
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Reformulating Strict Monotonic Probabilities with
a Generative Cost Model

Anonymous authors
Paper under double-blind review

Abstract

In numerous machine learning contexts, the relationship between input variables
and predicted outputs is not only statistically significant but also strictly monotonic.
Conventional approaches to ensuring monotonicity focus primarily on construc-
tion or regularization methods. This paper establishes that the problem of strict
monotonic probability can be interpreted as a comparison between an observable
revenue variable and a latent cost variable. This insight allows us to reformulate
the original monotonicity challenge into modeling the latent cost variable and es-
timating its distribution. To address this issue, we introduce a generative model
for the latent cost variable, called the Generative Cost Model (GCM), and derive
a corresponding loss function. We further enhance the estimation of latent vari-
ables using variational inference, which reformulate our loss function accordingly.
Lastly, we validate our approach through a numerical simulation of quantile regres-
sion and several experiments on public datasets, demonstrating that our method
significantly outperforms traditional techniques. The code of GCM is available in
https://github.com/iclr-2025-4464/GCM.

1 Introduction

Many machine learning problems exhibit a monotonic relationship between inputs and outputs.
Some of these relationships are statistical in nature, such as the correlation between a person’s height
and weight or the relationship between a company’s stock price and its annual income. However,
these monotonicities are often empirical and not strictly defined. In contrast, certain problems
necessitate strict monotonicity, such as the relationship between equipment availability and its age,
or the connection between auction winning rates and bidding prices. For these strict monotonic
problems, we require a model capable of predicting strict monotonic probability based on specific
input variables. We refer to these input variables as revenue variables, where higher revenue
correlates with an increased probability of a more positive response.

The most common deep learning methods for addressing the monotonicity problem can be broadly
categorized into two types (Runje & Shankaranarayana (2023)): monotonic by construction and
by regularization. The construction approach maintains strict monotonicity through customized
structures in deep neural networks, such as monotonic activation functions, positive weight matrices,
and min-max structures (Sill (1997)). In contrast, the regularization approach promotes monotonicity
by designing specific loss functions (Sill & Abu-Mostafa (1996)).

Unlike traditional approaches, we propose a novel method to tackle the monotonicity problem using
a generative framework. In the estimation of 𝑝(𝑦 |x, r), where 𝑦 ∈ R is a response that maintains
monotonicity with respect to the revenue variable r but is not necessarily monotonic with respect
to x, we employ a two-step process. (i) We simplify the multivariate problem into a Bernoulli case
via variable substitution trick, so that 𝑦 is reduced to binary values (0 or 1). (ii) We reformulate the
monotonicity problem by defining a latent cost variable c, such that 𝑦 = I(c ≺ r) ∈ {0, 1}. This
ensures that the monotonicity between 𝑦 and r is preserved, as we have 𝑃𝑟 (𝑦 = 1|x, r) = 𝑃𝑟 (c ≺
r |x, r). Here, ≺ denotes the partial order in the vector space and I represents the indicator function.
Through this transformation, we can bypass the need to design a strictly monotonic function and
instead focus on the latent cost variable c. Consequently, we can use any structure to model c with the
monotonicity constraints being ignored, as the monotonicity is inherently satisfied by the definition
of c.

1

https://github.com/iclr-2025-4464/GCM


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To generate the latent cost variable, we propose a two-stage generative process: (i) Sampling from
joint prior: In the first stage, we sample three variablesx, r andz from a joint prior 𝑝𝜃 (x, r, z). Here,
x, r are observable variables, while z is a latent variable. We assume conditional independence
holds: z ⊥⊥ r | x. This leads to the factorization of the joint distribution as 𝑝𝜃 (x, r, z) =

𝑝𝜃 (z |x)𝑝(x, r). (ii) Generating the cost variable: We generate the cost variable c conditioned on
z using 𝑝𝜃 (c|z). This results in the joint distribution: 𝑝𝜃 (x, r, z, c) = 𝑝𝜃 (c|z)𝑝𝜃 (z |x)𝑝𝜃 (x, r).
Since we have generated c, by the definition 𝑦 = I(c ≺ r), we can express the evidence as:
𝑝𝜃 (x, r, 𝑦) =

∫ ∫
𝑝𝜃 (c|z)𝑝𝜃 (z |x)𝑝(x, r)I(c ⋎𝑦 r)𝑑z𝑑c, where ⋎𝑦 denotes ≺ if 𝑦 = 1, and

⊀ if 𝑦 = 0 (note that ⊀ is not equivalent to ⪰ in vector space). To simplify the model, we
drop the term 𝑝(x, z) and restrict our estimate of evidence to the conditional density 𝑝𝜃 (𝑦 |x, r) =∫ ∫

𝑝𝜃 (c|z)𝑝𝜃 (z |x)I(c⋎𝑦r)𝑑z𝑑c, sincex andr are always provided and we do not need to generate
the entire evidence from scratch. Given that the latent variable z is high-dimensional, accurately
calculating the evidence requires integration over z, which can be computationally intensive. To
address this, we propose two approaches to estimate the evidence: (i) Monte Carlo sampling on
z ∼ 𝑝𝜃 (z |x) to estimate 𝑝𝜃 (𝑦 |x, r). (ii) Use variational inference to obtain a lower bound on the
evidence, which allows us to optimize the log-evidence by sampling z from the recognition model
𝑞𝜙 (z |x, r, 𝑦).
In the last part, we conduct two types of experiments. First, we design a numerical simulation of
the quantile regression task in which the predicted 𝑟th quantile increases monotonically with respect
to the value of 𝑟. We compare the performance between conventional methods and our generative
cost model. The results demonstrate that our method achieves superior predictive accuracy while
preserving strict monotonicity. To further assess the performance of the multivariate revenue variable
r, we conduct experiments on four public datasets: the Adult dataset (Becker & Kohavi (1996)),
the COMPAS dataset (Larson et al. (2016)), the Diabetes dataset (Teboul) and the Blog Feedback
dataset (Buza (2014)). In all four experiments, our model outperforms existing approaches. We
perform several ablation studies to examine the impact of the hyperparameters in our generative cost
model, with detailed findings provided in the Appendix C. In Appendix A, we design a card gamble
simulation, proving that the predicted distribution of the latent cost variable 𝑝𝜃 (𝑐 |𝑥) is converging
towards the actual cost distribution.

The main contributions of our paper are summarized as follows:

• We introduce a universal technique that reformulates the problem of monotonic probability
into a modeling problem for latent cost variables, avoiding restrictions in conventional
monotonic neural networks.

• We address the modeling of the cost variable using a generative approach called the Gen-
erative Cost Model (GCM), and we present two loss functions derived from log-likelihood
and the variational lower bound.

• We evaluate our method for classification tasks using a simulated quantile regression and
tasks on four public datasets, demonstrating that our model consistently outperforms tradi-
tional monotonic models.

2 Background

Partial Order between Vectors. For vectors v1 and v2 in R𝑛, we define the partial order between
v1 and v2 as: v1 ⪯ v2 if and only if v (𝑘 )

1 ≤ v (𝑘 )
2 , for any 1 ≤ 𝑘 ≤ 𝑛. This relationship is illustrated

in Figure 1a. Note that v1 ⪯ v2 is equivalent to v2 ⪰ v1.

The strict order is defined by: v1 ≺ v2 if and only if v1 ⪯ v2 and v1 ≠ v2. We have v1 ≺ v2 is
equivalent to v2 ≻ v1, but not equivalent to v1 ⪰̸ v2.

Partial Order between Random Variables. In this paper, we adopt the definition of first-order
stochastic dominance (Hadar & Russell (1969)): for random variables r1 and r2 defined on R𝑛,
we say that r2 first-order stochastically dominates r1 (denoted r1 ≺1 r2) if and only if 𝑃𝑟 (r1 ≻
t) < 𝑃𝑟 (r2 ≻ t) for any t ∈ R𝑛. Specifically, for one dimensional random variables, 𝑟1 ≺1 𝑟2
is equivalent to 𝐹1 (𝑡) > 𝐹2 (𝑡) (or epi𝐹1 (𝑡) ⊂ epi𝐹2 (𝑡)) for any 𝑡 ∈ R. where 𝐹𝑖 represents the
cumulative distribution function (CDF) of the random variable 𝑟𝑖 and epi𝐹𝑖 refers to the epigraph of
the CDF.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

r1

r2

r3

(a) Example of r’s, where r1 ≺ r2 and
r1 ≺ r3.

epi𝐹
𝐹 (𝑦 |r1)
𝐹 (𝑦 |r2)
𝐹 (𝑦 |r3)

(b) r1 ≺ r2 ⇒ epi𝐹 (𝑦 |r1) ⊂ epi𝐹 (𝑦 |r2) and r1 ≺ r3 ⇒
epi𝐹 (𝑦 |r1) ⊂ epi𝐹 (𝑦 |r3) due to the monotonicity of 𝑦 and
r.

Figure 1: The CDFs of 𝐹 (𝑦 |r) with different r’s, where 𝑦 is monotonic with respect to r.

Monotonic Conditional Probability. A conditional probability 𝑝(y |r) is defined as monotonic, if
and only if y |r1 ≺1 y |r2 for any r1 ≺ r2. Or, in other words, 𝑃𝑟 (y ≻ t|r1) < 𝑃𝑟 (y ≻ t|r2) for any
vector t and any pair r1 ≺ r2. In this paper, we refer to the relationship between y and r as: y being
(conditionally) monotonic (increasing) with respect to r. All instances of monotonicity discussed
here are assumed to be monotonically increasing; for decreasing relationships, we can simply replace
the original variables with their opposites.

For example, if y ∼ N(y;µ,𝚺), where the mean µ is also a random variable, then we find that y is
monotonic with respect to µ. Similarly, if 𝑦 ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛽), then 𝑦 is monotonic with respect to 𝛽.
In these cases, µ and 𝛽 are referred to as monotonic parameters of y.

The relationship between r and 𝑝(𝑦 |r) is illustrated in Figure 1, where 𝑦 is one-dimensional and
monotonic with respect to r. In Figure 1a, we plot three random variables r1, r2 and r3, with r1 ≺ r2
and r1 ≺ r3, while r2 and r3 are not comparable. Let 𝐹 (𝑦 |r𝑖) denote the CDF of 𝑦 conditioned on
r = r𝑖 . The corresponding conditional CDFs are plotted in Figure 1b, where 𝐹 (𝑦 |r1) is positioned at
the top with the smallest epigraph, while 𝐹 (𝑦 |r2) intersects 𝐹 (𝑦 |r3) indicating the incomparability
between r2 and r3.

3 Related Work

Monotonic Modeling. In many machine learning tasks, we have the prior knowledge that the output
should be monotonic with respect to certain input variables. A straightforward idea is to identify a
monotonic function and optimize its parameters to approximate the desired monotonic output. It can
be summarized as the following form:

minimize L(𝑦, 𝐹𝜃 (x, r))

subject to
𝜕𝐹𝜃 (x, r)

𝜕r
≻ 0.

(1)

The Min-Max architecture (Sill (1997)) is a pioneering work in monotonic neural networks, utilizing
a piecewise linear model to approximate monotonic target functions. Its monotonicity is ensured
through (i) positive weighting matrices, (ii) monotonic activation functions, and (iii) a Min-Max
structure.

Along the direction of monotonic by construction, Nolte et al. (2022) introduced the Lipschitz
monotonic network, which enhances robustness through weight constraint. Igel (2023) proposed
the smoothed min-max monotonic network, which replaces the traditional min-max structure with a
smoothed log-sum-exp function, preventing the network from becoming silent. Additionally, Runje
& Shankaranarayana (2023) developed the constrained monotonic neural network, which improves
the approximation of non-convex functions by modifying activation functions.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Another popular direction for improving monotonicity involves the use of regularization techniques,
which can be formulated as:

minimize L(𝑦, 𝐹𝜃 (x, r)) + R(𝐹𝜃 ), (2)

where the regularization R(𝐹𝜃 ) > 0 if 𝐹𝜃 is not monotonic at some points. This direction includes
monotonicity hints proposed by Sill & Abu-Mostafa (1996), which use hint samples and pairwise
loss to guide model learning. The certified monotonic neural networks proposed by Liu et al. (2020)
certify monotonicity by verifying the lower bound of the partial derivative of monotonic features.
Furthermore, Gupta et al. (2019) proposed a pointwise penalization method for negative gradients,
while counter example guided methods were introduced by Sivaraman et al. (2020).

In addition, the lattice networks (Garcia & Gupta (2009)) can solve the monotonic problem by either
a construction or regularization approach; extensive works have been conducted in this area by
Milani Fard et al. (2016), You et al. (2017), Gupta et al. (2019) and Yanagisawa et al. (2022), etc.

Monotonicity also plays an important role in many areas of machine learning. Ben-David (1995);
Lee et al. (2003); van de Kamp et al. (2009); Chen & Guestrin (2016) bring monotonicity into
tree models; Rashid et al. (2020) propose the QMIX method using monotonic value functions in
multi-agent reinforcement learning; Lam et al. (2023) propose a multi-class loss function using
monotonicity of gradients of convex functions; Haldar et al. (2020) and Xu et al. (2024) bring
monotonicity into online business, etc.

Variational Inference and Generative models. Variational inference (VI) (Peterson (1987); Parisi
& Shankar (1988); Saul & Jordan (1995)) is a powerful technique for working with generative
models, and recent years have seen significant advances based on this approach (Kingma (2013);
Rezende et al. (2014); Ozair & Bengio (2014); Burda et al. (2015); Sohl-Dickstein et al. (2015);
Ho et al. (2020); Song et al. (2020)). VI transforms the complex task of Bayesian inference into a
computationally manageable optimization problem by approximating the latent variables within a
specified family of distributions. This is achieved by optimizing the evidence lower bound (ELB)
rather than the original evidence.

Recent studies have highlighted the rapid growth of conditional generative models. In the realm of
text-to-image generation, notable works include Ramesh et al. (2021), Ramesh et al. (2022), Saharia
et al. (2022), and Rombach et al. (2022). For text-to-video generation, key contributions come
from Esser et al. (2023) and Brooks et al. (2024). Unlike variational autoencoders (VAEs) (Kingma
(2013)), which initiate generation from a latent variable, these conditional generative models begin
with a pair comprising a given condition (such as text, image, or video) and a latent variable. This
is typically expressed through the decomposition: 𝑝(𝑥, 𝑧) = 𝑝(𝑥)𝑝(𝑧 |𝑥), where 𝑥 is the condition
and 𝑧 is the latent variable. Consequently, these models primarily focus on conditional probability
𝑝(𝑧 |𝑥). In this paper, we adopt this paradigm to construct our cost generation model.

Moreover, the normalizing flow is an important subject of generative models, it not only transforms
a simple distribution to a complicated distribution, but also requires these transformations to be
invertible, which is sufficient when the transformations are continuous and monotonic. There have
been studies that involve monotonicity in normalizing flows: Ziegler & Rush (2019); Ho et al. (2019);
Wehenkel & Louppe (2019); Müller et al. (2019); Jaini et al. (2019); Dinh et al. (2019); Ahn et al.
(2022).

4 The Cost Variable Method

4.1 Problem Formulation

Consider a binary classification problem of (x, r, 𝑦), wherex ∈ R𝑛 represents the ordinary variables,
r ∈ R𝑚 is the revenue variable, and 𝑦 ∈ {0, 1} is the binary output variable that exhibits monotonicity
with respect to r. We assume that 𝑦 follows a Bernoulli distribution, with its mean parameter
generated by a deep neural network 𝐺 : R𝑛 × R𝑚 → (0, 1):

𝑦 |{x, r} ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦;𝐺 (x, r)). (3)

As defined in Section 2, the function 𝐺 has to be monotonic with respect to r. We refer to r as the
revenue variable associated with 𝑦. The rationale is that, when 𝑦 is viewed as a decision variable,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

r1
r2

r3

𝑃𝑟 (c ≺ r1)

(a) In the density contour plot of the cost variable
c, the shaded area represents the event where c ≺
r. This indicates that the probability of a randomly
selected c falling within this shaded region is given
by 𝑃𝑟 (c ≺ r) = 𝑃𝑟 (𝑦 = 1|r). Therefore, for any
r1 ≺ r2, we can get 𝑃𝑟 (c ≺ r1) < 𝑃𝑟 (c ≺ r2).

𝑦

r

x

z c

I(c ≺ r) =

𝑝
𝜃 (z |x)

𝑝𝜃 (c|z)

𝑞 𝜙
(z
|x,
r,
𝑦)

(b) The graph illustrates the probability graphical
model for a monotonic probability 𝑝(𝑦 |x, r). In this
model, the grey nodes represent observable variables
x, 𝑦 and r, while the white nodes denote latent vari-
ables. Solid arrows indicate the generative model 𝑝𝜃 ,
whereas the dashed arrow represents the recognition
model 𝑞𝜙 .

Figure 2: Definition (Figure 2a) and modeling (Figure 2b) of the latent cost variable.

a profit-maximizing decision will favor higher values of r, thus ensuring the monotonicity of 𝑦 with
respect to r.

For a general monotonic problem of (x, r, 𝑦) with continuous output 𝑦 ∈ R, the model takes the
following form:

𝑦 |{x, r} ∼ F (𝑦;𝐺 (x, r)), (4)

whereF denotes the chosen probability family for 𝑦. The function𝐺 produces a monotonic parameter
for F and is monotonic with respect to r. Consequently, 𝑦 maintains monotonicity with respect to
r. For example, if F is a Gaussian distribution N(𝑦; 𝜇(x, r), 𝜎(x)2) and 𝐺 = 𝜇(x, r) predicts
its mean parameter, then 𝐺 must be a monotonic function of r to ensure that 𝑦 is monotonic with
respect to r.

To reduce the general monotonic probability problem to the binary scenario, we introduce an
assistant random variable 𝑡 ∈ R such that 𝑡 ⊥⊥ r | x. We define the new response variable as
𝑦∗ = I(𝑦 + 𝑡 > 0) ∈ {0, 1} and the new revenue variable as r∗ = [𝑡, r]. For any r∗1 ≺ r∗2, since the
monotonicity between 𝑦 and r, we have:

𝑃𝑟 (𝑦∗ = 1|r∗1) = 𝑃𝑟 (𝑦 > −𝑡 |r1, 𝑡) < 𝑃𝑟 (𝑦 > −𝑡 |r2, 𝑡) = 𝑃𝑟 (𝑦∗ = 1|r∗2), (5)

meaning 𝑦∗ is strictly monotonic with respect to r∗. In the opposite direction, if 𝑦∗ is monotonic
with respect to r∗ = [𝑡, r], then for any r∗1 ≺ r∗2 and 𝑠 ∈ R, we have [−𝑠, r1] ≺ [−𝑠, r2] and
𝑃𝑟 (𝑦 > 𝑠 |r1) < 𝑃𝑟 (𝑦 > 𝑠 |r2), proving that 𝑦 |r2 ≻ 𝑦 |r1. This establishes the equivalence between
the problems of (𝑦∗,x, r∗) and (𝑦,x, r). Therefore, the monotonic modeling problem of the triplet
(𝑦,x, r) where 𝑦 ∈ R is reduced to the binary problem of (𝑦∗,x, r∗), which is 𝑦 + 𝑡 > 0|{x, r} ∼
B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑦∗;𝐺 (x, 𝑡, r])). Since 𝑃𝑟 (𝑦 ≤ 𝑠 |x, r∗) = 1 − 𝑃𝑟 (𝑦 > 𝑠 |x, r∗) = 1 − 𝐺 (x, [r,−𝑠]), the
density function of 𝑦 is

𝑝(𝑦 |x, r) = −𝜕𝐺 (x, [r,−𝑠])
𝜕𝑠

�����
𝑠=𝑦

. (6)

Which completes the transformation from a general monotonic probability problem to a binary
monotonic problem. We give an example of calculating the maximum likelihood estimate of 𝑦 as
well as deriving the MLE loss function in Appendix B.3.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 Monotonicity via the Cost Variable

We now focus on the binary problem. The traditional approach, as defined in Equation 3, involves
identifying a strictly (or weak) monotonic function 𝐺 (x, r) with respect to r. In this paper, instead
of searching for a suitable function 𝐺, we introduce a random variable c to model 𝑦 defined by:

𝑦 = I(c ≺ r). (7)
Given that {c|c ≺ r1} ⊂ {c|c ≺ r2}, for any r1 ≺ r2, it follows that 𝑃𝑟 (𝑦 = 1|r = r1) < 𝑃𝑟 (𝑦 =

1|r = r2), which guarantees that 𝑦 is strictly monotonic with respect to r. Then we can define:

𝐺 (x, r) = E[𝑦 |x, r] = 𝑃𝑟 (c ≺ r |x, r) =
∫
c≺r

𝑝(c|x)𝑑c, (8)

demonstrating that 𝑦 |{x, r} ∼ B𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝐺 (x, r)). Thus,𝐺 (x, r) serves as the monotonic function
proposed in Equation 3 . Notably, we do not need to derive the exact form of 𝐺, as long as we can
estimate the conditional density 𝑝(c|x).
Unlike conventional methods that require 𝐺 to be a strictly monotonic function, there are no con-
straints on 𝑝(c|x). We can take any form of 𝑝(c|x), and the monotonicity of 𝑝(𝑦 |r) holds strictly
due to the definition of 𝑦 in Equation 7. We call c the cost variable. As illustrated in Figure 2a,
the probability of 𝑦 is equivalent to the probability that the revenue r domains the cost c, that is,
𝑃𝑟 (𝑦 = 1) = 𝑃𝑟 (c ≺ r). Thus, the original task of finding a monotonic function 𝐺 reduces to
determining the distribution of c. However, since c is a latent variable, we must infer c based on the
observable variables x, r and 𝑦, which is a challenge that still needs to be addressed.

4.3 Generative Cost Model

As we focusing on modeling the cost variable c, the distribution of c can be complicated, making it
challenging to select an appropriate distribution family. To bypass the need for choosing a suitable
distribution family, we adopt a generative approach that can automatically approximate complicated
distributions. In this paper, we construct a simple generative model for c through the following
process:

x, r ∼ 𝑝(x, r),
𝜆𝑧 = DNN𝑧 (x; 𝜃1), 𝑝𝜃1 (z |x) = P𝑧 (z;𝜆𝑧), (9)
𝜆𝑐 = DNN𝑐 (z; 𝜃2), 𝑝𝜃2 (c|z) = P𝑐 (c;𝜆𝑐),

𝑦 = I(c ⪯ r).
The generative model consists of three independent stages: 𝑝(x, r), 𝑝𝜃1 (z |x) and 𝑝𝜃2 (c|z), where
𝜃 = [𝜃1, 𝜃2] are the generative parameters that must be learned. We do not need to model the first
stage since x and r are always given during inference. In the second stage, we generate the latent
variable z via 𝑝𝜃1 (z |x). Subsequently, the latent cost variable c is generated by 𝑝𝜃2 (c|z) , which is
set to be elementwise independent, that gives us the decomposition

𝑝𝜃2 (𝑦 |z, r) = 𝑝𝜃2 (c ⋎𝑦 r |z, r) = 1 − 𝑦 − (−1)𝑦
∏
𝑖

∫ r (𝑖)

−∞
𝑝𝜃2 (c(𝑖) |z)𝑑c(𝑖) . (10)

As illustrated in Figure 2b, we assume that the conditional independencies: z ⊥⊥ r | x and
x ⊥⊥ 𝑦 | {z, r} hold (we discuss another assumption in Appendix D where we abandon z ⊥⊥ r | x).
Thus the probability of 𝑦 conditioned on x and r can be formulated as:

𝑝𝜃 (𝑦 |x, r) =
∫

𝑝𝜃1 (z |x, r)𝑝𝜃2 (𝑦 |z,x, r)𝑑z =

∫
𝑝𝜃1 (z |x)𝑝𝜃2 (𝑦 |z, r)𝑑z = Ez∼𝑝𝜃1

𝑝𝜃2 (𝑦 |z, r).
(11)

To find the optimal parameter 𝜃 = [𝜃1, 𝜃2], we maximize the log-likelihood (𝐿𝐿) of the observation
𝑦, which is:

𝐿𝐿 = log 𝑝𝜃 (𝑦 |x, r) = logEz𝑘∼𝑝𝜃1 (z |𝑥 )

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃2 (𝑦 |z𝑘 , r)
]

≥ Ez𝑘∼𝑝𝜃1 (z |𝑥 ) log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃2 (𝑦 |z𝑘 , r)
]
.

(12)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To maximize 𝐿𝐿, we can alternatively maximize the RHS of Equation 12, which can be estimated
by sampling z𝑘 ∼ 𝑝𝜃1 (z |𝑥), 𝑘 = 1, · · · , 𝐾 . Since we need to optimize both parameters 𝜃1 and 𝜃2 via
gradient descent methods, we adopt the reparameterization trick (Kingma (2013)) as the following
form:

z(𝜃1,x, r, 𝜖) = µ𝜃1 (x, r) + σ𝜃1 (x, r) ⊙ ϵ, (13)

where ϵ ∼ N(0,E). Therefore, the final GCM loss function is:

L𝐺𝐶𝑀 (𝜃;x, r, 𝑦) = − log
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃2 (𝑦 |x, r, z(𝜃1,x, r, 𝜖𝑘)) . (14)

The details of the model is available in the Appendix B.1. However, when 𝑧 is a𝐾-categorical variable
that 𝑧 ∈ {1, · · · , 𝐾}, we have the exact estimate of 𝐿𝐿 = log

∑𝐾
𝑘=1 𝑝𝜃1 (𝑧 = 𝑘 |x)𝑝𝜃2 (𝑦 |𝑧 = 𝑘, r).

This avoids the uncertainty of sampling on 𝑧 ∼ 𝑝𝜃1 (𝑧 |x), which is useful when the dimension of r
and c is small enough that we do not need a complex latent variable z to model the low-dimensional
cost variable c. The details of our model with categorical 𝑧 are available in the Appendix B.2.

4.4 Generative Cost Model with Variational Inference

A significant challenge arises from the difficulty in learning the distribution of z conditioned on x
when the latent distribution is complex. To improve the modeling of z, we introduce the recognition
model 𝑞𝜙 (z |x, r, 𝑦) that use all the observable variables to approximate the intractable posterior
𝑝𝜃 (z |x, r, 𝑦), the recognition model is formulated as:

𝜆 �̃� = DNN�̃� (x, r, 𝑦; 𝜙), 𝑞𝜙 (z |x, r, y) = P�̃� (z;𝜆 �̃�). (15)

Similar to the IWAE (Burda et al. (2015)), by Jensen’s inequality, we have the evidence lower bound
(ELB):

𝐸𝐿𝐵 = Ez𝑘∼𝑞𝜙 log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃 (𝑦, z𝑘 |x, r)
𝑞𝜙 (z𝑘 |x, r, 𝑦)

]
≤ logEz𝑘∼𝑞𝜙

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃 (𝑦, z𝑘 |x, r)
𝑞𝜙 (z𝑘 |x, r, 𝑦)

]
= log 𝑝𝜃 (𝑦 |x, r).

(16)
So the objective of the variational version of GCM (noted as GCM-VI) is:

L𝐺𝐶𝑀−𝑉𝐼 (𝜃, 𝜙;x, r, 𝑦) = − log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃2 (𝑦 |z𝑘 , r)𝑝𝜃1 (z𝑘 |x)
𝑞𝜙 (z𝑘 |x, r, 𝑦)

]
. (17)

Here, z𝑘 ∼ 𝑞𝜙 (z |x, r, 𝑦) is sampled through the reparameterization trick similar to Equation 13.
Ablation studies for values of the latent dimension 𝐷 and the sample number 𝐾 are available in the
Appendix C.

5 Experiment

5.1 Experiment of Quantile Regression by Simulation

Quantile regression is a common problem in statistics, its goal is to estimate the 𝑟th quantile of
𝑦 conditioned on 𝑥, based on observations of 𝑥 and 𝑦. The 𝑟th quantile 𝑄𝑦 |𝑥 (𝑟) is defined by
𝑄𝑦 |𝑥 (𝑟) = 𝐹−1

𝑦 |𝑥 (𝑟), where 𝐹𝑦 |𝑥 is the conditional cumulative distribution function of 𝑦 conditioned
on 𝑥. Since 𝐹 is monotonic, its inverse 𝑄𝑦 |𝑥 (𝑟) is also strict monotonic with respect to 𝑟 . The
common objective (Koenker (2005)) of the linear quantile regression is given by:

𝛽𝑟 = arg min
𝛽𝑟

∑︁
𝑖=1

(𝑟 (𝑦 (𝑖) − �̂� (𝑖) )+ + (1 − 𝑟) ( �̂� (𝑖) − 𝑦 (𝑖) )+), (18)

where �̂� (𝑖)𝑟 = 𝑥 (𝑖) 𝛽𝑟 is a linear prediction of the quantile 𝑄𝑦 |𝑥 (𝑟) and 𝛽𝑟 is its parameter. For the
nonlinear 𝑦 |𝑥, we can adopt neural networks to capture such relationship automatically. In addition,
we can introduce 𝑟 into the network and predict the 𝑟th quantile of 𝑦 |𝑥 by �̂�𝑟 = DNN𝜃 (𝑥, 𝑟) for any
𝑟 ∈ (0, 1). Or, in a generative style:

𝑦𝑟 ∼ 𝑝𝜃 (𝑦𝑟 |𝑥, 𝑟). (19)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Plot of �̂�𝑟 | (𝑥, 𝑟) for 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (red curves). The background scatters are
real training samples.

However, this problem is different from the original monotonic modeling, since the variable 𝑟 here
is unobservable. To solve this issue, we modify the monotonic modeling problem into the following
form:

sample 𝑟 ∼ U([0, 1])
sample �̂�𝑟 ∼ 𝑝𝜃 (𝑦 |𝑥, 𝑟)

minimize 𝑟 (𝑦 − �̂�𝑟 )+ + (1 − 𝑟) ( �̂�𝑟 − 𝑦)+.
(20)

And now we can do experiments based on the typical monotonic methods. In this experiment, we
compare several classic methods with our generative model (GCM), all of which share the same
baseline architecture: a three-layer perceptron network with tanh activations. During training, we
employ the classic stochastic gradient descent method to optimize network parameters.

The methods we compare include: (i) the baseline MLP network (MLP); (ii) Min-Max network (MM)
(Sill (1997)); (iii) smoothed Min-Max network (SMM) (Igel (2023)); (iv) constrained monotonic
network (CMNN); (v) monotonicity hint model (Hint) (Sill & Abu-Mostafa (1996)); (vi) pointwise
loss method (PWL) (Gupta et al. (2019)). Note that the MLP method does not require monotonicity,
it does not face the difficulties in strict monotonic structure designing as other methods. Here we
regard it as a benchmark of a free-style model but not a baseline of the monotonic modeling family.
The Hint and PWL methods are weak monotonic methods which encourage but do not assure strict
monotonicity. The method to be tested is the GCM with a categorical latent variable z, following
the same procedure as formulated in Appendix B.2 and Appendix B.3, and here we take the latent
categorical dimension as 8.

The training data are generated through a simulation with the setting:

𝑦 = 0.3 sin(2(𝑥 + 0.8)) + 0.4 sin(3(𝑥 − 1.3)) + 0.3 sin(5𝑥) + 0.4(0.8𝑥2 + 0.6)𝜖, (21)

where 𝑥 ∈ (−1.5, 1.5) and 𝜖 ∼ U(0, 1). For each sampled (𝑥, 𝑦), we additionally sample 𝑟 ∼
U([0, 1]) and optimize our models following Equation 20. Note that the sampling of 𝑟 is independent
of the sampling of 𝜖 . We train our model with batch size of 20 in 5, 000 rounds, resulting in a total
of 100, 000 training examples, while the models are tested on 1, 000 examples. The test results
during the training process are shown in Figure 3, where the results are demonstrated by the 𝑟th

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

quantile curve (𝑥, �̂�𝑟 ) for 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We can see that GCM predicts the most
accurate quantile values of �̂�𝑟 , as well as maintaining a strict monotonicity between �̂�𝑟 and 𝑟 . The
traditional strict monotonic methods (MM, SMM, CMNN) suffer from approximation accuracy,
as the strict monotonic structures (e.g. positive weighting matrices and monotonic activations)
weaken the universal approximation ability of neural networks. The non-monotonic (MLP) and
weak-monotonic (Hint, PWL) methods have better approximation accuracy than the strict monotonic
methods. However, for these methods, the curves of �̂�𝑟 with different 𝑟’s are not sufficiently separated,
due to the lack of strict monotonic constraints.

In Table 1, we show the detailed mean absolute error (MAE) of all methods in the quantile regression
task, with 𝑟 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We repeat the experiment 10 times with different random
seeds, and the final results are reported with 95% confidence intervals. As the data show, GCM
performs the best among all the methods.

Table 1: MAE (with 95% confidence interval) of the quantile regression experiment.

MAE
Method 𝑟=0.1 𝑟=0.3 𝑟=0.5 𝑟=0.7 𝑟=0.9
MLP 0.1495 ±0.0340 0.1157 ±0.0283 0.1057 ±0.0255 0.1230 ±0.0309 0.1477 ±0.0386
MM 0.2002 ±0.0572 0.1103 ±0.0320 0.0723 ±0.0245 0.1067 ±0.0346 0.1745 ±0.0495
SMM 0.2345 ±0.0693 0.1194 ±0.0356 0.0812 ±0.0246 0.1236 ±0.0366 0.1919 ±0.0556
CMNN 0.1768 ±0.0340 0.1119 ±0.0174 0.0823 ±0.0161 0.1007 ±0.0198 0.1480 ±0.0332
Hint 0.1402 ±0.0285 0.1137 ±0.0263 0.1068 ±0.0292 0.1154 ±0.0368 0.1316 ±0.0374
PWL 0.1793 ±0.0282 0.1476 ±0.0164 0.1394 ±0.0193 0.1524 ±0.0216 0.1698 ±0.0207
GCM 0.0984 ±0.0188 0.0777 ±0.0119 0.0669 ±0.0096 0.0759 ±0.0127 0.0991 ±0.0211

5.2 Experiments for Multidimensional Revenue on Public Datasets

To further evaluate the GCM model for the multidimensional revenue variable, we use four public
datasets: the Adult dataset (Becker & Kohavi (1996)), the COMPAS (Correctional Offender Manage-
ment Profiling for Alternative Sanctions) dataset (Larson et al. (2016)), the Diabetes dataset (Teboul)
and the Blog Feedback dataset (Buza (2014)). The property of each dataset is shown in Table 2 .

Table 2: Details of the datasets.

dataset total examples dimension of x dimension of r target
Adult 48,842 33 4 classification
COMPAS 7,214 9 4 classification
Diabetes 253,680 105 4 classification
Blog Feedback 52,397 272 8 regression

The model we test are the same as we presented in Section 5.1, while the evaluation metrics are
switched to log-loss, RMSE, AUC and ACC. And, as we stated in Section 5.1, we regard the MLP
model as a benchmark of a freestyle model but not a baseline of the monotonic modeling family.
For all four datasets, the training and testing sets are split in a 4:1 ratio. We also follow the data
preprocessing procedures outlined by Liu et al. (2020) for the COMPAS dataset. For the Blog
Feedback dataset, we perform a logarithm transformation for numerical features and target value.
In all experiments, we employ the Gaussian distribution for latent z in the GCM and GCM-VI,
the hyperparameter settings of GCM and GCM-VI are 𝐷 = 4 and 𝐾 = 32. The testing results are
demonstrated in Table 3 and the full results are available in Appendix E. All experiments are repeated
10 times with different random seeds, the final results are reported with a 95% confidence interval.

Our GCM and GCM-VI models achieve the top two performances in all metrics in all datasets after
10, 000 training steps. Notably, GCM-VI achieves the best performance on all datasets except the
Blog Feedback dataset, proving the effectiveness of introducing variational bound into our generative

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Experimental results on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
ACC↑ ACC↑ ACC↑ RMSE↓

MLP ∗ 0.8837 ±0.0012 0.6955 ±0.0008 0.8431 ±0.0004 0.1042 ±0.0004
MM 0.8836 ±0.0010 0.6949 ±0.0021 0.8409 ±0.0008 0.1100 ±0.0018
SMM 0.8837 ±0.0011 0.6955 ±0.0020 0.8401 ±0.0013 0.1114 ±0.0008
CMNN 0.8832 ±0.0013 0.6997 ±0.0011 0.8393 ±0.0015 0.1118 ±0.0005
Hint ♯ 0.8846 ±0.0011 0.6861 ±0.0024 0.8407 ±0.0005 0.1118 ±0.0013
PWL ♯ 0.8835 ±0.0012 0.6960 ±0.0013 0.8417 ±0.0003 0.1069 ±0.0006
GCM 0.8854 ±0.0013 0.6991 ±0.0011 0.8441 ±0.0001 0.0994 ±0.0003
GCM VI 0.8858 ±0.0014 0.7011 ±0.0011 0.8442 ±0.0002 0.1005 ±0.0004
∗: No monotonicity requirements.
♯: Weak monotonicity via regularization.

objective. The detailed results are available in the Appendix E.1. And a time complexity analysis is
available in the Appendix F.

6 Conclusion

This paper presents an innovative generative method for monotonic modeling by reformulating the
monotonicity problem through the incorporation of a latent cost variable c. We have developed a
robust generation process for this cost variable that accurately approximates the latent costs. Our
experimental results demonstrate that the proposed Generative Cost Model (GCM and GCM-VI)
effectively addresses the monotonicity challenge, significantly outperforming traditional approaches
across various tasks.

References
Byeongkeun Ahn, Chiyoon Kim, Youngjoon Hong, and Hyunwoo J Kim. Invertible monotone

operators for normalizing flows. Advances in Neural Information Processing Systems, 35:16836–
16848, 2022.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Arie Ben-David. Monotonicity maintenance in information-theoretic machine learning algorithms.
Machine Learning, 19:29–43, 1995.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/video-generation-
models-as-world-simulators.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Krisztian Buza. BlogFeedback. UCI Machine Learning Repository, 2014. DOI:
https://doi.org/10.24432/C58S3F.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Laurent Dinh, Jascha Sohl-Dickstein, Hugo Larochelle, and Razvan Pascanu. A rad approach to
deep mixture models. arXiv preprint arXiv:1903.07714, 2019.

10

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germani-
dis. Structure and content-guided video synthesis with diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7346–7356, 2023.

Eric Garcia and Maya Gupta. Lattice regression. Advances in Neural Information Processing
Systems, 22, 2009.

Akhil Gupta, Naman Shukla, Lavanya Marla, Arinbjörn Kolbeinsson, and Kartik Yellepeddi. How
to incorporate monotonicity in deep networks while preserving flexibility? arXiv preprint
arXiv:1909.10662, 2019.

Josef Hadar and William R Russell. Rules for ordering uncertain prospects. The American economic
review, 59(1):25–34, 1969.

Malay Haldar, Prashant Ramanathan, Tyler Sax, Mustafa Abdool, Lanbo Zhang, Aamir Mansawala,
Shulin Yang, Bradley Turnbull, and Junshuo Liao. Improving deep learning for airbnb search.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2822–2830, 2020.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
conference on machine learning, pp. 2722–2730. PMLR, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Christian Igel. Smooth min-max monotonic networks. arXiv preprint arXiv:2306.01147, 2023.

Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-squares polynomial flow. In International
Conference on Machine Learning, pp. 3009–3018. PMLR, 2019.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Roger Koenker. Quantile regression. Cambridge Univ Pr, 2005.

Kevin H Lam, Christian Walder, Spiridon Penev, and Richard Nock. Legendretron: uprising proper
multiclass loss learning. In International Conference on Machine Learning, pp. 18454–18470.
PMLR, 2023.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the compas recidi-
vism algorithm, 2016. URL https://www.propublica.org/article/how-we-analyzed-the-compas-
recidivism-algorithm.

John WT Lee, Daniel S Yeung, and Xizhao Wang. Monotonic decision tree for ordinal classification.
In SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and
Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), volume 3,
pp. 2623–2628. IEEE, 2003.

Xingchao Liu, Xing Han, Na Zhang, and Qiang Liu. Certified monotonic neural networks. Advances
in Neural Information Processing Systems, 33:15427–15438, 2020.

Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, and Maya Gupta. Fast and flexible
monotonic functions with ensembles of lattices. Advances in neural information processing
systems, 29, 2016.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural
importance sampling. ACM Transactions on Graphics (ToG), 38(5):1–19, 2019.

Niklas Nolte, Ouail Kitouni, and Mike Williams. Expressive monotonic neural networks. In The
Eleventh International Conference on Learning Representations, 2022.

Sherjil Ozair and Yoshua Bengio. Deep directed generative autoencoders. arXiv preprint
arXiv:1410.0630, 2014.

Giorgio Parisi and Ramamurti Shankar. Statistical field theory. 1988.

11

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Carsten Peterson. A mean field theory learning algorithm for neural network. Complex systems, 1:
995–1019, 1987.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Davor Runje and Sharath M Shankaranarayana. Constrained monotonic neural networks. In Inter-
national Conference on Machine Learning, pp. 29338–29353. PMLR, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Lawrence Saul and Michael Jordan. Exploiting tractable substructures in intractable networks.
Advances in neural information processing systems, 8, 1995.

Joseph Sill. Monotonic networks. Advances in neural information processing systems, 10, 1997.

Joseph Sill and Yaser Abu-Mostafa. Monotonicity hints. Advances in neural information processing
systems, 9, 1996.

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck.
Counterexample-guided learning of monotonic neural networks. Advances in Neural Informa-
tion Processing Systems, 33:11936–11948, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Alex Teboul. Diabetes health indicators dataset. URL https://www.kaggle.com/datasets/alexteboul/
diabetes-health-indicators-dataset.

Rémon van de Kamp, Ad Feelders, and Nicola Barile. Isotonic classification trees. In Advances
in Intelligent Data Analysis VIII: 8th International Symposium on Intelligent Data Analysis, IDA
2009, Lyon, France, August 31-September 2, 2009. Proceedings 8, pp. 405–416. Springer, 2009.

Antoine Wehenkel and Gilles Louppe. Unconstrained monotonic neural networks. Advances in
neural information processing systems, 32, 2019.

Xiaoxiao Xu, Hao Wu, Wenhui Yu, Lantao Hu, Peng Jiang, and Kun Gai. Enhancing interpretability
and effectiveness in recommendation with numerical features via learning to contrast the counter-
factual samples. In Companion Proceedings of the ACM on Web Conference 2024, pp. 453–460,
2024.

12

https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hiroki Yanagisawa, Kohei Miyaguchi, and Takayuki Katsuki. Hierarchical lattice layer for partially
monotone neural networks. Advances in Neural Information Processing Systems, 35:11092–11103,
2022.

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, and Maya Gupta. Deep lattice networks and
partial monotonic functions. Advances in neural information processing systems, 30, 2017.

Zachary Ziegler and Alexander Rush. Latent normalizing flows for discrete sequences. In Interna-
tional Conference on Machine Learning, pp. 7673–7682. PMLR, 2019.

A A Gamble Simulation

We design a card gamble and the rules are listed as follows:

• There are 𝑛 cards, each labeled with a number from 1 to 𝑛. The cards are shuffled and then
the backsides are also labeled with numbers from 1 to 𝑛.

• In each round, the dealer shuffles the cards and then the player picks 𝑙 cards from the top of
the deck. The player sees the front sides of the selected cards and places a bet of 𝑟 chips,
where 𝑟 < 𝑛.

• The dealer rolls a dice to select one card from the 𝑙 selected cards. If the backside number
of this card is less than 𝑟 , the player wins and receives 𝑛 chips as a prize, producing a net
profit of 𝑛 − 𝑟 , otherwise the player loses, resulting in a profit of −𝑟.

• In the whole game, a player can only see the front side, but not the backside of all cards.

In our gambling model, the rules state that the more chips a player bets, the higher the likelihood of
winning, but correspondingly the prize of winning shrinks. We denote the winning event as 𝑦 = 1
and the losing as 𝑦 = 0. The selected cards of the player are represented as x = [x1, · · · ,x𝑙], where
each x𝑖 corresponds to an embedding of the 𝑖 th card. Consequently, the probability 𝑝(𝑦 |x, 𝑟) is
strictly monotonic with respect to the bet 𝑟 . We train our generative cost model on a simulated
dataset and evaluate the performance of our model 𝑝𝜃 (𝑦 |x, 𝑟) using the same strategy. To assess
the prize-winning capability of the models, we determine the optimal bet of model 𝑝𝜃 is: 𝑟∗ =

argmax𝑟 {𝑝𝜃 (𝑦 |x, 𝑟)𝑛 − 𝑟.} The real profit generated by the choice 𝑟∗ is I(𝑟∗ > 𝑐)𝑛 − 𝑟∗ . To
maximize the total profit, a model has to learn the probability 𝑝𝜃 (𝑦 |x, 𝑟) accurately for every
combinations of x and 𝑟 .

The cost variable 𝑐 corresponds to a random choice of the unobservable values on the backsides
of the picked cards x1, · · · ,x𝑙 , and we note these backside values as 𝑏1, · · · , 𝑏𝑙 . As a result, the
model should infer the probabilities of the backside value of each x𝑖 . This inference is particularly
challenging, as the models can only deduce these probabilities from training samples consisting
of (x, 𝑟, 𝑦). In particular, the optimal solution for the generative cost model is to learn a precise
mapping from x to 𝑝(𝑐 |x), which is given by:

𝑝(𝑐 |x) = I(𝑐 ∈ {𝑏1, · · · , 𝑏𝑙})
𝑙

(22)

We evaluate these methods using the following metrics: (i) the area under the precision-recall curve
(AUC) between 𝑝𝜃 (𝑦 |x, 𝑟) and 𝑦; (ii) the Kullback-Leibler (KL) divergence between 𝑝𝜃 (𝑦 |x, 𝑟) and
the true 𝑝(𝑦 |x, 𝑟); (iii) Kendall’s 𝜏 coefficient, calculated between multiple pairs of 𝑝𝜃 (𝑦 |x, 𝑟) and
𝑟 with fixed x, for validating models’ monotonicity; (iv) the prize money earned by each model.

In our experiments, we evaluate the two proposed methods: the Generative Cost Model (GCM). For
the GCM, we utilize a categorical latent variable z and estimate the likelihood as demonstrated in
the Appendix B.2. The model is trained on simulated data derived from the card game we designed,
with hyperparameters set to 𝑛 = 10, 000 and 𝑙 = 4. We assume that 𝑟 is generated independently
of 𝑥. We train our model with mini-batches of size 100 in 50, 000 rounds, resulting in a total of
5, 000, 000 training examples, while the methods are tested on 100, 000 examples. The experimental
results comparing our models with other methods are summarized in Table 4.

As shown in Table 4, our experiments demonstrate that the Generative Cost Model (GCM) achieves
superior performance compared to all other monotonic methods. Notably, the performance on

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Experimental results (with a 95% confidence interval) for the simulated card game.

Method AUC↑ KL Div.↓ Kendall’s 𝜏↑ Prize Profit↑
MLP 0.8803 ±0.0006 0.0630 ±0.0012 0.8989 ±0.0042 1053.7 ±24.9
MM 0.8844 ±0.0012 0.0578 ±0.0033 1 ±0 1251.5 ±68.1
SMM 0.8824 ±0.0031 0.0629 ±0.0072 1 ±0 1104.6 ±130.6
CMNN 0.8823 ±0.0013 0.0624 ±0.0029 1 ±0 1025.1 ±35.0
Hint 0.8850 ±0.0013 0.0585 ±0.0028 0.9499 ±0.0027 1164.1 ±71.0
PWL 0.8879 ±0.0013 0.0526 ±0.0036 1 ±0 1355.9 ±91.4
GCM 0.8917 ±0.0005 0.0395 ±0.0019 1 ±0 1699.2 ±48.1

Kendall’s 𝜏 coefficient meets our expectations, as these models ensure strict monotonicity; the only
exceptions are the MLP model and the Hint model, which fail to predict monotonic results since their
architecture do not assure strict monotonicity.

Figure 4: The predicted distribution of 𝑝𝜃 (𝑐 |x) (histogram in blue) by GCM is compared to the
actual distribution of 𝑐 (represented by the red lines). In each row, we fix the variable x and the
actual 𝑝(𝑐 |x). As the training progresses, 𝑝𝜃 (𝑐 |x) gradually converges to 𝑝(𝑐 |x).

Since our model focuses on modeling the distribution of the latent cost variable 𝑐, we can leverage
the actual distribution of 𝑐 formulated in Equation 22. During the training process, we record
the prediction of 𝑝𝜃 (𝑐 |x) = E𝑧∼𝑝𝜃 (𝑧 |x) (𝑐 |𝑧). As shown in Figure 4, the predicted density of 𝑐 is
increasingly aligned with the actual distribution as training progresses. This observation confirms
that our generative cost model effectively learns the latent cost variable.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B Details of GCM

B.1 Gaussian Case

The generative model with Gaussian latent variable z is designed by:

µ, logσ2 = DNN𝑧 (x; 𝜃1),
ϵ ∼ N(0,E),
z = µ + σ ⊙ ϵ,

µ𝑐, s𝑐 = DNN𝑐 (z; 𝜃2),
c ∼ L𝑜𝑔𝑖𝑠𝑡𝑖𝑐(µ𝑐, s𝑐),

𝑃𝑟 (c ⪯ r) =
∏
𝑖

sigmoid

(
r (𝑖) − µ(𝑖)

𝑐

s(𝑖)
𝑐

)
.

(23)

For GCM-VI, the recognition encoder is:

µ̂, log σ̂2 = DNN�̂� (x, r, y; 𝜃3)
ϵ ∼ N(0,E),
ẑ = µ̂ + σ̂ ⊙ ϵ,

(24)

while the decoder shares with GCM.

B.2 Categorical Case

The generative model with categorical latent variable z is designed by:

𝑤 (1) , · · · , 𝑤 (𝐾 ) ,d = DNN𝑧 (x; 𝜃1),
𝑧 ∼ C𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝑤 (1) , · · · , 𝑤 (𝐾 ) ),
h = Aonehot(𝑧) + d,

µ𝑐, s𝑐 = DNN𝑐 (z; 𝜃2),
c ∼ L𝑜𝑔𝑖𝑠𝑡𝑖𝑐(µ𝑐, s𝑐),

𝑃𝑟 (c ⪯ r) =
∏
𝑖

sigmoid

(
r (𝑖) − µ(𝑖)

𝑐

s(𝑖)
𝑐

)
.

(25)

Then we can estimate the probability of 𝑦 by:

𝑝𝜃 (𝑦 |x, r) =
𝐾∑︁
𝑘=1

𝑝𝜃1 (𝑧 = 𝑘 |x)𝑝𝜃2 (𝑦 |𝑧 = 𝑘, r). (26)

In the categorical case, we can easily consider all possible values of 𝑧, therefore we do not need to
introduce the recognition model which provides a better distribution for stochastic sampling.

B.3 GCM for Continuous Regression

When 𝑦 is a continuous variable, we can transform the regression problem into a binary classification
problem according to Section 4.1. Here we demonstrate how to obtain the maximum likelihood
estimate.

First, we build the generative model for 𝑡 and c, such that

𝑃𝑟 (𝑦 + 𝑡 > 0|z) = 𝑃𝑟 (r ≻ c|z). (27)

We suppose 𝑦 is a Gaussian variable, i.e. 𝑦 |z ∼ N(𝜇, 𝜎2), where 𝜎 = 𝐹𝜎 (z) is a learnable variable
and 𝜇 needs to be solved according to Equation 27. Since we have

Φ

( 𝜇 + 𝑡
𝜎

)
= 𝑃𝑟 (r ≻ c|z) ≜ 𝑝1, (28)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

then we can solve 𝜇 as

�̂� = 𝜎Φ−1 (𝑝1) − 𝑡, (29)

which is also the maximum likelihood estimation of 𝑦. The loss of GCM-VI can be formulated as:

L =
(𝑦 − �̂�)2

2𝜎2 + log𝜎 − log
𝑝𝜃 (z |x)

𝑞𝜙 (z |x, r, 𝑦)
, (30)

where z ∼ 𝑞𝜙 (z |x, r, 𝑦). So we can now train our model and estimate 𝑦.

C Ablation Studies

C.1 Ablation on Latent Dimension and Sample Number

We perform ablation studies for the GCM-VI method based on the Adult dataset, evaluating three
main hyperparameters: 𝐷, the latent dimension and 𝐾 , the sampling number. We take 𝐷 and 𝐾 from
{2, 4, 8, 16, 32} separately and repeat the experiment 8 times with different random seeds, and here
is the result.

Table 5: Experimental results (ACC) on the Adult dataset with multiple 𝐷 and 𝐾 settings.

𝐷 = 2 𝐷 = 4 𝐷 = 8 𝐷 = 16 𝐷 = 32
𝐾 = 2 0.8858 ±0.0016 0.8855 ±0.0016 0.8855 ±0.0017 0.8852 ±0.0015 0.8847 ±0.0018
𝐾 = 4 0.8857 ±0.0018 0.8853 ±0.0017 0.8852 ±0.0014 0.8850 ±0.0015 0.8849 ±0.0016
𝐾 = 8 0.8858 ±0.0017 0.8858 ±0.0019 0.8855 ±0.0016 0.8852 ±0.0017 0.8852 ±0.0015
𝐾 = 16 0.8857 ±0.0017 0.8861 ±0.0016 0.8854 ±0.0013 0.8848 ±0.0017 0.8854 ±0.0015
𝐾 = 32 0.8856 ±0.0013 0.8855 ±0.0013 0.8857 ±0.0015 0.8853 ±0.0014 0.8853 ±0.0014

We can see that for low-dimensional revenue and cost variables, taking 𝐷 and 𝐾 small is sufficient
to generate c.

C.2 Ablation on Type of Latent Variable

We compare the categorical and Gaussian settings of the latent variable z. Here is the result:

Table 6: Experimental results of GCRM on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
ACC↑ ACC↑ ACC↑ RMSE↓

GCM
(Categorical) 0.8850 ±0.0013 0.6983 ±0.0010 0.8443 ±0.0003 0.0988 ±0.0010
GCM
(Gaussian) 0.8854 ±0.0013 0.6991 ±0.0011 0.8441 ±0.0001 0.0994 ±0.0003
GCM VI
(Gaussian) 0.8858 ±0.0014 0.7011 ±0.0011 0.8442 ±0.0002 0.1005 ±0.0004

We can see that GCM-VI and GCM-categorical perform the best, this is consistent with their objec-
tives, since GCM-categorical is trained by the exact 𝐿𝐿 and GCM-VI provides a better estimation of
the latent z than the original GCM.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D Cogeneration of Cost and Revenue

𝑦

r

x

z c

I(c ⪯ r) =

𝑝
𝜃 (z |x)

𝑝𝜃 (c|z)

𝑝
𝜃
(r
|z
)

𝑞 𝜙
(z
|x,
r,
𝑦)

Figure 5: The generative graph for 𝑝(𝑦, r |x, z).

In certain cases, the assumption of conditional independence z ⊥⊥ r | x may be too restrictive.
Instead, we can adjust the cost generative model 𝑝(c|x) to a cost-revenue generative model 𝑝(c, r |x),
as illustrated in Figure 5. In this context, we establish another weaker conditional independence
relationship: x ⊥⊥ r | z. Similar to Equation 16, the ELB is given by:

log 𝑝𝜃 (𝑦, r |x)

≥Ez𝑘∼𝑞𝜙 log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃 (𝑦, r, z |x)
𝑞𝜙 (z |x, r, 𝑦)

]
=Ez𝑘∼𝑞𝜙 log

[
1
𝐾

𝐾∑︁
𝑘=1

𝑝𝜃3 (r |z)𝑝𝜃2 (𝑦 |r, z,x)𝑝𝜃1 (z |x)
𝑞𝜙 (z |x, r, 𝑦)

]
.

(31)

Here, the generation of r follows the same procedure as generating c:

𝜆𝑟 = DNN𝑟 (z; 𝜃3), 𝑝𝜃3 (r |z) = P(r;𝜆𝑟 ). (32)

We perform experiments of the cogeneration of cost and revenue (noted as GCRM-VI) on multiple
dataset, and the results are shown in Table 7. It shows that the effect of GCRM-VI is close to the
original GCM-VI method. This shows optimistic potential for the cogeneration method for GCM.

Table 7: Experimental results of GCRM on the multiple datasets.

Method Adult COMPAS Diabetes Blog Feedback
ACC↑ ACC↑ ACC↑ RMSE↓

GCM 0.8854 ±0.0013 0.6991 ±0.0011 0.8441 ±0.0001 0.0994 ±0.0003
GCM VI 0.8858 ±0.0014 0.7011 ±0.0011 0.8442 ±0.0002 0.1005 ±0.0004
GCRM VI 0.8858 ±0.0011 0.6985 ±0.0018 0.8438 ±0.0003 0.1025 ±0.0032

E Experimental Details

E.1 Detailed Results

The details of our experiments on the four public datasets are shown in the following tables.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Detailed result of experiments on the Adult dataset.

Method Log Loss RMSE AUC ACC
MLP 0.2352 ±0.0030 0.2578 ±0.0017 0.7836 ±0.0057 0.8837 ±0.0012
MM 0.2355 ±0.0029 0.2578 ±0.0018 0.7827 ±0.0052 0.8836 ±0.0010
SMM 0.2351 ±0.0027 0.2577 ±0.0017 0.7833 ±0.0051 0.8837 ±0.0011
CMNN 0.2379 ±0.0027 0.2588 ±0.0016 0.7780 ±0.0053 0.8832 ±0.0013
Hint 0.2661 ±0.0027 0.2660 ±0.0018 0.7829 ±0.0058 0.8846 ±0.0011
PWL 0.2352 ±0.0028 0.2578 ±0.0017 0.7833 ±0.0055 0.8835 ±0.0012
GCM 0.2321 ±0.0030 0.2569 ±0.0017 0.7934 ±0.0054 0.8854 ±0.0013
GCM VI 0.2315 ±0.0030 0.2568 ±0.0017 0.7948 ±0.0049 0.8858 ±0.0014

Table 9: Detailed result of experiments on the COMPAS dataset.

Method Log Loss RMSE AUC ACC
MLP 0.5951 ±0.0014 0.4516 ±0.0006 0.7427 ±0.0010 0.6955 ±0.0008
MM 0.5925 ±0.0010 0.4504 ±0.0005 0.7450 ±0.0007 0.6949 ±0.0021
SMM 0.5925 ±0.0005 0.4504 ±0.0002 0.7447 ±0.0006 0.6955 ±0.0020
CMNN 0.5951 ±0.0013 0.4515 ±0.0006 0.7441 ±0.0008 0.6997 ±0.0011
Hint 0.6055 ±0.0010 0.4567 ±0.0005 0.7343 ±0.0012 0.6861 ±0.0024
PWL 0.5947 ±0.0014 0.4515 ±0.0006 0.7429 ±0.0012 0.6960 ±0.0013
GCM 0.5922 ±0.0007 0.4501 ±0.0004 0.7461 ±0.0008 0.6991 ±0.0011
GCM VI 0.5913 ±0.0008 0.4498 ±0.0004 0.7472 ±0.0007 0.7011 ±0.0011

Table 10: Detailed result of experiments on the Diabetes dataset.

Method Log Loss RMSE AUC ACC
MLP 0.3130 ±0.0002 0.3114 ±0.0001 0.8250 ±0.0004 0.8431 ±0.0004
MM 0.3153 ±0.0008 0.3125 ±0.0004 0.8211 ±0.0013 0.8409 ±0.0008
SMM 0.3159 ±0.0016 0.3128 ±0.0008 0.8200 ±0.0025 0.8401 ±0.0013
CMNN 0.3176 ±0.0017 0.3137 ±0.0008 0.8174 ±0.0028 0.8393 ±0.0015
Hint 0.3808 ±0.0044 0.3370 ±0.0017 0.8144 ±0.0008 0.8407 ±0.0005
PWL 0.3144 ±0.0002 0.3121 ±0.0001 0.8227 ±0.0003 0.8417 ±0.0003
GCM 0.3128 ±0.0001 0.3112 ±0.0001 0.8253 ±0.0001 0.8441 ±0.0001
GCM VI 0.3129 ±0.0001 0.3112 ±0.0000 0.8252 ±0.0002 0.8442 ±0.0002

Table 11: Detailed result of experiments on the Blog Feedback dataset.

Method MSE Loss RMSE
MLP 0.0109 ±0.0001 0.1042 ±0.0004
MM 0.0121 ±0.0004 0.1100 ±0.0018
SMM 0.0124 ±0.0002 0.1114 ±0.0008
CMNN 0.0125 ±0.0001 0.1118 ±0.0005
Hint 0.0125 ±0.0003 0.1118 ±0.0013
PWL 0.0114 ±0.0001 0.1069 ±0.0006
GCM 0.0099 ±0.0001 0.0994 ±0.0003
GCM VI 0.0101 ±0.0001 0.1005 ±0.0004

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F Comparison of Time Complexity

One of the key advantages of our GCM model is its efficiency during the inference stage. For each
given x, the model can easily calculate 𝑝𝜃 (𝑦 |x, r𝑖) for multiple r𝑖 values. This efficiency arises
because the GCM model predicts the latent variables z and c based solely on x, allowing it to
subsequently predict 𝑦 using c and r𝑖 . As a result, we avoid the computation of inputting each pair
of (x, r𝑖) into a deep neural network as methods. We evaluated the inference efficiency for various
numbers of r while keeping x stable, and the results are presented in Table 12. As demonstrated,
the GCM becomes the fastest method when the number of r exceeds 64, validating its inference
efficiency in multi-revenue prediction scenarios. When the number of r reaches the extreme value
of 1024, GCM can save up to 72% time cost compared to the fastest baseline model.

Table 12: Inference time cost (ms per batch) of different models with different numbers of r on the
COMPAS dataset.

Method Inference r numbers per given x
1 2 4 8 16 32 64 128 256 512 1024

MM 1.51 2.35 3.33 4.83 9.27 17.36 31.24 58.53 112.65 306.57 308.33
CMNN 3.39 5.17 9.02 15.87 28.95 51.96 102.01 198.07 394.63 869.76 877.47
PWL 1.02 1.67 2.47 3.73 7.86 13.89 26.01 47.86 92.95 280.70 285.48
GCM 11.66 11.55 11.98 12.89 13.88 16.85 20.14 28.89 43.88 76.23 79.63

19


	Introduction
	Background 
	Related Work
	The Cost Variable Method
	Problem Formulation
	Monotonicity via the Cost Variable
	Generative Cost Model
	Generative Cost Model with Variational Inference

	Experiment
	Experiment of Quantile Regression by Simulation 
	Experiments for Multidimensional Revenue on Public Datasets

	Conclusion
	A Gamble Simulation 
	Details of GCM
	Gaussian Case
	Categorical Case 
	GCM for Continuous Regression 

	Ablation Studies
	Ablation on Latent Dimension and Sample Number
	Ablation on Type of Latent Variable

	Cogeneration of Cost and Revenue
	Experimental Details 
	Detailed Results 

	Comparison of Time Complexity 

