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Abstract

Many control systems rely on a pipeline of machine learning models and hand-
coded rules to make decisions. However, due to changes in the operating environ-
ment, these rules require constant tuning to maintain optimal system performance.
Reinforcement learning (RL) can automate the online optimization of rules based
on incoming data. However, RL requires extensive training data and exploration,
which limits its application to new rules or those with sparse data. Here, we propose
a transfer learning approach called Learning from Behavior Prior (LBP) to enable
fast, sample-efficient RL optimization by transferring knowledge from an expert
controller. We demonstrate this approach by optimizing the rule thresholds in
a simulated control pipeline across differing operating conditions. Our method
converges 5x faster than vanilla RL, with greater robustness to distribution shift
between the expert and target environments. LBP reduces negative impacts during
live training, enabling automated optimization even for new controllers.

1 Introduction and Literature Review

A control system that integrates Machine Learning (ML) model scores and static rules can be
conceptualized as a decision-making process that operates within a defined operational framework.
This system leverages the predictive ML models to determine the outcomes and uses static rules
to ensure decisions adhere to pre-defined guidelines or constraints. At its core, the system ingests
information about the current state of the environment, which is processed by an ML model to
yield predictive scores indicating the likelihood of future states or events. Concurrently, a set
of static rules, embodying domain expertise and regulatory compliance, delineates the bounds of
permissible actions, Figure 1. This type of control system is widely used in advertise ranking,
content recommendation, bidding, stock trading and in linear dynamical systems Zhang et al. [2016]
Yang et al. [2016] Ye et al. [2020] Lale et al. [2020] Jambor et al. [2012]. Traditionally, it is
labor insensitive to manually change the bounds of actions defined by the static rules to adapt the
fast-changing environment. Reinforcement Learning (RL) has emerged as a powerful framework
for solving complex control problems where traditional methods struggle due to uncertainty, non-
linearity, or the curse of dimensionality. With RL, one can automate this entire process of dynamic
rule optimization by learning the action from feedback and environment through maximizing rewards.
However, one challenge with RL is that it requires a large amount of training data as it needs to solve
exploration-exploitation problem as part of its policy learning process. Thus, it is not possible to use
RL in the cold start scenarios or domains of data sparsity. Further, for many real world problems
such as health care or autonomous driving, RL agent training with risky action during its early stage
of random exploration can leads to disastrous outcomes.

Transfer learning (TL) is one approach to solve the cold start and sparse data problems for RL based
dynamic rule optimization. TL in RL Zhuangdi et al. [2020] utilizes external expertise from expert
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Figure 1: Schematic of the Optimal Control system consisting of ML models and static rules (Top),
and reinforcement learning agent assisted dynamic rule for Control system optimization (Bottom.)

domains to benefit the learning process of another target task in a different target domain. Successful
application of TL from an expert domain to a target domain can reduce the sample complexity in
the target by encouraging it to only try safe actions which are most likely optimal and have no
negative impact. However, TL in RL is harder as knowledge transfer needs to be done at the level
of Markov decision process. Further, the algorithm needs to consider sub-optimality of the expert
demonstration due to the data distribution shift between the expert and the target domain. Another
challenge while applying TL in RL is that actions that are feasible in the expert domain may not
be possible in the target domain and vice versa. To solve these challenges, many approaches have
been proposed, that can be broadly categorized into following groups (a) representation learning, (b)
reward shaping (RS) Ng et al. [1999] Wiewiora et al. [2003], (c) policy transfer Parisotto et al. [2016]
and (d) learning from demonstration (LFD) for policy gradient π(a|s) and Q-learning algorithms. An
example of LFD in Q-Learning is Todd et al. [2017] proposed Deep Q-learning from Demonstration
(DQfD). Here, it maintains two separate reply buffers, where one contains external demonstration
and other agents’ policy generated data from its own environment and during training examples are
sampled from both buffers. Other examples of LFD in Q-Learning are Brys et al. [2015] Nair et al.
[2018]. A representative work on LFD in policy gradient is Ho and Ermo [2016] paper on Generative
Adversarial Imitation Learning (GAIL) and Kang et al. [2018] algorithm Policy Optimization from
Demonstrations. Here, even though GAIL is similar to imitation learning, it can also be viewed as
LFD as it tries to minimize the distribution divergence between the agent’s policy and experts policy -
provided via demonstration data - in its loss function.

In this work, we propose a new TL approach for RL training, called Learning from Behavior Priors
(LBP) for automated dynamic rule optimization. First, a rule or a set of rules is chosen as an expert,
whose policy data is used to create an expert demonstration in the form of expert variational auto-
encoder prior. These expert VAE are later used for knowledge transfer during the RL training phase
of another target rule. Thus, using LBP, we can solve the following problems: 1) cold start for rules
with low volume, 2) reduce sample complexity, and 3) slow learning. We also compared our proposed
method with other TL techniques in RL, like RS, LFD and representation learning, and show that our
method converges faster in comparison to others and better at handling sub-optimal demonstration.

2 Methods

RL Agent Design for Adaptive Online Rule Optimization: A schematic of our RL agent for
online rule optimization is shown in Figure 1. Here, the agent’s input (state, st) is constructed using
hourly incoming events to the rule. Specifically, st contains aggregated statistics of hourly incoming
events such as total volume, event volume triggered using current rule expression and mean and
median values of (i) numeric features of the events and (ii) the predictive score of events. Hence, the
input to the agent is partially observed as it does not look at each event individually but at macro level
using hourly aggregated statistics. Using (st), the agent first proposes an action (ai) in a normalized
space of [−1, 1], which is then transformed within user defined range [amin, amax]. Here, the size of
|ai| is equal to the number of tunable rule conditions. For example, in Figure 1, we have two such
segments and actions (a1, a2), which are multiplied with the original threshold values of the rule
to create a new condition Pf > x ∗ a1 & v > y ∗ a2, Figure 1. This new dynamic rule makes the
system decision on the incoming event. Later, the agent receives feedback from the environment,
which is converted into a scalar reward r using equation 1. Along with r agent also receives st+1
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computed using updated rule.

r =
1

|FPRobserved − FPRdesired|+ ϵ
(1)

In equation 1, FPR is false positive rate, expressed as a proportion of sub-optimum actions. Here,
FPRdesired that user wants to achieve and FPRobserved is computed using the feedback from the
environment. ϵ is a small positive number added for numerical stability.

Expert Agent training using BCQ We use offline RL learning algorithm: Batch Constraint deep
Q-learning (BCQ) Fujimoto and amd Doina Precup [2019] to train expert agent using historic dataset.
We did not use online RL algorithms because they can take random exploratory actions that can have
a negative impact under extreme condition. BCQ is an actor-critic based agent that uses a conditional
variational auto-encoder (CVAE) to make sure the agent’s state-action distribution matches with a
provided offline training dataset (see supplementary material for pseudocode 2).

Transfer Learning (TL): Learning behavior prior (LBP) In our proposed LBR TL method, we
do the knowledge sharing from the expert domain (rule) to the target domain (rule) through a set of
expert CVAEs. First, RL agents using BCQ algorithm is trained in one or multiple expert domain.
After training, we get CVAE (De) from expert that generates a distribution of optimal action for
input state, P (ai|si). Later, we train the RL agent in the target domain using a modified version of
BCQ 2 3, expert VAE [De] and some historic dataset (B) in the target domain.

Q(s, a)← (1− α)Q(s, a) + α[r + γ max
a′s.t.(s′ ,a′ )∈(B∪[De(a′ |s′ )]ni=1)

Q(s
′
, a

′
)] (2)

ϕ← argmax
ϕ

∑
(s,a);s∈B,a∈maxQ(s,a)(B∪[De(a|s)]ni=1)

Q[s, a+ ξϕ(s, a,Φ)] (3)

The difference between original BCQ and our proposed algorithm is the presence of De inside max
in critic (Q(s, a)) and max operator itself in the actor (ϕ(a|s)) (highlighted in bold). This helps 2
and 3 to handle the sub-optimal demonstration from expert as during such cases agent will ignore
expert’s recommendation and will use information from the dataset B. For example, Q(s, a) training
uses information from both De and B to find a

′
that has the highest Q to solve the bellman equation,

2. Similarly, for every s ∈ B, an actor ϕ looks at all the possible actions for s that is in B and
proposed by De and takes the one action that has maximum Q as its policy ϕ(a|s). In 3, ξϕ(s, a,Φ)
is the perturbation model so as to optimally perturb a within allowed range [−Φ,Φ] near a. Finally,
the target agent also maintains its own VAE that is trained on the fly using B and De,and thus learns
to take the best action using multiple sources. This is done by training this VAE using target agent’s
reply buffer, which is filled during training with (s, a) with s sampled from B and a computed using
equation 3. A pseudocode of our algorithm is in supplementary material at 1.

3 Results

For our experiment we use the following rule expressions as expert and target, where yi is event
feature, xi is the ML predictive score and pi is manually optimized static threshold.

Expert Rule : (x2 > p1 ∗ ai) & (y2 > p2)

Target Rule : (x2 > p3 ∗ ai) & (y2 ≤ p2)

The above rules are designed such that expert and target rule have significant data distribution shift
introduced by the condition clause (y2 > p2) in the expert and (y2 ≤ p2) in the target rule. The
expert and target conditions are mutually exclusive. The rule condition modified by the RL agent rule
segment is highlighted in bold, where RL action is ai and x2 is a continuous predictive score ranging
between 0-1. Ideally, we can choose any rule condition for RL optimization whose threshold value is
highly sensitive to the rule performance.

During training, an expert agent is trained with FPRdesired = 0.85 and for target FPRdesired =
0.75 is used. Table 1 shows the performance of target agent using vanilla BCQ agent without TL,
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Table 1: Mean FPR achieved by target rule over the course of training steps (1 episode = 1000 time
steps). Here, desired FPR is 0.75, and FPR of static rule without RL agent is 0.915

TL Method 1 episode 5 episode 25 episode

RL (BCQ) but without TL 0.601 0.613 0.865
Reward Shaping 0.604 0.803 0.624
Representation Learning 0.611 0.913 0.971
Learning From Demonstration 0.868 0.788 0.766
Learning Behavior Prior 0.757 0.754 0.753

LBR and comparison of LBR w.r.t to other TL methods, including representation learning, reward
shaping (RS) and learning from demonstration (LFD). Details of these methods are in supplementary
materials in baseline TL models, Algorithm 2 and Figure 3. We can observe all algorithms move
closer to its desired FPR of 0.75 as the training time increase. However, their overall performance
variation can be explained by their internal learning mechanism. For example, (a) BCQ without TL
and (b) BCQ with Reward Shaping, random offline samples [(si, ai, ri, si+1)] are provided as the
initial reply buffer data for training, which may not contain any optimal actions. Since BCQ is an
offline RL algorithm without exploration, its performance dependents highly upon the quality of the
reply buffer data. This can cause lower performance if the buffer is not sufficiently large or mostly
consists of sub-optimal actions. Similarly, RS tells which (si, ai) pairs might have high reward, but
it won’t be helpful if the initial reply buffer data only contains suboptimal state-action pairs. For
representation learning, features learned in the expert domain can become too specific to its domain
and do not generalize well in the target domain, especially when there is a significant data distribution
mismatch between expert and target. Only LFD and LBP are able to reach the desired performance.
However, LBP converged faster to the desired performance in a single episode, whereas LFD took
25 episodes. We demonstrated this difference through the Q-value of state-action distribution over
training steps, Figure 2. LBP agent policy converges when its Q-value becomes constant and does
not change over time. LFD overestimate Q-value during initial training steps, which also resulted in
its high FPR rate in single training episode. This is because of that expert’s knowledge for LFD is
provided via a reply buffer (si, ai, ri, si+1) that also contains expert’s reward for every state-action.
In the target domain, the agent may not receive the same reward. This data distribution mismatch
between expert and target domain leads to inaccurate estimation of Q-value during the initial training
steps, resulting in longer training time to correct sub-optimality introduced by incorrect reward from
the expert. On the other hand, LBP provides expert knowledge through a state-action distribution
and lets the target domain access the associated reward for those (s, a) pair in its environment. Thus,
LBR does not inherit such estimation bias from the expert that leads to faster convergence. For
additional experiment when expert and target rules are similar, see supplementary section additional
experiments. Here also, LBP converges faster to the desired FPR.

Figure 2: Q-Value of LFD and LBP as a function of training time (1 episode = 1000 step) in target
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4 Conclusions

We propose a transfer learning model called Learning Behavior Prior (LBP) for fast and sample
efficient reinforcement learning automated optimization of rules in an optimal control system. We
also show that our proposed method LBR shows faster convergence to the optimal policy and desired
performance in comparison to other TL methods when distribution mismatch exists between expert
and target domains. Further, our proposed method is generic and can be applied to wide range of RL
problems such as in robotics, healthcare and autonomous driving.
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Supplementary Material

Algorithm 1: RL Agent- BCQ with Expert VAE prior (Learning Behavior Prior).
Input:
Historic Dataset in the Target Domain: B days, target rule expression: RT , performance metric:
M , time-interval between consecutive steps in RL environment: h hours, total time-step in
envt: T = 24B

h , Expert VAE model: [De]ni=1, min-batch size: N , max perturbation: ϕ
Target Environment: envt
Create envt consisting of RT and B sorted by time
RL agent initialization: BCQt

Q-networks : Qθ1 , Qθ2
Actor (perturbation network): ξϕ
VAE: Gw = [Ewi

, Dwi
]

Train BCQt:
Create empty buffer B

′
and add N examples using envt and [De]ni=1

for episode e = 0, . . . , E do
s0 = envt.reset()
for timestep t = 0, . . . , T do

Sample mini-batch of N transitions (s, a, s
′
, r) from B′

/* train target VAE: Gw */
µ, σ = Ewi

(s, a); â = Dwi
(s, z); z ∼ N (µ, σ)

Sample n actions : ai ∼ Gw(s
′
) ∪ [De(s

′
)]
n

i=1

Perturb each actions : ai = ai + ξϕ(s
′
, a, ϕ))

/* Calculate target y: */
y = r + γmaxai [λminj=1,2 Qθj (s

′
, ai) + (1− λ)maxj=1,2 Qθj (s

′
, ai)]

θ ← argminθ
∑

(y −Qθ(s, a))
2

ϕ← argmaxϕ
∑

Qθ(s, a+ ξϕ(s, a, ϕ)), a ∼ maxQθ(s,a)[Gw(s
′
) ∪ [De(s

′
)]
n

i=1]

Update Q network: θ
′

i ← τθ + (1− τ)θ
′

i

Update Actor: ϕ
′

i ← τϕ+ (1− τ)ϕ
′

i;

/* Sample next timestep from envt and add to B
′

*/
a = BCQt.sample−action(s0)
snext, r = envt.step(a)

B
′
.add(s0, a, snext, t)

s0 = snext

5 Baseline TL Methods

A schematic of different TL approaches in RL is shown in Figure 3, which are reward shaping
(RS), representation learning, learning from demonstration (LFD) and our proposed method learning
behavior prior (LBP). Implementation details for LBP is in Algorithm 1 and in appendix Algorithm
2 for others TL methods. From 3 and pseudocode, we can observe that different TL method uses
different approach to transfer knowledge from expert to the target domain. LFD simply initializes
the buffer of the target agent at the beginning of training with expert data that consists of tuples
of (si, ai, ri, si+1) generated from expert policy. In the case of representation learning, expert RL
agents actor and critic’s network weight (except for the last layer) is used to initialize the target agents
actor and critic’s network. Finally, in RS, expert’s critic network Qe(s, a) is used to construct an
auxiliary function F as shown in 4 to modify the reward received by the target agent in the target
domain 5. However, F is difficult to compute because during every interaction between RL agent and
environment we get tuple like (si, ai, ri, si+1). Thus, we don’t have the ai+1 for every si+1 until the
end of the episode, which can be very long. In our work, for fast calculation of F , we thus make a
possible prediction of ai+1 for si+1 using target agent as shown in the appendix in Algorithm 2.

F (Si, Si+1, ai, ai+1) = γϕ(Si+1, ai+1)− ϕ(Si, ai) (4)
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R‘(Si, Si+1, ai) = r(Si, Si+1, ai) + F (Si, Si+1, ai) (5)

Figure 3: Schematic of TL approaches for knowledge transfer between RL agents from an expert
domain (expert agent) to target domain (target agent.)

6 Additional Experiment

We show below results for another experiment on different type of rule condition. The expression of
expert and target rule used in this experiment is shown below, where we can observe that expert and
target rule are similar. In fact, a subset of input transaction fired by expert rule will also satisfy target
rule.

Expert Rule : (x1 ∗ v1 > m1 ∗ actioni) || (x2 ∗ v1 > m2) || (v2 > m3))

Target Rule : (x1 ∗ v1 > m4 ∗ actioni) & (v3 > m5) & (v4 > m6)

The results of this experiment is shown in Table 2. Here, again we observe that LBP converges faster
to the desired performance. Representation Learning also converged closer to the desired performance
within 1 episode. This has happened here because both expert and target rules are similar, and thus
experts features are easily transferable in the target domain.
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Algorithm 2: Baseline RL agent with/without TL
Input:
Historic Dataset: B days, Rule expression: RT , performance metric: M , time-interval between
consecutive steps in RL environment: h hours, total time-step in envt: T = 24B

h , min-batch
size: N , max perturbation: ϕ

Target Environment: envt
Create target environment envt consisting of RT and B sorted by time
RL agent initialization: BCQ
Q-networks : Qθ1 , Qθ2
Actor (perturbation network): ξϕ
VAE: Gw = [Ewi , Dwi ]
if Representation Learning == True then

Qθ1 , Qθ2 ←Qe
θ

ξϕ←ξeϕ

if Learning from Demonstration == True then
Buffer B

′ ← Expert demonstration

else
Initialize Buffer B

′ ← Random Samples from B
BCQ Training:
for episode e = 0, . . . , E do

s0 = envt.reset()
for timestep t = 0, . . . , T do

Sample mini-batch of N transitions (s, a, r, s
′) from B′

/* train VAE: Gw */
µ, σ = Ewi

(s, a); â = Dwi
(s, z); z ∼ N (µ, σ)

Sample n actions : ai ∼ Gw(s
′
)

Perturb each actions : ai = ai + ξϕ(s
′
, a, ϕ))

/* Calculate target y: */
y = r + γmaxai

[λminj=1,2 Qθj (s
′
, ai) + (1− λ)maxj=1,2 Qθj (s

′
, ai)]

θ ← argminθ
∑

(y −Qθ(s, a))
2

ϕ← argmaxϕ
∑

Qθ(s, a+ ξϕ(s, a, ϕ)), a ∼ Gw(s)

Update Q network: θ
′

i ← τθ + (1− τ)θ
′

i

Update Actor: ϕ
′

i ← τϕ+ (1− τ)ϕ
′

i;

/* Sample next timestep from envt and add to B
′

*/
a = BCQ.sample−action(s0)
snext, r = envt.step(a)
if Reward Shaping == True then

anext = BCQ.sample−action(snext)
r=r+F(s,a,snext, anext)

B
′
.add(s0, a, snext, r)

s0 = snext

Table 2: Mean FPR achieved by target rule over the course of training steps (1 episode = 1000 time
steps). Here, desired FPR is 0.30, and FPR of static rule without RL agent is 0.477

TL Method 1 episode 5 episode 25 episode

RL (BCQ) but without TL 0.729 0.730 0.409
Reward Shaping 0.644 0.362 0.298
Representation Learning 0.294 0.234 0.232
Learning From Demonstration 0.398 0.234 0.227
Learning Behavior Prior 0.235 0.235 0.235
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