CAD-Coder: Text-to-CAD Generation with
Chain-of-Thought and Geometric Reward

Yandong Guan Xilin Wang Ximing Xing
School of Software School of Software School of Software
Beihang University Beihang University Beihang University
Beijing, China Beijing, China Beijing, China
yd_guan@buaa.edu.cn wang_xilin@buaa.edu.cn ximingxing@buaa.edu.cn
Jing Zhang Dong Xu Qian Yu*
School of Software The University of Hong Kong School of Software
Beihang University Hong Kong, China Beihang University
Beijing, China dongxu@cs.hku.hk Beijing, China
zhang_jing@buaa.edu.cn gianyu@buaa.edu.cn
Abstract

In this work, we introduce CAD-Coder, a novel framework that reformulates
text-to-CAD as the generation of CadQuery scripts—a Python-based, parametric
CAD language. This representation enables direct geometric validation, a richer
modeling vocabulary, and seamless integration with existing LLMs. To further
enhance code validity and geometric fidelity, we propose a two-stage learning
pipeline: (1) supervised fine-tuning on paired text—-CadQuery data, and (2) rein-
forcement learning with Group Reward Policy Optimization (GRPO), guided by
a CAD-specific reward comprising both a geometric reward (Chamfer Distance)
and a format reward. We also introduce a chain-of-thought (CoT) planning process
to improve model reasoning, and construct a large-scale, high-quality dataset of
110K text—-CadQuery—3D model triplets and 1.5K CoT samples via an automated
pipeline. Extensive experiments demonstrate that CAD-Coder enables LLMs to
generate diverse, valid, and complex CAD models directly from natural language,
advancing the state of the art of text-to-CAD generation and geometric reasoning.

1 Introduction

Computer-Aided Design (CAD) systems are fundamental tools in engineering and manufacturing,
enabling the creation of precise 3D models. However, traditional CAD workflows often demand
significant expertise and are time-consuming [21} 6], which limits broader accessibility and hampers
rapid iteration. Recent advancements in Large Language Models (LLMs)[28]], particularly their profi-
ciency in natural language understanding and code generation[3| [1]], present a promising opportunity
to streamline CAD processes [5) 26] based on natural language descriptions. The ability to generate
or modify CAD models via textual instructions [2} [13[16] could lower the entry barrier for novices
and enhance the efficiency of experienced users.

However, generating CAD from textual descriptions remains a nontrivial challenge. To leverage
progress in natural language processing, researchers have proposed representing CAD models using
pre-defined command sequences and formulating text-to-CAD as a machine translation problem—i.e.,
autoregressively predicting CAD command tokens conditioned on input text [32, [13]].

*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Despite their utility, these approaches face several limitations. First, verifying the validity of a CAD
model represented by command sequences is challenging. Second, most existing methods support
only a limited set of operations, such as sketch and extrusion, restricting the diversity of generated
CAD models. Third, CAD command sequences are often difficult to interpret and edit, complicating
both understanding and debugging.

To address these issues, we advocate for a new proxy representation of CAD models. In this paper, we
utilize CadQuery [7]], a Python-based parametric CAD scripting language, as the target representation.
CadQuery is particularly suitable for the following reasons: (1) It provides inherent geometric
validation, as CadQuery scripts can be directly executed to verify the validity of the resulting CAD
model. (2) It offers a rich vocabulary for CAD modeling, enabling the representation of diverse and
complex geometries. (3) CadQuery scripts are composed of semantic, function-based constructs,
making them more interpretable than low-level command sequences. (4) Importantly, as CadQuery is
implemented in Python, it allows us to leverage the code generation capabilities of modern LLMs
that are already proficient in programming tasks.

Consequently, we reformulate the text-to-CAD task as generating CadQuery code from natural
language input. While this representation enables the use of LLMs for CAD generation, adapting
LLMs to reliably produce high-quality CAD models remains challenging. The core difficulty
arises from the dual requirements of CadQuery code: syntactic correctness (from a programming
perspective) and geometric plausibility (from a 3D modeling perspective). While supervised fine-
tuning (SFT) on paired text and CadQuery code can teach the model syntactic patterns, it is insufficient
to guarantee both code validity and geometric correctness, as it lacks explicit 3D knowledge and
reasoning capabilities [39, 9} 38]].

To overcome these challenges, we draw inspiration from recent advances where reinforcement
learning (RL) has improved LLM reasoning and planning across various domains. In particular, we
integrate Group Reward Policy Optimization (GRPO), an efficient RL algorithm, into the text-to-CAD
code generation pipeline. Our approach consists of two stages: (1) We begin by supervised fine-tuning
an LLM with paired natural language descriptions and CadQuery code to establish basic syntax and
mapping. (2) We then enhance the model’s planning and reasoning ability via RL, introducing a
novel CAD-Specific reward function.

Specifically, since multiple distinct CadQuery scripts can produce geometrically equivalent CAD
models—a challenge for SFT to capture—we introduce a chain-of-thought (CoT) process that
encourages the model to plan before code generation. Our CAD-Specific reward comprises two
components: a geometric reward, which uses the Chamfer Distance (CD) between generated and
target 3D geometries to ensure geometric accuracy, and a format reward, which enforces the reasoning
process and syntactic correctness of the generated code.

To facilitate research in this area, we construct a large-scale, geometrically verified dataset comprising
110K text—CadQuery-3D model triplets and 1.5K high-quality CoT samples. We also propose an
automatic data construction pipeline to accelerate dataset creation and ensure high quality. Extensive
experiments demonstrate that our method unlocks new capabilities for LLMs, enabling the generation
of complex, functional CAD models directly from high-level textual intent. In summary, our
contributions include the following:

* We propose a novel approach CAD-Coder that reformulates the text-to-CAD task as
generating CadQuery code from natural language descriptions. Leveraging the Python-
based CadQuery enables more interpretable, diverse, and valid CAD model generation,
while fully utilizing the code generation capabilities of existing large language models.

* We introduce a two-stage pipeline that combines supervised fine-tuning with reinforcement
learning using GRPO. Our method incorporates a chain-of-thought (CoT) planning process
and a novel CAD-Specific reward, which jointly enforce both syntactic correctness and
geometric plausibility in the generated CAD models.

* We construct a high-quality, large-scale dataset consisting of 110K verified text—-CadQuery-
3D model triplets and 1.5K CoT samples via an automated pipeline, facilitating further
research in text-to-CAD generation and geometric reasoning.

2 Related Work

2.1 Large Language Model for Code Generation

Large language models (LLMs) have revolutionized code generation, with models like GPT-4 [20]
and specialized code-focused LLMs such as CodeLlama [27]] showcasing impressive capabilities in
translating natural language into various programming languages [3} [1]. Standard training typically
involves supervised fine-tuning (SFT) on extensive code corpora and instruction datasets. To better
align LLM behavior with specific goals or complex tasks, reinforcement learning (RL) techniques
have been increasingly employed. Reinforcement learning with human feedback (RLHF)[11] is
widely used for general alignment. For more task-specific optimization, policy gradient algorithms
like Proximal Policy Optimization (PPO)[23]] are commonly utilized, though these often require
training a separate critic network, which adds computational overhead.

Our approach leverages Group Reward Policy Optimization (GRPO) [24], a more recent and efficient
RL algorithm that estimates baselines through relative rewards within a sample batch, removing the
need for a critic and making RL fine-tuning more feasible for complex tasks like ours. Generating
structured and logically coherent code, especially for multi-step procedures common in CAD model-
ing, requires advanced reasoning. Chain-of-Thought (CoT) prompting [30] has proven effective in
improving the reasoning and planning capabilities of LLMs by prompting them to generate interme-
diate steps. We leverage CoT to enhance the model’s ability to decompose complex natural language
instructions into coherent CadQuery code sequences.

2.2 CAD Generation

Generative modeling for CAD systems commonly employs two main representations: boundary
representation (B-rep) [14] and command sequence representations [32}31]]. B-rep models combine
geometry and topology to offer high precision and accuracy; however, their complexity presents
significant challenges for generative modeling. To address this, various models use separate latent
spaces and decoders for geometry and topology [10, 36l 8]]. Notably, HoLa [17] introduces a unified
latent space for B-rep generation. Despite their advantages, direct generation of B-rep models from
text remains computationally intensive, as it involves capturing intricate geometric features and
interrelationships. Alternatively, command sequence representations, such as those proposed by
DeepCAD [32], model the procedural nature of CAD design by encoding the design process as a
series of commands, e.g., sketch creation or extrusion. Several approaches [12} 4] have demonstrated
the ability to generate command sequences from point clouds or images. CAD-MLLM [335]] leverages
multimodal large language model (MLLM) to enhance the performance of this generation process. In
the context of text-to-CAD generation, methods like Text2CAD [13]] and CAD-Translator [[16] use
encoder-decoder architectures to translate textual descriptions into command sequences. Additionally,
CAD-Llama [15]] and CADFusion [29] employ LLM:s to further address the complexity of this task.
Recent efforts also study controllability in CAD generation: FlexCAD [41] unifies control across
construction hierarchies via structured-text serialization and LLM fine-tuning, while GeoCAD [40]
targets local geometry controllability with a mask-and-predict paradigm over captioned local parts.
While command sequence representations simplify CAD model generation, they often lack direct
connections to the geometric accuracy of the resulting models.

In contrast, our approach leverages CadQuery [[7], a Python-based parametric library that facilitates
programmatic CAD model generation. This representation offers significant advantages, including
enhanced editability, better interpretability, and compatibility with LLMs. CAD-Recode [22] gener-
ates CadQuery scripts from point clouds, while Query2CAD [2] directly prompts LLMs to produce
CadQuery code from text. CAD-Assistant [[19]], instead, adopts a tool-augmented VLLM setup built
on the FreeCAD Python API to execute modeling operations. These works follow different technical
routes; we focus on CadQuery as an intermediate code representation for text-to-CAD. Beyond 3D
CAD, vector graphics (SVG) constitute a closely related parametric and programmatic design space.
Recent studies on SVG understanding and generation leverage executable code representations and
learning signals, e.g., LLM4SVG [34] and Reason-SVG [33]], underscoring the value of interpretable,
code-like geometry—an idea that resonates with adopting CadQuery in our setting.

3 Methodology

3.1 CadQuery: CAD Representation as Python Code

We adopt CadQuery, a Python-based parametric CAD scripting language, as the core representation
for 3D modeling in our framework. CadQuery can be executed directly without any external software
dependencies. CadQuery allows models to be constructed using chainable geometric operations
(e.g., box (), circle(), extrude()), encoded as modular and readable Python code. Each script
corresponds to a complete, executable modeling procedure that can be rendered directly via the
OpenCascade kernel into high-fidelity 3D geometry.

4 (a) Text Description N (b) DeepCAD Representation (c) CadQuery Representation
X . . . [operation 1]
[operation 1] This circular flange is SOL Circle 0 @ 60 SOL Circle @ 0 25 flan
a metal component featuring a flat e T
- = operation 2]
base plate with a diameter of 120 mm SOL Circle 45 @ 6 SOL Circle 22.5 39 6
and thickness of 15 mm. The design SOL Circle -22.5 39 6 SOL Circle -45 @ 6
: : SOL Circle -22.5 -39 6 SOL Circle 22.5 -39 6
1nc¥ude§ a central bore measuring 50 Ext. 001000 -150
mm in diameter [operation 3]

SOL Circle @ @ 35 SOL Circle 0 0 25 offset

[operation 2] Six equidistant mounting Ext. 0010008 0 NewBody Union esul lange

holes measuring 12 mm in diameter are
arranged in a circular pattern witha |,~° """ __ _“ """ """ TTTTTo T T T T T
diameter of 90 mm around the periphery.

[operation 3] The flange design \‘k)"

/
1
] L -_—
surrounded by a raised concentric ring |
with an outer diameter of 70 mm and :
height of 8 mm that shares the same) MulllpleHole
|
\

- - Extrude Boss
inner diameter as the central bore.

Operation 1 Operation 2 Operation 3

Figure 1: (a) Text description of a CAD model. (b) Corresponding sketch-extrusion command
sequence used in DeepCAD. (c) Corresponding CadQuery code used in our method. The bottom row
shows the resulting 3D models generated by each of the three sequential operations.

Traditional methods such as DeepCAD [32] represent model structures using sketch-extrude command
sequences. As illustrated in Fig. [T] these representations are typically linearized and low-level, lack
modularity, and cannot be directly executed. They often require additional post-processing to produce
3D shapes. This not only increases modeling complexity but also hinders the model’s ability to learn
structured modeling semantics. In contrast, CadQuery is interpretable and executable. CadQuery
provides expressive and flexible geometric operations, ranging from basic primitives to complex
modeling procedures. Meanwhile, CadQuery scripts can be directly executed for validation. The
provided high-level API can also better align with the input textual description.

Considering the Python nature, CadQuery is well-suited for generative modeling with language
models. Nevertheless, a crucial challenge lies in generating code that is both syntactically correct
and produces geometrically accurate and valid 3D designs. To address this, our approach employs a
two-stage training strategy. First, an initial Supervised fine-tuning (SFT) phase teaches the model
the specific CadQuery syntax. Then, a reinforcement learning (RL) phase is introduced to further
enhance the geometric accuracy and validity of the generated 3D output.

3.2 CAD-Coder

Overview. We adopt Qwen2.5-7B-Instruct [37], a strong (&<t Code /t - N
open-source language model pre-trained on a mixture of 3, Deseiption fralysis .
web text and code, as the base model for CadQuery code il e e
generation. The input to the model is a natural language 5.Code Implementation Strate
description L of the 3D design intent. The output is an i ooy n GadQuery:
executable CadQuery script C which is executed to pro- N

duce a 3D geometry M = Execute(C). The model is ¢SFT Bl | oY) naa,

fine-tuned and optimized in an autoregressive decoding LR GO

.moveTo(0.192, 0.192)
1 cil L4
setup, Where CadQl}ery tokens are generated sequentially, (0. 192)
conditioned on the input and previous tokens. . extrude(0.75))

To better generate CAD models, our method leverages GRPO .)
a two-stage training strategy. In the first stage, we SFT . o
the LLM with paired data, which enables the model to Figure 2: CAD-Coder Training Pipeline
learn CadQuery’s fundamental syntax and common programming patterns. To further enhance the

geometric reasoning ability of the model, which improves the accuracy of the final 3D model, we
introduce the second RL stage with a reward specifically designed for CAD.

Stage 1: Supervised Fine-Tuning for CAD Code Generation. We begin by performing SFT to
equip the model with the basic capability to translate natural language descriptions into executable
CadQuery code. Unlike generic code generation, CAD code must follow strict syntactic and geometric
constraints. This phase serves as a foundation that enables the model to understand the CadQuery’s
syntax and learn the basic mapping between high-level descriptions to low-level modeling operations
in a structured format.

We train on a synthetic high-quality dataset containing 8k examples generated through our data
annotation pipeline (see Section E]) Each training sample is a pair (L, Cy;), where L is a natural
language prompt and Cy; is the corresponding ground-truth CadQuery code that has been verified for
executability and filtered by geometric correctness.

The model learns to generate a predicted CAD program C' = {ct}ﬁgfl token-by-token, aiming to

approximate the groundtruth program Cy; as closely as possible. We adopt a standard autoregressive
decoding framework, where the model learns to predict each token of C'y; sequentially given the
prompt L and the preceding tokens. Formally, the loss function is:

[Cyel
Lsrr(0) = ~E(1,0,)~y | D logmo(cs | c<r, L) ey

t=1

where L denotes the input prompt, Cy; = {ct}lti"l“ represents the ground-truth code sequence, c,

refers to the preceding tokens before step ¢, my denotes the model policy with parameters 6, and |C ;|
is the length of the code sequence.

This allows the model to follow the syntax of CadQuery and establish preliminary mappings between
common shape-related language patterns and CAD primitives (e.g. “create a hole” — .hole(),
“draw a circle” — .circle()).

After this stage, the model shows promising capabilities in generating valid CadQuery code for
standard and relatively simple modeling cases. However, we observe two major limitations: The
generated code sometimes lacks geometric accuracy compared to the target shape, and the model
struggles with complex structures that require multi-step or spatial reasoning.

Stage 2: Reinforcement Learning with CAD-Specific Rewards. To address these challenges, we
introduce a CAD-Specific RL stage using Group Reward Policy Optimization (GRPO) to improve
the geometric reasoning capability, enhanced with chain-of-thought (CoT) prompting to guide
structured reasoning. We first cold-starting the model with designed CoT samples to enhance basic
reasoning ability. Then, during RL phase, we specifically introduce Chamfer Distance(CD), a
common geometric metric, into the reward signal to directly optimize the model based on the 3D
output quality instead of token-level loss.

CoT Design. Unlike direct prompt-to-code pairs used in standard SFT, CoT samples are formatted
as (Leot, C), where L, includes a step-wise plan embedded in natural language before the final
modeling instruction. Considering the hierarchical and compositional nature of CAD modeling,
we design Ly to simulate an engineer’s planning process, including component decomposition,
coordinate system assignment, sketch design, and extrusion operations each outlined succinctly within
<think>...</think> tags. This structured reasoning format helps the model map textual descriptions to
executable geometry. These intermediate reasoning steps guide the LLM to break down complex
shapes into simpler components aligned with textual description.

Reward Design. During GRPO training, for each input L., the current policy 7y generates
k diverse CadQuery candidates {C1,...,C%}. The final CAD-Specific reward R; includes two
components: geometric reward R:°°, and format reward RI™,

In contrast to program synthesis tasks where GRPO uses exact match-based rewards, CAD modeling
lacks a unique ground-truth code. Multiple solutions can yield identical geometry. To address this,
we design a geometric reward based on CD between the rendered 3D model and the target geometry
M, For each generated code candidate C;, we first attempt execution using the CadQuery engine.
If successful, the resulting mesh A/; is uniformly sampled into a dense point cloud. Similarly, M, is

also sampled. The CD is then computed between these two point clouds as:

1 , , 1 , ,
CD(P,Q) = ﬁ;ggglleyllﬁ@Zﬁ;?gggllzfyllz @)

where P and x are sampled from the predicted shape, and @) and y from the ground-truth shape; | P
and |Q| denote the number of points in each set.

This metric quantifies the geometric discrepancy between the generated shape and the ground-truth
model. Smaller CD values indicate closer geometric alignment.

To convert CD values into reward signals, we define a piecewise geometric reward RE*°. Specifically,
if the CD is smaller than 1 x 1075, the candidate is assigned the maximum reward of 1.0. When the
CD is greater than to 0.5, or if the code fails to execute, the reward is set to 0. For CD values between
these thresholds, the reward decreases linearly: a CD of 0.5 corresponds to a minimum non-zero
reward of 0.01, and smaller CD values yield proportionally higher rewards. This design ensures that
the model receives continuous geometric feedback, encouraging approximate yet geometrically close
solutions even when exact reconstruction is difficult.

To compute format reward Rg““, we apply regular expression matching to detect whether the output
C; contains both a <think>...</think> reasoning block and a properly formatted Python code
block (delimited by triple backticks ¢ ¢ ‘python ... ‘). If both are present, Rgm‘ = 1; otherwise,
Rimt — 0,

To compute final reward, each CadQuery candidate C; is executed, valid outputs are converted into 3D
models, and CD is computed with respect to My;. The combined reward R; = Ageo RS + A RI™
is used to compute the relative advantage, and the model is updated via the GRPO loss (Eq. [3):

EGRPO(G) = ELcolND7 {C'i}?=1N7790]d('|Lcot)

- . 3)

k

1 1 . - .

> e 3" min (ri,t(e) - Auy, clip(rig(0), 1—e, 1+¢) -Am) — BDxw (g || Ter)
i=1 " =1

where L is the input prompt, C; is a sampled code sequence, & is the number of samples per prompt,
t is the token index, € is the current policy parameter, 6,4 is the old policy parameter, Ai,t is the
advantage estimate, ¢ is the clipping threshold, /3 is the KL penalty weight, 7y, 7y, and 7 are the
current, old, and reference policies.

old ?

This training strategy allows the model to continuously refine its code generation towards executable,
semantically meaningful, and geometrically accurate CAD outputs.

4 Dataset Construction

We build our dataset based on the Text2CAD dataset [13]], which contains 178K natural language
descriptions L paired with ground-truth 3D geometries M ;. However, Text2CAD lacks executable
CadQuery code aligned with M, which poses a major obstacle for training models that generate
script-based CAD representations.

To address this, we design a CadQuery data annotation pipeline, as shown in Fig.] For each
sample, we take the CAD command sequence .S provided by Text2CAD (which is structurally aligned
with M) and prompt a code-generation LLM (DeepSeek-V3 [24]) to generate multiple candidate
CadQuery scripts. We attempt to execute each candidate using the CadQuery engine and discard
failures. The successfully executed models M anq are compared against My using CD, and we select
the candidate with the lowest CD as the final C¢. Note that the mapping from a command sequence
(or M) to CadQuery code is one-to-many: multiple syntactically different scripts can produce
geometrically equivalent shapes. Our selection by minimum CD explicitly preserves geometric
equivalence while allowing script diversity; thus Cl; is a verified executable surrogate aligned to
M, rather than a unique textual ground truth.

In total, this pipeline produces 110K valid triplets (L, Cgt, Mgt). We further divide them into three
subsets based on geometric quality: 8k high-quality samples with CDg; < 1 x 10™%; 70k medium-
quality samples with CDg¢ < 1 x 1073; and the remaining 32k hard cases with CDg¢ > 1 x 1073,

Claude-3.7 Ours Ours Ours
GT Text2CAD Deepseek-V3 sonnet SFT w/o SET w/o CoT (Full)

Figure 3: Qualitative comparison between baseline methods and different model variants under
various training strategies. Text2CAD is a command-sequence-based baseline; Deepseek-V3 and
Claude-3.7 represent open-source and proprietary LLMs, respectively. The right columns show our
ablations and ull model, which best preserve structure and geometry.

To bootstrap reinforcement learning and enhance structured reasoning, we further construct a set of
CoT-formatted samples on complex shapes. Specifically, we select the hard cases from the dataset,
use their description L to prompt DeepSeek-V3 for CoT-style CadQuery code. We leverage the same
filtering strategy as Fig. 4] retaining samples that are executable and exhibit high geometric accuracy
based on CD. Each valid candidate is further manually refined for correctness. The final CoT dataset
contains 1.5K high-quality CoT samples.

5 Experiments

Metrics. For the Text-to-CAD task, we use metrics adapted from prior 3D generation works [13]]:
(1) Mean CD measures the average geometric discrepancy between the generated and ground-truth
models over sampled point clouds. (2) Median CD captures the typical geometric error and is
more robust to outliers. (3) Invalidity Ratio (IR) denotes the proportion of generated CadQuery
programs that fail to be executed to yield valid 3D geometry. These metrics jointly capture geometric
fidelity and executable correctness. We evaluate on the official Text2CAD test split. Let L denote
the dataset-provided text prompt. Given L, our model generates a CAD program Cjrq and its mesh
Mpreq. Following [13], we apply the same normalization and compute CD between Mpeq and the
ground-truth mesh My,. Importantly, our translated CadQuery scripts are never used as test ground
truth.

Implementation Details. We use Qwen?2.5-7B-Instruct [37]] as the base model for all experiments,
given its strong instruction-following and code generation capabilities. For the stage of SFT, we
fine-tuned Qwen2.5-7B-Instruct for 3 epochs with a batch size of 64 and a learning rate of 1 x 1075,
using the AdamW optimizer [[18]. Training was performed using full-parameter fine-tuning with
DeepSpeed ZeRO Stage 2. For the GRPO phase, we initialized the model with SFT weights and
trained for 1 epoch with a batch size of 384. To enable cold-starting of reasoning during SFT,
we additionally fine-tuned the model on the 1.5K high-quality CoT-format samples for 2 epochs.

System prompt

! Sequence !
S g LN
=h) ' Ground-Truth Models ! !
d ' !
.ff' : ! Cadauery Sample | sample] !
R e B D '
H b | 1| ¢eossooocooodoooooooooo: | Chamfer !
fosizo iont Xl 1 I’ Q. || Distence — \ Descriptiont | Our Dataset
1 § 1 E)
1 gl [
L rm===—=— , Select by CD l' Python code
Ground-Truth Model Discard ~ — T T T T~ | CDFEIELTED selection CadQuery

Figure 4: Overview of our annotation pipeline. Given CAD command sequences and natural language
descriptions from the Text2CAD dataset, we use DeepSeek-V3 to synthesize multiple CadQuery
code candidates. These candidates are executed and compared to the ground-truth 3D models using
the Chamfer Distance (CD). Scripts that execute successfully and achieve the lowest CD are retained.
Finally, we construct a dataset comprising text—-CadQuery—3D model triplets.

The batch size was set to 384. Each input prompt generated k¥ = 8 candidate completions. The
KL divergence coefficient was set to 5 = 0.001. All geometric computations, including model
execution via CadQuery [7]], point cloud sampling, normalization, and CD calculation, following the
Text2CAD implementation to ensure consistency. We utilized the Hugging Face Transformers
library, GRPO implementation from Verl [23]], and DeepSpeed for distributed training.

6 Extended Ablation Studies

For SFT, we use the 8K high-quality samples. For cold-starting, we use the 1.5K CoT-format samples.
For GRPO, we use all 150K training descriptions and geometries from Text2CAD. For evaluation, we
apply the same synthesis pipeline on the official Text2CAD test set to obtain corresponding triplets.

Baselines. We compare our full method (SFT+CoT+GRPO) against several baseline methods for
text-to-CAD generation. Text2CAD directly generates CAD models from natural language
descriptions. We also evaluate several LLMs by prompting them directly with natural language
descriptions to generate CadQuery code, without any fine-tuning. The baseline LLMs include
open-source models Qwen2.5-72B, Qwen2.5-7B, DeepSeek-V3, as well as the proprietary models
Claude-3.7-sonnet, GPT-40. For parity, all LLM baselines are prompted with the same CoT-style
format used by CAD-Coder; the full prompt is provided in Appendix C.

Table 1: Quantitative comparison on the test set. CD metrics are x 103. IR.% indicates Code Invalidity
Ratio. Lower CD and lower IR.% are better.

Method MeanCD | MedianCD | IR.% |
Claude-3.7-sonnet 186.53 134.16 47.03
GPT-40 143.5 40.96 70.5
Deepseek-V3 186.69 107.57 51.96
Qwen2.5-72B 209.41 153.81 82.64
Qwen2.5-7B 202.35 169.86 98.83
Text2CAD 29.29 0.37 3.75
CAD-Coder (Ours) 6.54 0.17 1.45

6.1 Main Results

Table |l|summarizes the quantitative performance on the test set. Our full method achieves the best
results across all metrics, significantly outperforming prior works in terms of geometric accuracy.
Specifically, it reduces the Mean CD to 6.54 and the Median CD to 0.17, both by large margins
compared to the strong baseline Text2CAD [13]], surpassing all existing LLMs. Fig. [3exhibits the
qualitative results. We can observe that LLMs frequently fail to generate valid code. Our method can
better align with the target shape. These results highlight the effectiveness of our geometry-aware
optimization and CoT-enhanced reasoning in generating precise and structurally valid 3D CAD
models. Our method also maintains a lower code invalidity ratio, demonstrating that reinforcement-
driven learning does not compromise executability.All experiments were conducted on 8 NVIDIA
A800 80GB GPUs. Additional hyperparameter details are provided in the Appendix. With vLLM-
based serving and KV caching, average decoding latency remains below 1 s on mainstream GPUs
(H800, A800, RTX 4090, V100) for both CoT-enabled and SFT decoding. The reported timings
reflect token generation only and exclude code execution. Per-GPU results are provided in Table 2]

Table 2: Per-sample inference latency (seconds; lower is better). CoT denotes CoT-enabled decoding;
SFT denotes plain decoding without CoT.

GPU Model CoT (s)J SFT(s)|

H800 80G 0.06 0.03
AB800 80G 0.18 0.12
RTX 4090 24G 0.28 0.16
V100 32G 0.64 0.29

6.2 Ablation Study

Table 3] isolates the effect of each component in the training pipeline. Starting from a model trained
solely with SFT, we observe limited geometric fidelity (Mean CD 74.55, Median CD 0.33). This
baseline demonstrates that SFT alone cannot adequately capture spatial reasoning for complex CAD
structures. However, the model also performs poorly (Mean CD 76.20) without SFT, showing
the necessity of using prior knowledge. Even without CoT, the GRPO alone dramatically boosts
performance (Mean CD 17.34, Median CD 0.20), confirming that CAD-Specific reward supervision
is essential for improving 3D accuracy. Our full method, adding CoT prompting for cold-starting,
further improves results (Mean CD 6.54, Median CD 0.17), indicating that structured multi-step
reasoning enhances the model’s ability to handle complex geometric prompts. Fig. 5|illustrates the
CD distributions of the generated model under different training strategies. We can observe that more
effective training strategies result in distributions that are skewed towards smaller CD values and
fewer invalid results. Fig. [B|reveals the visualization results with different components. Experimental
results demonstrate the effectiveness of each component.

Table 3: Ablation study results on the test set us- . .
ing Qwen2.5-7B-Instruct. CD metrics are x 10°. Table 4: Ablation study: effect of sft training

Training Strategy Mean CD] Med CD] IR %] data quality.

SFT 7455 033 533 Dataset Mean CD, MedCD] IR %]
Ours w/o SFT 76.20 0.95 5.33 Ours w/ 70K 9.89 0.18 3.21
Ours w/o CoT 17.34 0.20 4.95 Ours w/ 8K 6.54 0.17 1.45
Ours (Full) 6.54 0.17 1.45

In Table] we explore how different SFT training data affect final model performance. Training
with the full 70K medium-quality dataset during SFT leads to substantial improvement over existing
methods (Mean CD 9.89). However, training with a smaller but high-quality 8K dataset yields the best
result (Mean CD 6.54, Median CD 0.17), outperforming the larger dataset. These results reveal a key
insight: quality outweighs quantity. High-precision data offers better foundation for CAD-Specific
RL, considering that small inconsistencies in code can lead to significant errors in CAD geometry.

CD Distribution across Training Methods (with merged <1e-5)

w3\
AL L

(a) (b)

Figure 5: (a) Chamfer Distance (CD) distributions of generated CAD models trained with different
strategies. (b) Visualizations of predicted CAD models across three CD intervals. Gray shapes
represent ground-truth models, while brown shapes denote generated models. The first row shows
results with CD > 1 x 107!, indicating that the generated CAD models differ substantially from
the ground truth. The second row presents models with 1 x 1074 < CD < x10~*!, and the third
row displays models with CD < 1 x 10~*, indicating that these models are nearly identical to the
ground-truth models.

1000 2000 3000 4000 5000
Co

7 Conclusion

In this paper, we have presented a novel approach to text-to-CAD generation by leveraging CadQuery
as an intermediate representation. By combining the strengths of Python-based code generation and
the inherent interpretability of CadQuery, our method overcomes key challenges associated with
traditional command sequence-based approaches, including model validity and limited operation sets.
We propose a two-stage training strategy combining supervised fine-tuning (SFT) with reinforcement
learning (RL). The integration of Group Reward Policy Optimization (GRPO) and a CAD-Specific
reward function ensures that the generated CAD models are both syntactically correct and geomet-
rically plausible, while the Chain-of-Thought (CoT) process allows for improved reasoning and
planning. Our large-scale, geometrically verified dataset facilitates further research in this domain,
and the experimental results show that our method significantly advances the capabilities of LLMs
in generating complex CAD models from natural language descriptions. This work opens the door
to more accessible, efficient, and flexible CAD generation, making it easier for both novice and
experienced users to create high-quality 3D models based on textual input.

Limitations and future work: While CAD-Coder achieves strong performance, several limitations
remain. First, the model currently does not support multimodal inputs such as images or point clouds,
which restricts its applicability in real-world design scenarios. Second, although CoT prompting
enhances reasoning, it remains shallow and often fails on extremely complex spatial compositions.
Third, the reward design primarily relies on Chamfer Distance and format checks, limiting fine-
grained structural supervision. Future work could extend the framework to a broader set of CAD
operations and further optimize LLM planning and reasoning.

Acknowledgments

This work was supported in part by the National Key Research and Development Project of China
(No. 2022ZD0117801) and the Young Elite Scientists Sponsorship Program by CAST, in part by the
National Natural Science Foundation of China (Nos. 62572039, 62461160331, and 62132001), and in
part by the Fundamental Research Funds for the Central Universities. This work was also supported
by the NSFC/RGC Collaborative Research Scheme (CRS_HKU703/24). Dr. Xu’s research work
described in this paper was conducted in the JC STEM Lab of Multimedia and Machine Learning,
funded by The Hong Kong Jockey Club Charities Trust.

10

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

Akshay Badagabettu, Sai Sravan Yarlagadda, and Amir Barati Farimani. Query2cad: Generating
cad models using natural language queries. arXiv preprint arXiv:2406.00144, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

Tianrun Chen, Chunan Yu, Yuangi Hu, Jing Li, Tao Xu, Runlong Cao, Lanyun Zhu, Ying Zang,
Yong Zhang, Zejian Li, et al. Img2cad: Conditioned 3d cad model generation from single image
with structured visual geometry. arXiv preprint arXiv:2410.03417, 2024.

Haoxuan Deng, Samir Khan, and John Ahmet Erkoyuncu. An investigation on utilizing large
language model for industrial computer-aided design automation. Procedia CIRP, 128:221-226,
2024.

Yuanzhe Deng, James Chen, and Alison Olechowski. What Sets Proficient and Expert Users
Apart? Results of a Computer-Aided Design Experiment. Journal of Mechanical Design,
146(1):011401, 10 2023.

CADQuery Developers. Cadquery: A python parametric cad scripting framework. https:
//cadquery.readthedocs.io/}, 2024. Accessed: 2024-10-22.

Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and Baining Guo. Complexgen: Cad
reconstruction by b-rep chain complex generation. ACM Transactions on Graphics (TOG),
2022.

Jiangyong Huang, Baoxiong Jia, Yan Wang, Ziyu Zhu, Xiongkun Linghu, Qing Li, Song-
Chun Zhu, and Siyuan Huang. Unveiling the mist over 3d vision-language understanding:
Object-centric evaluation with chain-of-analysis. arXiv preprint arXiv:2503.22420, 2025.

Pradeep Kumar Jayaraman, Joseph G Lambourne, Nishkrit Desai, Karl DD Willis, Aditya
Sanghi, and Nigel JW Morris. Solidgen: An autoregressive model for direct b-rep synthesis.
Transaction in Machine Learning Research, 2023.

Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hiillermeier. A survey of reinforcement
learning from human feedback, 2024.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and
Djamila Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch
instance guided attention. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4713—4722, 2024.

Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin, Didier Stricker, Sk Aziz Ali, and Muham-
mad Zeshan Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert level
text prompts. Advances in Neural Information Processing Systems, 37:7552-7579, 2024.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny
Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for
geometric deep learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9601-9611, 2019.

11

https://cadquery.readthedocs.io/
https://cadquery.readthedocs.io/

[15] Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou.
Cad-llama: Leveraging large language models for computer-aided design parametric 3d model
generation. arXiv preprint arXiv:2505.04481, 2025.

[16] Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Cad translator: An effective drive
for text to 3d parametric computer-aided design generative modeling. In Proceedings of the
32nd ACM International Conference on Multimedia, pages 8461-8470, 2024.

[17] Yilin Liu, Duoteng Xu, Xingyao Yu, Xiang Xu, Daniel Cohen-Or, Hao Zhang, and Hui Huang.
Hola: B-rep generation using a holistic latent representation. arXiv preprint arXiv:2504.14257,
2025.

[18] Tlya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[19] Dimitrios Mallis, Ahmet Serdar Karadeniz, Sebastian Cavada, Danila Rukhovich, Niki
Foteinopoulou, Kseniya Cherenkova, Anis Kacem, and Djamila Aouada. Cad-assistant: Tool-
augmented vllms as generic cad task solvers? arXiv preprint arXiv:2412.13810, 2024.

[20] Josh OpenAl, Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[21] David Robertson and Thomas J Allen. Cad system use and engineering performance. IEEE
Transactions on Engineering Management, 40(3):274-282, 1993.

[22] Danila Rukhovich, Elona Dupont, Dimitrios Mallis, Kseniya Cherenkova, Anis Kacem, and
Djamila Aouada. Cad-recode: Reverse engineering cad code from point clouds. arXiv preprint
arXiv:2412.14042, 2024.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[24] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[25] Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua
Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv
preprint arXiv: 2409.19256, 2024.

[26] Yuewan Sun, Xingang Li, and Zhenghui Sha. Large language models for computer-aided design
(Ilm4cad) fine-tuned: Dataset and experiments. Journal of Mechanical Design, pages 1-19,
2025.

[27] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[29] Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-to-cad generation through infusing
visual feedback in large language models. arXiv preprint arXiv:2501.19054, 2025.

[30] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

12

[31] Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G Lambourne, Armando
Solar-Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for
programmatic cad construction from human design sequences. ACM Transactions on Graphics
(TOG), 40(4):1-24, 2021.

[32] Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6772-6782, 2021.

[33] Ximing Xing, Yandong Guan, Jing Zhang, Dong Xu, and Qian Yu. Reason-svg: Hybrid reward
rl for aha-moments in vector graphics generation. arXiv preprint arXiv:2505.24499, 2025.

[34] Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. Empowering
IIms to understand and generate complex vector graphics. arXiv preprint arXiv:2412.11102,
2024.

[35] Jingwei Xu, Zibo Zhao, Chenyu Wang, Wen Liu, Yi Ma, and Shenghua Gao. Cad-mllm: Unify-
ing multimodality-conditioned cad generation with mllm. arXiv preprint arXiv:2411.04954,
2024.

[36] Xiang Xu, Joseph G Lambourne, Pradeep Kumar Jayaraman, Zhengqing Wang, Karl DD Willis,
and Yasutaka Furukawa. Brepgen: A b-rep generative diffusion model with structured latent
geometry. ACM SIGGRAPH, 2024.

[37] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[38] Jirong Zha, Yuxuan Fan, Xiao Yang, Chen Gao, and Xinlei Chen. How to enable 1lm with 3d
capacity? a survey of spatial reasoning in llm. arXiv preprint arXiv:2504.05786, 2025.

[39] Weichen Zhang, Ruiying Peng, Chen Gao, Jianjie Fang, Xin Zeng, Kaiyuan Li, Ziyou Wang,
Jingiang Cui, Xin Wang, Xinlei Chen, et al. The point, the vision and the text: Does point cloud
boost spatial reasoning of large language models? arXiv preprint arXiv:2504.04540, 2025.

[40] Zhanwei Zhang, Kaiyuan Liu, Junjie Liu, Wenxiao Wang, Binbin Lin, Liang Xie, Chen
Shen, and Deng Cai. Geocad: Local geometry-controllable cad generation. arXiv preprint
arXiv:2506.10337, 2025.

[41] Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. FlexCAD: Unified
and versatile controllable CAD generation with fine-tuned large language models. In The
Thirteenth International Conference on Learning Representations, 2025.

13

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [Yes]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: [Yes]

14

Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[NA]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [Yes]
Guidelines:

* The answer NA means that the paper does not include experiments.

15

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification:
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [Yes]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [Yes]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

17

0.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [Yes]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: [NA |
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper poses no such risks.

18

https://neurips.cc/public/EthicsGuidelines

12.

13.

14.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [Yes]
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: [Yes]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|

19

paperswithcode.com/datasets

15.

16.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: [Yes]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Overview of Supplementary Material

This supplementary material provides additional details in support of our main paper, CAD-Coder:
Text-to-CAD Generation with Chain-of-Thought and Geometric Reward. The contents are organized
as follows:

* In Section [A] we describe the hardware and software configurations, training durations for
different stages, and the Chamfer Distance (CD) evaluation protocol.

¢ In Section Bl we show that using only Chamfer Distance as reward leads to training failure,
emphasizing the importance of multi-faceted reward design.

¢ In Section[C] we present a detailed breakdown of the CAD generation process, including the
user prompt and CoT prompt, CoT reasoning steps, and the final CadQuery output.

* In Section[D] we provide additional qualitative comparisons between different methods.
* In Section[E] we present several examples to show that our CAD-Coder supports CAD editing.

* In Section[F] we analyze failure cases where our method underperforms.

A Additional Implementation Details

All experiments were executed on a cluster equipped with 8§ NVIDIA A800 (80GB) GPUs. The SFT
stage was trained for 7 hours, while the GRPO stage required 146 hours, both utilizing distributed
training with standard data parallelism techniques, facilitated by DeepSpeed and Ray. For efficient
model inference, we employed vLLM, and used CadQuery (version 2.3.1) for CAD script execution
and validation.

Chamfer Distance (CD) was computed using the same implementation as in Text2CAD [13]], ensuring
a fair and reproducible comparison. The CD calculation relies on the normalization of the generated
3D mesh models, which is critical for consistent metric evaluation. While CAD-Translator [[16] and
CAD-LLaMA [15] address similar tasks, their implementations are not open-sourced, and the details
of their normalization procedures remain unclear. As a result, although their papers report CD scores,
the values differ by an order of magnitude compared to those reported by Text2CAD, making direct
comparison infeasible.

B Extended Ablation Studies

To further analyze the impact of our proposed reward design, we conducted an ablation study by
disabling all auxiliary components and retaining only the Chamfer Distance (CD) as the reward func-
tion during the GRPO training phase. All other settings, including model architecture, optimization
strategy, and data pipeline, remained unchanged.

However, as training progressed, we observed that the model began to generate invalid CadQuery
code after approximately 200 steps. This led to frequent failures during the reward evaluation stage,
as the CD computation relies on successful execution of the generated scripts to produce mesh
outputs. Once invalid syntax or structural inconsistencies occurred, the reward pipeline could no
longer provide feedback, which ultimately caused the reinforcement learning to halt prematurely.

These results highlight the critical role of robust code supervision and reward shaping beyond pure
geometry-based metrics, especially in code-generation scenarios where executability directly impacts
learning stability.

21

C Step-by-Step CoT Reasoning in CAD Generation

To illustrate the step-by-step reasoning performed by our model prior to generating CadQuery scripts,
we present an example corresponding to the first CAD model shown in Fig. 3] The user-provided
prompt specifies precise geometric operations, which our model parses into a structured CoT (Chain-
of-Thought) reasoning sequence. This sequence includes part decomposition, coordinate planning,
sketch construction, and extrusion logic. The CoT reasoning is followed by executable CadQuery
scripts that constructs the final 3D model. This example demonstrates the model’s ability to convert
complex, multi-step textual descriptions into valid, parameterized CAD scripts through interpretable
and systematic reasoning.

User Prompt: "Start by creating a new coordinate system for the first part, setting the
Euler angles to [0.0, 0.0, -90.0] and the translation vector to [0.0, 0.0, 0.0]. Next, draw a
two-dimensional sketch on a new face, forming a loop with four lines: the first line starts
at (0.0, 0.0) and ends at (0.375, 0.0); the second line starts at (0.375, 0.0) and ends at
(0.375, 0.375); the third line starts at (0.375, 0.375) and ends at (0.0, 0.375), and the
fourth line starts at (0.0, 0.375) and ends at (0.0, 0.0). Apply a sketch scale of 0.375 to
this loop. Rotate the scaled sketch using the Euler angles [0.0, 0.0, -90.0] and translate it
using the translation vector [0.0, 0.0, 0.0]. Finally, extrude the sketch 0.375 units in the
direction opposite to the normal to create a solid body with final dimensions of 0.375 units
in length, width, and height.For the second part, create another new coordinate system,
setting the Euler angles to [-90.0, 0.0, -90.0] and the translation vector to [0.375, 0.125,
0.0]. Draw a new two-dimensional sketch on a new face, forming a loop with three lines:
the first line starts at (0.0, 0.0) and ends at (0.25, 0.0); the second line starts at (0.25, 0.0)
and ends at (0.25, 0.25); and the third line starts at (0.25, 0.25) and ends at (0.0, 0.0).
Apply a sketch scale of 0.25 to this loop. Rotate the scaled sketch using the Euler angles
[-90.0, 0.0, -90.0] and translate it using the translation vector [0.375, 0.125, 0.0]. Extrude
the sketch 0.375 units in the direction of the normal and add this extruded shape to the
existing cube. The final dimensions of this rectangular prism are 0.25 units in length, 0.25
units in width, and 0.375 units in height."

CoT Prompt: Please create a CadQuery Python code to generate a model based on
the following description. The reasoning process MUST BE enclosed within <think>
</think> tags. The final CadQuery code MUST BE put in “ ‘python code “‘ with ONLY
the executable code inside the python box, nothing else.The final model is represented
by r. In the <think> section, simulate the thought process of an engineer converting text
descriptions into a CAD model. Follow these steps:
> Stage 1: Description Analysis. Break down the description into different parts
or components. Identify key parameters for each part (coordinate systems, Euler
angles, translation vectors). Understand the spatial relationships and assembly sequence
between parts.

> Stage 2: Coordinate System Planning. Determine the coordinate systems used for
each part. Parse how Euler angle rotations and translation vectors are applied. Ensure
understanding of local-to-global coordinate system transformations.

> Stage 3: Sketch Construction Strategy. Analyze how to create each 2D sketch (loops,
lines, points). Determine scaling factors for each sketch. Plan how to transform sketches
into 3D space.

> Stage 4: Extrusion Operation Planning. Identify extrusion parameters for each part
(direction, distance). Understand how to add extrusions to existing solids (new or
merge). Verify dimensions after extrusion match the description.

> Stage 5: Code Implementation Strategy. Plan the sequence of CadQuery operations.
Determine necessary CadQuery functions and methods. Consider how to organize code
for clarity and readability.

22

> Stage 6: When scaling in CadQuery. Directly scale the size, define a scaling factor
variable, and apply the scaling factor directly to all coordinates and dimensions. Don’t
try to use a non-existent ‘.scale()‘ method on Workplane objects.

After your thinking process, provide clean, working CadQuery Python code to create the

3D model.Think step by step, but only keep a minimum draft for each thinking step, with

50 words at most. description:

Output

CoT Reasoning Steps (Generated by CAD-Coder):

1. **xDescription Analysis**:
- Two parts: first rectangular prism, second triangular
prism
- First part has dimensions 0.375%0.375%0.375, rotated -90
about Z
- Second part is 0.25%0.25%x0.375, rotated -90 about X and Z
, translated to (0.375,0.125,0)
2. **Coordinate System Planningx*x:
- First part uses identity CS, second rotated -90 X/-90 Z
at (0.375,0.125,0)
- Both parts translate to origin initially
3. **Sketch Construction Strategy*x*:
- First part: 4-line rectangle sketch
- Second part: 3-line triangular sketch
- Apply scaling factors (0.375 and 0.25) to coordinates
4. x*Extrusion Operation Planningx*x*:
- First part extruded -0.375Z
- Second part extruded +0.375Z
- Combine using union operation
5. **Code Implementation Strategy**:
- Create base sketches
- Apply rotations and translations
- Extrude and combine

Generated CadQuery Script:

import cadquery as cq

First part

partl = (cq.Workplane ("XY")
.moveTo (0.0, 0.0)
.1lineTo (0.375, 0.0)
.1ineTo(0.375, 0.375)
.1lineTo (0.0, 0.375)
.close()
.extrude (-0.375)
.rotate((0,0,0), (1,0,0), 90)
.translate ((0.0, 0.0, 0.0))

)

Second part

part2 = (cq.Workplane ("XY")
.moveTo (0.0, 0.0)
.1ineTo0 (0.25, 0.0)
.lineTo(0.25, 0.25)
.close ()
.extrude (0.375)
.rotate ((0,0,0), (1,0,0), 90)
.rotate ((0,0,0), (0,0,1), 90)
.translate ((0.375, 0.125, 0.0))

)
Combine parts
r = partl.union(part2)

Figure S1: Generated CAD Model

23

D Additional Qualitative Comparisons Across Methods

Fig. [S2] presents additional qualitative comparisons of CAD models generated by different methods.
For methods that do not produce valid 3D models, placeholders are shown in their respective results.

GT Text2CAD Deepseek Claude-3.7 SFT Ours Ours Ours
V3 sonnet w/o SFT w/o CoT (Full)

»
Y
d
d

¢
&
0 &
‘0

SNrQO0IGCHT Y y»

FE ol AR
Qe N\ TIZB Ty dA~
XY ASENZ ARNNEDY .

&7 44
AR N
©. & 0 ¢
B/ ==+

f

=
¢
0000000 OO ¢

o
4
O 0000,

Figure S2: Additional qualitative comparisons of CAD models generated by different methods.

24

E Performance on CAD Editing

Although our model was not explicitly trained on CAD editing data, it demonstrates promising
capabilities in handling simple CAD editing tasks based on user instructions. This suggests that
the model has acquired a degree of structural understanding of CadQuery code and can generalize
beyond the training objective of generation-from-scratch.

As shown in Fig.[S3] the model successfully performs lightweight operations such as modifying object
dimensions, removing a component, or adjusting translation and rotation parameters in response to
natural language prompts. These preliminary results highlight the model’s potential to be extended
toward interactive or instruction-following CAD editing scenarios.

Systen_prompt =

d ommand ¢ d
from 0.375 to 0.5 to 0.03 from 0.0815 to 0.06. from 0.75 to 1.0.

.moveTo(0.1, 8.1).circle(0.05)

.circle(0.0815)

.close()
-extrude(-0.375)

New Code .extrude(0.75)

New Code:
.moveTo(0.1, 0.1).circle(0.03)

.circle(0.06) # New inner diameter

.extrude(1.0)

“Qoe TT Nl

Figure S3: Examples of simple CadQuery code editing based on instructions.

F Failure Cases

As shown in Figure [S4] our method still struggles with certain challenging cases. As illustrated in
Fig.[S4[a), our method still struggles with complex structures composed of multiple sub-components,
where inaccurate spatial alignment between modules can lead to visible dislocations or offsets.
Moreover, as shown in Fig.[S4{b), the model may misclassify operations such as extrusion and cutting,
resulting in geometries that deviate from the intended design. In addition, Fig.[S4{c) highlights the
challenge posed by very thin structures or internal cavities, where sparse point sampling may induce
reward hacking behavior, revealing limitations in handling overlapping features and tight geometric
tolerances.

GT Ours GT Ours GT Ours

(@ (b) ()

Figure S4: Examples of failure cases.

25

	Introduction
	Related Work
	Large Language Model for Code Generation
	CAD Generation

	Methodology
	CadQuery: CAD Representation as Python Code
	CAD-Coder

	Dataset Construction
	Experiments
	Extended Ablation Studies
	Main Results
	Ablation Study

	Conclusion
	Additional Implementation Details
	Extended Ablation Studies
	Step-by-Step CoT Reasoning in CAD Generation
	Additional Qualitative Comparisons Across Methods
	Performance on CAD Editing
	Failure Cases

