∈ Ft ∶ ∥f ′(xt) − f⋆(xt)∥ ≥ ζ} ≤ (
β2

ζ2
+ 1)E(F , ζ; f⋆).

22

E Selective Sampling: Learning from Single Expert

E.1 Comparison to Related Works

Selective Sampling. There is a large bank of both theoretical and empirical work for active learning
and selective sampling. Perhaps the work closest to ours is the work of Zhu and Nowak [2022].
In this paper, the authors consider binary classification problem and provide bounds on number of
queries and bound on excess risk in the active learning framework. Their algorithm also relies on
regression oracle. However, there are many key differences: Firstly, their guarantees for regret for
selective sampling problem (see for instance Theorem 10 on page 28 of Zhu and Nowak [2022])
has a dependence on disagreement coefficient in the regret bound as well as number of queries. On
the contrary, as we show in our work, one only needs to pay for eluder dimension or disagreement
coefficient in query complexity and not in regret bound. Furthermore, we supplement our result
with lower bound showing that unless one has label complexity that depends on star number (and
hence can be also related to worst case disagreement coefficient), one can not get a small enough
regret bound. So the separation between regret bound (that is independent of eluder dimension/star
number/disagreement coefficient) and query complexity (that depends on those quantities) is real.
Secondly, the results in [Zhu and Nowak, 2022] dont automatically adapt to the margin region and in
general there is no way to estimate the parameters of Tsybakov’s noise condition. Finally, their regret
bounds depend on pseudo dimension and are thus generally suboptimal for complex F .

E.2 Proof Sketch for Selective Sampling and Binary Labels

Let A = {1,2}, and the link function ϕ(z) = z corresponding to square-loss ℓϕ = (v − y)2/2; here
λ = γ = 1.

Let F̄ ⊆ {X ↦ [−1,1]} be a function class, and f̄⋆ ∈ F . We assume that for any context x, the label
y is drawn according to the distribution Pr(yt = 2) = 1+f̄⋆(x)/2. Using F̄ , we can define the score
function class F = {ff̄ ∣ f̄ ∈ F̄} where f(x) = 1

2
(1 − f̄(x),1 + f̄(x))⊺ ∈ [0,1]2, and additionally

define f⋆ = ff̄⋆ . Clearly, the Bayes optimal predictor that chooses the action with the largest
score is given by SelectAction(f⋆(x)) = 1 + sign(f̄⋆(x)). Furthermore, Margin(f⋆(x)) ∶=
∣Pr(y = 2 ∣ x) −Pr(y = 1 ∣ x)∣ = ∣f̄⋆(x)∣ which implies that Tε = ∑T

t=1 1{∣f̄⋆(xt)∣ ≤ ε}. Finally, the
oracle in (3) reduces to a square-loss online regression oracle, which implies that with probability at
least 1 − δ, for all t ≤ T ,
t

∑
s=1

Zs(f̄s(xs) − f̄⋆(xs))2 ≲
t

∑
s=1

Zs(f̄s(xs) − ys)2 −
t

∑
s=1

Zs(f̄⋆(xs) − ys)2 ≲ Regsq(F̄ ;T) + log(T/δ),

(10)

The above implies that f̄⋆ satisfies the constraints in (5) with the right choice of constants, λ, and γ,
and thus ∣f̄t(xt) − f̄⋆(xt)∣ ≤∆t(xt) (see Lemma 10 for proof). However, since the query condition
in Algorithm 1 is Zt = 1{∣f̄t(xt)∣ ≤∆t(xt)}, we have that if Zt = 0, then ∣f̄t(xt)∣ >∆t(xt) which
implies that sign(f̄⋆(xt)) = sign(f̄t(xt)). Thus,

t

∑
s=1

Z̄s1{sign(f̄⋆(xt)) ≠ sign(f̄t(xt))} = 0. (11)

Regret bound. Using the fact that yt ∼ 1 + Ber(1+f̄⋆(xt)/2), ŷt = SelectAction(ft(xt)) = 1 +
sign(f̄t(xt)), we have

RegT =
T

∑
t=1

Pr(ŷt ≠ yt) −Pr(SelectAction(f⋆(xt)) ≠ yt)

≤
T

∑
t=1

1{sign(f̄t(xt)) ≠ sign(f̄⋆(xt))} ⋅ ∣2Pr(yt = 1) − 1∣

=
T

∑
t=1

1{sign(f̄t(xt)) ≠ sign(f̄⋆(xt))} ⋅ ∣f̄⋆(xt)∣

The right hand side above can be split and upper bound via the following three terms:

RegT ≤ ε
T

∑
t=1

1{∣f̄⋆(xt)∣ ≤ ε} +
T

∑
t=1

Zt1{sign(f̄t(xt)) ≠ sign(f̄⋆(xt)), ∣f̄⋆(xt)∣ > ε} ⋅ ∣f̄⋆(xt)∣

23

+
T

∑
t=1

Z̄t1{sign(f̄t(xt)) ≠ sign(f̄⋆(xt))} ⋅ ∣f̄⋆(xt)∣.

= εTε +
T

∑
t=1

Zt1{sign(f̄t(xt)) ≠ sign(f̄⋆(xt)), ∣f̄⋆(xt)∣ > ε} ⋅ ∣f̄⋆(xt)∣
´¹¹¹¸¹¹¶

∶=TA

,

where the first term is Tε, and the last term is zero due to (11). The term TA denotes the regret for the
rounds in which the learner queries for the label, and the margin for f̄⋆(xt) is larger than ε. We note
that

TA ≤
T

∑
t=1

Zt1{∣f̄⋆(xt) − f̄t(xt)∣ > ε} ⋅ ∣f̄⋆(xt) − f̄t(xt)∣

where the inequality holds because ∣f̄⋆(xt)− f̄t(xt)∣ ≥ ∣f̄⋆(xt)∣ since they have opposite signs. Using
the fact that 1{a ≥ b} ≤ a/b for all a, b ≥ 0, and the bound in (10), we get

TA ≤
1

ε

T

∑
t=1

Zt(f̄⋆(xt) − f̄t(xt))2 ≲
1

ε
Regsq(F ;T) + 1

ε
log(T/δ),

Gathering all the terms, we get

RegT = Õ(εTε +
1

ε
Regsq(F ;T) + 1

ε
log(1/δ)).

Query complexity. Plugging in the query rule, and splitting as in the regret bound, we get

NT =
T

∑
t=1

Zt =
T

∑
t=1

1{∣f̄t(xt)∣ ≤∆t(xt)}

≤
T

∑
t=1

1{∣f̄⋆(xt)∣ ≤ ε}
´¹¹¹¸¹¹¶

=Tε

+
T

∑
t=1

1{∣f̄t(xt)∣ ≤∆t(xt), ∣f̄⋆(xt)∣ > ε,∆t(xt) ≤ ε/3}
´¹¹¸¹¹¶

∶=TC

+
T

∑
t=1

1{∣f̄t(xt)∣ ≤∆t(xt), ∣f̄⋆(xt)∣ > ε,∆t(xt) > ε/3}
´¹¹¸¹¹¶

∶=TD

TC denotes the rounds in which we make a query, ∆t(xt) ≤ ε/3, and the margin for f̄⋆(xt) is larger
than ε. Since ∣f̄t(xt) − f̄⋆(xt)∣ ≤∆t(xt) (as shown above), we have

∣f̄⋆(xt)∣ ≤ ∣f̄t(xt) − f̄⋆(xt)∣ + ∣f̄t(xt)∣ ≤∆t(xt) + ∣f̄t(xt)∣.
Thus,

TC ≤
T

∑
t=1

1{∣f̄⋆(xt)∣ ≤ 2∆t(xt), ∣f̄⋆(xt)∣ > ε,∆t(xt) ≤ ε/3} = 0.

TD is bounded by the number of rounds for which we make a query and ∆t(xt) ≥ ε/3. Using the
properties of eluder dimension, we get that

TD ≤
T

∑
t=1

Zt1{∆t(xt) ≥ ε/3} ≲ 1

ε2
Regsq(F ;T) ⋅E(F , ε/6; f̄⋆) + log(1/δ).

Gathering all the terms, we conclude

NT = Õ(Tε +
1

ε2
Regsq(F ;T) ⋅E(F , ε/6; f̄⋆) + 1

ε2
log(1/δ)).

In Appendix E.3, we provide the complete proof and show how to generalize it for multiple actions,
link function ϕ and corresponding regression oracles w.r.t. ℓϕ.

24

E.3 Proof of Theorem 1

Before delving into the proof, we recall the relevant notation. In Algorithm 1,

● The label yt ∼ ϕ(f⋆(xt)), where ϕ denotes the link-function given in (2).

● The function SelectAction(ft(xt)) ∶= argmaxk ϕ(ft(xt))[k].
● For any vector v ∈ RK , the margin is given by the gap between the value at the largest and

the second largest coordinate, i.e.

Margin(v) = ϕ(v)[k⋆] −max
k≠k⋆

ϕ(v)[k],

where k⋆ ∈ argmaxk∈[K] ϕ(v)[k].

● We also define Tε = ∑T
t=1 1{Margin(f⋆(xt)) ≤ ε} to denote the number of samples within

T rounds of interaction for which the margin w.r.t. f⋆ is smaller than ε.

● We define the function Gap ∶ RK × [K]↦ R+ as

Gap(v, k) =max
k′

ϕ(v)[k′] − ϕ(v)[k], (12)

to denote the gap between the largest and the k-th coordinate of v.

E.3.1 Supporting Technical Results

Lemma 9. For any u, and k′ ≠ argmaxk ϕ(u)[k],

Margin(u) ≤ Gap(u, k′).

Proof. Let k⋆ = argmaxk ϕ(u)[k]. By definition,

Gap(u, k′) = ϕ(u)[k⋆] − ϕ(u)[k′]
≥ ϕ(u)[k⋆] −max

k′≠k
ϕ(u)[k′] = Margin(u).

The following technical result establishes a certain favorable property for the function f⋆, whose
proof follows from the regret bound of the online oracle used in Algorithm 1.

Lemma 10. With probability at least 1 − δ, the function f⋆ ∈ F satisfies the following for all t ≤ T :

t

∑
s=1

Zs∥f⋆(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T),

where Ψ
ℓϕ
δ (F , T) ∶=

4
λ
Regℓϕ(F ;T) + 112

λ2 log(4 log2(T)/δ).

Proof. The desired result follows from an application of Lemma 5, where we note that we do not
query oracle when Zs = 0, and thus do not count the time steps for which Zs = 0.

Throughout the proof, we condition on the 1 − δ probability event that Lemma 10 holds. The next
technical lemma allows us to bound the number of times when we query for the label and ∆t(xt) ≥ ζ
in terms of the eluder dimension (normed version) of the function class F . Note that Lemma 11 holds
even if the sequence {xt}t≤T could be adversarially generated.

Lemma 11. Let f⋆ satisfy Lemma 10, and let ∆t(xt) be defined in (5) in Algorithm 1. Then, for any
ζ > 0, with probability at least 1 − δ,

T

∑
t=1

Zt1{∆t(xt) ≥ ζ} ≤ Õ
⎛
⎝
Ψ

ℓϕ
δ (F , T)
ζ2

⋅E(F , ζ/2; f⋆)
⎞
⎠
.

where E denotes the eluder dimension is given in Definition 1.

25

Proof. Let f⋆t denote the maximizer of (5) at round t on point xt. Thus,

∆t(xt) = ∥f⋆t (xt) − ft(xt)∥, and
t−1
∑
s=1

Zs∥f⋆t (xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T). (13)

However, recall that Lemma 10 implies that, with probability at least 1 − δ, the function f⋆ satisfies
the bound

t−1
∑
s=1

Zs∥f⋆(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T). (14)

Using (13), (14) and Triangle inequality, we get that
t−1
∑
s=1

Zs∥f⋆t (xs) − f⋆(xs)∥2 ≤ 2
t−1
∑
s=1

Zs∥f⋆t (xt) − fs(xs)∥2 + 2
t−1
∑
s=1

Zs∥f⋆(xt) − fs(xs)∥2

≤ 4Ψℓϕ
δ (F , T). (15)

Next, note that, an application of Triangle inequality implies that ∥f⋆t (xt) − ft(xt)∥ ≤ ∥f⋆t (xt) −
f⋆(xt)∥ + ∥f⋆(xt) − ft(xt)∥. Thus,

T

∑
t=1

Zt1{∆t(xt) ≥ ζ} =
T

∑
t=1

Zt1{∥f⋆t (xt) − ft(xt)∥ ≥ ζ}

≤
T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ + ∥f⋆(xt) − ft(xt)∥ ≥ ζ}

≤
T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} +

T

∑
t=1

Zt1{∥ft(xt) − f⋆(xt)∥ ≥
ζ

2
}

≤
T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} + 4

ζ2

T

∑
t=1

Zt(ft(xt) − f⋆(xt))2

≤
T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} +

4Ψ
ℓϕ
δ (F , T)
ζ2

, (16)

where in the last line we used Lemma 10 to bound the second term. In the following, we show how to
bound the first term. Recall that for any t ≤ T , the function f⋆t satisfies (15). Thus, we wish to bound

T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} s.t.

t−1
∑
s=1

Zs(f⋆t (xs) − f⋆(xs))2 ≤ 4Ψℓϕ
δ (F , T),

for all t ≤ T . An application of Lemma 8 in the above implies that

T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} ≤

17Ψ
ℓϕ
δ (F , T)
ζ2

⋅E(F , ζ/2; f⋆). (17)

where in the last line, we used the fact that Ψ
ℓϕ
δ
(F,T)/ζ2 ≥ 1, for our parameter setting.

Plugging in the bound (17) in (16), and using the fact that E(F , ζ/2; f⋆) ≥ 1, we get that

T

∑
t=1

Zt1{∆t(xt) ≥ ζ} ≤
20Ψ

ℓϕ
δ (F , T)
ζ2

⋅E(F , ζ/2; f⋆).

The next two technical lemma’s relate the margin to the gap between functions, and are useful in the
analysis for regret / total number of queries.
Lemma 12. Suppose the functions π1 and π2 are defined such that πi(x) =
argmaxk∈[K] ϕ(fi(x))[k]. Then, for any x for which π1(x) ≠ π2(x), we have

Margin(f1(x)) ≤ ϕ(f1(x))[π1(x)] − ϕ(f1(x))[π2(x)] ≤ 2γ∥f1(x) − f2(x)∥2,
where γ-denotes the Lipschitz parameter of the link function ϕ.

26

Proof. First note ϕ(f2(x))[π2(x)] ≥ ϕ(f2(x))[π1(x)] by the definition of π2. Thus,

ϕ(f1(x))[π1(x)] − ϕ(f1(x))[π2(x)]
≤ ϕ(f1(x))[π1(x)] − ϕ(f2(x))[π1(x)] + ϕ(f2(x))[π2(x)] − ϕ(f1(x))[π2(x)]
≤ 2∥ϕ(f1(x)) − ϕ(f2(x))∥∞
≤ 2∥ϕ(f1(x)) − ϕ(f2(x))∥2.

Using the fact that ϕ is γ-Lipschitz, we immediately get that

ϕ(f1(x))[π1(x)] − ϕ(f1(x))[π2(x)] ≤ 2γ∥f1(x) − f2(x)∥2.

Lemma 13. For any two function f1, f2 ∈ F , and x ∈ X ,

Margin(f1(x)) − Margin(f2(x)) ≤ 2γ∥f1(x) − f2(x)∥.

Proof. For the ease of notation, define

k1 = argmax
k∈[k]

ϕ(f1(x))[k] and k′1 = argmax
k′≠k1

ϕ(f1(x))[k′],

where ties are broken arbitrarily but consistently. Similarly, we define

k2 = argmax
k∈[k]

ϕ(f2(x))[k] and k′2 = argmax
k′≠k2

ϕ(f2(x))[k′]. (18)

Thus, we have that

Margin(f1(x)) = ϕ(f1(x))[k1] − ϕ(f1(x))[k′1],
and

Margin(f2(x)) = ϕ(f2(x))[k2] − ϕ(f2(x))[k′2]. (19)

Finally, also note that for any coordinate k,

ϕ(f1(x))[k] − ϕ(f2(x))[k] ≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥. (20)

We now proceed with the proof. Plugging in the form in (19), we get that

Margin(f1(x)) − Margin(f2(x))
= ϕ(f1(x))[k1] − ϕ(f1(x))[k′1] − (ϕ(f2(x))[k2] − ϕ(f2(x))[k′2])
= (ϕ(f1(x))[k1] − ϕ(f2(x))[k2]) + (ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1])
≤ (ϕ(f1(x))[k1] − ϕ(f2(x))[k1]) + (ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1])
≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥ + (ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1]),

where the first inequality uses the fact that k2 is the maximizer coordinate of ϕ(f2(x)) and the last
inequality uses (20). In the following, we bound the second term in the right hand side above under
the following three cases:

● Case 1: k′2 ≠ k1: Since k′2 ≠ k1, we note that replacing k′1 by k′2 in the second term will
only increase the value (see the definition in (18)). Thus,

ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1] ≤ ϕ(f2(x))[k′2] − ϕ(f1(x))[k′2]
≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥,

where the last line uses (20).

● Case 2a: k′2 = k1, k2 = k′1: Using definition of k2 in (18), we note that

ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1] = ϕ(f2(x))[k′2] − ϕ(f1(x))[k2]
≤ ϕ(f2(x))[k2] − ϕ(f1(x))[k2]
≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥,

where the last line uses (20).

27

● Case 2b: k′2 = k1, k2 ≠ k′1: Using the fact that k′2 = k1 and that k2 ≠ k′2, we get that k2 ≠ k1.
Thus using the definition of k′1 along with the fact that k2 ≠ k1, we get that

ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1] ≤ ϕ(f2(x))[k′2] − ϕ(f1(x))[k2]
≤ ϕ(f2(x))[k2] − ϕ(f1(x))[k2]
≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥,

where the second last line uses definition of k2 and the last line uses (20).

Combining all the above bounds together implies that

Margin(f1(x)) − Margin(f2(x)) ≤ 2∥ϕ(f2(x)) − ϕ(f1(x))∥.
The final statement follows since ϕ is γ-Lipschitz.

E.3.2 Regret Bound

For the ease of notation, for the rest of the proof in this section we define the function π⋆ such that

π⋆(x) = argmax
k

ϕ(f⋆(x))[k].

Additionally, we recall that for any time t, ŷt = SelectAction(ft(xt)) = argmaxk ϕ(ft(x))[k].
Starting from the definition of the regret, we have

RegT =
T

∑
t=1

Pr(ŷt ≠ yt) −Pr(π⋆(xt) ≠ yt)

=
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅ ∣Pr(yt = π⋆(xt)) −Pr(yt = ŷt)∣

=
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅ ∣ϕ(f⋆(xt))[π⋆(xt)] − ϕ(f⋆(xt))[ŷt]∣

≤
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅Gap(f⋆(xt), ŷt),

where the second last line uses the probabilistic model from which labels are generated, and the last
inequality plugs in the definition of Gap from (45). Let ε > 0 be a free parameter. We can decompose
the above regret bound further as:

RegT ≤
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) ≤ ε} ⋅Gap(f⋆(xt), ŷt)

+
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅Gap(f⋆(xt), ŷt)

Using the fact that yt(xt) = argmaxk∈[K] ϕ(ft(x))[k] along with the definition of Gap and
Lemma 12, we get that

RegT ≤
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε} ⋅ ε

28

+ 2γ
T

∑
t=1

Zt1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

+ 2γ
T

∑
t=1

Z̄t1{ŷt ≠ π⋆(xt)} ⋅ ∥f⋆(xt) − ft(xt)∥ (21)

= Tε ⋅ ε + 2γ ⋅ TA + 2γ ⋅ TB ⋅ ∥f⋆(xt) − ft(xt)∥,
where the second inequality holds because Gap(f⋆(xt), ŷt) ≤ ε implies that Margin(f⋆(xt)) ≤ ε
whenever ŷt ≠ π⋆(xt). In the last line above, we plugged in the definition of Tε, and defined TA and
TB as the second term and the last term respectively (upto constants). We bound them separately
below:

● Bound on TA: We note that

TA =
T

∑
t=1

Zt1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

Zt1{∥f⋆(xt) − ft(xt)∥ > ε/2γ} ⋅ ∥f⋆(xt) − ft(xt)∥

where the second line follows from Lemma 12 and because ŷt ≠ π⋆(xt). Using the fact that
1{a ≥ b} ≤ a/b for all a, b ≥ 0, we get that

TA ≤ 4γ
T

∑
t=1

Zt
∥f⋆(xt) − ft(xt)∥2

ε
. (22)

● Bound on TB: Fix any t ≤ T , and note that Lemma 10 implies that∑t
s=1∥f⋆(xt)−ft(xt)∥2 ≤

Ψ
ℓϕ
δ (F , T). Thus f⋆ satisfies the constraint in the definition of ∆t in (5) and we must have

that

∥f⋆(xt) − ft(xt)∥ ≤∆t(xt). (23)

Plugging in the definition of Zt, we note that

TB =
T

∑
t=1

1{Margin(ft(xt)) > 2γ∆t(xt), ŷt ≠ π⋆(xt)}

≤
T

∑
t=1

1{∥ft(xt) − f⋆(xt)∥ >∆t(xt)},

where the second inequality is due Lemma 12. However, note that the term inside the
indicator contradicts (23) (which always holds). Thus,

TB = 0. (24)

Combining the bounds (22) and (24), we get that

RegT ≤ εTε + 8γ2
T

∑
t=1

Zt
∥ft(xt) − f⋆(xt)∥2

ε

≤ εTε +
8γ2

ε
Ψ

ℓϕ
δ (F , T),

where the last inequality is due to Lemma 10.

Since ε is a free parameter above, the final bound follows by choosing the best parameter ε, and by
plugging in the form of Ψℓϕ

δ (F , T).

E.3.3 Total Number of Queries

We use the notation NT to denote the total number of expert queries made by the learner within T
rounds of interactions. Let ε > 0 be a free parameter. Using the definition of Zt, we have that

NT =
T

∑
t=1

Zt

29

=
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt)}

=
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) ≤ ε}

+
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε}

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε}

+
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

+
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) > ε/4γ}

(25)
= Tε + TD + TE ,

where in the last line we use the definition of Tε, and defined TD and TE respectively. We bound
them separately below:

● Bound on TD. Recall (23) which implies that f⋆ satisfies the bound ∥ft(xt) − f⋆(xt)∥ ≤
∆t(xt). Thus, using Lemma 13, we get that

Margin(f⋆(xt)) ≤ 2γ∥ft(xt) − f⋆(xt)∥ + tMargin(ft(xt)) ≤ 2γ∆t(xt) + Margin(ft(xt)).
The above implies that

TD =
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ 4γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

≤ 0,
where the last line follows from the fact that all the conditions inside the indictor can not
hold simultaneously.
● Bound on TE . We note that

TE =
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) > ε/4γ}

≤
T

∑
t=1

Zt1{∆t(xt) ≥ ε/4γ}

≤
320Ψ

ℓϕ
δ (F , T)
ε2

⋅E(F , ε/4γ; f⋆).

where the last line follows from setting ζ = ε/4γ in Lemma 11.

Gathering the bounds above, we get that

NT ≤ Tε +
640γ2Ψ

ℓϕ
δ (F , T)
ε2

⋅E(F , ε/4γ; f⋆).

Since ε is a free parameter above, the final bound follows by choosing the best parameter ε, and by
plugging in the form of Ψℓϕ

δ (F , T).

E.4 Proof of Theorem 2

Before delving into the proof, we recall the relevant notation. In Algorithm 3,

30

Algorithm 3 Selective Sampling with Expert Feedback for Stochastic Contexts
Input: Parameters δ, γ, λ, T , function class F , and online regression oracle Oracle w.r.t ℓϕ.

1: Set Ψℓϕ
δ (F , T) =

4
λ
Regℓϕ(F ;T) + 112

λ2 log(4 log2(T)/δ), Compute f1 ← Oracle1(∅).
2: Set E = ⌈log(T)⌉ and τe = 2e−1 for e ≤ E.
3: for e = 1, . . . ,E − 1 do
4: Learner constructs the feasible set of optimal functions Fe as

Fe = {f ∈ F ∣
τe−1
∑
s=1

Zs∥f(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T)}. (26)

5: for t ← τe to τe+1 − 1 do
6: Nature samples xt from an (unknown) distribution µ.
7: Learner computes

gt ∈ argmin
g∈Fe

Margin(g(xt)), and, ∆e(xt) ∶= max
f,f ′∈Fe

∥f(xt) − f ′(xt)∥. (27)

8: Learner decides whether to query: Zt = 1{Margin(gt(xt)) ≤ 2γ∆e(xt)}.
9: if Zt = 1 then

10: Learner plays the action ŷt = SelectAction(ft(xt)).
11: Learner queries the label yt on xt.
12: ft+1 ← Oraclet({xt, yt}).
13: else
14: Learner plays the action ŷt = SelectAction(gt(xt)).
15: ft+1 ← ft.

● The label yt ∼ ϕ(f⋆(xt)), where ϕ denotes the link-function given in (2).
● The function SelectAction(ft(xt)) ∶= argmaxk ϕ(ft(xt))[k].
● For any vector v ∈ RK , the margin is given by the gap between the value at the largest and

the second largest coordinate, i.e.

Margin(v) = ϕ(v)[k⋆] −max
k≠k⋆

ϕ(v)[k],

where k⋆ ∈ argmaxk∈[K] ϕ(v)[k].

● We also define Tε = ∑T
t=1 1{Margin(f⋆(xt)) ≤ ε} to denote the number of samples within

T rounds of interaction for which the margin w.r.t. f⋆ is smaller than ε.
● We define the function Gap ∶ RK × [K]↦ R+ as

Gap(v, k) =max
k′

ϕ(v)[k′] − ϕ(v)[k], (28)

to denote the gap between the largest and the k-th coordinate of v. Recall that Lemma 9
holds.
● Additionally, we define the function Ze to denote the query condition

Ze(x) = 1{ inf
g∈Fe

Margin(g(x)) ≤ 2γ sup
f,f ′∈Fe

∥f(x) − f ′(x)∥}. (29)

The definition in (29) suggests that for all t ∈ [τe, τe+1), Zt = Ze(xt), for all e ≤ E − 1.

Intuition for epoching. We next provide intuition on why epoching in needed in Algorithm 3
to get the improved query complexity bound. From the proof sketch in Section E.2 , the term
∑T

t=1Zt1{∆t(xt) ≥ ε} appearing in the query complexity bound is handled using the eluder dimen-
sion of F . When xt is sampled i.i.d. we wish to bound this using disagreement-coefficient instead.
However, note that in Algorithm 1 the query condition Zt depends on the samples {xs}s<t drawn
in all previous time steps and the corresponding query conditions {Zs}s<t. This introduces a bias,
and thus the terms Zt1{∆t(xt) ≥ ε} are no longer independent to each other. Thus, we can not
directly used distributional properties like the disagreement coefficient to bound the query complexity.
Algorithm 3 fixes this issue by defining epochs of doubling length such that the query condition in

31

epoch e only depends on the samples presented to the learner at time steps before this epoch (i.e. in
time steps 1 ≤ t ≤ τe − 1. Thus, the terms Zt1{∆t(xt) ≥ ε} for τe ≤ t < τe+1 are i.i.d. allowing us to
get bounds in terms of distributional properties like the disagreement coefficient of F .

However, note that whenever we query in Algorithm 3, we still choose the labels according to the
estimate from the online regression oracle and thus the regret bound remains unchanged.

E.4.1 Supporting Technical Results

The following lemma establishes useful technical properties of the function f⋆ and the sets Fe.

Lemma 14. Suppose Algorithm 3 is run on the sequence {xt}t≤T drawn i.i.d. from the unknown
distribution µ. Then, with probability at least 1 − δ, each of the following holds:

(a) For all t ≤ T , the function f⋆ ∈ F satisfies

t

∑
s=1

Zs∥f⋆(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T),

where Ψ
ℓϕ
δ (F , T) =

4
λ
Regℓϕ(F ;T) + 112

λ2 log(4 log2(T)/δ).
Thus, f⋆ ∈ Fe for all e ≤ E − 1, and ∥f⋆(xt) − gt(xt)∥ ≤∆e(xt) for all τe ≤ t ≤ τe+1 − 1.

(b) For any function f ∈ Fe, we have

E[
τe−1
∑
s=1

Zs∥f(xs) − f⋆(xs)∥2] ≤ Ψ̂ℓϕ
δ (F ;T),

where Ψ̂ℓϕ
δ (F ;T) ∶= 2Ψ

ℓϕ
δ (F , T)+4c2(log

4(T) supτ≤T (τRad2τ(F)) + 2 log(T) log(E/δ)).

(c) For any e ≤ E, and any function f ∈ Fe, we have

∥f(xs) − f⋆(xs)∥ν̄e
≤

¿
ÁÁÀ Ψ̂

ℓϕ
δ (F ;T)
τe − 1

where the sub-distributions µ̄ē(x) ∶= Z ē(x)µ(x) and ν̄e ∶= 1
τe−τ1 ∑

e−1
ē=1(τē+1 − τē)µ̄ē.

(d) For any ē < e, the corresponding sets Fe and Fē satisfy the relation Fe ⊆ Fē.

(e) For any ē ≤ e, we have µ̄e ≼ µ̄ē.

Proof. We prove each part separately below:

(a) An application of Lemma 5, where we note that we do not query oracle when Zs = 0, and
thus do not count the time steps for which Zs = 0, implies that

t

∑
s=1

Zs∥f⋆(xs) − fs(xs)∥2 ≤
4

λ
Regℓϕ(F ;T) + 112

λ2
log(4 log2(T)/δ) =∶ Ψℓϕ

δ (F , T)

for all t ≤ T with probability at least 1 − δ. Using the above for t = τe+1 − 1 implies
that f⋆ ∈ Fe for all e ≤ E − 1. Since, we also have that gt ∈ Fe (by construction) for
all τe ≤ t ≤ τe+1 − 1, plugging in the definition of ∆e(xt), we immediately get that
∥f⋆(xt) − gt(xt)∥ ≤∆e(xt).

(b) Fix any epoch number ē ≤ E − 1, and consider the time steps τē ≤ t < τē+1. Define the loss
function

ℓē(f(x), f⋆(x)) = Z ē(x)∥f(x) − f⋆(x)∥2

where Z ē denotes the query conditions at epoch ē (defined in (29)), and recall that Z ē does
not depend on any samples that are drawn at epoch ē (by definition). Furthermore, note that

32

ℓē is 2-smooth w.r.t. f and satisfies ℓē(f(x), f⋆(x)) ≤ 4 for all f, f⋆ ∈ F and x. Thus using
Lemma 2, we get that for any f ∈ Fe, with probability at least 1 − δ/E,

E[
τē+1−1
∑
s=τē

Z ē(xs)∥f(xs) − f⋆(xs)∥2]

≤ 2
τē+1−1
∑
s=τē

Z ē(xs)∥f(xs) − f⋆(xs)∥2 + c2(2τe log3(τe)Rad2τe(Fe) + 4 log(E/δ))

≤ 2
τē+1−1
∑
s=τē

Z ē(xs)∥f(xs) − f⋆(xs)∥2 + 2c2(log3(T) sup
τ≤T
(τRad2τ(F)) + 2 log(E/δ)),

where in the last line we used the fact that Fe ⊆ F . Summing the above for all ē ≤ e − 1, we
get that for any f ∈ Fe,

E[
τe−1
∑
t=1

Ze(xs)∥f(xs) − f⋆(xs)∥2]

≤ 2
τe−1
∑
t=1

Ze(xs)∥f(xs) − f⋆(xs)∥2 + 4c2E(log3(T) sup
τ≤T
(τRad2τ(F)) + 2 log(E/δ))

≤ 2Ψℓϕ
δ (F , T) + 4c2(log

4(T) sup
τ≤T
(τRad2τ(F)) + 2 log(T) log(E/δ)),

where the last line follows by using the definition of Fe, and that E ≤ ⌈log(T)⌉, and that
Fe ⊆ F .

(c) Starting from part-(b), we first note that

E[
τe−1
∑
s=1

Zs∥f(xs) − f⋆(xs)∥2] ≤ Ψ̂ℓϕ
δ (F ;T). (30)

Additionally, also note that

E[
τe−1
∑
s=1

Zs∥f(xs) − f⋆(xs)∥2] = E[
e−1
∑
ē=1

τē+1−1
∑
s=τē

Zs∥f(xs) − f⋆(xs)∥2]

= E[
e−1
∑
ē=1

τē+1−1
∑
s=τē

Z ē(xs)∥f(xs) − f⋆(xs)∥2]

=
e−1
∑
ē=1

τē+1−1
∑
s=τē

Exs∼µ[Z ē(xs)∥f(xs) − f⋆(xs)∥2]

=
e−1
∑
ē=1
(τē+1 − τē)Ex∼µ[Z ē(x)∥f(x) − f⋆(x)∥2],

where the last two lines use the fact that the query condition Z ē does not depend on the
samples from rounds t = τē to τē+1 − 1. Plugging in the definition of µ̄ē in the above, we get
that

E[
τe−1
∑
s=1

Zs∥f(xs) − f⋆(xs)∥2] =
e−1
∑
ē=1
(τē+1 − τē) ⋅Ex∼µ̄ē[∥f(xs) − f⋆(xs)∥2]

= (τe − τ1) ⋅Ex∼ν̄e[∥f(xs) − f⋆(xs)∥2]

= (τe − τ1) ⋅ ∥f(xs) − f⋆(xs)∥2ν̄e
, (31)

where in the second line, we used the fact that the sub-distribution ν̄e ∶= 1
τe−τ1 ∑

e−1
ē=1(τē+1 −

τē)µ̄ē.

Combining (30) and (31), we get that

∥f(xs) − f⋆(xs)∥ν̄e
≤

¿
ÁÁÀ Ψ̂

ℓϕ
δ (F ;T)
τe − 1

33

(d) The argument follows from the definition of the set Fe as any function f ∈ Fe that satisfies

τe−1
∑
s=1

Zs∥f(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T),

also satisfies the constraint
τē−1
∑
s=1

Zs∥f(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T),

for any ē ≤ e, since the left hand side consists of lesser number of terms and all terms are
non-negative. Thus, Fe ⊆ Fē.

(e) Recall that for any e ≤ E − 1, the sub-probability measure µ̄e(x) ∶= Ze(x)µ(x) where
Ze(x) = 1{ming∈Fe∥g(x)∥ ≤ ∆e(x)}, and ∆e(x) = maxf ′,f∈Fe ∥f(x) − f ′(x)∥. First
note that for any ē ≤ e,

∆e(x) = max
f ′,f∈Fe

∥f(x) − f ′(x)∥ ≤ max
f ′,f∈Fē

∥f(x) − f ′(x)∥ =∆ē(x),

where the inequality above holds because Fe ⊆ Fē due to part-(d) above. Furthermore,

min
g∈Fe

∥g(x)∥ ≥ min
g∈Fē

∥g(x)∥,

again because Fe ⊆ Fē. Thus,

Ze(x) = 1{min
g∈Fe

∥g(x)∥ ≤∆e(x)} ≤ 1{min
g∈Fē

∥g(x)∥ ≤∆ē(x)} ≤ Z ē(x).

The above implies that µ̄e ≤ µ̄ē.

Lemma 15. Let ε0, γ0 ≥ 0, and f⋆ ∈ F . Then, for any sub distribution µ̄ such that Ex∼µ̄[1{x ∈ X}] >
0, ε ≥ ε0 and γ ≥ γ0,

ε2

γ2
Prx∼µ̄(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ̄ ≤ γ) ≤ θ

val(F , ε0, γ0; f⋆).

Proof. The key idea in the proof is to go from sub distributions to distributions, and then invoking
the definition of θ from Definition 2. Define κ = Ex∼µ̄[1{x ∈ X}]. Since 0 < κ ≤ 1, we can define a
probability measure µ such that µ(x) = µ̄(x)/κ. Thus, for any ε ≥ ε0 and γ ≥ γ0,

ε2

γ2
Prx∼µ̄(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ̄ ≤ γ)

= ε2

γ2/k
Prx∼µ(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ̄ ≤ γ)

≤ ε2

γ2/k
Prx∼µ(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ ≤ γ/√k)

= ε2

γ̄2
Prx∼µ(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ ≤ γ̄)

≤ sup
ε≥ε0,γ̄≥γ0

ε2

γ̄2
Prx∼µ(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ ≤ γ̄),

where in the second last line, we defined γ̄ = γ/√k, and the last line used the fact that both ε ≥ ε0 and
γ̄ ≥ γ0. The final statement follows by noting the fact that µ is a distribution and the definition of the
disagreement coefficient θval(;) from Definition 2.

The following technical result will be useful in bounding the query complexity for Algorithm 3.

34

Lemma 16. For any t ≤ T , let e(t) denotes the epoch number such that τe(t) ≤ t < τe(t)+1. Let
f⋆ ∈ F satisfy Lemma 14, and let ∆e(t)(xt) be defined in Algorithm 3. Then, for any ζ > 0, with
probability at least 1 − δ,

T

∑
t=1

Zt1{∆e(t)(xt) ≥ ζ} ≤ 12 log(T) ⋅
Ψ̂

ℓϕ
δ (F ;T)
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T)

T
; f⋆
⎞
⎠
+ 4 log(2/δ).

Proof. Recall the definition of the query rule Ze given in (29), and note that the function Ze is
independent of the samples {xt}τe+1−1t=τe chosen by the nature for time steps at epoch e. Additionally,
also recall that at every time step, xt is sampled independently from the distribution µ. Thus, using
the query condition Ze, we can define the sub-probability measure

µ̄e ∶= µ(x)Ze(x), (32)

such that µ̄e(x) = µ(x) whenever Ze(x) = 1 and is 0 otherwise. Furthermore, for any e ∈ E − 1, we
define the sub-probability measure ν̄e as

ν̄e =
1

τe − τ1

e−1
∑
ē=1
(τē+1 − τē)µ̄ē. (33)

We now move to the main proof. First fix any epoch e ≤ E−1, and consider any round t ∈ [τe, τe+1−1].
Using the definition of ∆e(xt) and definition of Ze from (29) in the above, we get that

Ext∼µ[Zt1{∆e(xt) > ζ}] = Ex∼µ[Ze(xt)1{ sup
f,f ′∈Fe

∥f(xt) − f ′(xt)∥ > ζ}]

≤ Ex∼µ[Ze(xt)1{ sup
f∈Fe

∥f(xt) − f⋆(xt)∥ >
ζ

2
}]

where the second line follows because f⋆ ∈ Fe, and because supf,f ′∈Fe
∥f(xt) − f ′(xt)∥ ≤

2 supf∈Fe
∥f(xt) − f⋆(xt)∥ due to Triangle inequality. Plugging in the definition of µ̄e from (32) in

the above we get that

Ext∼µ[Zt1{∆e(xt) > ζ}] ≤ Ex∼µ̄e[1{ sup
f∈Fe

∥f(xt) − f⋆(xt)∥ >
ζ

2
}]

≤ Ex∼µ̄ē[1{ sup
f∈Fe

∥f(xt) − f⋆(xt)∥ >
ζ

2
}]. (34)

for all ē ≤ e, where the last inequality follows from Lemma 14-(e). Since the above holds for all
ē ≤ e, we immediately get that

Ext∼µ[Zt1{∆e(xt) > ζ}] ≤ Ex∼ν̄ē[1{ sup
f∈Fe

∥f(xt) − f⋆(xt)∥ >
ζ

2
}]

= Ex∼ν̄ē[1{∃f ∈ Fe ∶ ∥f(x) − f⋆(x)∥ >
ζ

2
}], (35)

where the sub-probability measure ν̄ē is defined in (33). Additionally, recall that Lemma 14-(b)
implies that with probability at least 1 − δ any f ∈ Fe satisfies

∥f(xs) − f⋆(xs)∥ν̄e
≤

¿
ÁÁÀ Ψ̂

ℓϕ
δ (F ;T)
τe − 1

. (36)

Conditioning on the above event, and plugging it in (35), we get that

Ext∼µ[Zt1{∆e(xt) > ζ}]

≤ Ex∼ν̄ē

⎡⎢⎢⎢⎢⎢⎣
1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∃f ∈ Fe ∶ ∥f(x) − f⋆(x)∥ >

ζ

2
, ∥f(xs) − f⋆(xs)∥ν̄e

≤

¿
ÁÁÀ Ψ̂

ℓϕ
δ (F ;T)
τe − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

35

≤ 4 ⋅
Ψ̂

ℓϕ
δ (F ;T)
(τe − 1)ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T)
τe − 1

; f⋆
⎞
⎠
, (37)

where the last inequality uses Lemma 15.

Summing up the bound in (37) for each term t = 1 to T , we get that
T

∑
t=1

Ext[Zt1{∆e(xt) > ζ}] =
E−1
∑
e=1

τe+1−1
∑
t=τe

Ext[Zt1{∆e(xt) > ζ}]

≤ 4
E−1
∑
e=1
(τe+1 − τe)

Ψ̂
ℓϕ
δ (F ;T)
(τe − 1)ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T)
τe − 1

; f⋆
⎞
⎠

≤ 8
E−1
∑
e=1

Ψ̂
ℓϕ
δ (F ;T)
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T)
τe − 1

; f⋆
⎞
⎠

≤ 8
E−1
∑
e=1

Ψ̂
ℓϕ
δ (F ;T)
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T)

T
; f⋆
⎞
⎠

≤ 8 log(T) ⋅
Ψ̂

ℓϕ
δ (F ;T)
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T)

T
; f⋆
⎞
⎠

where the second inequality uses the fact that τe+1 = 2τe and that τ1 = 1, the third inequality holds
due to monotonicity of θval(F , ζ

2
, ⋅; f⋆) and the last line simply plugs in the value of E = log(T).

Using Lemma 4 with the above bound for the sequence of random variable Xt = Zt1{∆e(xt) > ζ},
we get that with probability at least 1 − δ,

T

∑
t=1

Zt1{∆e(xt) > ζ} ≤
3

2

T

∑
t=1

Ext[Zt1{∆e(xt) > ζ}] + 4 log(2/δ)

≤ 12 log(T) ⋅
Ψ̂

ℓϕ
δ (F ;T)
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T)

T
; f⋆
⎞
⎠
+ 4 log(2/δ).

The final result follows by taking a union bound of the above and the event in (36).

E.4.2 Regret Bound

For the ease of notation, through the proofs in this section we define the operators π⋆ as

π⋆(x) = argmax
k

ϕ(f⋆(x))[k].

Furthermore, recall that ŷt denotes the action chosen by the learner at round t of interaction. Starting
from the definition of the regret, we get that

RegT =
T

∑
t=1

Pr(ŷt ≠ yt) −Pr(π⋆(xt) ≠ yt)

=
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅ ∣Pr(yt = π⋆(xt)) −Pr(yt = ŷt)∣

=
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅ ∣ϕ(f⋆(xt))[π⋆(xt)] − ϕ(f⋆(xt))[ŷt]∣

≤
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅Gap(f⋆(xt), ŷt),

where the last inequality plugs in the definition of Gap from (45). Let ε > 0 be a free parameter. We
can decompose the above regret bound further as:

RegT ≤
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) ≤ ε} ⋅Gap(f⋆(xt), ŷt)

36

+
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅Gap(f⋆(xt), ŷt)

Using the fact that yt(xt) = argmaxk∈[K] ϕ(ft(x))[k] in the above along with the definition of Gap
and Lemma 12, we get that

RegT ≤
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

Zt1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

+ 2γ
T

∑
t=1

Z̄t1{ŷt ≠ π⋆(xt)} ⋅ ∥f⋆(xt) − ft(xt)∥

= Tε ⋅ ε + 2γ ⋅ TA + 2γ ⋅ TB ⋅ ∥f⋆(xt) − ft(xt)∥,
where the second inequality holds because Gap(f⋆(xt), ŷt) ≤ ε implies that Margin(f⋆(xt)) ≤ ε
whenever ŷt ≠ π⋆(xt). In the last line we plugged in the definition of Tε, and defined TA and TB as
the second term and the last term respectively. We bound term separately below:

● Bound on TA: Note that whenever Zt = 1, we choose ŷt = argmaxk ϕ(ft(xt))[k]. Thus,

TA =
T

∑
t=1

Zt1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

Zt1{∥f⋆(xt) − ft(xt)∥ > ε/2γ} ⋅ ∥f⋆(xt) − ft(xt)∥

where the second line follows from Lemma 12 and because ŷt ≠ π⋆(xt). Using the fact that
1{a ≥ b} ≤ a/b for all a, b ≥ 0, we get that

TA ≤ 4γ
T

∑
t=1

Zt
∥f⋆(xt) − ft(xt)∥2

ε
. (38)

● Bound on TB: Fix any t ≤ T , and let e be such that τe ≤ t < τe+1. Next, note that from
Lemma 14, we have

∥f⋆(xt) − gt(xt)∥ ≤∆e(xt). (39)

Plugging in the definition of Zt, we note that

TB =
T

∑
t=1

1{Margin(gt(xt)) > 2γ∆e(xt), ŷt ≠ π⋆(xt)}

≤
T

∑
t=1

1{∥gt(xt) − f⋆(xt)∥ >∆e(xt),Margin(f⋆(xt)) > ε},

where the second inequality is due Lemma 12 and by noting that ŷt ≠ π⋆(xt) and that when
Zt = 0, we choose ŷt = argmaxk ϕ(gt(xt))[k]. However, note that the term inside the
indicator contradicts (39) (which always holds). Thus,

TB = 0. (40)

37

Combining the bounds (38) and (40), we get that:

RegT ≤ εTε + 8γ2
T

∑
t=1

Zt
∥ft(xt) − f⋆(xt)∥2

ε

≤ εTε +
8γ2

ε
Ψ

ℓϕ
δ (F , T),

where the last inequality is due to Lemma 14.

Since ε is a free parameter above, the final bound follows by choosing the best parameter ε, and by
plugging in the form of Ψℓϕ

δ (F , T).

E.4.3 Total Number of Queries

Let NT denote the total number of expert queries made by the learner within T rounds of interactions.
For the ease of notation, define ∆t(xt) =∆e(t)(xt) where e(t) denotes the epoch number for which
τe(t) ≤ t < τe(t)+1. Additionally, let ε > 0 be a free parameter. Thus,

NT =
T

∑
t=1

Zt

=
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt)}

=
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) ≤ ε}

+
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε}

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε}

+
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

+
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) > ε/4γ}

= Tε + TD + TE ,
where in the last line we used the definition of Tε and defined TD and TE respectively, which we
bound separately below.

● Bound on TD. From Lemma 14 recall that ∥f⋆(xt) − gt(xt)∥ ≤ ∆e(xt). Thus, for any xt

for which ∥gt(xt)∥ ≤∆e(xt), Lemma 13 implies that

Margin(f⋆(xt)) ≤ 2γ∥ft(xt) − f⋆(xt)∥ + Margin(gt(xt)) ≤ 2γ∆t(xt) + Margin(ft(xt)).
The above implies that

TD =
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ 4γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

≤ 0,
where the last line follows from the fact that all the conditions inside the indictor can not
hold simultaneously for any ε > 0.
● Bound on TE . We note that

TE =
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) > ε/4γ}

38

≤
T

∑
t=1

Zt1{∆t(xt) ≥ ε/4γ}

≤
T

∑
t=1

Zt1{∆e(t)(xt) ≥ ε/4γ}.

Using Lemma 16 with ζ = ε/4γ to bound the term on the right hand side above, we get that
with probability at least 1 − 2δ,

TE ≤ O
⎛
⎝
log(T)γ2 ⋅

Ψ̂
ℓϕ
δ (F ;T)

ε2
⋅ θval
⎛
⎝
F , ε

8γ
,
Ψ̂

ℓϕ
δ (F ;T)

T
; f⋆
⎞
⎠
+ log(2/δ)

⎞
⎠
.

Gathering the bounds above, we get that

NT ≤ Tε +O
⎛
⎝
log(T)γ2 ⋅

Ψ̂
ℓϕ
δ (F ;T)

ε2
⋅ θval
⎛
⎝
F , ε

8γ
,
Ψ̂

ℓϕ
δ (F ;T)

T
; f⋆
⎞
⎠
+ log(2/δ)

⎞
⎠
.

Since ε is a free parameter above, the final bound follows by choosing the best parameter ε, and by
plugging in the form of Ψ̂ℓϕ

δ (F ;T).

E.5 Proof of Corollary 1

Note that the Tsybakov noise condition implies that there exists constants c, ρ ≥ 0 such that for all
ε ∈ (0,1):

Prx∼µ(Margin(f⋆(xt)) ≤ ε) ≤ cερ.

Thus, using Lemma 4, we get that

Tε =
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε}

≤ 3T

2
Prx∼µ(Margin(f⋆(x)) ≤ ε) + 4 log(2/δ)

≤ 2cTερ + 4 log(2/δ).

Using the above in the bound for Theorem 2, we get that for any ε > 0,

RegT ≲ cTερ+1 +
γ2

λε
Regℓϕ(F ;T) + log(1/δ),

Setting ε = (γ2

λCT
Regℓϕ(F ;T))

1
ρ+2

in the above implies that

RegT ≲ (
γ2

λ
c

1
ρ+1)

ρ+1
ρ+2
(Regℓϕ(F ;T))

ρ+1
ρ+2 ⋅ (T) 1

ρ+2 + log(1/δ).

Similarly, we can bound the query complexity bound for any ε > 0 as:

NT ≲ Tερ +
γ2

λε2
⋅Regℓϕ(F ;T) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T)/T ; f⋆) + log(1/δ).

Setting ε = (γ2

λT
⋅Regℓϕ(F ;T) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T)/T ; f⋆))

1
ρ+2

in the above implies that

NT ≤ (
γ2

λ
⋅Regℓϕ(F ;T) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T)/T ; f⋆))

ρ
ρ+2
⋅ T 2

ρ+2 .

39

E.6 Proofs for Lower Bounds in Section 3.2

The proof of Theorem 3 below follows along the lines of the proof of the lower bound in Theorem 28
of Foster et al. [2020] with minor changes.

Proof of Theorem 3. Let β ≤ ζ/2 be the largest number such that β2 ≤min{ζ2/sval(F , ζ, β), ζ2/16}.
Given the function class F , assume that m = sval(F , ζ, β) > 0 (the lower bound is obvious when
the star number is 0). Let the target function f⋆, the data sequence x1, . . . , xm, and the function
f1, . . . , fm ∈ F be the witnesses for the fact that the star number is m (see Definition 3). First, for
any i ∈ [m], we have that ∣f⋆(xi)∣ > ζ by definition of the star number. Next note that, for each fi,
we have that, for any j ≠ i,

∣fi(xj)∣ ≥ ∣f⋆(xj)∣ − ∣fi(xj) − f⋆(xj)∣ ≥ ζ − β ≥ ζ/2
On the other hand, from our definition of star number we have that,

∣fi(xi)∣ ≥ ζ/2.

Hence we are guaranteed that each fi has a margin of at least ζ/2 on x1, . . . , xm. Now consider
the distribution µ over the context to be the uniform distribution over {x1, . . . , xm}. Also let
P i(y = 1 ∣ x) = 1+fi(x)/2 be the conditional probability of label given context x. Let Di denote the
joint distribution over X × {±1} given by drawing x’s from µ and labels from P i. Additionally, let
D0 be given by drawing x’s from µ and y conditioned on x as P (y = 1 ∣ x) = 1+f⋆(x)/2. Finally, let
ν = 0 with probability 1/2 and ν ∼ Uniform([m]) with probability 1/2. Note that by our premise,

1

2
ED0 [RegT] +

1

2m

m

∑
i=1

E
Di
[RegT] = Eν [EDν [RegT]] ≤ c

ζT

m
, (41)

where the value of the constant c will be set later. Furthermore, let pt ∶ X ↦∆(Y) denote the distribu-
tion over the label chosen by the given algorithm at round t given the history (x1, y1, . . . , xt−1, yt−1).
We note that for any i ∈ [m],

E
Di
[RegT] ≥ EDi

[
T

∑
t=1

ζ

2
Ex∼µEŷ∼pt(x) [1{fi(x)ŷ < 0}]]

= Tζ

2
E

Di
[1
T

T

∑
t=1

Ex∼µEŷ∼pt(x) 1{sign(fi(x)) ≠ ŷ}]

≥ Tζ

4
E

Di
∥ 1
T

T

∑
t=1

pt − sign(fi)∥
L1(µ)

where in the first inequality we used that fi has a margin of at least ζ/2 for any x ∈ {x1, . . . , xm} as
shown above, and the last inequality simply follows from the fact that

∣Eŷ∼pt(x) 1{sign(fi(x)) ≠ ŷ}∣ = ∣Eŷ∼pt(x)(1{sign(fi(x)) = 1} − 1{ŷ = 0})∣ =
1

2
∣pt(x) − fi(x)∣,

and via an application of the Jensen’s inequality. Using the property that for any distribution with
margin at least ζ/2, the algorithm satisfies EDi[RegT] ≤ cζT/m, the above implies that

E
Di
∥ 1
T

T

∑
t=1

pt − sign(fi)∥
L1(µ)

≤ 8c

m
,

which implies that

1

m

m

∑
i=1

E
Di
∥ 1
T

T

∑
t=1

pt − sign(fi)∥
L1(µ)

≤ 8c

m
. (42)

Hence, setting c = 64 and using Markov’s inequality, we have that

1

m

m

∑
i=1

Pr
Di

⎛
⎝
∥ 1
T

T

∑
t=1

pt − sign(fi)∥
L1(µ)

> 2

m

⎞
⎠
≤ 1

16
.

40

Further note that ∥sign(fj) − sign(fi)∥L1(µ) >
4
m

and thus, condition on the fact that ν is not equal to
0, we can can identify ν correctly with probability at least 1 − 1/16. Thus, considering the reference
measure D0 and using Fano’s inequality, we must have that

log(2) ≤ 1

m

m

∑
i=1

KL(D0∥Di)

Now we are left with bounding KL(D0∥Di). To this end, we first make a simple observation that the
distribution on the xt’s is the same under D0 and Di. Hence on rounds t where Zt = 0 we do not
query for the labels in these rounds, and thus we do not glean any new information to distinguish Di

from D0. In other words, we only need to consider rounds when Zt = 1. Hence we have:

KL(D0∥Di) = ED0 [
T

∑
t=1

Zt ⋅ kl(P0(yt = 1∣xt)∥Pi(yt = 1∣xt))]

Assuming ζ > 1/4 and using the bound on KL between Bernoulli variables we get,

KL(D0∥Di) ≤ ED0 [32Niζ
2 + 8(max

j≠i
Nj)β2]

where Ni = ∣{t ∶ Zt = 1, xt = xi}, and we used item-(3) in the definition of star number for the ζ2

term and item-(1) for the β2 term. Hence we have that,

log(2) ≤ 1

m

m

∑
i=1

ED0 [32Niζ
2 + 8(max

j≠i
Nj)β2]

≤ 32

m
ED0 [

m

∑
i=1

Ni] ζ2 + 8ED0 [max
j

Nj]β2

≤ 32

m
ED0 [NT] ζ2 + 8ED0 [NT]β2

Since β2 ≤ ζ2/m, we have that

log(2) ≤ 40

m
ED0 [NT] ζ2

Hence we conclude that,

ED0 [NT] ≥
log(2)m
40ζ2

which yields the desired lower bound.

Proof of Corollary 2. Consider the function class F = {f0, f1, . . . , f√T } where f0(xi) = 1/2+ ζ for
every x1, . . . , x√T , and where fi(xi) = 1/2−ζ and fi(xj) = 1/2+ζ for any j ≠ i. Note that selecting
f⋆ = f0 and f1, . . . , fm on x1, . . . , x√T , we can show that the star number sval(F ,1/8,1/2) =
O(
√
T) (the disagreement coefficient of F is also O(

√
T)). Thus, using the converse of Theorem 3

we get that if the number of queries is smaller than
√
T , then there must exist some data distribution

under which the regret bound of the algorithm is larger that
√
T .

41

F Imitation Learning: Learning from Single Expert

F.1 Imitation Learning Tools

We first recall useful additional notation. Recall that a policy π is a mapping from the states X to
actions A. For any h ≤ H , and random variable Z(xh, ah), we use the notation Eπ[Z(xh, ah)] to
denote the expectation w.r.t. trajectories {x1, a1 . . . , xH , aH} sampled using the policy π.

The following lemma is the standard performance difference lemma, well known in the imitation
learning and reinforcement learning literature.

Lemma 17 (Performance Difference Lemma; Kakade and Langford [2002], Ross and Bagnell [2014]).
For any MDP M , and any two arbitrary stationary policies π and π̃, we have

V π − V π̃ =
H

∑
h=1

Exh,ah∼dπ̃
h
[−Aπ

h(xh, ah)],

where Aπ is the advantage function of the policy π in MDP M , i.e., Aπ
h(x, a) = Qπ

h(x, a) − V π
h (x).

F.2 Proof of Proposition 1

MDP construction. The underlying MDP is a binary tree of depth H . In particular, we
construct the deterministic MDP M = (X ,A, P, r, x1) where state space X = ∪Hh=1Xh with
Xh = {xh,i}2

h−1
i=1 (we assume that x1 = x1,1), action space A = {0,1}, reward r is such that

r(x, a) = Bern(1
2
+ 1

4
1{x = x⋆}) for some special state x⋆ ∈ XH . The transition dynamics P

is deterministic and defines a binary tree over X , i.e. for any h and xh,i, P (x′ ∣ xh,i, a) = 1 if
x′ = xh+1,2i−1 and a = 0, or x′ = xh+1,2i+1 and a = 1, else P (x′ ∣ x, a) = 0.

We next define the expert policy π⋆, expert model f⋆ and the class F . First, for any path τ =
(x1, a1, . . . , xH , aH) from the root state x1 to a terminal state xH at the layer H , define the policy
πτ as

πτ(xh) = {
ah if (xh, ah) ∈ τ
āh ← Uniform({0,1}) otherwise

.

In particular, πτ is defined such that for any state on the path τ , we choose the corresponding action
in τ , and for any state outside of τ , we choose an arbitrary (deterministic) action. Let T denote
the set of all 2H many paths from the root note x1 to a leaf node xH ∈ XH . We define the class
Π = {πτ ∣ τ ∈ T }, and F = {fτ ∣ τ ∈ T }, where for any τ , we define fτ ∶ X ↦ R2 as

fτ(x) = {
(3/4, 1/4) if πτ(x) = 0
(1/4, 3/4) if πτ(x) = 1

.

Next, let τ⋆ = (x1, a
′
1, x

′
2, . . . , x

′
H−1, a

′
H−1, x

⋆) be the path from the root x1 to the special state
x⋆ ∈ XH on the underlying binary tree. We finally define π⋆ = πτ⋆ and f⋆ = fτ⋆ .

Lower bound. Given the MDP construction, the class F , f⋆ and π⋆ above, we now pro-
ceed to the desired lower bound for non-interactive imitation learning. First, note that π⋆(x) =
argmaxa(f⋆(x)[a]) for any x ∈ X . Furthermore, Margin(f⋆((x)) = 1

2
∣f(x)[0]− f(x)[1]∣ = 1

4
for

all x ∈ X . Thus, for any ε ≤ 1
4

, Tε,h = 0.

Next, for any policy π, note that V π = 1
2
+ 1

4
1{π = π⋆}. Thus, π⋆ is the unique 1/8-suboptimal policy.

Additionally, consider a noisy expert that draws its label according to (2) with the link function
ϕ(z) = z, i.e. on the state x, the expert draws its label from a ∼ f⋆(x). Now, suppose that the learner
is given a dataset D of m many trajectories drawn this noisy expert. There are two scenarios: either
D does not contain τ∗, or D contains the trajectory τ∗.

● In the first case, the learner is restricted to finding π⋆ by eliminating all other π ≠ π⋆ using
the observationsD. Since, ∣Π∣ = 2H and each policy in the class is associated with a different
path on the tree, we must have that m = O(2H).

42

● In the second case, we need τ⋆ ∈ D. However, note that probability of observing the
trajectory τ⋆ when following the actions proposed by the noisy expert is Pr(τ⋆ ∣ ah ∼
f⋆(xh)) = (3/4)H . Thus, in order to observe τ⋆ with probability at least 3/4 in the dataset
D, we need m = O((4/3)H).

In both the scenarios above, we need to collect exponentially many samples.

F.3 Proof of Theorem 4

Before delving into the proof, we recall the relevant notation. In Algorithm 2, for any h ≤H ,

● The label yt,h ∼ ϕ(f⋆(xt,h)), , where ϕ denotes the link-function given in (2).
● The function SelectAction(ft,h(xt,h)) = argmaxk ϕ(ft,h(xt,h))[k].
● For any vector v ∈ RK , the margin is given by the gap between the value at the largest and

the second largest coordinate (under the link function ϕ), i.e.
Margin(v) = ϕ(v)[k⋆] −max

k≠k⋆
ϕ(v)[k],

where k⋆ ∈ argmaxk∈[K] ϕ(v)[k].
● We define Tε = ∑T

t=1∑H
h=1 1{Margin(f⋆h(xt,h)) ≤ ε} to denote the number of samples

within T rounds of interaction for which the margin w.r.t. f⋆h is smaller than ε.
● The trajectory at round t is generated using the dynamics {Tt,h}h≤H to determine the states

that the learner observes, starting from the state x1.
● At round t, the learner collects data using the policy πt such that at time h, and state x, the

action πt(x) = SelectAction(ft,h(xt,h)).
● For any policy π, let τπt denote the (counterfactual) trajectory that one would obtain by

running π on the deterministic dynamics {Tt,h}h≤H with the start state xt,1, i.e.

τπt = {xπ
t,1, π(xπ

t,1), . . . , xπ
t,H , π(xπ

t,H)} (43)

where xπ
t,1 = xt,1 and xπ

t,h+1 = Tt,h(xπ
t,h, π(xπ

t,h)).
● For a trajectory τ = {x1, a1, . . . , xH , aH}, we define the total return

R(τ) =
H

∑
h=1

r(xh, ah). (44)

● Additionally, for any policy π and dynamics {Th}h≤H , we define the trajectory obtained by
running the policy π as

τπ = {xπ
1 , π1(xπ

1), xπ
2 , . . .}.

● We define the function Gap ∶ RK × [K]↦ R+ as
Gap(v, k) =max

k′
ϕ(v)[k′] − ϕ(v)[k], (45)

to denote the gap between the largest and the k-th coordinate of v, and note that Margin(v) ≤
Gap(v, k) for all k ≠ k⋆ (due to Lemma 9).

F.3.1 Supporting Technical Results

We first define a useful technical lemma which allows us to bound the gap between the total returns
for policies π1 and π2, under the dynamics {Th}h≤H . Recall that for a policy π, we define the
trajectory τπ under {Th}h≤H and the start state x1 as the trajectory {xπ

1 , π(xπ
1), . . . , xπ

H , π(xπ
H)}

where xπ
1 = x1, and xπ

h+1 ← Th(xπ
h, π(xπ

h)).
Lemma 18. Let {Th}h≤H be a deterministic dynamics, and let x1 be the start state. Let π1

and π2 be any two deterministic policies, and let τπ1 = {xπ1

1 , π1(xπ1

1), x
π1

2 , . . .} and τπ2 =
{xπ2

1 , π1(xπ2

1), x
π2

2 , . . .} be two trajectories drawn using π1 and π2 on {Th}h≤H with start state x1.
Then, for any set X ⊆ X , the total trajectory rewards satisfy

R(τπ1) −R(τπ2) ≤ 2H
H

∑
h=1

1{xπ1

h ∈ X} + 2H
H

∑
h=1

1{π2(xπ2

h) ≠ π1(xπ2

h), x
π2

h ∉ X}.

43

Proof. Let h ≤ H denote the first timestep at which the policies π1 and π2 choose differ-
ent actions under {Th}h≤H . Since the trajectories τπ1 = {xπ1

1 , π1(xπ1

1), x
π1

2 , . . .} and τπ2 =
{xπ2

1 , π1(xπ2

1), x
π2

2 , . . .} are obtained by evolving through (the deterministic dynamics) {Th}h≤H
using policies π1 and π2 respectively, and with the same state state x1, we have that

xπ1

h = x
π2

h for all h ≤ h,
and

π1(xπ1

h) = π2(xπ2

h) for all h ≤ h − 1. (46)

Starting from the definition of the cumulative reward R(⋅), we have that

R(τπ1) −R(τπ2) =
H

∑
h=1
(r(xπ1

h , π1(xπ1

h)) − r(x
π2

h , π2(xπ2

h)))

=
h−1
∑
h=1
(r(xπ1

h , π1(xπ1

h)) − r(x
π2

h , π2(xπ2

h))) +
H

∑
h=h
(r(xπ1

h , π1(xπ1

h)) − r(x
π2

h , π2(xπ2

h)))

=
H

∑
h=h
(r(xπ1

h , π1(xπ1

h)) − r(x
π2

h , π2(xπ2

h))),

where the last line uses the fact that the trajectories (and thus the rewards) τπ1 and τπ2 are identical
for the first h − 1 states and actions (see (46)). Since (46) also implies that xπ1

h = x
π2

h , for the ease of
notation we define xh = xπ1

h = x
π2

h . Using the fact that ∣r(x, a)∣ ≤ 1 and that π1(xh) ≠ π2(xh) (by
definition of h), we can bound the above as

R(τπ1) −R(τπ2) ≤ 2(H − h + 1)1{π1(xh) ≠ π2(xh)}
≤ 2H1{π1(xh) ≠ π2(xh)}
= 2H1{π1(xh) ≠ π2(xh), xh ∈ X} + 2H1{π1(xh) ≠ π2(xh), xh ∉ X}
≤ 2H1{xh ∈ X} + 2H1{π1(xh) ≠ π2(xh), xh ∉ X}
= 2H1{xπ1

h ∈ X} + 2H1{π2(xπ2

h) ≠ π1(xπ2

h), x
π2

h ∉ X}

≤ 2H
H

∑
h=1

1{xπ1

h ∈ X} + 2H
H

∑
h=1

1{π2(xπ2

h) ≠ π1(xπ2

h), x
π2

h ∉ X},

where the equality in second last line plugs in the fact that xh = xπ1

h = x
π2

h , and the last inequality is a
straightforward upper bound.

We will also be using Lemma 9 and Lemma 13 from Appendix E.3 for bounding the Margin in the
regret bound proofs. Finally, we note the following properties of the function f⋆h .
Lemma 19. With probability at least 1 − δ, the function f⋆h satisfies for any h ≤H and t ≤ T ,

(a) ∑t−1
s=1Zs,h∥f⋆h(xs,h) − fs,h(xs,h)∥2 ≤ Ψℓϕ

δ (Fh, T),

(b) ∥f⋆h(xt,h) − ft,h(xt,h)∥ ≤∆t,h(xt,h),

where Ψ
ℓϕ
δ (Fh, T) = 4

λ
Regℓϕ(Fh;T) + 112

λ2 log(4H log2(T)/δ).

Proof. (a) We first note that we do not query oracle when Zs,h = 0, and thus we can ignore the
time steps for which Zs,h = 0. Hence, for each h ∈ [H], applying Lemma 5 along with the
fact that supx,f∈Fh

∣f(x)∣ ≤ 1 yields

t−1
∑
s=1

Zs,h∥f⋆h(xs,h) − fs,h(xs,h)∥2 ≤
4

λ
Regℓϕ(Fh;T) +

112

λ2
log(4 log2(T)/δ)

for all t ≤ T . Then, we take the union bound for all h ∈ [H], which completes the proof.

(b) The second part follows from using the observation in part-(a) that f⋆h satisfies the constraint
in the definition of ∆t,h given in (6), and thus ∥f⋆h(xt,h) − ft,h(xt,h)∥ ≤∆t,h(xt,h).

44

The next technical lemma bounds the number of times when ∆t,h(xt,h) ≥ ζ and we query the expert.
Note that Lemma 20 holds even if the sequence {xt,h}t≤T was adversarially generated.
Lemma 20. Let f⋆ satisfy Lemma 19, and let ∆t,h(xt) be defined in (6). Suppose we run Algorithm 2
on data sequence {{xt,h}h≤H}t≤T , and let Zt,h be as defined in line 9. Then, for any ζ > 0, with
probability at least 1 −Hδ, for any h ≤H ,

T

∑
t=1

Zt,h1{∆t,h(xt,h) ≥ ζ} ≤
20Ψ

ℓϕ
δ (Fh, T)
ζ2

⋅E(Fh,
ζ

2
; f⋆h),

where E denotes the eluder dimension is given in Definition 1.

Proof. The proof is identical to the proof of Lemma 11 by replacing all ∣⋅∣ with ∥⋅∥, and substitute
the corresponding bounds for f⋆h via Lemma 19 (instead of using Lemma 10). We skip the proof for
conciseness.

F.3.2 Regret Bound

Recall that the trajectory at round t is generated using the dynamics {Tt,h}h≤H . Define the policy πt

and π⋆ such that for any h ≤H and x ∈ Xh,

πt(xh) = SelectAction(ft,h(xh)), and, π⋆(xh) = SelectAction(f⋆h(xh)). (47)

Furthermore, for any policy π, let τπt denote the trajectory that one would obtain by running π on the
deterministic dynamics {Tt,h}h≤H with the start state xt,1, i.e.

τπt = {xπ
t,1, π(xπ

t,1), . . . , xπ
t,H , π(xπ

t,H)} (48)

where xπ
t,1 = xt,1 and xπ

t,h+1 = Tt,h(xπ
t,h, π(xπ

t,h)). Note that Algorithm 2 collects trajectories using
the policy πt at round t. Thus, we have that

xπt

t,h = xt,h, (49)

where xt,h denotes the state at time step h in round t of Algorithm 2. Finally, let ε > 0 be a free
parameter. We now have all the notation to proceed to the proof on our regret bound.

Step 1: Bounding the difference in return at round t. Fix any t ≤ T , and let τπt
t and τπ

⋆
t denote

the trajectories that would have been sampled using the policies πt and the policy π⋆ at round t.
Furthermore, define the set Xε as

Xε ∶=
H

⋃
h=1
{x ∈ Xh ∣ Margin(f⋆h(x)) ≤ ε} (50)

Using Lemma 18 for the policies πt and π⋆, and the set Xε defined above, we get that9

R(τπ
⋆

t) −R(τπt
t) ≤ 2H

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xπt

t,h) ≠ π
⋆(xπt

t,h), x
πt

t,h ∉ Xε} (51)

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

+ 2H
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

≤ 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

9The key advantage of using Lemma 18 is that the first term ∑H
h=1 1{xπ⋆

t,h ∈ Xε} accounts for the number
steps at which a counterfactual trajectory sampled using π⋆ goes to the state space with margin less than ε. Thus,
we only pay for the number of times when the comparator policy π⋆ would go to states with ε-margin (instead
of when πt does to such states).

45

+ 2H
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h)}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2HTA + 2HTB , (52)

where the second line is obtained by plugging in (49) and the last line simply defines TA and TB to
be the second and the third terms in the previous line without the 2H multiplicative factor.

We bound TA and TB separately below.

● Bound on term TA. Using the definition of Xε from (50), we note that

TA =
H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

=
H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h),Margin(f⋆h(xt,h)) > ε}

≤
H

∑
h=1

Zt,h1{π⋆(xt,h) ≠ πt(xt,h), ϕ(f⋆h(xt,h))[π⋆(xt,h)] − ϕ(f⋆h(xt,h))[πt(xt,h)] ≥ ε}

≤
H

∑
h=1

Zt,h1{ϕ(f⋆h(xt,h))[π⋆(xt,h)] − ϕ(f⋆h(xt,h))[πt(xt,h)] ≥ ε},

where in the second last line we used the definition of Margin(f⋆h(xt,h)) along with the fact
that π⋆(xt,h) ≠ πt(xt,h). Using the relation in Lemma 12 for the term inside the indicator,
we can further bound the above as

TA ≤
H

∑
h=1

Zt,h1{2γ∥f⋆h(xt,h) − ft,h(xt,h)∥ ≥ ε}

≤ 4γ2

ε2

H

∑
h=1

Zt,h∥f⋆h(xt,h) − ft,h(xt,h)∥2,

where in the second inequality we used: 1{a ≥ b} ≤ a2/b2 for any a, b ≥ 0.
● Bound on term TB . Before delving into the proof, first note that Lemma 19-(b) implies that

∥f⋆h(xt,h) − ft,h(xt,h)∥ ≤∆t,h(xt,h). (53)

Next, note that

TB =
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h)}

=
H

∑
h=1

1{Margin(ft,h(xt,h)) > 2γ∆t,h(xt,h), πt(xt,h) ≠ π⋆(xt,h)},

where in the last line we just plugged in the query condition under which Zt,h = 0. However
note that the above two conditions inside the indicator imply that

2γ∆t,h(xt,h) < Margin(ft,h(xt,h))
≤ ϕ(ft,h(xt,h))[πt(xt,h)] − ϕ(ft,h(xt,h))[π⋆(xt,h)]
≤ 2γ∥ft,h(xt,h) − f⋆h(xt,h)∥,

where the second line uses the definition of Margin(⋅) and the fact that πt(xt,h) ≠ π⋆(xt,h),
the last line is due to Lemma 12 . Thus,

TB ≤
H

∑
h=1

1{∥ft,h(xt,h) − f⋆h(xt,h)∥ >∆t,h(xt,h)},

but the conditions inside the indicator in the above contradicts (53) (which holds with
probability 1 − δ). Thus, with probability at least 1 − δ,

TB = 0. (54)

46

Plugging in the bounds on TA and TB in (52), we get that with probability at least 1 − δ,

R(τπ
⋆

t) −R(τπt
t) ≤ 2H

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} +

8Hγ2

ε2

H

∑
h=1

Zt,h∥f⋆h(xt,h) − ft,h(xt,h)∥2. (55)

Step 2: Bound on total regret. Using the bound in (55) for each round t, we get that

RegT =
T

∑
t=1
(R(τπ

⋆
t) −R(τπt

t))

≤ 2H
H

∑
h=1

T

∑
t=1

1{xπ⋆
t,h ∈ Xε} +

8Hγ2

ε2

H

∑
h=1

T

∑
t=1

Zt,h∥f⋆h(xt,h) − ft,h(xt,h)∥2

≤ 2H
H

∑
h=1

Tε,h +
8Hγ2

ε2

H

∑
h=1

Ψ
ℓϕ
δ (Fh, T), (56)

where in the last line we use the definition of Tε,h, and plug in the bound in Lemma 19. Recall that
Tε,h denotes the number of times when the comparator policy π⋆ enters the region Xε of states of
small expert margin. Using the form of Ψℓϕ

δ (Fh, T) and ignoring log factors and constants, we get

RegT = Õ(H
H

∑
h=1

Tε,h +
Hγ2

λε2

H

∑
h=1

Regℓϕ(Fh;T) +
Hγ2

λ2ε2
log(1/δ)).

Since ε is a free parameter above, the final bound follows by taking inf over all feasible ε.

F.3.3 Total Number of Queries

Let NT denote the total number of expert queries made by the learner within T rounds of interaction
(with H steps per round). For t ≤ T , let ht denote the first timestep at which Zt,ht = 1 at round t.
Additionally, let ε > 0 be a free parameter. Thus, we have that

NT =
T

∑
t=1

H

∑
h=1

Zt,h (57)

≤H
T

∑
t=1

Zt,ht

=H
T

∑
t=1

Zt,ht
1{xt,ht

∈ Xε} +H
T

∑
t=1

Zt,ht1{xt,ht ∉ Xε}

≤H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

H

∑
h=1

Zt,h1{xt,h ∉ Xε}

=H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

H

∑
h=1

Zt,h1{xt,h ∉ Xε,∆t,h(xt,h) ≤
ε

4γ
}

+H
T

∑
t=1

H

∑
h=1

Zt,h1{xt,h ∉ Xε,∆t,h(xt,h) >
ε

4γ
}

= TC +HTD +HTE ,

where TC , TD and TE are the first, second and the third term respectively in the previous line. We
bound them separately below:

● Bound on TC . Fix any t ≤ T , and note that
(TC)t =HZt,ht1{xt,ht ∈ Xε}

=HZt,ht1{xt,ht ∈ Xε}1{∀h < ht ∶ π⋆(xt,h) = πt(xt,h)}
+HZt,ht1{xt,ht ∈ Xε}1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)}.

(58)

For the second term, note that

Zt,ht1{xt,ht ∈ Xε}1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)} ≤
ht

∑
h=1

Zt,ht1{π⋆(xt,h) ≠ πt(xt,h)}

47

≤
ht

∑
h=1

Zt,htZ̄t,h1{π⋆(xt,h) ≠ πt(xt,h)}

≤
ht

∑
h=1

Z̄t,h1{π⋆(xt,h) ≠ πt(xt,h)}

where in second inequality above, we used the fact that Zt,h = 0 (and thus Z̄t,h = 1) for all
h ≤ ht, by the definition of ht. However note that the right hand side in the last inequality
is equivalent to the term TB defined above (where sum is now till ht instead of H). Thus,
using the bound in (54) in the above, we immediately get that

Zt,ht1{xt,ht ∈ Xε}1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)} = 0.

For the first term in (58), using the condition that π⋆(xt,h) = πt(xt,h) for all h ≤ ht, we get
that xt,h = xπ⋆

t,h and thus

HZt,ht1{xt,ht ∈ Xε}1{∀h ≤ ht ∶ π⋆(xt,h) = πt(xt,h)} ≤HZt,ht1{xπ⋆
t,ht
∈ Xε}

≤H1{xπ⋆
t,ht
∈ Xε}

≤H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε}.

Gathering the two terms above, and plugging in the definition of Tε,h, we get that

TC ≤H
H

∑
h=1

T

∑
t=1

1{xπ⋆
t,h ∈ Xε} =H

H

∑
h=1

Tε,h.

● Bound on TD. Using the definition of the set Xε and Zt,h, we note that

(TD)t =
H

∑
h=1

Zt,h1{xt,h ∉ Xε,∆t,h(xt,h) ≤
ε

4γ
}

=
H

∑
h=1

1{Margin(ft,h(xt,h)) ≤ 2γ∆t,h(xt,h),Margin(f⋆h(xt,h)) > ε,∆t,h(xt,h) ≤
ε

4γ
}

(59)

Recall that Lemma 19 implies that with probability at least 1 − δ,

∥f⋆h(xt,h) − ft,h(xt,h)∥ ≤∆t,h(xt,h),

using which with Lemma 13 implies that

Margin(f⋆h(xt,h)) ≤ Margin(ft,h(xt,h)) + 2γ∥f⋆h(xt,h) − ft,h(xt,h)∥
≤ Margin(ft,h(xt,h)) + 2γ∆t,h(xt,h).

Using the above bound with the conditions in (59) implies that

(TD)t =
H

∑
h=1

1{Margin(f⋆h(xt,h)) ≤ 4γ∆t,h(xt,h),Margin(f⋆h(xt,h)) > ε,∆t,h(xt,h) ≤
ε

4γ
}

=
H

∑
h=1

1{Margin(f⋆h(xt,h)) ≤ ε,Margin(f⋆h(xt,h)) > ε}

= 0,

where the last equality holds because the two conditions in the indicator in the previous line
can never occur simultaneously.

● Bound on TE . Note that

TE =
T

∑
t=1

H

∑
h=1

Zt,h1{xt,h ∉ Xε,∆t,h(xt,h) >
ε

4γ
}

48

≤
H

∑
h=1

T

∑
t=1

Zt,h1{∆t,h(xt,h) >
ε

4γ
}.

An application of Lemma 20 in the above for each h ≤H implies that

TE ≤
H

∑
h=1

320γ2Ψ
ℓϕ
δ (Fh, T)
ε2

⋅E(Fh,
ε

8γ
; f⋆h).

Gathering the bound above, we get that

NT ≤H
H

∑
h=1

Tε,h +
320Hγ2

ε2

H

∑
h=1

Ψ
ℓϕ
δ (Fh, T) ⋅E(Fh,

ε

8γ
; f⋆h).

Plugging in the form of Ψℓϕ
δ (Fh, T) and ignoring log factors and constants, we get that

NT ≤ Õ(H
H

∑
h=1

Tε,h +
Hγ2

λε2

H

∑
h=1

Regℓϕ(Fh;T) ⋅E(Fh, ε/8γ; f⋆h) +
Hγ2

λ2ε2
log(1/δ)).

Notice that ε is a free parameter above so the final bound follows by taking inf over all feasible ε. s

F.4 Proof for the Stochastic Setting

Algorithm 2 considers arbitrary deterministic dynamics {{Tt,h}h≤H}t≤T . When the underlying
dynamics T is stochastic, we can simply simulate Algorithm 2, where we set {Tt,h}h≤H = T (⋅; ιt)
where ιt is drawn i.i.d. for every t ≤ T . In the following, we provide regret and query complexity
bounds for stochastic dynamics.

Regret bound. Note that Theorem 4 bounds the difference of cumulative rewards of trajectories
drawn using the policies πt and π⋆ on the adversarially chosen deterministic dynamics {Tt,h}Hh=1
respectively. In particular, we bound

RegT =
T

∑
t=1
(R(τπ

⋆
t) −R(τπt

t)).

On the other hand, when the dynamics is stochastic, we aim to bound the gap between the expected
values V π⋆ − V πt obtained under the stochastic dynamics T . We obtain this bound by pushing all
the stochasticity into the choice of random seed ι. Fix any t ≤ T , and consider the deterministic
dynamics (Tt,1, . . . ,Tt,H) obtained by setting the random seed to be ιt in the stochastic dynamics
T , i.e. (Tt,1, . . . ,Tt,H) ∶= T (; ιt). Thus, for any policy π

V π = Eιt[R(τπt) ∣ (Tt,1, . . . ,Tt,H) = T (; ιt)].

In the following, we will bound the difference in the value function V π − V πt , by appealing to the
regret bound in the proof of Theorem 4 using appropriate concentration inequalities. First, recall that
in Algorithm 2, the dynamics {Tt,h}h≤H is chosen before the round t, and that the policy πt only
depends on the interaction till round t − 1. Thus,

T

∑
t=1

V π − V πt =
T

∑
t=1

Eιt[R(τπt) −R(τπ
⋆

t)]

≤
T

∑
t=1

Eιt[2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xπt

t,h) ≠ π
⋆(xπt

t,h), x
πt

t,h ∉ Xε}],

where the last holds due to Lemma 18 and the set Xε is defined in (50). An application of Lemma 4 in
the above implies that with probability at least 1 − δ,
T

∑
t=1

V π − V πt ≤ 4H
T

∑
t=1

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 4H

T

∑
t=1

H

∑
h=1

1{πt(xπt

t,h) ≠ π
⋆(xπt

t,h), x
πt

t,h ∉ Xε} + 32H
2 log(2/δ).

The rest of the proof is identical to the proof of Theorem 4 from (51) onwards. They query complexity
can be similarly computed.

49

We next provide the proofs for learning from multiple experts.

F.5 Proof of Theorem 5

Algorithm 4 InteRActiVe ImitatiOn Learning VIa Active Queries to M Experts (RAVIOLI−M)
Input: Parameters δ, γ, λ, T , function classes {Fm

h }h≤H,m≤M , online oracles {Oraclemh }h≤H,m≤M
w.r.t. ℓϕ.

1: Set Ψℓϕ
δ (Fm

h , T) = 4
λ
Regℓϕ(Fm

h ;T) + 112
λ2 log(4MH log2(T)/δ).

2: Compute fm
1,h = Oracle1,h(∅) for each h ∈ [H] and m ∈ [M].

3: for t = 1 to T do
4: Nature chooses the state xt,1.
5: for h = 1 to H do
6: Define Fm

t,h(x) ∶= [f1
t,h(x), . . . , fM

t,h(x)].
7: Learner plays ŷt,h = SelectAction(Ft,h(xt,h)).
8: Learner transitions to the next state in this round xt,h+1 ← Tt,h(xt,h, ŷt,h).
9: For each m ∈ [M], learner computes

∆m
t,h(xt,h) ∶= max

f∈Fm
h

∥f(xt,h) − fm
t,h(xt,h)∥

s.t.
t−1
∑
s=1

Zs,h∥f(xs,h) − fm
s,h(xs,h)∥

2 ≤ Ψℓϕ
δ (F

m
h , T). (60)

and defines ∆⃗t,h(xt,h) = [∆1
t,h(xt,h), . . . ,∆M

t,h(xt,h)].
10: Learner decides whether to query: Zt,h = Query(Ft,h(xt,h), ∆⃗t,h(xt,h))
11: if Zt,h = 1 then
12: for m = 1 to M do
13: Learner queries expert m for its label ymt,h for xt,h.
14: fm

t+1,h ← Oraclemt+1,h({xt,h, yt,h})
15: else
16: fm

t+1,h ← fm
t,h for each m ∈ [M].

We first discuss the setup and the relevant notation. We are in the imitation learning setup introduced
in Appendix F.3. In particular, the learner interacts with M experts in T episodes/rounds, each
consisting of H timesteps. For any h ≤ H , each of the M experts have a ground truth model f⋆,mh
respectively. Given the context xt,h for time step h in round t, the learner plays the actions ŷt,h ∈ [K],
and can additionally choose to query the experts (by setting Qt,h = 1) to receive noisy feedback
ymt,h ∼ ϕ(f

⋆,m
h (xt)) from each expert m ∈ [M]. After playing the chosen action ŷt,h, the learner

then transitions to state xt,h+1 ← Tt,h(xt,h, ŷt,h) where {Tt,h}h∈[H] is a sequence of deterministic
dynamics (unknown to the learner).

In Algorithm 4, for any round t ≤ T and h ≤H:

● The aggregation function A ∶ RK×M ↦ RK , known to the learner, maps the predictions
of the estimated experts to distributions over actions. Some illustrative examples are given
below to illustrate the generality of our setup:
(a) Random aggregation: Given a state xh, the aggregation rule chooses an expert uni-

formly at random and returns the label yh sampled from its model. In particular,

yh ∼ ϕ(f⋆,m̃h (xh)), where m̃ ∼ Uniform([M]).

Here, the distribution A (ϕ(f⋆,1h (xh)), . . . , ϕ(f⋆,Mh (xh))) = 1
M ∑

M
m=1 ϕ(f⋆,m(xh)).

(b) Majority label: A is deterministic. Given a state xt, the aggregation rule chooses the
label yh ∈ [K] which is the top preference for the majority of the experts. In particular,

yh = A (ϕ(f⋆,1h (xh)), . . . , ϕ(f⋆,Mh (xh))) = argmax
k∈[K]

M

∑
m=1

1{k = argmax
k̃∈[K]

ϕ(f⋆,mh (xh)[k̃])}.

50

(c) Majority-of-confident-experts: This aggregation rule is also deterministic, and was first
introduced in Dekel et al. [2012]. Given a state xt, the aggregation rule chooses the
label yh ∈ [K] which is the top preference for the majority of the ρ-confident experts
on xh i.e. the experts whose margin on xh is larger than ρ. In particular,

yh = A (ϕ(f⋆,1h (xh)), . . . , ϕ(f⋆,Mh (xh)))

= argmax
k∈[K]

M

∑
m=1

1{k = argmax
k̃∈[K]

ϕ(f⋆,mh (xh)[k̃]) and Margin(ϕ(f⋆,mh (xh)) > ρ)},

where Margin(f⋆,mh (xh) > ρ) = maxk1
(ϕ(f⋆,mh (xh))[k1] −

(maxk2≠k1 ϕ(f
⋆,m
h (xh))[k2])). This aggregation rule is useful when there

may be many experts that give equal weights to the top and the second-to-top
coordinates w.r.t. their respective models, and hence can not be confidently accounted
for in the majority rule. Furthermore, instead of choosing the majority label, similar
to Dekel et al. [2012], one can also return the label sampled according to a uniform
distribution over ρ−confident experts.

● The function SelectAction ∶ RK×M ↦ [K] chooses the action to play at round t, and is
defined as:

SelectAction(Ft,h(xt,h)) = argmax
k

A (ϕ(Ft,h(xt,h)))[k], (61)

where Ft,h(xt,h)) = [f1
t,h(xt,h)), . . . , fM

t,h(xt,h))], and ϕ denotes the link-function given
in (2).

● Our goal in Algorithm 4 is to compete with the policy π⋆ defined such that for any x ∈ Xh,

π⋆(x) = SelectAction(F ⋆h (x)) (62)

where F ⋆h (x) = [f
⋆,1
h (x), . . . , f

⋆,1
h (x)] ∈ RK×M .

● Given the context xt,h and the function Ft,h ∶ X ↦ RK×M , the learner decided whether
to query via Zt,h = Query(Ft,h(xt,h), ∆⃗t,h(xt,h)) where we define the function Query ∶
RK×M ×RM as

Query(U ; ε⃗) ∶= sup
V ∈RK×M

1{SelectAction(U) ≠ SelectAction(V)}

s.t. ∥U[∶,m] − V [∶,m]∥2 ≤ ε⃗[m] ∀m ≤M. (63)

At round t, the learner interactions with transition dynamics {Tt,h}h≤H and collects data. Without
loss of generality, we assume that the learner always starts from the state xt,1. We next recall the
interaction at round t:

● The learner collects data using the policy πt, defined such that

πt(x) = SelectAction(ft,h(xt,h)).

for any h ≤H , and state x ∈ Xh.

● For any policy π, we use the notation τπt to denote the (counterfactual) trajectory that would
have been generated by running π on the deterministic dynamics {Tt,h}h≤H with the start
state xt,1, i.e.

τπt = {xπ
t,1, π(xπ

t,1), . . . , xπ
t,H , π(xπ

t,H)}, (64)

where xπ
t,1 = xt,1 and xπ

t,h+1 = Tt,h(xπ
t,h, π(xπ

t,h)).
● For any trajectory τ = {x1, a1, . . . , xH , aH}, we define the total return

R(τ) =
H

∑
h=1

r(xh, ah). (65)

51

The goal of the learner is to minimize its regret which is given by

RegT =
T

∑
t=1

R(τπ
⋆

t) −
T

∑
t=1

R(τπt
t). (66)

Finally, our bounds depend on the notation of margin defined w.r.t. the function Query defined above.
In particular, for a sequence of contexts {{Tt,h}h≤H}t≤T , we define Tε,h as

Tε,h =
T

∑
t=1

1{Query(F ⋆h (xπ⋆
t,h), ε1⃗) = 1}. (67)

In the above we count for the number of time steps when the counterfactual states {xπ⋆
t,h}t≤T , reached

under the given dynamics if we had executed π⋆, are within the ε-margin region. Note that even
though the observed states {{xt,h}h≤H}t≤T are such that∑T

t=1 1{Query(F ⋆h (xt,h), ε1⃗) = 1} is large,
we would not pay for this in our margin term Tε,h.

F.5.1 Supporting Technical Results

Lemma 21. With probability at least 1 − δ, for any m ≤M , and t ≤ T and h ≤H , the function f⋆,m
satisfies

(a) ∑t−1
s=1Zs,h∥f⋆,mh (xs,h) − fm

s,h(xs,h)∥2 ≤ Ψℓϕ
δ (Fm

h , T) ,

(b) ∥f⋆,mh (xt,h) − fm
t,h(xt,h)∥ ≤∆m

t,h(xt,h),

where Ψ
ℓϕ
δ (Fm

h , T) = 4
λ
Regℓϕ(Fm

h ;T) + 112
λ2 log(4MH log2(T)/δ).

Proof.

(a) We first note that we do not query oracle when Zs,h = 0, and thus we can ignore the time
steps for which Zs,h = 0. Hence, for each h ∈ [H] and m ∈ [M], applying Lemma 5 yields

t−1
∑
s=1

Zs,h∥f⋆,mh (xs,h) − fs,h(xs,h)∥2 ≤
4

λ
Regℓϕ(Fm

h ;T) + 112

λ2
log(4 log2(T)/δ)

for all t ≤ T . Then, we take the union bound for all h ∈ [H] and m ∈ [M], which completes
the proof.

(b) The second part follows from using part-(a) along with the definition in (60).

The next lemma bound the number of times when ∆m
t,h(xt,h) ≥ ζ , and we query. Note that Lemma 22

holds even if the sequence {xt,h}t≤T was adversarially generated.

Lemma 22. Let f⋆,m satisfy Lemma 21 , and let ∆m
t,h(xt,h) be defined in Algorithm 4. Suppose

Algorithm 4 is run on the data sequence {xt,h}t≤1, and let Zt,h be defined in line 10. Then, for any
ζ > 0, with probability at least 1 −Mδ, for any m ∈ [M], and h ≤H ,

T

∑
t=1

Zt,h1{∆m
t,h(xt) ≥ ζ} ≤

20Ψ
ℓϕ
δ (Fm

h , T)
ζ2

⋅E(Fm
h , ζ/2; f⋆,mh),

where E denotes the eluder dimension given in Definition 1.

Proof. The proof is identical to the proof of Lemma 11 where we handle each m ∈ [M] and
h ∈ [H] separately, and substitute the corresponding bounds for f⋆,mh via Lemma 21 (instead of using
Lemma 10). We skip the proof for conciseness.

52

F.5.2 Regret Bound

Suppose the trajectories at round t are generated using the deterministic dynamics {Tt,1, . . . ,Tt,H} =
T (⋅ ; ιt) where ιt denotes the random seed that captures all of the stochasticity at round t 10.

Recall that the policies π⋆ and πt such that for any h ≤ H and x ∈ Xh, π⋆(x) =
SelectAction(F ⋆h (x)), and,πt(x) = SelectAction(Ft,h(x)). Note that Algorithm 4 collects
trajectories using the policy πt at round t. Thus, we have

xπt

t,h = xt,h, (68)

where xt,h denotes the state at time step h in round t of Algorithm 4. Finally, let ε > 0 be a free
parameter. We start with the bound on the regret at time t.

Step 1: Bounding the difference in cumulative return at round t. Fix any t ≤ T , and let τπt
t and

τπ
⋆

t denote the trajectories that would have been sampled using the policies πt and the policy π⋆ at
round t. Furthermore, define the set Xε as

Xε ∶=
H

⋃
h=1
{x ∈ Xh ∣ Query(F ⋆h (x), ε1⃗) = 1} (69)

Using Lemma 18 for the policies πt and π⋆, and the set Xε defined above, we get that

R(τπ
⋆

t) −R(τπt
t) ≤ 2H

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xπt

t,h) ≠ π
⋆(xπt

t,h), x
πt

t,h ∉ Xε}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

+ 2H
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2HTA + 2HTB , (70)

where the second line is obtained by using the relation (68) in the second line. The last line simply
defines TA and TB to be the second and the third term in the previous line, respectively, without the
2H multiplicative factor. We bound these two terms separately below:

● Bound on TA. Using the definition of Xε from (69), we note that

TA =
H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

=
H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h),Query(F ⋆h (xt,h), ε1⃗) = 0}

=
H

∑
h=1

Zt,h1{∃m ∈ [m] ∶ ∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥ > ε},

where the last line follows from the fact that the definition of Query and the fact that
πt(xt,h) ≠ π⋆(xt,h) implies that there exists some m ∈ [M] for which ∥fm

t,h(xt,h) −
f⋆,mh (xt,h)∥ > ε. The above implies that

TA ≤
M

∑
m=1

H

∑
h=1

Zt,h1{∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥ > ε}.

10We use random seed ιt to capture all the stochasticity in the choice of {Tt,h}h≤H,t≤T . However, all our
proofs extend to IL learning with an arbitrary, and possibly adversarial, choice of {Tt,h}h≤H,t≤T

53

● Bound on TB . First note that Lemma 21 implies that with probability at least 1 − δ, for all
m ≤M and h ≤H ,

∥f⋆,mh (xt,h) − fm
t,h(xt,h)∥ ≤∆m

t,h(xt,h). (71)

Next, note that

TB ≤
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h)} (72)

=
H

∑
h=1

1{Query(Ft,h(xt,h), ∆⃗t,h(xt,h)) = 0, πt(xt,h) ≠ π⋆(xt,h)},

where in the last line follows from plugging in the query condition under which Zt,h = 0.
However note that for any h ≤ H for which Query(Ft,h(xt,h), ∆⃗t,h(xt,h)) = 0, by the
definition of Query and the fact that πt(xt,h) ≠ π⋆(xt,h), there must exist some m ∈ [M]
such that

∥f⋆,mh (xt,h) − fm
t,h(xt,h)∥ >∆m

t,h(xt,h).
However, the above contradicts (71), and thus with probability at least 1 − δ,

TB = 0. (73)

Plugging the above bounds on TA and TB in (70), we get that

R(τπ
⋆

t) −R(τπt
t) ≤ 2H

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

M

∑
m=1

H

∑
h=1

Zt,h1{∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥ > ε}.

(74)

Step 2: Aggregating over all time steps. Using the bound in (74) for each round t, we get that

RegT =
T

∑
t=1
(R(τπ

⋆
t) −R(τπt

t))

≤ 2H
H

∑
h=1

T

∑
t=1

1{xπ⋆
t,h ∈ Xε} + 2H

T

∑
t=1

M

∑
m=1

H

∑
h=1

Zt,h1{∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥ > ε}.

Using the fact that 1{a ≥ b} ≤ a2/b2 for any a, b ≥ 0, and the definition of Tε,h in the above, we get
that

RegT ≤ 2H
H

∑
h=1

Tε,h + 2H
T

∑
t=1

M

∑
m=1

H

∑
h=1

Zt,h

∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥2

ε2

≤ 2H
H

∑
h=1

Tε,h +
2H

ε2

M

∑
m=1

H

∑
h=1

Ψ
ℓϕ
δ (F

m
h , T). (75)

where the last line follows from using the bound in Lemma 21.

Plugging in the form of Ψℓϕ
δ (Fm

h , T) and ignoring log factors and constants, we get that

RegT ≲H
H

∑
h=1

Tε,h +
H

λε2

M

∑
m=1

H

∑
h=1

Regℓϕ(Fm
h ;T) + MH2

λ2ε2
log(1/δ).

Notice that ε is a free parameter above so the final bound follows by taking inf over all feasible ε.

F.5.3 Total Number of Queries

Fix any t ≤ T , and let ht denote the first time step at round t for which Zt,ht = 1, if such a
time-step exists (and is set to be H + 1 otherwise). We first observe that for all h ≤ ht, we have
π⋆(xt,h) = πt(xt,h). To see this, note that

Zt,ht1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)} ≤
ht−1
∑
h=1

Zt,ht1{π⋆(xt,h) ≠ πt(xt,h)}

54

≤
ht−1
∑
h=1

Zt,htZ̄t,h1{π⋆(xt,h) ≠ πt(xt,h)}

≤
ht−1
∑
h=1

Z̄t,h1{π⋆(xt,h) ≠ πt(xt,h)}

where in second inequality above, we used the fact that Zt,h = 0 (and thus Z̄t,h = 1) for all h < ht, by
the definition of ht. Observe that the right hand side in the last inequality above is equivalent to the
term (72) in the bound on TB above (where sum is now till ht instead of H). Thus, using the bound
in (73), we get that

Zt,ht1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)} = 0,
and thus

π⋆(xt,h) = πt(xt,h) for all h ≤ ht. (76)

Next, let ε > 0 be a free parameter, and note that plugging in the definition of ht, we get that the total
number of samples is bounded as:

NT =
T

∑
t=1

H

∑
h=1

Zt,h

≤H
T

∑
t=1

Zt,ht

=H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

Zt,ht1{xt,ht ∉ Xε}

=H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

Zt,ht1{xt,ht ∉ Xε, ∥∆m
t,ht
(xt,ht)∥∞ ≤

ε

4
}

+H
T

∑
t=1

Zt,ht1{xt,ht ∉ Xε, ∥∆m
t,ht
(xt,ht)∥∞ >

ε

4
}

= TC + TD + TE ,
where TC , TD and TE are the first, second and the third term respectively in the previous line. We
bound them separately below.

● Bound on TC . Fix any t ≤ T . Using the relation in (76), note that π⋆(xt,h) = πt(xt,h) for
all h < ht. Thus, the corresponding trajectories would be identical till time step ht, which
implies that xt,ht = xπ⋆

t,ht
. Using this property in the TC , we get that

(TC)t =H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε}

=H
T

∑
t=1

Zt,ht
1{xπ⋆

t,ht
∈ Xε}

≤H
T

∑
t=1

H

∑
h=1

Zt,h1{xπ⋆
t,h ∈ Xε}

=H
H

∑
h=1

Tε,h,

where the last line plugs in the definition of Tε,h.
● Bound on TD. First note that

(TD)t =H1{Query(Ft,ht(xt,ht), ∆⃗t,ht(xt,ht)) = 1,Query(F ⋆(xt,ht), ε1⃗) = 0, sup
m∈[M]

∆m
t (xt,ht) ≤ ε/4}.

In the following, we will show that all the conditions in the above indicator can not hold
simultaneously. First note that since Query(Ft,ht(xt,ht), ∆⃗t,ht(xt,ht)) = 1, there exists an
F̃ such that

SelectAction(F̃ (xt,ht))) ≠ SelectAction(Ft,ht(xt,ht)) (77)

55

and

∀m ∈ [M] ∶ ∥F̃ (xt,ht)[∶,m] − Ft,ht(xt,ht)[∶,m]∥ ≤∆m
t,ht
(xt,ht). (78)

On the other hand, recall that Lemma 21 implies that

∀m ∈ [M] ∶ ∥F ⋆(xt,ht)[∶,m] − Ft,ht(xt,ht)[∶,m]∥ ≤∆m
t,ht
(xt,ht). (79)

Since, supm∆m
t,ht
(xt,ht) ≤ ε/4, an application of Triangle inequality along with the bounds

(78) and (79) imply that

∀m ∈ [M] ∶ ∥F ⋆(xt,ht)[∶,m] − F̃ (xt,ht)[∶,m]∥ ≤ 2∆m
t,ht
(xt,ht) < ε. (80)

But the above contradicts the fact that Query(F ⋆(xt,ht), ε1⃗) = 0 since both F̃ and Ft

satisfy the norm constraints in the definition of Query, but we can not simultaneously have
that

SelectAction(F ⋆(xt,ht))) = SelectAction(Ft,ht(xt,ht)) = SelectAction(F̃ (xt,ht)),
due to (77). Thus, we must have that

(TD)t = 0.

● Bound on TE . We note that

TE ≤H
T

∑
t=1

Zt,ht1{∥∆⃗t,ht(xt,ht)∥∞ > ε/4}

=H
T

∑
t=1

Zt,ht1{∃m ∈ [M] ∶∆m
t,ht
(xt,ht) > ε/4}

≤H
M

∑
m=1

T

∑
t=1

Zt,ht1{∆m
t,ht
(xt,ht) > ε/4}

≤H
H

∑
h=1

M

∑
m=1

T

∑
t=1

Zt,h1{∆m
t,h(xt,h) > ε/4},

where the last line simply upper bound the term for ht by the corresponding terms for all
h ≤H .
Using Lemma 22 to bound the term in the right hand side for each m ∈ [M] and h ≤H , we
get that

TE ≤
H

∑
h=1

M

∑
m=1

320HΨ
ℓϕ
δ (Fm

h , T)
ε2

⋅E(Fm
h ,

ε

8
; f⋆,mh).

Gathering the bound above, we get that

NT ≤H
H

∑
h=1

Tε,h +
320H

ε2

H

∑
h=1

M

∑
m=1

Ψ
ℓϕ
δ (F

m
h , T) ⋅E(Fm

h ,
ε

8
; f⋆,mh).

Plugging in the form of Ψℓϕ
δ (Fm

h , T) and ignoring log factors and constants, we get that

NT ≲H
H

∑
h=1

Tε,h +
H

λε2

H

∑
h=1

M

∑
m=1

Regℓϕ(Fm
h ;T) ⋅E(Fm

h , ε/8; f⋆,mh) + MH2

λ2ε2
log(1/δ).

Notice that ε is a free parameter above so the final bound follows by taking inf over all feasible ε.

56

	Experiments
	Further Discussion on Related Works
	Discussion on Computationally Efficiency
	Useful Tools and Notation
	Basic Probabilistic Tools
	Online Learning
	Eluder Dimension, Disagreement Coefficient, and Star Number

	Selective Sampling: Learning from Single Expert
	Comparison to Related Works
	Proof Sketch for Selective Sampling and Binary Labels
	Proof of Theorem 1
	Supporting Technical Results
	Regret Bound
	Total Number of Queries

	Proof of Theorem 2
	Supporting Technical Results
	Regret Bound
	Total Number of Queries

	Proof of Corollary 1
	Proofs for Lower Bounds in Section 3.2

	Imitation Learning: Learning from Single Expert
	Imitation Learning Tools
	Proof of Proposition 1
	Proof of Theorem 4
	Supporting Technical Results
	Regret Bound
	Total Number of Queries

	Proof for the Stochastic Setting
	Proof of Theorem 5
	Supporting Technical Results
	Regret Bound
	Total Number of Queries

