
Quadproj: a Python package for projecting onto
quadratic hypersurfaces

Anonymous Author(s)
Affiliation
Address
email

Abstract

Quadratic hypersurfaces are a natural generalization of affine subspaces, and1

projections are elementary blocks of algorithms in optimization and machine2

learning. It is therefore intriguing that no proper studies and tools have been3

developed to tackle this nonconvex optimization problem. The quadproj package4

is a user-friendly and documented software that is dedicated to project a point onto5

a non-cylindrical central quadratic hypersurface.6

1 Introduction7

Projection is one of the building blocks in many optimization softwares and machine learning8

algorithms [7, §2.9]. Projection applications are multiple and include projected (gradient) methods9

[9, 19], alternating projections [12, 11], splitting methods [13], and other proximal methods [18].10

In this work, we focus on the orthogonal projection onto a quadratic surface. The motivation is11

threefold. First, quadratic (hyper)surfaces are a natural generalization of affine subspaces. Because12

the projection onto an affine subspace is easy, it is tempting to trade accurate representation of the13

subspace (i.e., by approximating the quadratic hypersurface as a hyperplane) so as to benefit from an14

easiest projection, see [17] for an example of this kind. Being able to easily project onto a quadratic15

hypersurface, or quadric, would remove the need of this trade-off. Second, the projection onto a16

quadratic hypersurface is a direct requirement of some applications: either in 2D and 3D spaces17

(mostly in image processing and computer-aided design) [14, 24, 10], or in larger dimensional spaces18

such as the nonconvex economic dispatch [22], the security of the gas network [20], and local learning19

methods [6]. Finally, being able to project onto a quadratic hypersurface can be seen as the first step20

to project onto the intersection of quadratic hypersurfaces. And, it is a classical result of algebraic21

geometry that any projective variety is isomorphic to an intersection of quadratic hypersurfaces [8,22

Exercise 2.9].23

We implement the method proposed in [22] and package it into a Python library. This method consists24

in solving the nonlinear system of equations associated to the KKT conditions of the nonlinear25

optimization problem used to define the projection. To alleviate the complexity increase with the size26

of the problem (because the number of critical points grows linearly with the size of the problem), the27

authors of [22] show that one of the global minima, that is, one of the projections, either corresponds28

to the unique root of a nonlinear univariate function on a known interval, or belongs to a finite set of29

points to which a closed-form is available. The root of the univariate solution is readily obtained via30

Newton’s method. Hence, the bottleneck of this method is the eigendecomposition of the matrix that31

is used to define the quadric.32

A few other studies also discuss the projection onto quadrics. For the 2D or 3D cases, some methods33

are discussed in [15, 14, 10], but they do not present the extension to the n-dimensional case. The34

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



n-dimensional case is also analyzed in [21], but their method is an iterative scheme that may converge35

slowly and sometimes fails to provide the exact projection.36

The main goal of the present study is to democratize the exact method from [22], and thereby to save37

any potential user of a quadratic projection from implementing it (or from falling back to approximate38

the quadratic hypersurface by a hyperplane). Hence, emphasis is placed on i) the ease of installation39

and ii) the user-friendliness of the package.40

The package is available in the Python Package Index (PyPi) [3] and on conda [2]. The source code41

is open-sourced on GitLab [4] and the documentation is available in [1].42

2 Problem formulation43

In this section, we first shortly present the projection problem. Then, we define the feasible set onto44

which the projection is performed (i.e., a non-cylindrical central quadric).45

2.1 The projection problem46

The projection problem consists in mapping a point x0 onto a subset C of some Hilbert space H ,47

while minimizing the distance ‖ · ‖H that is induced by the inner product 〈·, ·〉H :48

PrC (x) = arg min
x∈C

‖x− x0‖H .

For nonempty closed sets C the projection is nonempty [22, Prop. 2.1]. It is a singleton if C is also49

convex. For a nonconvex closed set C, the solution may be a singleton (e.g., PrC
(
x0
)

with x0 ∈ C),50

a larger finite set (e.g., the projection of any point that lies at mid distance between two hyperplanes51

onto the set defined by the union of these two hyperplanes), or an infinite set (e.g., the projection of52

the center of a sphere onto the sphere itself).53

In the case where C is a hyperplane, there exists a closed-form solution. If, for some vector b ∈ H ,54

we have55

C =
{
x ∈ H

∣∣〈b,x〉H + c = 0
}
,

then the projection is the following singleton:56

PrC
(
x0
)

=
{
x0 − 〈b,x

0〉H + c

‖b‖H
b
}
.

In this paper, we consider the canonical n-dimensional Hilbert space H = Rn equipped with the57

canonical inner product (〈u,v〉H = uᵀv) and its induced norm (‖u‖H = ‖u‖2 =
√
uᵀu).58

In this settings, we present a toolbox for computing the projection onto a non-cylindrical central59

quadric.60

2.2 Non-cylindrical central quadrics61

A quadric Q is the generalization of conic sections in spaces of dimension larger than two. It is a62

quadratic hypersurface of Rn (of dimension n− 1) that can be characterized as63

Q =
{
x ∈ Rn

∣∣Ψ(x) := xᵀAx+ bᵀx+ c = 0
}
, (1)

with A ∈ Rn×n a symmetric matrix, b ∈ Rn, c ∈ R, and Ψ(x) : Rn → R a nonzero quadratic64

function.65

We can also represent the quadric with the extended coordinate vector x∗ ∈ Rn+1 by inserting 1 in66

the first row of the coordinate x. Using the extended (symmetric) matrix67

A∗ :=

(
c bᵀ/2
b/2 A

)
, (2)

2



the quadric is equally defined as68

Q =
{
x =

x1...
xn

 ∈ Rn
∣∣∣ (1 x1 . . . xn) A∗


1
x1
...
xn

 = 0
}
.

Let r be the rank ofA (denoted as rk(A)) and p be the number of positive eigenvalues ofA. Following69

the classification of [16, Theorem 3.1.1], we distinguish three types of real quadrics.70

• Type 1, conical quadrics: 0 ≤ p ≤ r ≤ n, p ≥ r − p, rk(A∗) = rk(A|b2 ) = r.71

• Type 2, central quadrics: 0 ≤ p ≤ r ≤ n, rk(A∗) > rk(A|b2 ) = r.72

• Type 3, parabolic quadrics: 0 ≤ p ≤ r < n, rk(A|b2 ) > r.73

We also call cylindrical quadrics the central and conical quadrics with r < n and the parabolic74

quadrics with r < n− 1.75

In this paper, we focus on nonempty central and non-cylindrical quadrics, that is, we consider76

Eq. (1) withA nonsingular and c 6= bᵀA−1b
4 . Indeed, whenA is nonsingular (i.e., when r = n), one77

can show that the condition c 6= bᵀA−1b
4 is equivalent to rk(A∗) > rk(A|b2 ), see [23, § 2.5] for more78

details.79

Note that central quadrics are characterized by the existence of a center d = −A−1b
2 , which80

corresponds to the center of symmetry of the quadric.81

In 2D, a non-cylindrical central quadric can be a circle, an ellipse, or a hyperbola. In 3D, it can be82

a sphere, an ellipsoid, a one-sheet hyperboloid, or a two-sheet hyperboloid. In higher dimensional83

spaces, we have hyperspheres, (hyper)ellipsoids, and hyperboloids.84

2.3 The projection as an optimization problem85

Let x̃0 ∈ Rn be the point to be projected, andQ be a non-cylindrical central quadric with parameters86

A, b, and c. The optimization problem at hand reads87

min
x̃∈Rn

‖x̃− x̃0‖2
subject to x̃ᵀAx̃+ bᵀx̃+ c = 0.

(3)

Using an appropriate coordinate transformation, we can simplify Eq. (3). Let V DV ᵀ = A be an88

eigendecomposition ofA, with V ∈ Rn×n an orthogonal matrix whose columns are eigenvectors of89

A andD = diag(λ) the diagonal matrix whose entries are the associated eigenvalues ofA (denoted90

as λ and sorted in descending order), and let γ = c+ bᵀd+ dᵀAd = c− bᵀA−1b
4 .91

We can guarantee that γ > 0 by flipping, if needed, the sign of A, b, and c. Indeed, x ∈ Q ⇔92

xᵀAx + bᵀx + c = 0 ⇔ xᵀ(−A)x + (−b)ᵀx + (−c) = 0, but if γ = c − −bᵀA−1b

4 < 0, then93

(−c)− (−bᵀ)(−A−1)(−b)
4 = −γ > 0.94

If we define the linear transformation95

T : Rn → Rn : x̃ 7→ T (x̃) = V ᵀ (x̃− d)√
γ

, (4)

then Eq. (3) can be rewritten as96

min
x∈Rn

‖x− x0‖22

subject to
n∑
i=1

λix
2
i − 1 = 0,

(5)

with x0 = T (x̃0). Note that
∑n
i=1 λix

2
i = xᵀDx, and that in this new coordinate system the97

quadric is centered at the origin and aligned with the axes.98

3



3 Method99

There exists at least one global solution of Eq. (5) because the objective function is a real-valued,100

continuous and coercive function defined on a nonempty closed set. Let us characterize one of these101

solutions.102

The Lagrangian function of Eq. (5), with Lagrange multiplier µ and with D = diag(λ) ∈ Rn×n,103

reads104

L(x, µ) = (x− x0)
ᵀ
(x− x0) + µ(xᵀDx− 1). (6)

Because the center does not belong to the quadric, the linear independence constraint qualification105

(LICQ) criterion is satisfied; using the KKT conditions, we have that any solution of Eq. (5) must be106

a solution of the following system of nonlinear equations [5, Chapter 4]:107

∇L(x, µ) =

(
2(x− x0) + 2µDx

xᵀDx

)
= 0. (7)

For µ /∈ π(A) :=
{
− 1
λ | λ is an eigenvalue ofA

}
, we write the n first equations of Eq. (7) as108

x(µ) = (I + µD)−1x0. (8)

Injecting this expression in the last equation of Eq. (7), we obtain a univariate and extended-real109

valued function110

f : R→ R : µ 7→ f(µ) = x(µ)
ᵀ
Dx(µ)− 1

=

n∑
i=1,x0

i 6=0

λi

(
x0i

1 + µλi

)2

− 1. (9)

And any root of f corresponds to a KKT point.111

In [22, Proposition 2.20], the authors show that there is an optimal solution of Eq. (5) in the set112

{x(µ∗)}⋃Xd where113

• x(µ) is defined by Eq. (8), µ∗ is the unique root of f on a given open interval I;114

• Xd is a finite set of less than n elements.115

The set Xd is nonempty only if x̃0 is located on at least one principal axis of the quadric (or116

equivalently, if at least one entry of x0 is 0), we refer to such cases as degenerate cases (examples of117

which are depicted in Fig. 4). The details and the explicit formulation of I andXd are given in [22,118

§ 2.5].119

Our strategy to solve Eq. (5) is to compute all elements ofXd and the root of f on I, and to choose120

among these points the one that is the closest to x0. We can then return the optimal solution of Eq. (3)121

by using the inverse transformation122

T−1 : Rn → Rn : x 7→ T−1(x) =
√
γ V x+ d. (10)

We denote the (unique) returned solution as PrQ (x), which is one of the optimal solutions of Eq. (5).123

The root of f is effectively obtained with Newton’s method, which benefits from a superlinear124

convergence. Moreover, the number of iterations—which amounts to evaluating f and f ′ for a cost125

O(n)—is typically low (no more than 20) and is independent from n. The computation of the finite126

setXd also costs O(n). These computations are negligible with respect to the eigendecomposition,127

which is the bottleneck of the method. In particular, for 100 problems of size n = 500, we obtain a128

mean execution time of 0.065 s for the root-finding algorithm and a mean execution time of 0.66 s for129

the eigendecomposition (this experiment is available in test_newton.py in [4]).130

Another method for solving Eq. (3) (while trying to avoid the computation of the eigendecomposition131

of A) is to compute the gradient of the Lagrangian of Eq. (3) and to use a dedicated solver of132

systems of nonlinear equations. In this paper, we use the method optimize.fsolve from the python133

package scipy. In Fig. 1, we observe that for dimensions larger than 100, quadproj is faster than134

fsolve; each data point in Fig. 1 is the mean of 10 randomly generated instances, and the code135

of this experiment is available in test_execution_time.py in [4]. Besides, it is not guaranteed136

4



0 200 400 600 800
Quadric size n

10−3

10−2

10−1

100
E

xe
cu

ti
on

ti
m

e
[s

]

quadproj time to build the quadric

quadproj time to project

quadproj total time

fsolve total time

Figure 1: Execution time of the methods.

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.4
0.2

0.00.20.40.60.81.0

0.6
0.4
0.2
0.0
0.2
0.4
0.6

d

x0

P (x0)

Figure 2: Output of listing 8.

that fsolve returns the correct root (i.e., it may converge to a critical point of Eq. (3) that is not137

the global minimizer) nor that it will converge at all. Finally, fsolve cannot detect the additional138

solutions that appear in the degenerate cases; identifying that the case is degenerate requires the139

eigendecomposition ofA which would upsurge the execution time of such an fsolve-based method.140

For all these reasons, we decided not to make this fsolve-based method available in the quadproj141

package.142

4 The quadproj package143

Let us demonstrate in this section the use of quadproj through small code snippets. To avoid144

redundancy (e.g., in the imports), the snippets should be run in the current order.145

4.1 The basics: a simple n-dimensional example146

In listing 1, we create in line 16 an object of class quadproj.quadrics.Quadric obtained by pro-147

viding a dict (param) that contains the entries ’A’, ’b’, and ’c’ (corresponding to the parameters148

A, b, and c). We then create a random initial point x0, project it onto the quadric, and check that the149

resulting point x_project is feasible by using the instance method Quadric.is_feasible.150

Listing 1: Projection onto a n-dimensional quadric.
1 from quadproj import quadrics151

2 from quadproj.project import project152

3153

4154

5 import numpy as np155

6156

7 # creating random data157

8 dim = 42158

9 _A = np.random.rand(dim , dim)159

10 A = _A + _A.T # make sure that A is symmetric160

11 b = np.random.rand(dim)161

12 c = -1.42162

13163

14164

15 param = {’A’: A, ’b’: b, ’c’: c}165

16 Q = quadrics.Quadric(param)166

17167

18 x0 = np.random.rand(dim)168

19 x_project = project(Q, x0)169

20 assert Q.is_feasible(x_project), ’The projection is incorrect!’170

5



1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0
d
x0

P (x0)

(a) Output of listing 2.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0
d
x0

P (x0)

(b) Output of listing 3.

Figure 3: Projection onto an ellipse.

4.2 Visualise the solution171

The package also provides visualization tools. In listing 2, we compute and plot the projection of a172

point onto an ellipse. The output is given in Fig. 3a where the projection x_project of x0 onto the173

quadric is depicted as a red point.174

Listing 2: 2D visualization.
1 from quadproj.project import plot_x0_x_project175

2 from os.path import join176

3177

4 import matplotlib.pyplot as plt178

5179

6 output_path = ’../ images/’180

7181

8 show = False182

9183

10 A = np.array ([[1, 0.1], [0.1, 2]])184

11 b = np.zeros (2)185

12 c = -1186

13 Q = quadrics.Quadric ({’A’: A, ’b’: b, ’c’: c})187

14188

15 x0 = np.array([2, 1])189

16 x_project = project(Q, x0)190

17191

18 fig , ax = Q.plot(show=show)192

19 plot_x0_x_project(ax, Q, x0 , x_project)193

20 # ax.axis(’equal ’)194

21 plt.savefig(output_path , ’ellipse_no_circle.pdf’))195

A quick glance at Fig. 3a might give the (false) impression that the red point is not the closest one: this196

is due to the difference in scale between both axes. As a way to remedy this issue, we can either impose197

equal axes (by uncommenting line 20 in listing 2) or setting the argument flag_circle=True. The198

latter plots a circle centred in x0 with radius ‖x0 − PrQ
(
x0
)
‖2. Because of the difference in the199

axis scaling, this circle (Fig. 3b) might resemble an ellipse. However, it should not cross the quadric200

and be tangent to the quadric at PrQ
(
x0
)
; this is a visual proof of the solution optimality.201

Listing 3: 2D visual proof of the optimality.
1 fig , ax = Q.plot()202

2 plot_x0_x_project(ax, Q, x0 , x_project , flag_circle=True)203

3 fig.savefig(join(output_path , ’ellipse_circle.pdf’))204

6



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Principal axes
d
x0

P (x0)

(a) Output of listing 4.

1.5 1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Principal axes
d
x0

P (x0)

(b) Output of listing 5.

Figure 4: Degenerate projections.

4.3 Degenerate cases205

For constructing a degenerate case, we can:206

• Either construct a quadric in standard form, i.e., with a diagonal matrix A, a nul vector b,207

c=-1 and define some x0 with a least one entry equal to zero;208

• Or choose any quadric and select x0 to be on any principal axis of the quadric.209

Let us illustrate the second option in listing 4. We create x0 by applying the (inverse) standardization210

(see, Eq. (10)) from some x0 with at least one entry equal to zero.211

Here, we chose to be close to the centre and on the longest axis of the ellipse so as to be sure that212

there are multiple (two) solutions.213

Recall that the program returns only one solution. Multiple solutions is planned in future releases.214

Listing 4: Degenerate projection onto an ellipse.
1 x0 = Q.to_non_standardized(np.array([0, 0.1]))215

2 x_project = project(Q, x0)216

3 fig , ax = Q.plot(show_principal_axes=True)217

4 ax.legend(loc=’lower left’)218

5 plot_x0_x_project(ax, Q, x0 , x_project , flag_circle=True)219

6 fig.savefig(join(output_path , ’ellipse_degenerated.pdf’))220

The output figure ellipse_degenerated.pdf is given in Fig. 4a. It can be seen that the reflection221

of x_project along the largest ellipse axis (visible because show_principal_axes=True) yields222

another optimal solution.223

4.4 Supported quadrics224

The class of supported quadrics are the non-cylindrical central quadrics. Visualization tools are225

available for the 2D and 3D cases: ellipses, hyperbolas, ellipsoids and hyperboloids.226

4.4.1 Ellipses227

See previous section for examples of projection onto ellipses.228

4.4.2 Hyperbolas229

We illustrate in listing 5 the code to compute a (degenerated) projection onto a hyperbola. The figure230

output is depicted in Fig. 4b.231

7



0.6 0.4 0.20.0 0.2 0.4 0.6 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

d

(a) Output of listing 6.

0.40.20.00.20.4
2.01.51.00.50.00.51.01.52.0

2.0
1.5
1.0
0.5

0.0
0.5
1.0
1.5

(b) Output of listing 7.

Figure 5: Visualizations of 3D quadrics.

In this case, there is no root to the nonlinear function f from Eq. (9): graphically, the second axis232

does not intersect the hyperbola. This is not an issue because two solutions are obtained from the233

other set of KKT points (Xd).234

Listing 5: Degenerate projection onto a hyperbola.
1 A[0, 0] = -2235

2 Q = quadrics.Quadric ({’A’: A, ’b’: b, ’c’: c})236

3 x0 = Q.to_non_standardized(np.array([0, 0.1]))237

4 x_project = project(Q, x0)238

5 fig , ax = Q.plot(show_principal_axes=True)239

6 plot_x0_x_project(ax, Q, x0 , x_project , flag_circle=True)240

7 fig.savefig(join(output_path , ’hyperbola_degenerated.pdf’))241

4.4.3 Ellipsoids242

Similarly as the 2D case, we can plot an ellipsoid (listing 6) as in Fig. 5a. To ease visualization, the243

function get_turning_gif lets you write a rotating gif.244

Listing 6: Nondegenerate projection onto a one-sheet hyperboloid.
1 dim = 3245

2 A = np.eye(dim)246

3 A[0, 0] = 2247

4 A[1, 1] = 0.5248

5249

6 b = np.zeros(dim)250

7 c = -1251

8 param = {’A’: A, ’b’: b, ’c’: c}252

9 Q = quadrics.Quadric(param)253

10254

11255

12 fig , ax = Q.plot()256

13257

14 fig.savefig(join(output_path , ’ellipsoid.pdf’))258

15259

16 Q.get_turning_gif(step=4, gif_path=join(output_path , Q.type+’.gif’))260

4.4.4 One-sheet hyperboloid261

In listing 7, we illustrate the case of a one-sheet hyperboloid. Because it is currently not possible262

to use equal axes in 3D plots with matplotlib, the flag_circle argument allows to confirm the263

optimality of the solution despite the difference in the axis scales.264

8



Listing 7: Nondegenerate projection onto a one-sheet hyperboloid.
1 A[0, 0] = -4265

2266

3 param = {’A’: A, ’b’: b, ’c’: c}267

4 Q = quadrics.Quadric(param)268

5269

6 x0 = np.array ([0.1, 0.42, -1.5])270

7271

8 x_project = project(Q, x0)272

9273

10 fig , ax = Q.plot()274

11 plot_x0_x_project(ax, Q, x0 , x_project , flag_circle=True)275

12 ax.get_legend ().remove ()276

13 ax.view_init(elev=4, azim =42)277

14278

15 fig.savefig(join(output_path , ’hyperboloid_circle.pdf’), bbox_inches=’279

tight’)280

4.4.5 Two-sheet hyperboloid281

Finally, let us project a point onto a two-sheet hyperboloid: a quadratic surface with two positive282

eigenvalues and one negative eigenvalue.283

Listing 8 is the program that produces Fig. 2. This is a degenerate case with two optimal solutions;284

quadproj returns one of these solutions (the one of the first orthant located in the right sheet of the285

hyperboloid).286

Listing 8: Degenerate projection onto a two-sheet hyperboloid.
1 A = np.eye (3)287

2 A[0, 0] = 4288

3 A[1, 1] = -2289

4 A[2, 2] = -1290

5 b = np.zeros (3)291

6 c = -1292

7 param = {’A’: A, ’b’: b, ’c’: c}293

8 Q = quadrics.Quadric(param)294

9295

10 x0 = np.array([0, 0.5, 0])296

11297

12 x_project = project(Q, x0)298

13299

14 fig , ax = Q.plot(show_principal_axes=True)300

15 plot_x0_x_project(ax, Q, x0 , x_project , flag_circle=True)301

5 Conclusion302

In this paper, we presented a toolbox, called quadproj, for projecting any point onto a non-cylindrical303

central quadric. The problem is written as a smooth nonlinear optimization problem and the solution304

is characterized through the KKT conditions.305

We implemented and distributed this toolbox while focusing on the user-friendliness and the simplicity306

of installation. It is therefore possible to install it from multiple sources (Pypi, conda, or from sources),307

and the projection is readily computed in a few lines of code.308

Further research includes the extension to cylindrical central quadrics, and more generally to conical309

and parabolic quadrics. Another research direction is to reduce the execution time of the algorithm310

by focusing on the bottleneck of the method (i.e., the eigendecomposition of the symmetric matrix311

used to define the quadric).312

9



References313

[1] Anonymous author. Documentation pages of quadproj. https://quadproj_package.314

gitlab.io/quadproj Accessed: 2022-04-13.315

[2] Anonymous author. Quadproj: Anaconda.org. https://anaconda.org/loicvh/quadproj316

Accessed: 2022-04-13.317

[3] Anonymous author. Quadproj: pypi.org. https://pypi.org/project/quadproj/ Ac-318

cessed: 2022-04-13.319

[4] Anonymous author. Quadproj: source code. https://gitlab.com/quadproj_package/320

quadproj Accessed: 2022-04-13.321

[5] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and322

Algorithms. Wiley-Interscience, Hoboken, N.J, 3rd edition edition, May 2006.323

[6] Scott Brown. Local Model Feature Transformations. PhD thesis, The University of South324

Alabama, may 2020.325

[7] Marc Peter Deisenroth. Mathematics for Machine Learning. Cambridge University Press,326

Cambridge ; New York, NY, 1st edition edition, April 2020.327

[8] Joe Harris. Algebraic Geometry: A First Course. Springer, New York, corrected edition edition,328

September 1992.329

[9] Hamed Hassani, Mahdi Soltanolkotabi, and Amin Karbasi. Gradient methods for submodular330

maximization. Advances in Neural Information Processing Systems, 30, 2017.331

[10] Shih-Feng Huang, Yung-Hsuan Wen, Chi-Hsiang Chu, and Chien-Chin Hsu. A Shape Approxi-332

mation for Medical Imaging Data. Sensors, 20(20):5879, January 2020.333

[11] A. S. Lewis, D. R. Luke, and Jérôme Malick. Local Linear Convergence for Alternating and334

Averaged Nonconvex Projections. Foundations of Computational Mathematics, 9(4):485–513,335

August 2009.336

[12] A. S. Lewis and Jérôme Malick. Alternating Projections on Manifolds. Mathematics of337

Operations Research, 33(1):216–234, February 2008.338

[13] Guoyin Li and Ting Kei Pong. Douglas–Rachford splitting for nonconvex optimization with339

application to nonconvex feasibility problems. Mathematical Programming, 159(1):371–401,340

September 2016.341

[14] Gus K. Lott III. Direct Orthogonal Distance to Quadratic Surfaces in 3D. IEEE Transactions342

on Pattern Analysis and Machine Intelligence, 36(9):1888–1892, September 2014.343

[15] D. Martínez Morera and J. Estrada Sarlabous. On the distance from a point to a quadric surface.344

Investigación Operacional, 24(2):153–161, September 2013.345

[16] Boris Odehnal, Hellmuth Stachel, and Georg Glaeser. The Universe of Quadrics. Springer-346

Verlag, Berlin Heidelberg, 2020.347

[17] Shanshan Pan, Jinbao Jian, and Linfeng Yang. A hybrid MILP and IPM approach for dynamic348

economic dispatch with valve-point effects. International Journal of Electrical Power & Energy349

Systems, 97:290 – 298, 2018.350

[18] Nicholas G. Polson, James G. Scott, and Brandon T. Willard. Proximal Algorithms in Statistics351

and Machine Learning. Statistical Science, 30(4), November 2015.352

[19] Mahdi Soltanolkotabi. Learning ReLUs via gradient descent. Advances in neural information353

processing systems, 30, 2017.354

[20] Chenhui Song, Jun Xiao, Guoqiang Zu, Ziyuan Hao, and Xinsong Zhang. Security region of355

natural gas pipeline network system: Concept, method and application. Energy, 217:119283,356

February 2021.357

10

https://quadproj_package.gitlab.io/quadproj
https://quadproj_package.gitlab.io/quadproj
https://quadproj_package.gitlab.io/quadproj
https://anaconda.org/loicvh/quadproj
https://pypi.org/project/quadproj/
https://gitlab.com/quadproj_package/quadproj
https://gitlab.com/quadproj_package/quadproj
https://gitlab.com/quadproj_package/quadproj


[21] Wilfredo Sosa and Fernanda MP Raupp. An algorithm for projecting a point onto a level set of358

a quadratic function. Optimization, pages 1–19, October 2020.359

[22] Loïc Van Hoorebeeck, P.-A. Absil, and Anthony Papavasiliou. Projection onto quadratic360

hypersurfaces, 2022. arXiv: 2204.02087.361

[23] Loïc Van Hoorebeeck, P.-A. Absil, and Anthony Papavasiliou. Solving non-convex economic362

dispatch with valve-point effects and losses with guaranteed accuracy. International Journal of363

Electrical Power & Energy Systems, 134:107143, January 2022.364

[24] Caiyun Yang, Hiromasa Suzuki, Yutaka Ohtake, and Takashi Michikawa. Boundary smoothing365

for mesh segmentation. In 2009 11th IEEE International Conference on Computer-Aided366

Design and Computer Graphics, pages 241–248, August 2009.367

Checklist368

1. For all authors...369

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s370

contributions and scope? [Yes]371

(b) Did you describe the limitations of your work? [Yes] We cannot deal with cylindrical372

and non-central quadrics.373

(c) Did you discuss any potential negative societal impacts of your work? [N/A]374

(d) Have you read the ethics review guidelines and ensured that your paper conforms to375

them? [Yes]376

2. If you are including theoretical results...377

(a) Did you state the full set of assumptions of all theoretical results? [N/A]378

(b) Did you include complete proofs of all theoretical results? [N/A]379

3. If you ran experiments...380

(a) Did you include the code, data, and instructions needed to reproduce the main experi-381

mental results (either in the supplemental material or as a URL)? [Yes] See Section 4382

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they383

were chosen)? [N/A]384

(c) Did you report error bars (e.g., with respect to the random seed after running exper-385

iments multiple times)? [No] The experiment in Section 3 is obtained by running386

test_newton.py, which also plots error bars.387

(d) Did you include the total amount of compute and the type of resources used (e.g., type388

of GPUs, internal cluster, or cloud provider)? [Yes] It is shortly discussed in Section 4:389

most of the execution times is spent in the eigendecomposition ofA.390

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...391

(a) If your work uses existing assets, did you cite the creators? [N/A]392

(b) Did you mention the license of the assets? [N/A]393

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]394

395

(d) Did you discuss whether and how consent was obtained from people whose data you’re396

using/curating? [N/A]397

(e) Did you discuss whether the data you are using/curating contains personally identifiable398

information or offensive content? [N/A]399

5. If you used crowdsourcing or conducted research with human subjects...400

(a) Did you include the full text of instructions given to participants and screenshots, if401

applicable? [N/A]402

(b) Did you describe any potential participant risks, with links to Institutional Review403

Board (IRB) approvals, if applicable? [N/A]404

(c) Did you include the estimated hourly wage paid to participants and the total amount405

spent on participant compensation? [N/A]406

11


	Introduction
	Problem formulation
	The projection problem
	Non-cylindrical central quadrics
	The projection as an optimization problem

	Method
	The quadproj package
	The basics: a simple n-dimensional example
	Visualise the solution
	Degenerate cases
	Supported quadrics
	Ellipses
	Hyperbolas
	Ellipsoids
	One-sheet hyperboloid
	Two-sheet hyperboloid


	Conclusion

