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Abstract

In this paper, we explore the problem of trans-
lating code-mixed sentences to an equivalent
monolingual form. The scarcity of gold stan-
dard code-mixed to pure language parallel data
makes it difficult to train a translation model
that can perform this task reliably. Prior
work has addressed the paucity of parallel
data with data augmentation techniques. Such
techniques rely heavily on external resources,
which make the systems difficult to train and
scale effectively for multiple languages. We
present a simple yet highly effective train-
ing scheme for adapting multilingual models
to the task of code-mixed translation. Our
method eliminates the dependence on exter-
nal resources by creating synthetic data from
a novel two-stage back-translation approach
that we propose. We show substantial improve-
ment in translation quality (measured through
BLEU), beating existing prior work by up to
+3.8 BLEU on code-mixed Hi→En, Mr→En,
and Bn→En tasks. On the LinCE Machine
Translation leader board, we achieve the high-
est score for code-mixed Es→En, beating ex-
isting best baseline by +6.5 BLEU, and our
own stronger baseline by +1.1 BLEU.

1 Introduction

Mixing words or phrases of a dominant language
like English with another language is now a
widespread phenomenon, causing user-generated
content to be increasingly Code-Mixed (CM). Ap-
plications like search, recommendation, and ad-
vertisement that face the increasing prevalence of
such code-mixed user queries can better match to
the predominantly English content after translat-
ing the query to English. Such a translation step
also facilitates greater reuse of existing high quality
English NLP tools such as for query segmentation
and entity linking. Figure 1 shows examples of
code-mixed queries and their translations.

Figure 1: Code-mixed queries in Hindi and their
English translations. Highlighted source words are
transliterations of words in the translation, highlighted
in the same colour.

A major challenge for training code-mixed to
English translation models is the lack of parallel
data. Recent work on generating synthetic par-
allel data using available non-code-mixed paral-
lel data require special-purpose models (Winata
et al., 2018; Dhar et al., 2018; Tarunesh et al.,
2021) and/or depend on language specific tools
for transliteration, word-alignment, and language
identification (Gupta et al., 2021). This makes
the approach difficult to scale to new languages
and increases software complexity. Meanwhile the
mainstream translation community is increasingly
converging on frameworks based on multilingual
models for translation between multiple language
pairs (Johnson et al., 2017; Aharoni et al., 2019;
Arivazhagan et al., 2019; Zhang et al., 2020; Fan
et al., 2021). Going forward, code-mixed transla-
tion needs to be integrated within these frameworks
to impact practical systems.

A multilingual modelM that has been trained
for bidirectional translation between a language S
and English is already more capable than a unidirec-
tional model of translating a code-mixed sentence.
Additionally, when non-parallel code-mixed sen-
tences are available, we could further informM
of CM sentences using the masked copy task (Liu
et al., 2020). Surprisingly, despite having observed
text in both languages and code-mixed text in the
encoder, this multilingual model does not offer sig-
nificant gains over a baseline unidirectional S to
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English translation model.
Back-translation (BT) is another effective and

popular strategy to handle non-availability of paral-
lel data (Sennrich et al., 2016; Edunov et al., 2018).
However, for our code-mixed to English translation
task, simple BT is not an option since we cannot
assume the presence of an English to code-mixed
translation model.

We propose a novel two stage back-translation
methodology called Back-to-Back Translation
(B2BT) targeted for adapting multilingual models
to code-mixed translation. Our approach is sim-
ple and integrates easily with existing multilingual
translation models without any need for special
models or language specific tools. The simplicity
of our training scheme belies its effectiveness. The
complex mBERT based method for synthetic data
creation in Gupta et al. (2021) improves over a
simple monolingual translation model by +2.5 in
BLEU for code-mixed Hindi to English translation.
Our method improves over the mBERT method by
+3.8 in BLEU and +6.3 over the simple baseline.

Our main contributions are as follows:

1. We present a novel training scheme for adapt-
ing multilingual models to the task of code-
mixed translation. The simplicity of this
scheme is in contrast to existing methods
which use specialized architectures and ex-
ternal tools. Our approach complements
mBART (Liu et al., 2020) which is a popu-
lar NMT pre-training strategy, and integrates
easily within existing frameworks of multilin-
gual translation.

2. We evaluate our method on four code-
mixed datasets (Hindi, Spanish, Bengali, and
Marathi), and obtain significant gains in
BLEU over existing methods and baselines.

3. We conduct a human evaluation to establish
that our method generates higher quality syn-
thetic data for training than the best existing
method.

4. One of the datasets (Marathi) is introduced by
us and will be released in the public domain.

2 Related Work

Code-mixing is receiving increasing interest in the
Natural Language Processing (NLP) research com-
munity, with several efforts underway to improve
model performance on code-mixed text for a wide

variety of tasks Khanuja et al. (2020); Diab et al.
(2014); Aguilar et al. (2018); Solorio et al. (2021);
Song et al. (2019a).

Code-Mixed Language Models A primary fo-
cus area is training language models for code-
switched data in the context of applications like
speech recognition (Winata et al., 2019; Gonen and
Goldberg, 2019). A major challenge addressed in
this setting is lack of code-mixed data for train-
ing the language model. Pratapa et al. (2018);
Chang et al. (2019); Gao et al. (2019); Samanta
et al. (2019); Winata et al. (2019) all propose differ-
ent methods for creating synthetic code-mixed data
which can be used for augmenting training data in
language models. Tarunesh et al. (2021) propose a
method for generating code-switched text from sen-
tences in the matrix language through extensions of
a translation model. None of these work generate
code-mixed to English parallel data, which is our
focus.

Code-Mixed Translation Translation of code-
mixed sentences is a relatively unexplored task.
The biggest challenge is the lack of large parallel
training data. Srivastava and Singh (2020) release
a small parallel dataset of code-mixed social me-
dia posts. Gupta et al. (2021) present a method
for training translation models with synthetic par-
allel data created by learning code-switching pat-
terns with an mBERT model and perturbing aligned
monolingual parallel data. A major drawback of
this approach is the reliance on external models
for Language Identification, alignment, translitera-
tion, and back-translation, which make for a com-
plex and brittle training pipeline and increase diffi-
cultly in scaling to more languages. The CALCS
2021 workshop (Solorio et al., 2021) also released
a shared task for code-mixed translation. So far the
only submissions are straight-forward application
of BART multilingual models, with which we also
compare our method.

3 Our Approach

Our objective is to train a model that can translate
code-mixed input, which contains words from En-
glish and an additional language S , to monolingual
English. Following (Myers-Scotton, 1997) we refer
to S as the matrix language as it lends its gram-
mar in a code-mixed utterance, and English as the
embedded language since it lends only its words.
Let S, C, E denote the space of matrix language
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Train multilingual 
model

Train

Model C EB EB→C

Fine-tune

Final Model

Back-Translate
S→E
E→S
C→C

EM→EM
SM→SM
optional

CB→EMD

Example of Step 2 back-translation:
INP: <2en> अब multiline comment देने की 
कोशश करें।
OUT: try giving multiline comment now.

Example of Step 3 back-translation:
INP: <2cm> here, the person class is 
an abstract class.
OUT: यहाँ, person लास एक abstract 
लास है।

Fine-tune for E→C Fine-tune for C→E

Evaluation:
INP: <2en> maintenance पैनल में, customer branches लकं पर िलक करें।
OUT: in the maintenance panel, click on the customer branches link.

Model EMD CB

Back-Translate Fine-tune

~

~

~

~~

Figure 2: B2BT training pipeline, showing the two-stage back-translation based adaptation of an initial multilin-
gual model. ( ·̃ ) indicates source side masking during training.

sentences, code-mixed sentences, and English sen-
tences respectively. For training our model we as-
sume the presence of a parallel matrix language to
English corpus (S,E) ⊂ (S, E) and a non-parallel
code-mixed corpus C ⊂ C. Since code-mixing
data often appear in application domains like social
media, which differ from formal domains like news
in which parallel data (S,E) is available, we addi-
tionally use a domain-specific monolingual English
corpora EMD ⊂ E . Optionally, we can also exploit
monolingual data in each of the source SM ⊂ S,
and target languages EM ⊂ E .

Our starting point is a multilingual model M
that is exposed to sentences from S, C, E in both
the encoder and decoder. We achieve this by train-
ing for bidirectional translation using the parallel
data and masked copying using the non-parallel
corpus. Pre-trained models like mBART can also
be used as starting point for this step. We elaborate
in Section 3.1. We adapt this model for translation
from code-mixed S to English E using a two stage
back-to-back-translation approach which we call
B2BT. In the first stage we use BT on C to teach
the model to translate English sentences to code-
mixed (Section 3.2). In the second stage we use BT
on EMD to achieve the target of code-mixed to
English translation (Section 3.3). Figure 2 presents
an overview of our training process.

3.1 Training Base Multilingual Model

The multilingual model (M) is trained to trans-
late between the constituent languages in both di-

rections, and denoise code-mixed sentences. The
multilingual model uses special prefix tokens to
indicate the desired output language to the model.
As in Johnson et al. (2017) we prefix source sen-
tences with one of three special tokens (1) <2en>
when translating to English (2) <2xx> when trans-
lating to the matrix language, where ‘xx’ denotes
the code1 for the matrix language, and (3) <2cm>
when translating to code-mixed.

Training data in this step consists of parallel
matrix language to English corpus (S,E) and non-
parallel data in English EM , matrix language SM ,
and code-mixed C. For the non-parallel corpora,
we train the model to copy the source to the tar-
get by masking out tokens in the source as used
in (Song et al., 2019b). Our masking strategy
comprises of randomly and independently replac-
ing source tokens with a special token <M> with
a masking probability of 0.2. The decoder is still
expected to produce the complete output and not
just the masked spans.

While the model is capable of translating code-
mixed sentences to English, our evaluation found
no significant gains beyond a simple translation
model. This is possibly because the <2en> model
has not learned to copy English tokens from the
code-mixed input. This necessitates training the
model with synthetic parallel data with code-mixed
source. If we use the currentM to back-translate
English to synthetic CM, we also get poor accuracy
as we will show in Section 6.2. This led us to

1This refers to 2-letter ISO 639-1 language codes
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design a two stage back-translation approach that
we describe next.

3.2 Fine-tune for E → C
Here we prepareM to back-translate pure English
sentences to code-mixed sentences so that the re-
sulting synthetic parallel data can be used to train
a better code-mixed to English translation model.
Note that initialM is poor at translation E → C
translation since it was only trained to copy over
code-mixed sentences.

We first back-translate the monolingual code-
mixed corpus C to English EB using M. The
back-translation is done by prefixing <2en> to
the code-mixed input and sampling English output
fromM. This provides us with a synthetic English
to code-mixed parallel corpus (EB, C). We fine-
tuneM on (EB, C) to produce a modelM′ where
source sentences are prefixed with <2cm>. Since
the target distribution C is preserved during train-
ing, we can now generate high quality in-domain
code-mixed sentences usingM′.

3.3 Fine-tune for C → E
In the final step of our training process we aim to
realise our objective of training to translate code-
mixed sentences to English. We start by back-
translating the in-domain monolingual English cor-
pus EMD to code-mixed sentences CB usingM′.
This is done by prefixing sentences from the En-
glish corpus with the <2cm> tag, and sampling
code-mixed outputs from M′. We now have a
synthetic code-mixed to English parallel corpus
(CB, EMD). We fine-tuneM to obtain our final
modelM∗ on this synthetic parallel corpus where
all the source sentences in CB are prefixed with the
<2en> token.

Masking during fine-tuning in B2BT A dis-
tinctive property of code-mixed translation is word
overlap between the source and target sentences.
Such overlap makes the fine-tuned model overly
biased towards the easier copy action. We allevi-
ate this bias by introducing random masking of
words in the source sentence (with masking proba-
bility 0.2). Unlike prior work (Song et al., 2019b)
which apply such masking only for pre-training
with mononlingual corpora, we propose to mask
tokens even when training with parallel data. An
ablation study in Section 6.5 shows that such mask-
ing boosts accuracy of code-mixed translation over
and above monolingual masking.

Dataset Source Size Avg. tokens/sentence
HiEn→En

Test ST-Test 30K HiEn-14.46, En-13.09
(S,E) IITB Parallel 1.5M Hi-15.47, En-14.47
C ST CM mono 40K 14.49
EMD ST En mono 53K 12.59
SM News Crawl 2M 18.95

BnEn→En
Test ST-Test 29K BnEn-11.32, En-13.31
(S,E) Samanantar 2M Bn-12.14, En-13.56
C ST CM mono 31K 11.23
EMD ST En mono 57K 12.31
SM IndicCorp 2M 21.15

MrEn→En
Test ST-Test 28K MrEn-11.32, En-13.00
(S,E) Samanantar 2M Mr-10.86, En-12.43
C ST CM mono 38K 11.14
EMD ST En mono 57K 12.58
SM IndicCorp 2M 16.22

EsEn→En
Test LinCE 6.5K EsEn-19.72, En-UNK
(S,E) WMT 2013 2M Es-33.32, En-29.74
C LinCE 15K 19.67
EMD LinCE 15K 15.36
SM News Crawl 2M 28.19
EM News Crawl 2M 23.90

Table 1: Brief statistics of the datasets used for each
language pair. The English target for EsEn→En is pri-
vate and results are obtained through submission to the
leaderboard.

The entire training pipeline is summarised in
Figure 2.

4 Experiments

We use the notation SoEn→En, to indicate transla-
tion from a code-mixed matrix language with code
‘So’ to English. We evaluate on four code-mixed
datasets: Hindi (HiEn→En), Bengali (BnEn→En)
used in Gupta et al. (2021), Spanish (EsEn→En)
on the LinCE leaderboard 2, and a new Marathi
(MrEn→En) dataset that we introduce. Table 1
presents a summary of the various corpus sizes
used for each of the datasets.

4.1 Datasets

We describe the evaluation sets and all the different
types of training datasets used for our experiments.

Code-Mixed Parallel Test Corpus The Spoken
Tutorial test sets are created by scraping and align-
ing transcripts for video lectures in multiple lan-
guages including English from the educational web-
site Spoken Tutorial3. The video transcripts for In-
dian languages (like Hindi, Bengali, and Marathi)

2https://ritual.uh.edu/lince/leaderboard
3https://spoken-tutorial.org/
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are heavily code-mixed, containing a large number
of English words.

The Computational Approaches to Linguistic
Code-Switching worksop (CALCS), 2021, released
a code-mixed translation shared task. The code-
mixing machine translation test sets are a part of
the LinCE Benchmark (Aguilar et al., 2020). We
conduct experiment with the EsEn→En (referred to
as the Spanglish-English task on the leaderboard)
test set as this exactly matches our setting.

Parallel Corpus (S,E) For HiEn→En experi-
ments, we use the IIT Bombay English-Hindi Par-
allel Corpus (Kunchukuttan et al., 2018) as the
base parallel training data (S,E) for our models.
Test and validation splits are from the WMT 2014
English-Hindi shared task (Bojar et al., 2014). We
move about 2,000 randomly selected sentences
from the training set to augment the small (500
sentences) validation set. For BnEn→En and
MrEn→En, we use 2M randomly sampled par-
allel sentences from Samanantar (Ramesh et al.,
2021) as our parallel data (S,E) for training and
2000 randomly sampled pairs each for validation
and testing. For EsEn→En, we use 2M randomly
sampled sentence pairs from the Common Crawl
corpus released by WMT 2013.

Non-Parallel Code-Mixed Corpus (C) We col-
lect all code-mixed sentences from the Spoken Tu-
torial Project that are not a part of the parallel test
data. For the EsEn→En task on the LinCE leader-
board, a set of 15K code-mixed Spanish sentences
are provided as a part of the setup.

Monolingual Corpora (EMD , EM , SM ) For
the in-domain English corpus (EMD ), we collect
sentences from Spoken Tutorial transcripts which
are not a part of the parallel test data. For the
EsEn→En task on the LinCE leaderboard, we use
the monolingual English tweets provided for the re-
verse translation task as the in-domain monolingual
corpus.

We use the News Crawl corpus of WMT 2014
as the additional monolingual English data (EM )
for all experiments. For the monolingual matrix
language (SM ), we use the News Crawl corpus of
WMT 2014 for HiEn→En. For BnEn→En and
MrEn→En, we use the IndicCorp Bengali and
Marathi monolingual corpus 4 respectively. For
EsEn→En, we use the News Crawl corpus from
WMT 2013.

4https://indicnlp.ai4bharat.org/corpora/

4.2 Model Setup

All models are trained with the Fairseq toolkit (Ott
et al., 2019). We experiment with two types of
multilingual models: (1) standalone models that
we train only on the given corpus above, and (2)
mBART initialized models. During decoding we
use a beam size of 5 in all experiments.

Standalone Multilingual Models For training
all non-mBART models, we use the standard trans-
former architecture from Vaswani et al. (2017)
with six encoder and decoder layers. In the data
pre-processing step, we first tokenize with Indic-
NLP (Kunchukuttan, 2020) tokenizer for Indic lan-
guage sentences and code-mixed sentences and
Moses tokenizer 5 for pure English sentences. Next,
we apply BPE with code learned on monolingual
English and monolingual non-code-mixed datasets
jointly, for 20,000 operations (the resulting dictio-
nary is manually appended with the special tokens
<2en>, <2xx>, <2cm> and <M>). We use Adam
optimizer with a learning rate of 5e-4 and 4000
warmup steps. We train all models for up to 100
epochs and select the best checkpoint based on loss
on the validation split. For the two BT based fine-
tuning stages in B2BT we use a constant learning
rate of 1e-4 and use a random 2K subset of the BT
data as the validation split.

Pre-trained mBART-based Multilingual Mod-
els The mBART models are trained by fine-
tuning the CC25 mBART checkpoint. The model
has 12 encoder and decoder layers, with model di-
mension of 1024 and 16 attention heads (∼610M
parameters). We modify the existing sentence piece
model by adding the three special tokens <2en>,
<2xx> and <2cm>, so they are not tokenized and
also add them to the dictionary by replacing three
tokens in a language we are not currently experi-
menting with. The multilingual model is trained
for 100K steps, while fine-tuning stages of B2BT
are trained for up to 25K steps.

5 Results

We compare our method, B2BT against the
mBERT model from Gupta et al. (2021) and other
baselines. For BnEn→En, we re-train the mBERT
based approach with the newly released Samanan-
tar data to create a stronger baseline than what
they report. The paper does not present results for

5https://github.com/moses-smt/mosesdecoder
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MrEn→En, so we also train an mBERT model
ourselves for this pair. The first pair of base-
lines we compare against are the base bi-lingual
S → E model and the version fine-tuned with
back-translated domain data EMD. Similarly, we
also compare against the base multilingual model
M, andM fine-tuned with back-translated domain
data. Back-translations for these baselines are ob-
tained from bi-lingual E → S models.

5.1 Training From Scratch

Table 2 presents results comparing B2BT approach
against the baselines and mBERT on HiEn→En,
BnEn→En, and MrEn→En from Spoken Tutorial.
In these experiments, B2BT is trained on stan-
dalone multilingual models. We can see B2BT sig-
nificantly outperforms the mBERT based approach
across all language pairs. We outperform this state
of the art mBERT approach by +3.8 BLEU points
on HiEn→En, +2.8 BLEU points on BnEn→En,
and +0.6 BLEU points on MrEn→En. We also see
substantial improvements on the two adversarial
subsets of ST-Test introduced in Gupta et al. (2021).
The ST-OOV dataset contains sentences with at
least two words which are not present in the par-
allel training data. The ST-Hard dataset contains
2,000 sentences which had the lowest BLEU score
when translating with the unidirectional S → E
translation models.

Further, our model also significantly outper-
forms the multilingual model adapted with the sim-
ple back-translated (BT) method. For HiEn→En
we get +6.2 BLEU increase, for BnEn→En +2.5
BLEU increase, while for MrEn→En we are at par.
This establishes the importance of our two-stage
back-translation approach to adapting multilingual
models for code-mixed translation.

5.2 Fine-tuning mBART

Our approach can complement existing multilin-
gual pre-trained models such as mBART. In these
experiments the base multilingual model M is
trained by fine-tuning an mBART checkpoint. Ta-
ble 3 presents these results. We see a large improve-
ment of +12.9 BLEU points for HiEn→En. For
EsEn→En, we beat the baseline on the leaderboard
by +6.5 BLEU points, and also see a signficant
improvement of +1.1 BLEU points on the multilin-
gual model. Here again we observe gains beyond
simple BT-based fine-tuning of the multilingual
model. We get a +4.6 BLEU increase for HiEn.

Figure 3: Improvements in BLEU with B2BT against
the mBERT based model and the domain-adapted bilin-
gual model baseline across three splits of the test set
with varying degree of code-mixing in the source.

6 Analysis

Since references are private for the LinCE Bench-
mark, we conduct all further analysis of our re-
sults on the Spoken Tutorial datasets. We study the
HiEn→En task in our analysis as a representative,
however for some experiments we also analyze
models for other language pairs.

6.1 Varying Degree of Code-Mixing

Following Gupta et al. (2021), we also evaluate the
effectiveness of our model across different splits of
the test set with varying Code-Mixing Index (Gam-
bäck and Das, 2016) (CMI). Figure 3 presents the
improvements from our model on the three splits of
the test set. We see improvements across all splits,
but the largest improvements are on the split with
the highest degree of code-mixing. On the high
CMI split, we see about +8.7 BLEU point improve-
ment over the mBERT approach, and +14.5 BLEU
point improvement over the baseline.

6.2 Ablation: Role of two-stage BT

To examine the relative importance of different
components in our training pipeline, we compare
our final code-mixed Hi→En model (M∗) against a
setup where we do a one-step BT usingM. In Row
2,M is fine-tuned on in-domain English EMD data
back-translated to Hi withM. We observe a large
gap compared to B2BT. This indicates the impor-
tance of training with parallel data containing code-
mixed source. In Row 3 we show the model fine-
tuned with EMD back-translated to code-mixed
withM. We observe a huge drop in accuracy! This
is because the base multilingual model (M) is only
trained to do span-level denoising on code-mixed
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Lang Pair Method ST-Test ST-OOV ST-Hard

HiEn→En

Hi→En Model 36.9 33.9 2.1
Hi→En Model + simple BT EMD 43.9 41.4 18.6
mBERT (Gupta et al., 2021) 46.4 44.6 23.4
Multilingual 38.0 37.7 17.5
Multilingual + simple BT EMD 44.0 40.9 22.6
B2BT 50.2 49.9 30.7

BnEn→En

Bn→En Model 30.8 31.1 14.1
Bn→En Model + simple BT EMD 40.9 41.2 21.2
mBERT (Gupta et al., 2021) 37.4 37.3 17.8
mBERT (our implementation) 41.4 41.9 22.3
Multilingual 30.9 31.4 13.8
Multilingual + simple BT EMD 41.7 42.0 22.0
B2BT 44.2 43.4 23.4

MrEn→En

Mr→En Model 26.6 25.7 0.9
Mr→En Model + simpleBT EMD 39.3 39.2 16.5
mBERT (our implementation) 40.6 40.5 17.8
Multilingual 29.1 29.7 9.0
Multilingual + simple BT EMD 41.4 41.5 18.9
B2BT 41.2 41.3 18.7

Table 2: Comparing BLEU scores on the Spoken Tutorial test set for B2BT trained from scratch against the mBERT
model and bilingual and multilingual baselines.

Lang Pair Method BLEU

HiEn→En
mBART Multilingual 35.1
mBART Multilingual + BT 43.4
mBART Multilingual B2BT 48.0

EsEn→En

mBART (leaderboard) 43.9
mBART Multilingual 49.3
mBART Multilingual + BT 50.0
mBART Multilingual B2BT 50.4

Table 3: Results comparing B2BT fine-tuned on an
mBART checkpoint against baselines and best existing
models on the LinCE leaderboard.

data. This underlines the importance of the inter-
mediate model (M′) that is fine-tuned to produce
good code-mixed data from English.

6.3 Comparing with Other Synthetic
Code-mixed Data

We hypothesize that the reason our model performs
substantially better is that the synthetic data gener-
ated by our model is of higher quality. To test this
hypothesis we replace the synthetic code-mixed
parallel data of B2BT with synthetic data from
mBERT (Gupta et al., 2021), and VACS (Samanta
et al., 2019) while keeping the rest of the training
ofM∗ unchanged. Table 4 (row 4-5) presents this

result. The improvement of almost +4.9 BLEU
points on ST-Test over using mBERT data, clearly
shows that the synthetic data from our model has
better quality. Figure 4 presents examples of syn-
thetic sentences generated by B2BT vs mBERT.
The mBERT method has word omissions like “box"
in row 1 which could be caused by poor back-
translation, or repetition of “open" in row 2, which
could be a combination of back-translation and
alignment mistakes. Due to reliance on multiple
external tools, we found the mBERT synthetic data
to be highly noisy.

6.4 Human Evaluation and Code-mixing
Stats for Generated Code-mixed Data

We ask human annotators to rate the the synthetic
code-mixed text for fluency and intent preservation
when presented as translations for the English text
they were created from. Raters are asked to eval-
uate quality of source-target pairs (similar to Wu
et al. (2016)) on a scale of 0 to 6. A score of 0
indicates a completely irrelevant translation, and a
score of 6 indicates a translation that is fluent and
captures intent perfectly. Across 500 examples, we
observe that synthetic data from B2BT is rated as
4.27 out of 6 on average compared to 3.74 for the
mBERT model. In 39% of examples our model is
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# Fine-tuning Dataset for Final Model ST-Test ST-OOV ST-Hard
1 B2BT (M∗) - M fine-tuned with sampled E → C from M′ 50.2 49.9 30.7
2 M fine-tuned with sampled E → S from M 46.1 45.2 26.6
3 M fine-tuned with sampled E → C from M 35.7 35.8 20.6
4 M fine-tuned with synthetic data from mBERT (Gupta et al., 2021) 45.3 43.1 24.1
5 M fine-tuned with synthetic data from VACS (Samanta et al., 2019) 44.0 41.5 23.6

Table 4: Comparing translation accuracy (BLEU) on the HiEn→En task when using synthetic code-mixed data
generated fromM′ in our approach against (1) synthetic data sampled fromM in our approach (2) synthetic data
from other methods like mBERT and VACS.

Figure 4: Examples of Spoken Tutorial synthetic sentences generated from mBERT vs B2BT. English translations
of Devanagari words in the code-mixed sentences are also provided with highlights.

Metric ST-Test mBERT B2BT
Human eval rating - 3.74 4.27
Human eval win % - 17% 39%
Code-Mixing Index 28.3 20.7 27.2
Common En tokens 0.16 0.20 0.18
Code switch probability 0.27 0.24 0.27

Table 5: Comparing the synthetic data generated
through mBERT against B2BT.

Lang Pair Fine-tuning Approach BLEU

HiEn→En Un-masked 50.1
Masked 50.2

BnEn→En Un-masked 42.8
Masked 44.2

MrEn→En Un-masked 40.6
Masked 41.2

Table 6: Comparing BLEU on ST-Test between
masked vs un-masked fine-tuning to train M∗ in the
B2BT approach.

rated higher than the mBERT model, 45% of exam-
ples get the same score, and only in 17% examples
is mBERT better (Table 5).

We compare code-mixing statistics between the
synthetic data generated by B2BT and mBERT on
ST-Test in Table 5. We find that the data generated
from B2BT is closer to the test data distribution in
terms of Code-Mixing Index, fraction of English
tokens common in the source and target, and the
average probability of switching at a given word.

6.5 Effect of Source Side Masking
Finally, we evaluate the impact of source side mask-
ing in B2BT’s fine-tuning stages. Table 6 compares
model performance with and without source side
masking when fine-tuning. We observe noticeable
gains, with the highest for BnEn at +1.5.

7 Conclusion

We present a simple two-stage back-translation ap-
proach (B2BT) for adapting multilingual models
for code-switched translation. We demonstrate re-
markable improvements on four datasets compared
to recent state of the art methods, and default back-
translation baselines. Detailed ablation studies and
contrast with alternative methods of generating syn-
thetic code-mixed data underline the significance
of our two-stage approach. Through human evalu-
ation, we find that B2BT’s synthetic data is objec-
tively higher quality than the one used by existing
work. Most importantly, we remove the depen-
dence on external resources like models for lan-
guage identification, alignment, transliteration, and
back-translation in creating this synthetic data. The
straightforward two step back-translation approach
reduces code-complexity which is highly desirable
in models to be used in production. Finally, our
approach naturally fits with existing multilingual
translation frameworks, which are crucial in ex-
panding coverage to multiple languages without
building per-language pair models.
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