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Abstract

In numerous machine learning contexts, the relationship between input variables
and predicted outputs is not only statistically significant but also strictly monotonic.
Conventional approaches to ensuring monotonicity focus primarily on construc-
tion or regularization methods. This paper establishes that the problem of strict
monotonic probability can be interpreted as a comparison between an observable
revenue variable and a latent cost variable. This insight allows us to reformulate
the original monotonicity challenge into modeling the latent cost variable and es-
timating its distribution. To address this issue, we introduce a generative model
for the latent cost variable, called the Generative Cost Model (GCM), and derive
a corresponding loss function. We further enhance the estimation of latent vari-
ables using variational inference, which reformulate our loss function accordingly.
Lastly, we validate our approach through a numerical simulation of quantile regres-
sion and several experiments on public datasets, demonstrating that our method
significantly outperforms traditional techniques. The code of GCM is available in
https://github.com/iclr-2025-4464/GCM.

1 Introduction

Many machine learning problems exhibit a monotonic relationship between inputs and outputs.
Some of these relationships are statistical in nature, such as the correlation between a person’s height
and weight or the relationship between a company’s stock price and its annual income. However,
these monotonicities are often empirical and not strictly defined. In contrast, certain problems
necessitate strict monotonicity, such as the relationship between equipment availability and its age,
or the connection between auction winning rates and bidding prices. For these strict monotonic
problems, we require a model capable of predicting strict monotonic probability based on specific
input variables. We refer to these input variables as revenue variables, where higher revenue
correlates with an increased probability of a more positive response.

The most common deep learning methods for addressing the monotonicity problem can be broadly
categorized into two types (Runje & Shankaranarayana (2023)): monotonic by construction and
by regularization. The construction approach maintains strict monotonicity through customized
structures in deep neural networks, such as monotonic activation functions, positive weight matrices,
and min-max structures (Sill (1997)). In contrast, the regularization approach promotes monotonicity
by designing specific loss functions (Sill & Abu-Mostafa (1996)).

Unlike traditional approaches, we propose a novel method to tackle the monotonicity problem using
a generative framework. In the estimation of 𝑝(𝑦 |x, r), where 𝑦 ∈ R is a response that maintains
monotonicity with respect to the revenue variable r but is not necessarily monotonic with respect
to x, we employ a two-step process. (i) We simplify the multivariate problem into a Bernoulli case
via variable substitution trick, so that 𝑦 is reduced to binary values (0 or 1). (ii) We reformulate the
monotonicity problem by defining a latent cost variable c, such that 𝑦 = I(c ≺ r) ∈ {0, 1}. This
ensures that the monotonicity between 𝑦 and r is preserved, as we have 𝑃𝑟 (𝑦 = 1|x, r) = 𝑃𝑟 (c ≺
r |x, r). Here, ≺ denotes the partial order in the vector space and I represents the indicator function.
Through this transformation, we can bypass the need to design a strictly monotonic function and
instead focus on the latent cost variable c. Consequently, we can use any structure to model c with the
monotonicity constraints being ignored, as the monotonicity is inherently satisfied by the definition
of c.
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To generate the latent cost variable, we propose a two-stage generative process: (i) Sampling from
joint prior: In the first stage, we sample three variablesx, r andz from a joint prior 𝑝𝜃 (x, r, z). Here,
x, r are observable variables, while z is a latent variable. We assume conditional independence
holds: z ⊥⊥ r | x. This leads to the factorization of the joint distribution as 𝑝𝜃 (x, r, z) =

𝑝𝜃 (z |x)𝑝(x, r). (ii) Generating the cost variable: We generate the cost variable c conditioned on
z using 𝑝𝜃 (c|z). This results in the joint distribution: 𝑝𝜃 (x, r, z, c) = 𝑝𝜃 (c|z)𝑝𝜃 (z |x)𝑝𝜃 (x, r).
Since we have generated c, by the definition 𝑦 = I(c ≺ r), we can express the evidence as:
𝑝𝜃 (x, r, 𝑦) =

∫ ∫
𝑝𝜃 (c|z)𝑝𝜃 (z |x)𝑝(x, r)I(c ⋎𝑦 r)𝑑z𝑑c, where ⋎𝑦 denotes ≺ if 𝑦 = 1, and

⊀ if 𝑦 = 0 (note that ⊀ is not equivalent to ⪰ in vector space). To simplify the model, we
drop the term 𝑝(x, z) and restrict our estimate of evidence to the conditional density 𝑝𝜃 (𝑦 |x, r) =∫ ∫

𝑝𝜃 (c|z)𝑝𝜃 (z |x)I(c⋎𝑦r)𝑑z𝑑c, sincex andr are always provided and we do not need to generate
the entire evidence from scratch. Given that the latent variable z is high-dimensional, accurately
calculating the evidence requires integration over z, which can be computationally intensive. To
address this, we propose two approaches to estimate the evidence: (i) Monte Carlo sampling on
z ∼ 𝑝𝜃 (z |x) to estimate 𝑝𝜃 (𝑦 |x, r). (ii) Use variational inference to obtain a lower bound on the
evidence, which allows us to optimize the log-evidence by sampling z from the recognition model
𝑞𝜙 (z |x, r, 𝑦).
In the last part, we conduct two types of experiments. First, we design a numerical simulation of
the quantile regression task in which the predicted 𝑟th quantile increases monotonically with respect
to the value of 𝑟. We compare the performance between conventional methods and our generative
cost model. The results demonstrate that our method achieves superior predictive accuracy while
preserving strict monotonicity. To further assess the performance of the multivariate revenue variable
r, we conduct experiments on four public datasets: the Adult dataset (Becker & Kohavi (1996)),
the COMPAS dataset (Larson et al. (2016)), the Diabetes dataset (Teboul) and the Blog Feedback
dataset (Buza (2014)). In all four experiments, our model outperforms existing approaches. We
perform several ablation studies to examine the impact of the hyperparameters in our generative cost
model, with detailed findings provided in the Appendix C. In Appendix A, we design a card gamble
simulation, proving that the predicted distribution of the latent cost variable 𝑝𝜃 (𝑐 |𝑥) is converging
towards the actual cost distribution.

The main contributions of our paper are summarized as follows:

• We introduce a universal technique that reformulates the problem of monotonic probability
into a modeling problem for latent cost variables, avoiding restrictions in conventional
monotonic neural networks.

• We address the modeling of the cost variable using a generative approach called the Gen-
erative Cost Model (GCM), and we present two loss functions derived from log-likelihood
and the variational lower bound.

• We evaluate our method for classification tasks using a simulated quantile regression and
tasks on four public datasets, demonstrating that our model consistently outperforms tradi-
tional monotonic models.

2 Background

Partial Order between Vectors. For vectors v1 and v2 in R𝑛, we define the partial order between
v1 and v2 as: v1 ⪯ v2 if and only if v (𝑘 )

1 ≤ v (𝑘 )
2 , for any 1 ≤ 𝑘 ≤ 𝑛. This relationship is illustrated

in Figure 1a. Note that v1 ⪯ v2 is equivalent to v2 ⪰ v1.

The strict order is defined by: v1 ≺ v2 if and only if v1 ⪯ v2 and v1 ≠ v2. We have v1 ≺ v2 is
equivalent to v2 ≻ v1, but not equivalent to v1 ⪰̸ v2.

Partial Order between Random Variables. In this paper, we adopt the definition of first-order
stochastic dominance (Hadar & Russell (1969)): for random variables r1 and r2 defined on R𝑛,
we say that r2 first-order stochastically dominates r1 (denoted r1 ≺1 r2) if and only if 𝑃𝑟 (r1 ≻
t) < 𝑃𝑟 (r2 ≻ t) for any t ∈ R𝑛. Specifically, for one dimensional random variables, 𝑟1 ≺1 𝑟2
is equivalent to 𝐹1 (𝑡) > 𝐹2 (𝑡) (or epi𝐹1 (𝑡) ⊂ epi𝐹2 (𝑡)) for any 𝑡 ∈ R. where 𝐹𝑖 represents the
cumulative distribution function (CDF) of the random variable 𝑟𝑖 and epi𝐹𝑖 refers to the epigraph of
the CDF.
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r1

r2

r3

(a) Example of r’s, where r1 ≺ r2 and
r1 ≺ r3.

epi𝐹
𝐹 (𝑦 |r1)
𝐹 (𝑦 |r2)
𝐹 (𝑦 |r3)

(b) r1 ≺ r2 ⇒ epi𝐹 (𝑦 |r1) ⊂ epi𝐹 (𝑦 |r2) and r1 ≺ r3 ⇒
epi𝐹 (𝑦 |r1) ⊂ epi𝐹 (𝑦 |r3) due to the monotonicity of 𝑦 and
r.

Figure 1: The CDFs of 𝐹 (𝑦 |r) with different r’s, where 𝑦 is monotonic with respect to r.

Monotonic Conditional Probability. A conditional probability 𝑝(y |r) is defined as monotonic, if
and only if y |r1 ≺1 y |r2 for any r1 ≺ r2. Or, in other words, 𝑃𝑟 (y ≻ t|r1) < 𝑃𝑟 (y ≻ t|r2) for any
vector t and any pair r1 ≺ r2. In this paper, we refer to the relationship between y and r as: y being
(conditionally) monotonic (increasing) with respect to r. All instances of monotonicity discussed
here are assumed to be monotonically increasing; for decreasing relationships, we can simply replace
the original variables with their opposites.

For example, if y ∼ N(y;µ,𝚺), where the mean µ is also a random variable, then we find that y is
monotonic with respect to µ. Similarly, if 𝑦 ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛽), then 𝑦 is monotonic with respect to 𝛽.
In these cases, µ and 𝛽 are referred to as monotonic parameters of y.

The relationship between r and 𝑝(𝑦 |r) is illustrated in Figure 1, where 𝑦 is one-dimensional and
monotonic with respect to r. In Figure 1a, we plot three random variables r1, r2 and r3, with r1 ≺ r2
and r1 ≺ r3, while r2 and r3 are not comparable. Let 𝐹 (𝑦 |r𝑖) denote the CDF of 𝑦 conditioned on
r = r𝑖 . The corresponding conditional CDFs are plotted in Figure 1b, where 𝐹 (𝑦 |r1) is positioned at
the top with the smallest epigraph, while 𝐹 (𝑦 |r2) intersects 𝐹 (𝑦 |r3) indicating the incomparability
between r2 and r3.

3 Related Work

Monotonic Modeling. In many machine learning tasks, we have the prior knowledge that the output
should be monotonic with respect to certain input variables. A straightforward idea is to identify a
monotonic function and optimize its parameters to approximate the desired monotonic output. It can
be summarized as the following form:

minimize L(𝑦, 𝐹𝜃 (x, r))

subject to
𝜕𝐹𝜃 (x, r)

𝜕r
≻ 0.

(1)

The Min-Max architecture (Sill (1997)) is a pioneering work in monotonic neural networks, utilizing
a piecewise linear model to approximate monotonic target functions. Its monotonicity is ensured
through (i) positive weighting matrices, (ii) monotonic activation functions, and (iii) a Min-Max
structure.

Along the direction of monotonic by construction, Nolte et al. (2022) introduced the Lipschitz
monotonic network, which enhances robustness through weight constraint. Igel (2023) proposed
the smoothed min-max monotonic network, which replaces the traditional min-max structure with a
smoothed log-sum-exp function, preventing the network from becoming silent. Additionally, Runje
& Shankaranarayana (2023) developed the constrained monotonic neural network, which improves
the approximation of non-convex functions by modifying activation functions.
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Another popular direction for improving monotonicity involves the use of regularization techniques,
which can be formulated as:

minimize L(𝑦, 𝐹𝜃 (x, r)) + R(𝐹𝜃 ), (2)

where the regularization R(𝐹𝜃 ) > 0 if 𝐹𝜃 is not monotonic at some points. This direction includes
monotonicity hints proposed by Sill & Abu-Mostafa (1996), which use hint samples and pairwise
loss to guide model learning. The certified monotonic neural networks proposed by Liu et al. (2020)
certify monotonicity by verifying the lower bound of the partial derivative of monotonic features.
Furthermore, Gupta et al. (2019) proposed a pointwise penalization method for negative gradients,
while counter example guided methods were introduced by Sivaraman et al. (2020).

In addition, the lattice networks (Garcia & Gupta (2009)) can solve the monotonic problem by either
a construction or regularization approach; extensive works have been conducted in this area by
Milani Fard et al. (2016), You et al. (2017), Gupta et al. (2019) and Yanagisawa et al. (2022), etc.

Monotonicity also plays an important role in many areas of machine learning. Ben-David (1995);
Lee et al. (2003); van de Kamp et al. (2009); Chen & Guestrin (2016) bring monotonicity into
tree models; Rashid et al. (2020) propose the QMIX method using monotonic value functions in
multi-agent reinforcement learning; Lam et al. (2023) propose a multi-class loss function using
monotonicity of gradients of convex functions; Haldar et al. (2020) and Xu et al. (2024) bring
monotonicity into online business, etc.

Variational Inference and Generative models. Variational inference (VI) (Peterson (1987); Parisi
& Shankar (1988); Saul & Jordan (1995)) is a powerful technique for working with generative
models, and recent years have seen significant advances based on this approach (Kingma (2013);
Rezende et al. (2014); Ozair & Bengio (2014); Burda et al. (2015); Sohl-Dickstein et al. (2015);
Ho et al. (2020); Song et al. (2020)). VI transforms the complex task of Bayesian inference into a
computationally manageable optimization problem by approximating the latent variables within a
specified family of distributions. This is achieved by optimizing the evidence lower bound (ELB)
rather than the original evidence.

Recent studies have highlighted the rapid growth of conditional generative models. In the realm of
text-to-image generation, notable works include Ramesh et al. (2021), Ramesh et al. (2022), Saharia
et al. (2022), and Rombach et al. (2022). For text-to-video generation, key contributions come
from Esser et al. (2023) and Brooks et al. (2024). Unlike variational autoencoders (VAEs) (Kingma
(2013)), which initiate generation from a latent variable, these conditional generative models begin
with a pair comprising a given condition (such as text, image, or video) and a latent variable. This
is typically expressed through the decomposition: 𝑝(𝑥, 𝑧) = 𝑝(𝑥)𝑝(𝑧 |𝑥), where 𝑥 is the condition
and 𝑧 is the latent variable. Consequently, these models primarily focus on conditional probability
𝑝(𝑧 |𝑥). In this paper, we adopt this paradigm to construct our cost generation model.

Moreover, the normalizing flow is an important subject of generative models, it not only transforms
a simple distribution to a complicated distribution, but also requires these transformations to be
invertible, which is sufficient when the transformations are continuous and monotonic. There have
been studies that involve monotonicity in normalizing flows: Ziegler & Rush (2019); Ho et al. (2019);
Wehenkel & Louppe (2019); Müller et al. (2019); Jaini et al. (2019); Dinh et al. (2019); Ahn et al.
(2022).

4 The Cost Variable Method

4.1 Problem Formulation

Consider a binary classification problem of (x, r, 𝑦), wherex ∈ R𝑛 represents the ordinary variables,
r ∈ R𝑚 is the revenue variable, and 𝑦 ∈ {0, 1} is the binary output variable that exhibits monotonicity
with respect to r. We assume that 𝑦 follows a Bernoulli distribution, with its mean parameter
generated by a deep neural network 𝐺 : R𝑛 × R𝑚 → (0, 1):

𝑦 |{x, r} ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦;𝐺 (x, r)). (3)

As defined in Section 2, the function 𝐺 has to be monotonic with respect to r. We refer to r as the
revenue variable associated with 𝑦. The rationale is that, when 𝑦 is viewed as a decision variable,
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r1
r2

r3

𝑃𝑟 (c ≺ r1)

(a) In the density contour plot of the cost variable
c, the shaded area represents the event where c ≺
r. This indicates that the probability of a randomly
selected c falling within this shaded region is given
by 𝑃𝑟 (c ≺ r) = 𝑃𝑟 (𝑦 = 1|r). Therefore, for any
r1 ≺ r2, we can get 𝑃𝑟 (c ≺ r1) < 𝑃𝑟 (c ≺ r2).

𝑦

r

x

z c

I(c ≺ r) =

𝑝
𝜃 (z |x)

𝑝𝜃 (c|z)

𝑞 𝜙
(z
|x,
r,
𝑦)

(b) The graph illustrates the probability graphical
model for a monotonic probability 𝑝(𝑦 |x, r). In this
model, the grey nodes represent observable variables
x, 𝑦 and r, while the white nodes denote latent vari-
ables. Solid arrows indicate the generative model 𝑝𝜃 ,
whereas the dashed arrow represents the recognition
model 𝑞𝜙 .

Figure 2: Definition (Figure 2a) and modeling (Figure 2b) of the latent cost variable.

a profit-maximizing decision will favor higher values of r, thus ensuring the monotonicity of 𝑦 with
respect to r.

For a general monotonic problem of (x, r, 𝑦) with continuous output 𝑦 ∈ R, the model takes the
following form:

𝑦 |{x, r} ∼ F (𝑦;𝐺 (x, r)), (4)

whereF denotes the chosen probability family for 𝑦. The function𝐺 produces a monotonic parameter
for F and is monotonic with respect to r. Consequently, 𝑦 maintains monotonicity with respect to
r. For example, if F is a Gaussian distribution N(𝑦; 𝜇(x, r), 𝜎(x)2) and 𝐺 = 𝜇(x, r) predicts
its mean parameter, then 𝐺 must be a monotonic function of r to ensure that 𝑦 is monotonic with
respect to r.

To reduce the general monotonic probability problem to the binary scenario, we introduce an
assistant random variable 𝑡 ∈ R such that 𝑡 ⊥⊥ r | x. We define the new response variable as
𝑦∗ = I(𝑦 + 𝑡 > 0) ∈ {0, 1} and the new revenue variable as r∗ = [𝑡, r]. For any r∗1 ≺ r∗2, since the
monotonicity between 𝑦 and r, we have:

𝑃𝑟 (𝑦∗ = 1|r∗1) = 𝑃𝑟 (𝑦 > −𝑡 |r1, 𝑡) < 𝑃𝑟 (𝑦 > −𝑡 |r2, 𝑡) = 𝑃𝑟 (𝑦∗ = 1|r∗2), (5)

meaning 𝑦∗ is strictly monotonic with respect to r∗. In the opposite direction, if 𝑦∗ is monotonic
with respect to r∗ = [𝑡, r], then for any r∗1 ≺ r∗2 and 𝑠 ∈ R, we have [−𝑠, r1] ≺ [−𝑠, r2] and
𝑃𝑟 (𝑦 > 𝑠 |r1) < 𝑃𝑟 (𝑦 > 𝑠 |r2), proving that 𝑦 |r2 ≻ 𝑦 |r1. This establishes the equivalence between
the problems of (𝑦∗,x, r∗) and (𝑦,x, r). Therefore, the monotonic modeling problem of the triplet
(𝑦,x, r) where 𝑦 ∈ R is reduced to the binary problem of (𝑦∗,x, r∗), which is 𝑦 + 𝑡 > 0|{x, r} ∼
B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦∗;𝐺 (x, 𝑡, r])). Since 𝑃𝑟 (𝑦 ≤ 𝑠 |x, r∗) = 1 − 𝑃𝑟 (𝑦 > 𝑠 |x, r∗) = 1 − 𝐺 (x, [r,−𝑠]), the
density function of 𝑦 is

𝑝(𝑦 |x, r) = −𝜕𝐺 (x, [r,−𝑠])
𝜕𝑠

�����
𝑠=𝑦

. (6)

Which completes the transformation from a general monotonic probability problem to a binary
monotonic problem. We give an example of calculating the maximum likelihood estimate of 𝑦 as
well as deriving the MLE loss function in Appendix B.3.
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4.2 Monotonicity via the Cost Variable

We now focus on the binary problem. The traditional approach, as defined in Equation 3, involves
identifying a strictly (or weak) monotonic function 𝐺 (x, r) with respect to r. In this paper, instead
of searching for a suitable function 𝐺, we introduce a random variable c to model 𝑦 defined by:

𝑦 = I(c ≺ r). (7)
Given that {c|c ≺ r1} ⊂ {c|c ≺ r2}, for any r1 ≺ r2, it follows that 𝑃𝑟 (𝑦 = 1|r = r1) < 𝑃𝑟 (𝑦 =

1|r = r2), which guarantees that 𝑦 is strictly monotonic with respect to r. Then we can define:

𝐺 (x, r) = E[𝑦 |x, r] = 𝑃𝑟 (c ≺ r |x, r) =
∫
c≺r

𝑝(c|x)𝑑c, (8)

demonstrating that 𝑦 |{x, r} ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝐺 (x, r)). Thus,𝐺 (x, r) serves as the monotonic function
proposed in Equation 3 . Notably, we do not need to derive the exact form of 𝐺, as long as we can
estimate the conditional density 𝑝(c|x).
Unlike conventional methods that require 𝐺 to be a strictly monotonic function, there are no con-
straints on 𝑝(c|x). We can take any form of 𝑝(c|x), and the monotonicity of 𝑝(𝑦 |r) holds strictly
due to the definition of 𝑦 in Equation 7. We call c the cost variable. As illustrated in Figure 2a,
the probability of 𝑦 is equivalent to the probability that the revenue r domains the cost c, that is,
𝑃𝑟 (𝑦 = 1) = 𝑃𝑟 (c ≺ r). Thus, the original task of finding a monotonic function 𝐺 reduces to
determining the distribution of c. However, since c is a latent variable, we must infer c based on the
observable variables x, r and 𝑦, which is a challenge that still needs to be addressed.

4.3 Generative Cost Model

As we focusing on modeling the cost variable c, the distribution of c can be complicated, making it
challenging to select an appropriate distribution family. To bypass the need for choosing a suitable
distribution family, we adopt a generative approach that can automatically approximate complicated
distributions. In this paper, we construct a simple generative model for c through the following
process:

x, r ∼ 𝑝(x, r),
𝜆𝑧 = DNN𝑧 (x; 𝜃1), 𝑝𝜃1 (z |x) = P𝑧 (z;𝜆𝑧), (9)
𝜆𝑐 = DNN𝑐 (z; 𝜃2), 𝑝𝜃2 (c|z) = P𝑐 (c;𝜆𝑐),

𝑦 = I(c ⪯ r).
The generative model consists of three independent stages: 𝑝(x, r), 𝑝𝜃1 (z |x) and 𝑝𝜃2 (c|z), where
𝜃 = [𝜃1, 𝜃2] are the generative parameters that must be learned. We do not need to model the first
stage since x and r are always given during inference. In the second stage, we generate the latent
variable z via 𝑝𝜃1 (z |x). Subsequently, the latent cost variable c is generated by 𝑝𝜃2 (c|z) , which is
set to be elementwise independent, that gives us the decomposition

𝑝𝜃2 (𝑦 |z, r) = 𝑝𝜃2 (c ⋎𝑦 r |z, r) = 1 − 𝑦 − (−1)𝑦
∏
𝑖

∫ r (𝑖)

−∞
𝑝𝜃2 (c(𝑖) |z)𝑑c(𝑖) . (10)

As illustrated in Figure 2b, we assume that the conditional independencies: z ⊥⊥ r | x and
x ⊥⊥ 𝑦 | {z, r} hold (we discuss another assumption in Appendix D where we abandon z ⊥⊥ r | x).
Thus the probability of 𝑦 conditioned on x and r can be formulated as:

𝑝𝜃 (𝑦 |x, r) =
∫

𝑝𝜃1 (z |x, r)𝑝𝜃2 (𝑦 |z,x, r)𝑑z =

∫
𝑝𝜃1 (z |x)𝑝𝜃2 (𝑦 |z, r)𝑑z = Ez∼𝑝𝜃1

𝑝𝜃2 (𝑦 |z, r).
(11)

To find the optimal parameter 𝜃 = [𝜃1, 𝜃2], we maximize the log-likelihood (𝐿𝐿) of the observation
𝑦, which is:

𝐿𝐿 = log 𝑝𝜃 (𝑦 |x, r) = logEz𝑘∼𝑝𝜃1 (z |𝑥 )

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃2 (𝑦 |z𝑘 , r)
]

≥ Ez𝑘∼𝑝𝜃1 (z |𝑥 ) log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃2 (𝑦 |z𝑘 , r)
]
.

(12)
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To maximize 𝐿𝐿, we can alternatively maximize the RHS of Equation 12, which can be estimated
by sampling z𝑘 ∼ 𝑝𝜃1 (z |𝑥), 𝑘 = 1, · · · , 𝐾 . Since we need to optimize both parameters 𝜃1 and 𝜃2 via
gradient descent methods, we adopt the reparameterization trick (Kingma (2013)) as the following
form:

z(𝜃1,x, r, 𝜖) = µ𝜃1 (x, r) + σ𝜃1 (x, r) ⊙ ϵ, (13)

where ϵ ∼ N(0,E). Therefore, the final GCM loss function is:

L𝐺𝐶𝑀 (𝜃;x, r, 𝑦) = − log
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃2 (𝑦 |x, r, z(𝜃1,x, r, 𝜖𝑘)) . (14)

The details of the model is available in the Appendix B.1. However, when 𝑧 is a𝐾-categorical variable
that 𝑧 ∈ {1, · · · , 𝐾}, we have the exact estimate of 𝐿𝐿 = log

∑𝐾
𝑘=1 𝑝𝜃1 (𝑧 = 𝑘 |x)𝑝𝜃2 (𝑦 |𝑧 = 𝑘, r).

This avoids the uncertainty of sampling on 𝑧 ∼ 𝑝𝜃1 (𝑧 |x), which is useful when the dimension of r
and c is small enough that we do not need a complex latent variable z to model the low-dimensional
cost variable c. The details of our model with categorical 𝑧 are available in the Appendix B.2.

4.4 Generative Cost Model with Variational Inference

A significant challenge arises from the difficulty in learning the distribution of z conditioned on x
when the latent distribution is complex. To improve the modeling of z, we introduce the recognition
model 𝑞𝜙 (z |x, r, 𝑦) that use all the observable variables to approximate the intractable posterior
𝑝𝜃 (z |x, r, 𝑦), the recognition model is formulated as:

𝜆 �̃� = DNN�̃� (x, r, 𝑦; 𝜙), 𝑞𝜙 (z |x, r, y) = P�̃� (z;𝜆 �̃�). (15)

Similar to the IWAE (Burda et al. (2015)), by Jensen’s inequality, we have the evidence lower bound
(ELB):

𝐸𝐿𝐵 = Ez𝑘∼𝑞𝜙 log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃 (𝑦, z𝑘 |x, r)
𝑞𝜙 (z𝑘 |x, r, 𝑦)

]
≤ logEz𝑘∼𝑞𝜙

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃 (𝑦, z𝑘 |x, r)
𝑞𝜙 (z𝑘 |x, r, 𝑦)

]
= log 𝑝𝜃 (𝑦 |x, r).

(16)
So the objective of the variational version of GCM (noted as GCM-VI) is:

L𝐺𝐶𝑀−𝑉𝐼 (𝜃, 𝜙;x, r, 𝑦) = − log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃2 (𝑦 |z𝑘 , r)𝑝𝜃1 (z𝑘 |x)
𝑞𝜙 (z𝑘 |x, r, 𝑦)

]
. (17)

Here, z𝑘 ∼ 𝑞𝜙 (z |x, r, 𝑦) is sampled through the reparameterization trick similar to Equation 13.
Ablation studies for values of the latent dimension 𝐷 and the sample number 𝐾 are available in the
Appendix C.

5 Experiment

5.1 Experiment of Quantile Regression by Simulation

Quantile regression is a common problem in statistics, its goal is to estimate the 𝑟th quantile of
𝑦 conditioned on 𝑥, based on observations of 𝑥 and 𝑦. The 𝑟th quantile 𝑄𝑦 |𝑥 (𝑟) is defined by
𝑄𝑦 |𝑥 (𝑟) = 𝐹−1

𝑦 |𝑥 (𝑟), where 𝐹𝑦 |𝑥 is the conditional cumulative distribution function of 𝑦 conditioned
on 𝑥. Since 𝐹 is monotonic, its inverse 𝑄𝑦 |𝑥 (𝑟) is also strict monotonic with respect to 𝑟 . The
common objective (Koenker (2005)) of the linear quantile regression is given by:

𝛽𝑟 = arg min
𝛽𝑟

∑︁
𝑖=1

(𝑟 (𝑦 (𝑖) − �̂� (𝑖) )+ + (1 − 𝑟) ( �̂� (𝑖) − 𝑦 (𝑖) )+), (18)

where �̂� (𝑖)𝑟 = 𝑥 (𝑖) 𝛽𝑟 is a linear prediction of the quantile 𝑄𝑦 |𝑥 (𝑟) and 𝛽𝑟 is its parameter. For the
nonlinear 𝑦 |𝑥, we can adopt neural networks to capture such relationship automatically. In addition,
we can introduce 𝑟 into the network and predict the 𝑟th quantile of 𝑦 |𝑥 by �̂�𝑟 = DNN𝜃 (𝑥, 𝑟) for any
𝑟 ∈ (0, 1). Or, in a generative style:

𝑦𝑟 ∼ 𝑝𝜃 (𝑦𝑟 |𝑥, 𝑟). (19)
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Figure 3: Plot of �̂�𝑟 | (𝑥, 𝑟) for 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (red curves). The background scatters are
real training samples.

However, this problem is different from the original monotonic modeling, since the variable 𝑟 here
is unobservable. To solve this issue, we modify the monotonic modeling problem into the following
form:

sample 𝑟 ∼ U([0, 1])
sample �̂�𝑟 ∼ 𝑝𝜃 (𝑦 |𝑥, 𝑟)

minimize 𝑟 (𝑦 − �̂�𝑟 )+ + (1 − 𝑟) ( �̂�𝑟 − 𝑦)+.
(20)

And now we can do experiments based on the typical monotonic methods. In this experiment, we
compare several classic methods with our generative model (GCM), all of which share the same
baseline architecture: a three-layer perceptron network with tanh activations. During training, we
employ the classic stochastic gradient descent method to optimize network parameters.

The methods we compare include: (i) the baseline MLP network (MLP); (ii) Min-Max network (MM)
(Sill (1997)); (iii) smoothed Min-Max network (SMM) (Igel (2023)); (iv) constrained monotonic
network (CMNN); (v) monotonicity hint model (Hint) (Sill & Abu-Mostafa (1996)); (vi) pointwise
loss method (PWL) (Gupta et al. (2019)). Note that the MLP method does not require monotonicity,
it does not face the difficulties in strict monotonic structure designing as other methods. Here we
regard it as a benchmark of a free-style model but not a baseline of the monotonic modeling family.
The Hint and PWL methods are weak monotonic methods which encourage but do not assure strict
monotonicity. The method to be tested is the GCM with a categorical latent variable z, following
the same procedure as formulated in Appendix B.2 and Appendix B.3, and here we take the latent
categorical dimension as 8.

The training data are generated through a simulation with the setting:

𝑦 = 0.3 sin(2(𝑥 + 0.8)) + 0.4 sin(3(𝑥 − 1.3)) + 0.3 sin(5𝑥) + 0.4(0.8𝑥2 + 0.6)𝜖, (21)

where 𝑥 ∈ (−1.5, 1.5) and 𝜖 ∼ U(0, 1). For each sampled (𝑥, 𝑦), we additionally sample 𝑟 ∼
U([0, 1]) and optimize our models following Equation 20. Note that the sampling of 𝑟 is independent
of the sampling of 𝜖 . We train our model with batch size of 20 in 5, 000 rounds, resulting in a total
of 100, 000 training examples, while the models are tested on 1, 000 examples. The test results
during the training process are shown in Figure 3, where the results are demonstrated by the 𝑟th

8
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quantile curve (𝑥, �̂�𝑟 ) for 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We can see that GCM predicts the most
accurate quantile values of �̂�𝑟 , as well as maintaining a strict monotonicity between �̂�𝑟 and 𝑟 . The
traditional strict monotonic methods (MM, SMM, CMNN) suffer from approximation accuracy,
as the strict monotonic structures (e.g. positive weighting matrices and monotonic activations)
weaken the universal approximation ability of neural networks. The non-monotonic (MLP) and
weak-monotonic (Hint, PWL) methods have better approximation accuracy than the strict monotonic
methods. However, for these methods, the curves of �̂�𝑟 with different 𝑟’s are not sufficiently separated,
due to the lack of strict monotonic constraints.

In Table 1, we show the detailed mean absolute error (MAE) of all methods in the quantile regression
task, with 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We repeat the experiment 10 times with different random
seeds, and the final results are reported with 95% confidence intervals. As the data show, GCM
performs the best among all the methods.

Table 1: MAE (with 95% confidence interval) of the quantile regression experiment.

MAE
Method 𝑟=0.1 𝑟=0.3 𝑟=0.5 𝑟=0.7 𝑟=0.9
MLP 0.1495 ±0.0340 0.1157 ±0.0283 0.1057 ±0.0255 0.1230 ±0.0309 0.1477 ±0.0386
MM 0.2002 ±0.0572 0.1103 ±0.0320 0.0723 ±0.0245 0.1067 ±0.0346 0.1745 ±0.0495
SMM 0.2345 ±0.0693 0.1194 ±0.0356 0.0812 ±0.0246 0.1236 ±0.0366 0.1919 ±0.0556
CMNN 0.1768 ±0.0340 0.1119 ±0.0174 0.0823 ±0.0161 0.1007 ±0.0198 0.1480 ±0.0332
Hint 0.1402 ±0.0285 0.1137 ±0.0263 0.1068 ±0.0292 0.1154 ±0.0368 0.1316 ±0.0374
PWL 0.1793 ±0.0282 0.1476 ±0.0164 0.1394 ±0.0193 0.1524 ±0.0216 0.1698 ±0.0207
GCM 0.0984 ±0.0188 0.0777 ±0.0119 0.0669 ±0.0096 0.0759 ±0.0127 0.0991 ±0.0211

5.2 Experiments for Multidimensional Revenue on Public Datasets

To further evaluate the GCM model for the multidimensional revenue variable, we use four public
datasets: the Adult dataset (Becker & Kohavi (1996)), the COMPAS (Correctional Offender Manage-
ment Profiling for Alternative Sanctions) dataset (Larson et al. (2016)), the Diabetes dataset (Teboul)
and the Blog Feedback dataset (Buza (2014)). The property of each dataset is shown in Table 2 .

Table 2: Details of the datasets.

dataset total examples dimension of x dimension of r target
Adult 48,842 33 4 classification
COMPAS 7,214 9 4 classification
Diabetes 253,680 105 4 classification
Blog Feedback 52,397 272 8 regression

The model we test are the same as we presented in Section 5.1, while the evaluation metrics are
switched to log-loss, RMSE, AUC and ACC. And, as we stated in Section 5.1, we regard the MLP
model as a benchmark of a freestyle model but not a baseline of the monotonic modeling family.
For all four datasets, the training and testing sets are split in a 4:1 ratio. We also follow the data
preprocessing procedures outlined by Liu et al. (2020) for the COMPAS dataset. For the Blog
Feedback dataset, we perform a logarithm transformation for numerical features and target value.
In all experiments, we employ the Gaussian distribution for latent z in the GCM and GCM-VI,
the hyperparameter settings of GCM and GCM-VI are 𝐷 = 4 and 𝐾 = 32. The testing results are
demonstrated in Table 3 and the full results are available in Appendix E. All experiments are repeated
10 times with different random seeds, the final results are reported with a 95% confidence interval.

Our GCM and GCM-VI models achieve the top two performances in all metrics in all datasets after
10, 000 training steps. Notably, GCM-VI achieves the best performance on all datasets except the
Blog Feedback dataset, proving the effectiveness of introducing variational bound into our generative
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Table 3: Experimental results on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
ACC↑ ACC↑ ACC↑ RMSE↓

MLP ∗ 0.8837 ±0.0012 0.6955 ±0.0008 0.8431 ±0.0004 0.1042 ±0.0004
MM 0.8836 ±0.0010 0.6949 ±0.0021 0.8409 ±0.0008 0.1100 ±0.0018
SMM 0.8837 ±0.0011 0.6955 ±0.0020 0.8401 ±0.0013 0.1114 ±0.0008
CMNN 0.8832 ±0.0013 0.6997 ±0.0011 0.8393 ±0.0015 0.1118 ±0.0005
Hint ♯ 0.8846 ±0.0011 0.6861 ±0.0024 0.8407 ±0.0005 0.1118 ±0.0013
PWL ♯ 0.8835 ±0.0012 0.6960 ±0.0013 0.8417 ±0.0003 0.1069 ±0.0006
GCM 0.8854 ±0.0013 0.6991 ±0.0011 0.8441 ±0.0001 0.0994 ±0.0003
GCM VI 0.8858 ±0.0014 0.7011 ±0.0011 0.8442 ±0.0002 0.1005 ±0.0004
∗: No monotonicity requirements.
♯: Weak monotonicity via regularization.

objective. The detailed results are available in the Appendix E.1. And a time complexity analysis is
available in the Appendix F.

6 Conclusion

This paper presents an innovative generative method for monotonic modeling by reformulating the
monotonicity problem through the incorporation of a latent cost variable c. We have developed a
robust generation process for this cost variable that accurately approximates the latent costs. Our
experimental results demonstrate that the proposed Generative Cost Model (GCM and GCM-VI)
effectively addresses the monotonicity challenge, significantly outperforming traditional approaches
across various tasks.
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A A Gamble Simulation

We design a card gamble and the rules are listed as follows:

• There are 𝑛 cards, each labeled with a number from 1 to 𝑛. The cards are shuffled and then
the backsides are also labeled with numbers from 1 to 𝑛.

• In each round, the dealer shuffles the cards and then the player picks 𝑙 cards from the top of
the deck. The player sees the front sides of the selected cards and places a bet of 𝑟 chips,
where 𝑟 < 𝑛.

• The dealer rolls a dice to select one card from the 𝑙 selected cards. If the backside number
of this card is less than 𝑟 , the player wins and receives 𝑛 chips as a prize, producing a net
profit of 𝑛 − 𝑟 , otherwise the player loses, resulting in a profit of −𝑟.

• In the whole game, a player can only see the front side, but not the backside of all cards.

In our gambling model, the rules state that the more chips a player bets, the higher the likelihood of
winning, but correspondingly the prize of winning shrinks. We denote the winning event as 𝑦 = 1
and the losing as 𝑦 = 0. The selected cards of the player are represented as x = [x1, · · · ,x𝑙], where
each x𝑖 corresponds to an embedding of the 𝑖 th card. Consequently, the probability 𝑝(𝑦 |x, 𝑟) is
strictly monotonic with respect to the bet 𝑟 . We train our generative cost model on a simulated
dataset and evaluate the performance of our model 𝑝𝜃 (𝑦 |x, 𝑟) using the same strategy. To assess
the prize-winning capability of the models, we determine the optimal bet of model 𝑝𝜃 is: 𝑟∗ =

argmax𝑟 {𝑝𝜃 (𝑦 |x, 𝑟)𝑛 − 𝑟.} The real profit generated by the choice 𝑟∗ is I(𝑟∗ > 𝑐)𝑛 − 𝑟∗ . To
maximize the total profit, a model has to learn the probability 𝑝𝜃 (𝑦 |x, 𝑟) accurately for every
combinations of x and 𝑟 .

The cost variable 𝑐 corresponds to a random choice of the unobservable values on the backsides
of the picked cards x1, · · · ,x𝑙 , and we note these backside values as 𝑏1, · · · , 𝑏𝑙 . As a result, the
model should infer the probabilities of the backside value of each x𝑖 . This inference is particularly
challenging, as the models can only deduce these probabilities from training samples consisting
of (x, 𝑟, 𝑦). In particular, the optimal solution for the generative cost model is to learn a precise
mapping from x to 𝑝(𝑐 |x), which is given by:

𝑝(𝑐 |x) = I(𝑐 ∈ {𝑏1, · · · , 𝑏𝑙})
𝑙

(22)

We evaluate these methods using the following metrics: (i) the area under the precision-recall curve
(AUC) between 𝑝𝜃 (𝑦 |x, 𝑟) and 𝑦; (ii) the Kullback-Leibler (KL) divergence between 𝑝𝜃 (𝑦 |x, 𝑟) and
the true 𝑝(𝑦 |x, 𝑟); (iii) Kendall’s 𝜏 coefficient, calculated between multiple pairs of 𝑝𝜃 (𝑦 |x, 𝑟) and
𝑟 with fixed x, for validating models’ monotonicity; (iv) the prize money earned by each model.

In our experiments, we evaluate the two proposed methods: the Generative Cost Model (GCM). For
the GCM, we utilize a categorical latent variable z and estimate the likelihood as demonstrated in
the Appendix B.2. The model is trained on simulated data derived from the card game we designed,
with hyperparameters set to 𝑛 = 10, 000 and 𝑙 = 4. We assume that 𝑟 is generated independently
of 𝑥. We train our model with mini-batches of size 100 in 50, 000 rounds, resulting in a total of
5, 000, 000 training examples, while the methods are tested on 100, 000 examples. The experimental
results comparing our models with other methods are summarized in Table 4.

As shown in Table 4, our experiments demonstrate that the Generative Cost Model (GCM) achieves
superior performance compared to all other monotonic methods. Notably, the performance on
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Table 4: Experimental results (with a 95% confidence interval) for the simulated card game.

Method AUC↑ KL Div.↓ Kendall’s 𝜏↑ Prize Profit↑
MLP 0.8803 ±0.0006 0.0630 ±0.0012 0.8989 ±0.0042 1053.7 ±24.9
MM 0.8844 ±0.0012 0.0578 ±0.0033 1 ±0 1251.5 ±68.1
SMM 0.8824 ±0.0031 0.0629 ±0.0072 1 ±0 1104.6 ±130.6
CMNN 0.8823 ±0.0013 0.0624 ±0.0029 1 ±0 1025.1 ±35.0
Hint 0.8850 ±0.0013 0.0585 ±0.0028 0.9499 ±0.0027 1164.1 ±71.0
PWL 0.8879 ±0.0013 0.0526 ±0.0036 1 ±0 1355.9 ±91.4
GCM 0.8917 ±0.0005 0.0395 ±0.0019 1 ±0 1699.2 ±48.1

Kendall’s 𝜏 coefficient meets our expectations, as these models ensure strict monotonicity; the only
exceptions are the MLP model and the Hint model, which fail to predict monotonic results since their
architecture do not assure strict monotonicity.

Figure 4: The predicted distribution of 𝑝𝜃 (𝑐 |x) (histogram in blue) by GCM is compared to the
actual distribution of 𝑐 (represented by the red lines). In each row, we fix the variable x and the
actual 𝑝(𝑐 |x). As the training progresses, 𝑝𝜃 (𝑐 |x) gradually converges to 𝑝(𝑐 |x).

Since our model focuses on modeling the distribution of the latent cost variable 𝑐, we can leverage
the actual distribution of 𝑐 formulated in Equation 22. During the training process, we record
the prediction of 𝑝𝜃 (𝑐 |x) = E𝑧∼𝑝𝜃 (𝑧 |x) (𝑐 |𝑧). As shown in Figure 4, the predicted density of 𝑐 is
increasingly aligned with the actual distribution as training progresses. This observation confirms
that our generative cost model effectively learns the latent cost variable.
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B Details of GCM

B.1 Gaussian Case

The generative model with Gaussian latent variable z is designed by:

µ, logσ2 = DNN𝑧 (x; 𝜃1),
ϵ ∼ N(0,E),
z = µ + σ ⊙ ϵ,

µ𝑐, s𝑐 = DNN𝑐 (z; 𝜃2),
c ∼ L𝑜𝑔𝑖𝑠𝑡𝑖𝑐(µ𝑐, s𝑐),

𝑃𝑟 (c ⪯ r) =
∏
𝑖

sigmoid

(
r (𝑖) − µ(𝑖)

𝑐

s(𝑖)
𝑐

)
.

(23)

For GCM-VI, the recognition encoder is:

µ̂, log σ̂2 = DNN�̂� (x, r, y; 𝜃3)
ϵ ∼ N(0,E),
ẑ = µ̂ + σ̂ ⊙ ϵ,

(24)

while the decoder shares with GCM.

B.2 Categorical Case

The generative model with categorical latent variable z is designed by:

𝑤 (1) , · · · , 𝑤 (𝐾 ) ,d = DNN𝑧 (x; 𝜃1),
𝑧 ∼ C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝑤 (1) , · · · , 𝑤 (𝐾 ) ),
h = Aonehot(𝑧) + d,

µ𝑐, s𝑐 = DNN𝑐 (z; 𝜃2),
c ∼ L𝑜𝑔𝑖𝑠𝑡𝑖𝑐(µ𝑐, s𝑐),

𝑃𝑟 (c ⪯ r) =
∏
𝑖

sigmoid

(
r (𝑖) − µ(𝑖)

𝑐

s(𝑖)
𝑐

)
.

(25)

Then we can estimate the probability of 𝑦 by:

𝑝𝜃 (𝑦 |x, r) =
𝐾∑︁
𝑘=1

𝑝𝜃1 (𝑧 = 𝑘 |x)𝑝𝜃2 (𝑦 |𝑧 = 𝑘, r). (26)

In the categorical case, we can easily consider all possible values of 𝑧, therefore we do not need to
introduce the recognition model which provides a better distribution for stochastic sampling.

B.3 GCM for Continuous Regression

When 𝑦 is a continuous variable, we can transform the regression problem into a binary classification
problem according to Section 4.1. Here we demonstrate how to obtain the maximum likelihood
estimate.

First, we build the generative model for 𝑡 and c, such that

𝑃𝑟 (𝑦 + 𝑡 > 0|z) = 𝑃𝑟 (r ≻ c|z). (27)

We suppose 𝑦 is a Gaussian variable, i.e. 𝑦 |z ∼ N(𝜇, 𝜎2), where 𝜎 = 𝐹𝜎 (z) is a learnable variable
and 𝜇 needs to be solved according to Equation 27. Since we have

Φ

( 𝜇 + 𝑡
𝜎

)
= 𝑃𝑟 (r ≻ c|z) ≜ 𝑝1, (28)
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then we can solve 𝜇 as

�̂� = 𝜎Φ−1 (𝑝1) − 𝑡, (29)

which is also the maximum likelihood estimation of 𝑦. The loss of GCM-VI can be formulated as:

L =
(𝑦 − �̂�)2

2𝜎2 + log𝜎 − log
𝑝𝜃 (z |x)

𝑞𝜙 (z |x, r, 𝑦)
, (30)

where z ∼ 𝑞𝜙 (z |x, r, 𝑦). So we can now train our model and estimate 𝑦.

C Ablation Studies

C.1 Ablation on Latent Dimension and Sample Number

We perform ablation studies for the GCM-VI method based on the Adult dataset, evaluating three
main hyperparameters: 𝐷, the latent dimension and 𝐾 , the sampling number. We take 𝐷 and 𝐾 from
{2, 4, 8, 16, 32} separately and repeat the experiment 8 times with different random seeds, and here
is the result.

Table 5: Experimental results (ACC) on the Adult dataset with multiple 𝐷 and 𝐾 settings.

𝐷 = 2 𝐷 = 4 𝐷 = 8 𝐷 = 16 𝐷 = 32
𝐾 = 2 0.8858 ±0.0016 0.8855 ±0.0016 0.8855 ±0.0017 0.8852 ±0.0015 0.8847 ±0.0018
𝐾 = 4 0.8857 ±0.0018 0.8853 ±0.0017 0.8852 ±0.0014 0.8850 ±0.0015 0.8849 ±0.0016
𝐾 = 8 0.8858 ±0.0017 0.8858 ±0.0019 0.8855 ±0.0016 0.8852 ±0.0017 0.8852 ±0.0015
𝐾 = 16 0.8857 ±0.0017 0.8861 ±0.0016 0.8854 ±0.0013 0.8848 ±0.0017 0.8854 ±0.0015
𝐾 = 32 0.8856 ±0.0013 0.8855 ±0.0013 0.8857 ±0.0015 0.8853 ±0.0014 0.8853 ±0.0014

We can see that for low-dimensional revenue and cost variables, taking 𝐷 and 𝐾 small is sufficient
to generate c.

C.2 Ablation on Type of Latent Variable

We compare the categorical and Gaussian settings of the latent variable z. Here is the result:

Table 6: Experimental results of GCRM on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
ACC↑ ACC↑ ACC↑ RMSE↓

GCM
(Categorical) 0.8850 ±0.0013 0.6983 ±0.0010 0.8443 ±0.0003 0.0988 ±0.0010
GCM
(Gaussian) 0.8854 ±0.0013 0.6991 ±0.0011 0.8441 ±0.0001 0.0994 ±0.0003
GCM VI
(Gaussian) 0.8858 ±0.0014 0.7011 ±0.0011 0.8442 ±0.0002 0.1005 ±0.0004

We can see that GCM-VI and GCM-categorical perform the best, this is consistent with their objec-
tives, since GCM-categorical is trained by the exact 𝐿𝐿 and GCM-VI provides a better estimation of
the latent z than the original GCM.
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D Cogeneration of Cost and Revenue

𝑦

r

x

z c

I(c ⪯ r) =

𝑝
𝜃 (z |x)

𝑝𝜃 (c|z)

𝑝
𝜃
(r
|z
)

𝑞 𝜙
(z
|x,
r,
𝑦)

Figure 5: The generative graph for 𝑝(𝑦, r |x, z).

In certain cases, the assumption of conditional independence z ⊥⊥ r | x may be too restrictive.
Instead, we can adjust the cost generative model 𝑝(c|x) to a cost-revenue generative model 𝑝(c, r |x),
as illustrated in Figure 5. In this context, we establish another weaker conditional independence
relationship: x ⊥⊥ r | z. Similar to Equation 16, the ELB is given by:

log 𝑝𝜃 (𝑦, r |x)

≥Ez𝑘∼𝑞𝜙 log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃 (𝑦, r, z |x)
𝑞𝜙 (z |x, r, 𝑦)

]
=Ez𝑘∼𝑞𝜙 log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃3 (r |z)𝑝𝜃2 (𝑦 |r, z,x)𝑝𝜃1 (z |x)
𝑞𝜙 (z |x, r, 𝑦)

]
.

(31)

Here, the generation of r follows the same procedure as generating c:

𝜆𝑟 = DNN𝑟 (z; 𝜃3), 𝑝𝜃3 (r |z) = P(r;𝜆𝑟 ). (32)

We perform experiments of the cogeneration of cost and revenue (noted as GCRM-VI) on multiple
dataset, and the results are shown in Table 7. It shows that the effect of GCRM-VI is close to the
original GCM-VI method. This shows optimistic potential for the cogeneration method for GCM.

Table 7: Experimental results of GCRM on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
ACC↑ ACC↑ ACC↑ RMSE↓

GCM 0.8854 ±0.0013 0.6991 ±0.0011 0.8441 ±0.0001 0.0994 ±0.0003
GCM VI 0.8858 ±0.0014 0.7011 ±0.0011 0.8442 ±0.0002 0.1005 ±0.0004
GCRM VI 0.8858 ±0.0011 0.6985 ±0.0018 0.8438 ±0.0003 0.1025 ±0.0032

E Experimental Details

E.1 Detailed Results

The details of our experiments on the four public datasets are shown in the following tables.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Detailed result of experiments on the Adult dataset.

Method Log Loss RMSE AUC ACC
MLP 0.2352 ±0.0030 0.2578 ±0.0017 0.7836 ±0.0057 0.8837 ±0.0012
MM 0.2355 ±0.0029 0.2578 ±0.0018 0.7827 ±0.0052 0.8836 ±0.0010
SMM 0.2351 ±0.0027 0.2577 ±0.0017 0.7833 ±0.0051 0.8837 ±0.0011
CMNN 0.2379 ±0.0027 0.2588 ±0.0016 0.7780 ±0.0053 0.8832 ±0.0013
Hint 0.2661 ±0.0027 0.2660 ±0.0018 0.7829 ±0.0058 0.8846 ±0.0011
PWL 0.2352 ±0.0028 0.2578 ±0.0017 0.7833 ±0.0055 0.8835 ±0.0012
GCM 0.2321 ±0.0030 0.2569 ±0.0017 0.7934 ±0.0054 0.8854 ±0.0013
GCM VI 0.2315 ±0.0030 0.2568 ±0.0017 0.7948 ±0.0049 0.8858 ±0.0014

Table 9: Detailed result of experiments on the COMPAS dataset.

Method Log Loss RMSE AUC ACC
MLP 0.5951 ±0.0014 0.4516 ±0.0006 0.7427 ±0.0010 0.6955 ±0.0008
MM 0.5925 ±0.0010 0.4504 ±0.0005 0.7450 ±0.0007 0.6949 ±0.0021
SMM 0.5925 ±0.0005 0.4504 ±0.0002 0.7447 ±0.0006 0.6955 ±0.0020
CMNN 0.5951 ±0.0013 0.4515 ±0.0006 0.7441 ±0.0008 0.6997 ±0.0011
Hint 0.6055 ±0.0010 0.4567 ±0.0005 0.7343 ±0.0012 0.6861 ±0.0024
PWL 0.5947 ±0.0014 0.4515 ±0.0006 0.7429 ±0.0012 0.6960 ±0.0013
GCM 0.5922 ±0.0007 0.4501 ±0.0004 0.7461 ±0.0008 0.6991 ±0.0011
GCM VI 0.5913 ±0.0008 0.4498 ±0.0004 0.7472 ±0.0007 0.7011 ±0.0011

Table 10: Detailed result of experiments on the Diabetes dataset.

Method Log Loss RMSE AUC ACC
MLP 0.3130 ±0.0002 0.3114 ±0.0001 0.8250 ±0.0004 0.8431 ±0.0004
MM 0.3153 ±0.0008 0.3125 ±0.0004 0.8211 ±0.0013 0.8409 ±0.0008
SMM 0.3159 ±0.0016 0.3128 ±0.0008 0.8200 ±0.0025 0.8401 ±0.0013
CMNN 0.3176 ±0.0017 0.3137 ±0.0008 0.8174 ±0.0028 0.8393 ±0.0015
Hint 0.3808 ±0.0044 0.3370 ±0.0017 0.8144 ±0.0008 0.8407 ±0.0005
PWL 0.3144 ±0.0002 0.3121 ±0.0001 0.8227 ±0.0003 0.8417 ±0.0003
GCM 0.3128 ±0.0001 0.3112 ±0.0001 0.8253 ±0.0001 0.8441 ±0.0001
GCM VI 0.3129 ±0.0001 0.3112 ±0.0000 0.8252 ±0.0002 0.8442 ±0.0002

Table 11: Detailed result of experiments on the Blog Feedback dataset.

Method MSE Loss RMSE
MLP 0.0109 ±0.0001 0.1042 ±0.0004
MM 0.0121 ±0.0004 0.1100 ±0.0018
SMM 0.0124 ±0.0002 0.1114 ±0.0008
CMNN 0.0125 ±0.0001 0.1118 ±0.0005
Hint 0.0125 ±0.0003 0.1118 ±0.0013
PWL 0.0114 ±0.0001 0.1069 ±0.0006
GCM 0.0099 ±0.0001 0.0994 ±0.0003
GCM VI 0.0101 ±0.0001 0.1005 ±0.0004
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F Comparison of Time Complexity

One of the key advantages of our GCM model is its efficiency during the inference stage. For each
given x, the model can easily calculate 𝑝𝜃 (𝑦 |x, r𝑖) for multiple r𝑖 values. This efficiency arises
because the GCM model predicts the latent variables z and c based solely on x, allowing it to
subsequently predict 𝑦 using c and r𝑖 . As a result, we avoid the computation of inputting each pair
of (x, r𝑖) into a deep neural network as methods. We evaluated the inference efficiency for various
numbers of r while keeping x stable, and the results are presented in Table 12. As demonstrated,
the GCM becomes the fastest method when the number of r exceeds 64, validating its inference
efficiency in multi-revenue prediction scenarios. When the number of r reaches the extreme value
of 1024, GCM can save up to 72% time cost compared to the fastest baseline model.

Table 12: Inference time cost (ms per batch) of different models with different numbers of r on the
COMPAS dataset.

Method Inference r numbers per given x
1 2 4 8 16 32 64 128 256 512 1024

MM 1.51 2.35 3.33 4.83 9.27 17.36 31.24 58.53 112.65 306.57 308.33
CMNN 3.39 5.17 9.02 15.87 28.95 51.96 102.01 198.07 394.63 869.76 877.47
PWL 1.02 1.67 2.47 3.73 7.86 13.89 26.01 47.86 92.95 280.70 285.48
GCM 11.66 11.55 11.98 12.89 13.88 16.85 20.14 28.89 43.88 76.23 79.63
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