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ABSTRACT

We address the problem of synthesis and generation of faces
from edgemaps, motivated by extreme low bit-rate facial compres-
sion and the need for robust source-channel coding over noisy chan-
nels. Three approaches for image reconstruction are proposed. In the
first, a deep learning-based encoder-decoder creates a latent space
representation of the original image. An Edgemap-to-Latent Mapper
(ELM) network maps the input edgemap to this latent space, with the
final image reconstructed using a pre-trained compressive decoder.
The second approach retrains the compressive decoder to reconstruct
images from the ELM network’s output. The third approach jointly
trains the ELM network and decoder, enabling direct reconstruction
from the edgemap. This end-to-end framework achieves reason-
able reconstruction fidelity. We also examine the impact of additive
channel noise on edgemap transmission under low SNR conditions,
demonstrating that even with significant noise, a DNN-based joint
denoiser and edgemap decoder can reconstruct images. At extremely
low SNRs, where edgemaps are highly corrupted, the network also
exhibits generative capabilities, producing plausible images.

Index Terms— Image compression, generation, residual
network, edgemap, coding with side information

1. INTRODUCTION

Artificial image generation is the process of creating realistic images
using machine learning techniques. This idea gained traction with
the advent of Variational Autoencoders (VAEs) [1] and Generative
Adversarial Networks (GANs) [2]. Since then, numerous models
have been proposed to address various aspects of image synthesis,
including PixelCNN [3], BigGAN [4], and noise conditional score
networks [5]. A major breakthrough occurred with the onset of dif-
fusion models [6] for unsupervised learning, which have also been
effectively applied to image generation tasks [7]. The integration of
transformer architectures [8] into these models has further advanced
the field, culminating in the development of latent diffusion mod-
els [9], where transformer blocks are utilized in the reverse diffusion
process.

Our work draws inspiration from key ideas in speech synthe-
sis, particularly linear prediction-based speech synthesis and coding
[10], diffusion models for image generation, and joint source chan-
nel coding (JSCC) techniques for robust transmission over noisy
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channels. In this paper, we introduce a CNN-based residual net-
work model Compgen, designed to perform image compression-
cum-generation by leveraging contextual information. In particular,
the proposed model takes an image edgemap as input and generates
a corresponding high-fidelity output image.

1.1. Code-Excited Linear Prediction

In [11], a parametric model for speech synthesis is proposed,
wherein the vocal tract is represented as a time-varying linear
filter excited by pulses for voiced speech and noise for unvoiced
speech. Drawing inspiration from this framework, we conceptualize
edgemaps as an analogous excitation source for image synthesis,
driving a deep neural network to generate corresponding images,
thereby replacing the predictive filter from speech synthesis. While
our current approach employs a fixed deep network for image
synthesis, future directions could explore spatially adaptive parame-
terization of the model.

1.2. Latent Diffusion Model

Diffusion models operate by progressively adding noise to data and
training a reverse diffusion model to denoise it, thereby learning the
underlying data distribution. Latent diffusion models extend this
principle to latent images instead of original input images but suf-
fer from the complexity of the U-Net architecture and high sampling
time in the reverse diffusion process.
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Fig. 1: Diffusion Process

The forward diffusion process is mathematically described as a
series of random Gaussian transformations:

q(ze|zi—1) = N(ze; /1 — Bewi—1, Bel); x4 = T41 + 1t

where ¢(.|.) denotes the conditional distribution of the forward diffu-
sion process, x¢—1 is the previous image, x; is the current image and
Bt is a variance hyperparameter. It can be observed that the trans-
formation can be modelled as a noise addition transform where n; is
a noise matrix with distribution N'((v/T — Bt — 1)z¢—1, B:I). Our
model is motivated by this observation, using contextual information
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about the target image to generate it from a noisy input. Specifi-
cally, the edgemap of the target image is corrupted with significant
noise, and the model synthesizes the output image using this noise-
edgemap input.

1.3. Source and Channel Coding
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Fig. 2: Joint Source-Channel Coding With Side Information

Our work additionally draws inspiration from image transmis-
sion over noisy channels, and in particular the problem of combined
source and channel coding. While we show noisy input results in
generative capability at larger noise powers, we also observe that
the same architecture is capable of reconstructing the original im-
age with reasonable fidelity at lower noise powers and hence our
approach could be suitable for low bit rate image compression using
edgemaps [12] that are derived from the source for transmission over
noisy channels [13], [14].

2. APPROACH

2.1. Problem Formulation

We consider the previously described problem in the presence of
additive white Gaussian noise (AWGN), where the input is the
edgemap of our original image. Let x denote our original image.
Our problem can be presented as: a) Considering the edgemap z of
x, b) Corrupting this with noise n, ¢) Inputting this into the Comp-
gen pipeline and producing the reconstructed £. In our work, we
define PSNR as the following:

2
ZZ
PSNR = max 101log, oz
where z; is the intensity of the edgemap z at pixel location i and 2
is the variance of AWGN noise n.

2.2. Compression Model

Images have a lot of correlated information within them and are
hence typically compressed for efficient storage and processing. In
recent years, DNN-based autoencoder networks have been widely
used for data compression [15]. Our model architecture builds upon
the architecture from [16]. Slight adjustments are made to this ar-
chitecture to obtain the image compression module shown in Fig. 3.

Blocks with text of the form [k(x) n(y) s(z)] denote a convo-
lutional layer with kernel size ‘z’, number of output channels ‘y’
and stride ‘s’. The ReLU and Sigmoid are the usual activation func-
tions. The number of residual blocks used is a hyperparameter we
call num_res. Similarly, the number of multi-residual blocks present
in a residual network block is another hyperparameter num_mult.
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Fig. 3: Compression Model Architecture

The compressive encoder-decoder pair is trained to produce a mean-
ingful latent representation of the image (represented as ).

2.3. Edgemap-to-Latent Mapper (ELM)

The Edgemap-to-Latent Mapper considers the noisy input edgemap
and produces the reconstructed latent image. The ELM model is as
shown in Fig. 4).

edgemap. latent image

Fig. 4: ELM Model Architecture

A batch normalization layer is incorporated into the residual
building block to enhance the generative model’s ability to capture
the dataset’s structure and generalize effectively to test data. Ad-
ditionally, fully connected layers, denoted as FC1 and FC2 are in-
cluded to improve the edgemap-to-latent mapping capability of the
model. With the compression and ELM models in place, the overall
compression (cum-generator) model can be assembled.
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Fig. 5: Compgen Pipeline

{AWGN noise

The compressive encoder and decoder serve as the source en-
coder and decoder, respectively, while the ELM model functions as a
denoiser. It processes noisy edgemaps to produce latent space repre-
sentations for the pre-trained decoder, approximating the true output
y with §. The complete pipeline, Compgen, is illustrated in Fig. 5,
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with the relevant notations for the training outline provided in Table
1.

Table 1: Notations

Description Notation
Input image x
Reconstructed image T
Latent image by compressive encoder Y
Latent image by ELM model Y
Distortion measure d(z, %)

Input sketch/edgemap z
AWGN noise matrix n

ELM model function h(.)

Compressive encoder function f()

Compressive decoder function g(.)

3. TRAINING OUTLINE

3.1. Step 1: Compression Model Training

In step 1, the compression encoder and decoder are jointly trained to
obtain a meaningful latent space. Residual blocks with a kernel size
of 3 and stride 1 are used to maintain consistent input-output dimen-
sions for addition at the end. After training, the parameters of the
compression model are frozen and used as pre-trained blocks in sub-
sequent steps. The training process minimizes a distortion measure
between input and reconstructed images, conducted over 50 epochs
with a learning rate of le-3, a batch size of 100, and the ADAM
optimizer. The distortion measure is:
=g(y), d(z,2) =0.5(1 — SSIM(z, £))
where SSIM is the commonly used structural similarity index.
In step 2, the ELM model is trained to map the input sketch to the
latent space constructed in the previous step.

3.2. Approach 1: Relying Solely on ELM Training

In this approach, the ELM model is trained to reconstruct the latent
image similar to the one produced by the pre-trained compressive
encoder from step 1. To do so, it is trained by minimizing the fol-
lowing loss function:

y:f(x), :’Q:h('z"—n)’ d(y7 )

where y is the latent image produced by the compressive en-
coder, ¢ is the latent image produced by the ELM model and MSE is
the mean squared error loss. The output of the ELM model is passed
through the pre-trained compressive decoder from step 1. Training
is done for 40 epochs with a learning rate of 1le-3, batch size of 100
with the ADAM optimizer.

MSE(y, §)

3.3. Approach 2: Retraining the Compressive Decoder

The reconstructed latent space in 3.2 may not be perfect. To address
this, our second approach extends the first by initially freezing the
parameters of the ELM model from step 2. In a subsequent step (say
step 3), the compressive decoder is retrained to improve the recon-
struction of the original image. The output from the ELM model is
then passed through the retrained compressive decoder from step 3
to obtain the final reconstructed image.

3.4. Approach 3: End-to-end Joint Optimization

In this approach, the goal is to directly synthesize the reconstructed
image from the noisy input edgemap through end-to-end training of
the combined decoder (or synthesizer), which integrates the ELM
model and compressive decoder from the generation pipeline. This
single-step process eliminates the need for a distinct delineation be-
tween the ELM model and decoder.

In the first approach, the onus of producing a meaningful latent
image rested solely on the ELM model. In contrast, this variation
passes the latent image produced by the ELM model through the
compressive decoder to produce (generate) the final image.

y:f(:r), g}:h(z—l—n), j:g(?))
Similar to step 1, an SSIM-based distortion measure is used as the
distortion measure. However, the compressive decoder is now up-
dated alongside so basically a joint update of both the ELM model
and the compressive decoder components is done. Training is done
for 40 epochs with a learning rate of le-3, batch size of 100 with the
ADAM optimizer.

4. EXPERIMENTS AND RESULTS

We use the aligned and cropped images of the CelebA [17] dataset
for training. Along with this dataset, the SKSF [18] face sketch
dataset is later used for inference. In step 1 of training, the com-
pression model is trained till convergence and the final compression
model was able to achieve a mean SSIM score of about 93-94%.
This model serves as the pre-trained compressive model in the all
approaches.

4.1. Results Using Approach 1

The ELM model is trained to reconstruct the latent image as ex-
plained in the training outline. The results are shown in Fig. 6 and in
Fig. 8 with the following order (left to right): original image, noisy
edgemap input, latent image given by compressive encoder, latent
image reconstructed by ELM mapper, final reconstructed image.
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Fig. 6: Results for First Approach at PSNRs = 50, 25, 10, 0
dB

4.2. Results Using Approach 2

The compressive decoder is retrained to yield a better reconstruction
of the original image as discussed in the training outline. The results
are shown in Fig. 7a and in Fig. 8 with the following order (left to
right): Input image, noisy edgemap, reconstructed final image.

Authorized licensed use limited to: Stanford University Libraries. Downloaded on June 23,2025 at 13:20:41 UTC from IEEE Xplore. Restrictions apply.



4.3. Results Using Approach 3

In this step, both the ELM model and the compressive decoder are
jointly updated to reconstruct the final image as explained in the
training outline. The results at different PSNRs are shown in Fig.
7b and in Fig. 8 with the following order (left to right): Input image,
noisy edgemap, reconstructed final image.
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(a) Results for the Second
Approach

(b) Results for the Third
Approach

Fig. 7: Comparison of Results for the Second and Third Ap-
proaches at PSNRs = 50, 25, 10, 0, -2, -5 dB

It is to be noted that a power normalized edgemap-noise mixture
is used in all the cases. Consider znisy = 2 4 1 to be the noisy input
edgemap and o2 to be the noise power. At high PSNRs, z would
dominate over n and hence, the scale of the values of zy0isy would
be [0, 1] since z operates in that range. However, at low PSNRs, to

maintain the same power level, we therefore modify znoisy S Znoisy =
z+n
op "

4.4. On Generative Capabilities

We clearly see that the models described in approach 2 and 3 demon-
strate superior performance and are also able to operate convincingly
at negative PSNRs. Consequently, we select approach 3 as our base-
line model for conditional generation, setting the PSNR to -5 dB
for all subsequent results. We also test the model on different types

%
SNR (48)

Fig. 8: Comparative Performance of all Approaches

of hand-drawn sketches instead of our original edgemaps. Further
experiments, including image generation from hand-drawn sketches
and unconditional generation, are also conducted.
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(a) Face Generation From
Edgemaps

(b) Face Generation From Different
Sketch Styles

Fig. 9: Comparative Results of Face Generation Approaches

4.5. Unconditional Generation Results

To evaluate the generative capabilities of our model at low SNR, we
tested it with pure noise inputs, excluding any edgemap information.
The results, shown in 10, while less perceptually satisfying com-
pared to edgemap-aided outputs, demonstrate the model’s ability to
generate novel faces from pure noise realizations.

Fig. 10: Unconditional Generation

5. CONCLUSION

In this work, we present an edgemap-aided image compression and
generation model, drawing inspiration from classical information
theory and latent diffusion models. Our experiments demonstrate
both the reconstructive and generative capabilities of the model.
Notably, despite being trained exclusively on machine-generated
edgemaps, the model performs effectively on hand-drawn sketches
of varying styles, showcasing its versatility.

A key objective of this study was to evaluate the model’s abil-
ity to accurately reconstruct original images from their correspond-
ing edgemaps. The highest average SSIM score achieved was ap-
proximately 70%, suggesting scope for further improvement. Fu-
ture work will focus on enhancing reconstruction performance by
incorporating additional features such as color and effectively ut-
lizing the residual image. Moreover, we plan to develop a deep
joint source-channel coding (JSCC) model that processes edgemaps
through a joint source-channel encoder, introduces noise, and subse-
quently utilizes the pre-trained decoder described in this paper.
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