
Published as a conference paper at ICLR 2025

LINEAR COMBINATION OF SAVED CHECKPOINTS
MAKES CONSISTENCY AND DIFFUSION MODELS BET-
TER

Enshu Liu∗1,2, Junyi Zhu∗3, Zinan Lin†‡4, Xuefei Ning†‡1, Shuaiqi Wang5,
Matthew B. Blaschko3, Sergey Yekhanin4, Shengen Yan2, Guohao Dai2,6,
Huazhong Yang1, Yu Wang‡1

1Tsinghua University 2Infinigence-AI 3KU Leuven 4Microsoft Research
5Carnegie Mellon University 6Shanghai Jiao Tong University

ABSTRACT

Diffusion Models (DM) and Consistency Models (CM) are two types of pop-
ular generative models with good generation quality on various tasks. When
training DM and CM, intermediate weight checkpoints are not fully utilized and
only the last converged checkpoint is used. In this work, we find proper check-
point merging can significantly improve the training convergence and final perfor-
mance. Specifically, we propose LCSC, a simple, effective, and efficient method
to enhance the performance of DM and CM, by combining checkpoints along
the training trajectory with coefficients deduced from evolutionary search. We
demonstrate the value of LCSC through two use cases: (a) Reducing training
cost. With LCSC, we only need to train DM/CM with fewer number of itera-
tions and/or lower batch sizes to obtain comparable sample quality with the fully
trained model. For example, LCSC achieves considerable training speedups for
CM (23× on CIFAR-10 and 15× on ImageNet-64). (b) Enhancing pre-trained
models. When full training is already done, LCSC can further improve the gen-
eration quality or efficiency of the final converged models. For example, LCSC
achieves better FID using 1 number of function evaluation (NFE) than the base
model with 2 NFE on consistency distillation, and decreases the NFE of DM from
15 to 9 while maintaining the generation quality. Applying LCSC to large text-to-
image models, we also observe clearly enhanced generation quality.

1 INTRODUCTION

Diffusion Models (DMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) as a
generative modeling paradigm have rapidly gained widespread attention in the last several years,
showing excellent performance in various tasks like image generation (Ho et al., 2020; Dhariwal
& Nichol, 2021; Rombach et al., 2022), video generation (Ho et al., 2022; Blattmann et al., 2023),
and 3D generation (Poole et al., 2022; Lin et al., 2023). DM requires an iterative denoising process
in the generation process, which could be slow. Consistency Models (CMs) (Song et al., 2023) are
proposed to handle this dilemma, which provides a better generation quality under one or few-step
generation scenarios and is also broadly applied (Luo et al., 2023a;b; Wang et al., 2023).

In this paper, we investigate the training process of DM and CM. We find that checkpoints—the
model weights periodically saved during the training process—have under-exploited potential in
boosting the performance of DM and CM. In particular, within the metric landscape, we observe
numerous high-quality basins located near any given point along the optimization trajectory. These
high-quality basins cannot be reliably reached through Stochastic Gradient Descent (SGD), includ-
ing its advanced variants like Adam (Kingma & Ba, 2014). However, we find that an appropriate
linear combination of different checkpoints can locate these basins.

* Co-first authors: Enshu Liu (les23@mails.tsinghua.edu.cn), Junyi Zhu
(junyizhu.ai@gmail.com)

† Co-advise
‡ Corresponding authors: Yu Wang (yu-wang@mail.tsinghua.edu.cn), Xuefei

Ning (foxdoraame@gmail.com), and Zinan Lin (zinanlin@microsoft.com).

1

Published as a conference paper at ICLR 2025

Figure 1: Comparison of LCSC and vanilla training. LCSC achieves more than 14× training speed
up on CIFAR-10 with Consistency Distillation (CD) and more than 15× training speed up compared
to official released model on ImageNet-64 with CD. LCSC can also enhance the final converged
model significantly and achieves 1.7× inference speedup for DM.

(a) Vanilla training (b) LCSC (c) Vanilla training (d) LCSC

Figure 2: Comparison between the images generated by LCSC and vanilla training (on LCM-LoRA
model (Luo et al., 2023a;b)). The prompts for the left and right images are “A car that seems to
be parked illegally behind a legally parked car” and “Two women waiting at a bench next to a
street” respectively. The vanilla method produces images with unrealistic front wheels (left) and an
unnatural sitting posture (right), whereas LCSC produces more realistic images.

Inspired by the observation, we propose Linear Combination of Saved Checkpoints (LCSC). In
particular, for a set of checkpoints saved until any point of the training process, LCSC searches for
the optimal linear combination coefficients that optimize certain metrics (e.g., FID (Heusel et al.,
2017)) using an evolutionary algorithm. LCSC optimizes only in a low-dimension space and needs
no back-propagation, thus could be faster than training. Additionally, LCSC can optimize objectives
whose gradients are hard to compute, under which gradient-based optimization is not applicable. We
note that the widely used Exponential Moving Average (EMA) (Szegedy et al., 2016) in DM and
CM can be viewed as a linear combination method whose combination coefficients are determined
heuristically. We will theoretically prove and empirically demonstrate that EMA coefficients are
sub-optimal and are worse than LCSC. While this paper focuses on DM and CM, from a broader
perspective, LCSC is a general method and may be expanded to other tasks and neural networks.

We argue that LCSC is beneficial in all steps in the DM/CM production stage and can be used
to: (a) Reduce training cost. The training process of DM and CM is very costly. On ImageNet-64,
SOTA DMs and CMs (Dhariwal & Nichol, 2021; Karras et al., 2022; Song et al., 2023) require more
than 10K GPU hours on Nvidia A100. For higher resolution tasks, the resource demand soars dra-
matically again: Stable Diffusion (Rombach et al., 2022) costs more than 150K GPU hours (approx.
17 years) on Nvidia A100. By applying LCSC at the end, we can train CM/DM with significantly
fewer iterations or smaller batch sizes and reach similar generation quality with the fully trained
model, thereby reducing the computational cost of training. (b) Enhance model performance. If the
full training is already done, LCSC can still be applied to get a model that is better than any model in
the training process. For model developers with saved checkpoints, LCSC can be directly applied.
For users who can only access the final released checkpoint, they can fine-tune the checkpoint for a
few more iterations and apply LCSC on these checkpoints. As DM/CM provides a flexible trade-off
between generation quality and the number of generation steps, the enhanced model from LCSC
could lead to either better generation quality or faster generation.

The reminder of this paper is organized as follows: In Sec. 2, we introduce the background and
related works. In Sec. 3, we visualize the metric landscape of DM and CM, demonstrating the
potential of checkpoint merging. Additionally, we provide theoretical analyses showing that EMA
is suboptimal, and that a more flexible method for setting the merging coefficients is preferable. In
Sec. 4, we present our efficient method LCSC, which flexibly adjusts the merging coefficients to
find the best model through evolutionary search. A schematic diagram of LCSC is shown in Fig. 3
In Sec. 5, we conduct experiments to validate the effectiveness of LCSC on both DM and CM. The
results show that LCSC can accelerate the training process of CM by up to 23×. Moreover, LCSC

2

Published as a conference paper at ICLR 2025

Figure 3: A schematic diagram of LCSC. Given a set of checkpoints from training (left), LCSC
use evolutionary search to �nd the optimal linear combination coef�cients (middle). LCSC can be
applied on checkpoints from a training process with fewer training iterations or batch sizes and still
gets similar performance (abbreviated as “Perf.”), thus reducing training cost and enabling faster
training. LCSC can also enhance the �nal model in terms of generation quality or speed (right).

can decrease the NFE of DM from 15 to 9 while keeping the sample quality. We highlight some
of the results in Fig. 1. Additionally, we demonstrate that LCSC can be applied to text-to-image
models to further improve generation quality, with some images presented in Fig. 2. In Sec. 6, we
discuss the searched patterns of coef�cients to inspire further research on checkpoints merging.

2 BACKGROUND AND RELATED WORK
In this section, we brie�y introduce the foundational concepts and related works necessary for un-
derstanding this paper. A more comprehensive discussion is provided in App. B

Diffusion Probabilistic Model. Let us denote the data distribution bypdata , diffusion models (Sohl-
Dickstein et al., 2015; Song et al., 2020a; Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al.,
2020b) learn a process that perturbspdata with a stochastic differential equation:

dx t = � (x t ; t)dt + � (t)dw t ; (1)

where� (�; �) and � (�) represent the drift and diffusion coef�cients, respectively,w t denotes the
standard Brownian motion, andt 2 [0; T] indicates the time step.t = 0 stands for the real data
distribution.� (�; �) and� (�) are designed to make surepT (x) becomes pure Gaussian noise.

To train a diffusion model, we can construct a networks� (x t ; t) to approximate the score function
of the perturbed data distributionr logpt (x) by minimizing:

Et �U (0 ;T]Ey � pdataEx t �N (y ;� (t)2 I) � (t)ks� (x t ; t) � r x t logp(x t jy)k; (2)

where� (t) represents the loss weighting andy denotes a training image.

Consistency Models.During generation, diffusion models require multiple time steps, which results
in low ef�ciency. Consistency models (CM) are proposed to enable single-step generation (Song
et al., 2023), by mapping any pointx t at any given timet along a probability �ow trajectory directly
to the trajectory's initial pointx t . Training of CM can follow one of two methodologies: consistency
distillation (CD) or direct consistency training (CT). In the case of CD, the modelf � leverages
knowledge distilled from a pre-trained DM� . The distillation loss can be formulated as follows:

Ek �U [1;K � 1]Ey � pdata Ex t k +1 �N (y ;t 2
k +1 I) � (tk)d(f � (x t k +1 ; tk+1); f � � (x̂ �

t k
; tk)) ; (3)

wheref � � refers to the target model and� � is computed through EMA of the historical weights of
� , x̂ �

t k
is estimated by the pre-trained diffusion model� through one-step denoising based onx t k +1 ,

andd is a metric such as̀2 distance. Alternatively, in the CT case, the modelsf � are developed
independently, without relying on any pre-trained DM:

Ek �U [1;K � 1]Ey � pdata Ez �N (0;I) � (tk)d(f � (y + tk+1 z; tk+1); f � � (y + tk z; tk)) ; (4)

where the target modelf � � is set to be the same as the modelf � in the latest improved version of
the consistency training (Song & Dhariwal, 2024), i.e.,� � = � .

Weight Averaging. A line of work (Ruppert, 1988; Polyak & Juditsky, 1992; Izmailov et al., 2018)
explores the integration of a running average of the weights in the context of convex optimization and
stochastic gradient descent (SGD). More recently, Wortsman et al. (2022) demonstrate the potential
of averaging models that have been �ne-tuned with various hyperparameter con�gurations. In early
DM studies, the use of Exponential Moving Average (EMA) is found to signi�cantly enhance the

3

Published as a conference paper at ICLR 2025

quality of generation. This empirical strategy has since been adopted in most, if not all, subsequent
research endeavors. Consequently, CM have also incorporated this technique, discovering that EMA
models perform substantially better. EMA employs a speci�c averaging form that uses the exponen-
tial rate
 : ~� n =
 ~� n � 1 +(1 �
)� n , wheren = 1 ; : : : ; N denotes the number of training iterations,
~� represents the EMA model, and is initialized with~� 0 = � 0. For Large Language Models (LLMs),
many works have proposed more advanced weight averaging strategies aiming at merging models
�ne-tuned for different downstream tasks to create a new model with multiple capabilities (Ilharco
et al., 2022; Yadav et al., 2024; Jin et al., 2022; Yu et al., 2023).

Unlike these approaches, our work focuses on accelerating model convergence and achieving better
performancewithin a standalone training process. Additionally, our methodology for determining
merging coef�cients is novel, thereby distinguishing our method from these related works.

Search-based Methods for Diffusion Models.Recently, many studies have proposed discrete op-
timization dimensions for DMs and employed search methods to discover optimal solutions. This
includes using search methods to optimize model schedule for DMs (Liu et al., 2023a; Li et al.,
2023; Yang et al., 2023), appropriate strategies for diffusion solvers (Liu et al., 2023b), or quantiza-
tion settings for DMs (Zhao et al., 2024b;a). However, these works do not involve modi�cation to
model weights and are only applicable to DMs.

3 THEORETICAL AND EMPIRICAL MOTIVATION OF LCSC
In this section, we �rst conduct a theoretical analysis to understand the effectiveness of EMA in
Sec. 3.1. A key insight from this analysis is that the optimal EMA rate is not �xed but depends on the
number of training iterations, raising concerns about how to tune EMA effectively. We then present
empirical evidence in Sec. 3.2, demonstrating that EMA is not special in its effectiveness. In fact,
many linear combination results yield better performance on the trained models. Speci�cally, based
on the empirical evidence, we provide further theoretical analysis to prove that EMA is a suboptimal
method. These observations motivate the development of a more �exible merging method.
3.1 THEORETICAL CONVERGENCEANALYSIS

Analysis Framework. Previous works have established various frameworks for analyzing DMs
and CMs while considering their respective objectives (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2020a; Karras et al., 2022; Song et al., 2023). In this section, we follow the general
optimization analysis, which represents the essential form of network optimization (Rakhlin et al.,
2011; Shamir & Zhang, 2013; Harvey et al., 2019). Speci�cally, we denotef (� n) as the computed
loss of the network parameters atn-th iteration� n . For each training iterationn = 1 ; : : : ; N , we
obtain an unbiased random estimateĝn of the gradientr f (� n), such thatE[ĝn] = r f (� n). Addi-
tionally, we denoteE[kĝn k2] = � 2

n and assume that the expected square sum is upper bounded, i.e.
8n; E[kĝn k2] � G2. We emphasize that due to the high-variance characteristic of DM and CM (see
App. F.4 for a more detailed discussion),� 2

n does not diminish during training and may be signi�-
cant, potentially distinguishing the training of DM and CM from other tasks. To conduct the analysis,
we assumef is � -strongly convex (cf. Eq. (9)). Moreover, we considerf as a non-smooth function,
since natural images often exhibit features like edges and textures that lead to abrupt changes and
discontinuities in their distribution. Proofs of the following analyses are provided in App. A.

Based on the above analytical framework, Shamir & Zhang (2013) prove the following theorem and
show that the model of the last training iteration has a convergence rate ofO(log(N)=N).

Theorem 3.1 (Shamir & Zhang (2013))Supposef is � -strongly convex, and thatE[kĝn k2] � G2

for all n = 1 ; : : : ; N . Consider SGD with step sizes� n = 1=�n , then for anyN > 1, it holds that:

E[f (� N) � f (� �)] � 17G2 (1+log(N))
�N ; where� � denotes the optimal model.

The O(log(N)=N) convergence rate of the last-iter model is proven to be tight, as a lower bound
of
(log(N)=N) is found by Rakhlin et al. (2011). Next, we investigate the impact of merging the
historical weights using the form:�� �

N = 1
A

P N
n =1 � n � n , where� = f � 1; : : : ; � N g are the merging

coef�cients, andA =
P N

n =1 � n normalizes the sum of coef�cients to 1. When EMA is applied,
the coef�cients can be represented as� n =
 N � n , where
 is the exponential rate.* We prove that
EMA reduces signi�cant terms in the convergence bound toO(1=N) for largeN .

* This formulation differs slightly from the existing EMA implementation regarding the treatment of the
initial model. However, it provides mathematical convenience in the analysis. Our experimental results also
show that they achieve the same performance, as the discrepancy in their coef�cients is negligible.

4

Published as a conference paper at ICLR 2025

(a) Metric Landscape of DM. (b) Metric Landscape of CM.
Figure 4: The metric landscape of DM and CM. Selected checkpoints� n 0 , � n 1 , and� n 2 are aligned
sequentially along the training trajectory, withn0 < n 1 < n 2 denoting the progression in the
number of training iterations. The origin point(0; 0) corresponds to the checkpoint� n 1 , while the
X and Y axes quantify the differences between� n 1 � � n 0 and� n 2 � � n 0 , respectively. A weight
located at coordinate(x; y) is formulated as� (x;y) = � n 0 + x(� n 1 � � n 0)+ y(� n 2 � � n 0). Additional
visualizations are provided in App. D.

Theorem 3.2 Supposef is � -strongly convex, and thatE[kĝn k2] � G2 for all n. Consider SGD
with step sizes� n = 1=�n and EMA with factor
 2 (0; 1). Then for anyN > d� 1

ln
p

 e, we have:

E[f (�� �
N) � f (� �)] �

G2

�

�
1

 (1 �
 N � 1)(N + 1)
+

v(
)
2(1 �
 N � 1)

 N + 1 �

�

; (5)

wherev(
) =
P d� 1

ln
p

 e� 1

j =1
1�

 j j � 1�

d� 1

ln
p

 e
is a constant given
 and independent fromN .

We observe that the �rst term in Thm. 3.2 decays asO(1=N), while the second term decays ex-
ponentially asO(
 N). Additionally, there is a residual of1 �
 . Considering
 is close to 1, we
conclude that the signi�cant terms (the �rst two terms) decay at least as fast asO(1=N) and the
residual term is small. We hypothesize that the improvement of these signi�cant terms leads to an
acceleration in convergence compared to the overallO(log(N)=N) rate of the last-iter model. Fur-
thermore, we note that for suf�ciently largeN , it is preferable for
 to be large so that the residual
approaches zero, while the enlarged factors in the �rst two terms can be compensated by a largeN .
This insight aligns with practical experience. For example, Karras et al. (2022; 2024) implemented
EMA rates that increase with the number of training iterations. Notably, the optimal EMA rate is
dif�cult to prede�ne based on Thm. 3.2 without having the exact optimization landscape and the
least upper bound. This motivates the search for EMA rates during or after the training. Moreover,
in the next section, we will further show that EMA is suboptimal of merging coef�cients per se.

3.2 THE EFFECTIVENESS OFWEIGHT MERGING AND SUBOPTIMALITY OF EMA

To visualize the impact of linear combination of weights on the generation quality, we select 3
checkpoints� n 0 ; � n 1 ; � n 2 from the same training trajectory. Then we sweep across the 2D space
spanned by these three points and assess the FID scores. The results are shown in the �rst row of
Fig. 4. As we can see, there exists substantial opportunities to enhance the model's performance
at any training phase through the linear combination of existing weight checkpoints, which proves
that the effectiveness of EMA is not special. Furthermore, we conduct additional experiments using
EMA weights (see the seconde row of Fig. 4). Notably, we observe that linear combinations of
the three EMA weights could also achieve superior performance. It is important to highlight that
the linear combination of three EMA weights at various training iterations cannot be replicated by
any single EMA weight according to Thm. 3.3. Consequently, this suggests that EMA is indeed a
suboptimal solution, indicating possibilities for further improvement in this area.

Theorem 3.3 Assume� 1; : : : ; � N are linearly independent.† Denote�

1 ; : : : ; �

N as the results of
EMA using the exponential rate
 2 (0; 1). and select three indicesn1; n2; n3 s.t.1 < n 1 < n 2 <
n3. Consider three arbitrary merging coef�cientsc1; c2; c3 2 (0; 1), s.t.c1 + c2 + c3 = 1 , we have:

@
 0 2 (0; 1) : c1�

n 1

+ c2�

n 2

+ c3�

n 3

2 f �
 0

1 ; : : : ; �
 0

N g: (6)

†This assumption likely holds, asN is often substantially smaller than the number of parameters.

5

Published as a conference paper at ICLR 2025

Based on the above insights, we conclude that the optimal weight merging coef�cients are dif�cult to
prede�ned, and the performance of merged models can potentially be further improved with better
merging coef�cients. Therefore, we propose LCSC, which introduces an optimization method to
search for the optimal merging coef�cients.

4 METHOD

Next, we present the details of LCSC. The search problem is de�ned in Sec. 4.1. In Sec. 4.2, we
elaborate on our algorithm. Finally, we list several typical use cases of our method in Sec. 4.3.
4.1 DEFINITION OF THE SEARCH PROBLEM

Let f 1; 2; : : : ; N g denote the set of training iterations. Supposef n1; n2; : : : ; nK g is a subsequence
selected fromf 1; 2; : : : ; N g. De�ne � as the set of checkpoints saved at these speci�c training
iterations: � = f � n 1 ; � n 2 ; � n 3 ; � � � ; � n K g. Given� , we aim to �nd a group of coef�cients� =
f � 1; � 2; � 3; � � � ; � K g, that achieves the best utility when linearly combine all checkpoints:

arg min
� 1 ;� 2 ;� 3 ;��� ;� K 2 R

F (� 1� n 1 + � 2� n 2 + � 3� n 3 + � � � + � K � n K); s.t.
KX

i =1

� i = 1 ; (7)

whereF (�) denotes an evaluation function that measures the generation quality of� regarding a
speci�c metric, indicating higher quality with a smaller value. The constraint

P K
i =1 � i = 1 reduces

the dimension of the search space by 1. However, we �nd it enables a more effective exploration for
the search algorithm. Additionally, since the basin area in Fig. 4 extends beyond the convex hull of
the model weights, we allow� i < 0, distinguishing LCSC from existing weight averaging methods.

The trained model can also be a Low Rank Adapter (LoRA) (Hu et al., 2021). In this case, each
checkpoint is a product of two low-rank matrices:� n i = B n i A n i . The weighted sum of all check-
points by the coef�cients is:� 1B n 1 A n 1 + � 2B n 2 A n 2 + � 3B n 3 A n 3 + � � � + � K B n K A n K .

4.2 EVOLUTIONARY SEARCH

As discussed in Sec. 3, the optimal coef�cients are dif�cult to prede�ne. To solve the problem in
Sec. 4.1, we propose to use evolutionary search (Real et al., 2019; Liu et al., 2023a; Li et al., 2023).

Our detailed algorithm is provided in Alg. 1 and an illustration is given in Fig. 3. Given a
set of checkpoints� , we can apply LCSC at any training iterationn along the training trajectory.
The key points of our algorithm are summarized as follows: (a) For the stability during search, we
subtract the �rst checkpoint from each subsequent checkpoint and search for the coef�cients of their
difference. (b) We initialize the population using EMA coef�cients of several different rates. (c) We
then conduct an evolutionary search which views a group of coef�cients as an individual. In each
search iteration, only the top-performing individuals are selected as parents to reproduce the next
generation through crossover and mutation. Speci�cally, during crossover, we randomly mix the
coef�cients of the two parents or select one set entirely. For mutation, we introduce random Gaussian
noise to each coef�cient. This stochastic element ensures that bene�cial adaptations are conserved
and advanced to the subsequent generation, whereas detrimental modi�cations are discarded. (d) We
repeat this reproduction process for a predetermined number of times within each search iteration
and update the whole population with all newly generated individuals. (e) Upon the completion of
the search process, we choose the best individual as the output of our search algorithm.

Since evolutionary search only performs model inference and is thus gradient-free, LCSC achieves
signi�cant savings in GPU memory usage (applicable to both DM and CM) and computational time
(particularly for CM, given that the inference process for DM is still resource-intensive). Further-
more, LCSC has the unique advantage of optimizing models directly for non-differentiable metrics.
The applicability of LCSC could potentially extends to various other tasks and models as well.

4.3 USE CASES

Finally, we delve into the use cases of LCSC.(a) Decrease Training Cost.Through our investiga-
tion, we have discerned that the training process for DM and CM can be categorized into two distinct
phases, with the second phase taking the majority of training iterations but converging slowly (fur-
ther discussion is deferred to App. E.2).Our method can be employed at the onset of the second
phase and yield performance on par with or even surpasses the �nal converged model. Additionally,
SOTA DMs and CMs necessitate training with large batch sizes, which places a substantial demand
on computational resources (Karras et al., 2022; Dhariwal & Nichol, 2021; Song et al., 2023). De-
creasing the batch size often leads to worse convergence speed.LCSC can be used for low batch

6

Published as a conference paper at ICLR 2025

size training and achieve equivalent performance to models trained with full batch size. These ap-
plications aims to expedite the training process.(b) Enhance Converged Models.LCSC can be
applied to the checkpoints saved during the �nal stage of training to re�ne the converged model.It
can enhance the generation quality under the same NFE, or maintain the generation quality with
fewer NFE, thereby reducing the inference cost during deployment.Additionally, for users who only
have access to released pre-trained models,we suggest �ne-tuning the model for a few iterations and
saving the intermediate checkpoints. Then LCSC can be used to enhance the released model.

5 EXPERIMENTS

In Sec. 5.1, we introduce the experimental settings. In Sec. 5.2 and 5.3, we demonstrate results for
the two use cases. In Sec. 5.4 we demonstrate the potential of merging LoRA checkpoints. We
further apply our method on text-to-image task in Sec. 5.5. Finally, we discuss the generalization
ability of LCSC in Sec. 5.6. We ablate several important hyper-parameters in our work�ow in
App. E.4.

5.1 EXPERIMENTAL SETUP

We follow previous work to con�gure the training process. Details of the training and search con-
�gurations are provided in App. E.1.

Evaluation. We choose the most commonly used metric, FID (Heusel et al., 2017), as the search
objective. To evaluate the combination coef�cients during the evolutionary search, we sample 5K
images for ImageNet-64 with DM and LSUN datasets, while 10K for other settings, using a �xed
group of initial noise. For the �nal model evaluation, we generate 50K samples using a different
group of initial noises. To demonstrate that LCSC searches based on FID but achieves overall
improvement, we also report PickScore (Kirstain et al., 2023), ImageReward (Xu et al., 2023),
and the winning rates based on these two metrics for the text-to-image task, and IS (Salimans et al.,
2016), precision, and recall (Kynkäänniemi et al., 2019) for other cases. In Sec. 5.6, we further report
FCD (the variant of FID using CLIP features instead of Inception features) and KID (Bińkowski
et al., 2018) to show that LCSC also brings improvements in other feature spaces or metrics.

Baselines.Since EMA is the default setting in almost all works of DM and CM, we report the per-
formance of the EMA weights for full-model training using the rate reported by of�cial papers (Song
et al., 2023; 2020a; Nichol & Dhariwal, 2021) as our main baselines. For CM models on ImageNet-
64 and LSUN datasets, we additionally download the of�cial models trained with full batch size and
test their performance for a complete comparison. We further conduct a grid search of EMA rate for
the �nal model as a stronger baseline, denoted as EMA*, to prove the sub-optimality of EMA and
that LCSC is a more effective method. More experimental details are provided in App. E.

5.2 RESULTS ONREDUCING THE TRAINING COST

We conduct a series of experiments on CD and CT to show that LCSC can signi�cantly reduce their
training costs.The ef�ciency of LCSC has considered both training and search cost on the CPU and
GPU, with detailed information available in App. E.3.Generated images are visualized in App. H.

LCSC can be applied at an early training stage to reduce the number of training iterations. As
illustrated in Tab. 1, applying LCSC to the CD model with only 50K training iterations achieves a
better FID than the �nal model trained with 800K iterations on CIFAR-10 (3.10 vs. 3.66), which
accelerates the training by approximately 14� . For CT, we only achieve a converged FID of 9.87
with vanilla training and are unable to fully reproduce the result of FID=8.70 reported by Song et al.
(2023). However, by applying our method at 400K training iterations, we can achieve a similar FID
to the reported one from 800K training iterations, achieving around a 1.9� speedup. On ImageNet-
64 (Tab. 2), we decrease the batch size from 2048 to 256 due to limited resources. For CD, LCSC
achieves better performance (5.51 vs. 7.30 in FID) than the �nal converged model with only half of
the training iterations (300K vs. 600K). For CT, LCSC also signi�cantly reduces the �nal converged
FID (10.5 vs. 15.6) with fewer training iterations (600K vs. 1000K).

LCSC can also handle smaller training batch sizes to achieve higher speedups. As illustrated in
Tab. 1, LCSC with a batch size of 128 outperforms the �nal converged model with a batch size
of 512 for both CD and CT (3.21 vs. 3.66 with CD and 8.54 vs. 9.87 with CT), achieving overall
speedups of 23� and 7� , respectively. On ImageNet-64, we test the of�cial models of Song et al.
(2023), which were trained with a 2048 batch size for both CD and CT. With the assistance of LCSC,

7

Published as a conference paper at ICLR 2025

Table 1: Generation quality of CMs on CIFAR-10. The training speedup is compared against the
standard training with 800K iterations and 512 batch size. Our results that beat or match the standard
training (the “released” model for FID & IS, our reproduced results for Prec. & Rec.) are underlined.

Model Method Training Iter Batch Size NFE FID(#) IS(") Prec.(") Rec.(") Speed(")

CD

EMA

200K 512 1 4.08 9.18 0.68 0.56
800K 512 1 3.66 9.35 0.68 0.57
850K 512 1 3.65 9.32 0.68 0.57
850K 512 2 2.89 9.55 0.69 0.58

(released) 800K 512 1 3.55 9.48 - -
(released) 800K 512 2 2.93 9.75 - -
EMA* 800K 512 1 3.51 9.37 0.68 0.57

LCSC

50K 512 1 3.10 9.50 0.66 0.58 � 14�
800K 512 1 2.44 9.82 0.67 0.60 -

800+40K 512 1 2.50 9.70 0.68 0.59 -
100K 128 1 3.21 9.48 0.66 0.58 � 23�

CT

EMA

400K 512 1 12.1 8.52 0.67 0.43
800K 512 1 9.87 8.81 0.69 0.42

(released) 800K 512 1 8.70 8.49 - -
EMA* 800K 512 1 9.70 8.81 0.69 0.42

LCSC

400K 512 1 8.89 8.79 0.67 0.47 � 1.9�
800+40K 512 1 7.05 9.01 0.70 0.45 -

450K 128 1 8.54 8.66 0.69 0.44 � 7�

Table 2: Generation quality of consistency models on ImageNet-64. For CD, the speedup is com-
pared against the standard training with 600K iterations and 2048 batch size. For CT, the speedup
is compared against the standard training with 800K iterations and 2048 batch size. Our results that
beat the standard training (“released”) are underlined.

Model Method Training Iter Batch Size NFE FID(#) IS(") Prec.(") Rec.(") Speed(")

CD

EMA

300K 256 1 7.70 37.0 0.67 0.62
600K 256 1 7.30 37.2 0.67 0.62
650K 256 1 7.17 37.7 0.67 0.62

(released) 600K 2048 1 6.31 39.5 0.68 0.63
EMA* 600K 256 1 7.17 37.7 0.67 0.62

LCSC
300K 256 1 5.51 39.8 0.68 0.62 � 15�

600+20K 256 1 5.07 42.5 0.69 0.62 � 7.6�

CT

EMA

600K 256 1 16.6 30.6 0.62 0.54
800K 256 1 15.8 31.1 0.64 0.55
1000K 256 1 15.6 31.2 0.64 0.55

(released) 800K 2048 1 13.1 29.2 0.70 0.47
EMA* 1000K 256 1 15.6 31.2 0.64 0.55

LCSC
600K 256 1 10.5 36.8 0.66 0.56 � 11.4�
800K 256 1 9.02 38.8 0.68 0.55 � 7.3�

models trained with a 256 batch size consistently outperform the of�cial models (5.51, 5.07 vs. 6.31
with CD and 9.02, 10.5 vs. 13.1 with CT), achieving overall acceleration ratios up to 15� .

5.3 RESULTS ONENHANCING PRE-TRAINED MODELS

Our experiments on both DM and CM show that LCSC can signi�cantly boost the performance of
�nal converged models and reduce the required sampling steps.

To simulate scenarios where users have access only to pre-trained models, we �ne-tune the �nal
converged model for a few iterations and then apply LCSC. As illustrated in the 800+40K LCSC
row with CD and CT in Tab. 1, the 600+20K LCSC row with CD in Tab. 2 and the 1000+20K LCSC
on both datasets in Tab. 3, this approach signi�cantly enhances the performance of the already
converged model. For model developers, they can directly utilize the checkpoints close to the �nal
iteration, as demonstrated in the 800K LCSC row with CD in Tab. 1 and 800K LCSC row with CT
in Tab. 2. LCSC leads to notable improvements in all these scenarios. Notably, on CIFAR-10, LCSC
even outperforms the 800K and 850K models that use 2-step sampling, achieving better performance
with 1-step sampling (2.44, 2.50 FID vs. 2.93, 2.89 FID), thereby doubling the inference speed.
More experiments with Stable Diffusion checkpoints can be found at App. E.8

Same phenomenon has also been observed for DM, as shown in Tab. 4: applying LCSC at the �nal
stage of training can obtain a model that performs signi�cantly better than the �nal model of EMA.
Moreover, we observe that the model found by LCSC can match the performance of the best EMA

8

Published as a conference paper at ICLR 2025

Table 3: Generation quality of models on LSUN-bedroom and LSUN-cat with consistency training
(CT). We get the checkpoints by �ne-tuning the released of�cial model.

Dataset Method Training Iter Batch Size NFE FID(#) Prec.(") Rec.(")

LSUN-Cat
EMA

1000K (released) 2048 1 20.8 0.53 0.46
1000+20K (�ne-tuned) 256 1 21.0 0.58 0.44

LCSC 1000+20K 256 1 17.8 0.63 0.48

LSUN-Bedroom
EMA

1000K(released) 2048 1 16.1 0.60 0.17
1000+20K(�ne-tuned) 256 1 16.0 0.60 0.17

LCSC 1000+20K 256 1 13.5 0.59 0.37

Dataset Method Training Iter. NFE FID(#) IS(") Prec.(") Rec.(")

CIFAR10

EMA
150K 15 6.28 8.74 0.61 0.59
800K 15 4.16 9.37 0.64 0.60

EMA* 800K 15 3.96 9.50 0.64 0.60

LCSC

150K 15 4.76 8.97 0.61 0.59
800K 15 3.18 9.59 0.64 0.61
800K 9 3.97 9.50 0.63 0.60

ImageNet

EMA
150K 15 22.3 15.0 0.55 0.45
500K 15 19.8 16.9 0.58 0.59

EMA* 500K 15 18.1 17.3 0.59 0.59

LCSC

150K 15 19.1 15.3 0.56 0.56
500K 15 15.3 17.6 0.59 0.59
500K 12 17.2 17.2 0.57 0.59

Table 4: Generation
quality of diffusion
models. Our results
that beat the standard
training are underlined.

Table 5: Single-step generation quality of LoRA models.

Dataset Model Method Training Iter Batch Size FID(#) IS (") Prec.(") Rec.(")

ImageNet

CD

EMA 600K 256 7.30 37.21 0.67 0.62
LoRA 600+20K (�ne-tuned with LoRA) 256 6.79 37.74 0.67 0.63
LCSC 600+20K 256 4.21 43.22 0.68 0.64

CT

EMA 800K 256 15.75 31.08 0.64 0.55
LoRA 800+20K (�ne-tuned with LoRA) 256 15.14 31.59 0.64 0.56
LCSC 800+20K 256 4.90 45.33 0.67 0.65

LSUN-Bedroom CT
EMA 1000K 2048 16.10 - 0.60 0.17

LCSC 1000+20K 256 14.49 - 0.60 0.20

Table 6: Text-to-image generation quality of LCM LoRA. PKS and IR stand for PickScore and
ImageReward. WR stands for winning rate among all generated images compared to baselines.

Method Training Iter Batch Size Search NFE Eval NFE FID(#) PKS(") WR@PKS(") IR(") WR@IR(") CLIP-Score

Vanilla training 6K 12 - 4 32.52 0.46 34% -2.20 35% 26.02
LCSC 6K 12 4 4 28.30 0.54 66% -2.19 65% 26.39

Vanilla training 6K 12 - 2 43.32 0.46 33% -2.22 23% 25.16
LCSC 6K 12 2 2 30.39 0.54 67% -2.20 77% 26.01

Vanilla training 6K 12 - 2 43.32 0.47 34% -2.22 25% 25.16
LCSC 6K 12 4 2 33.13 0.53 66% -2.20 75% 25.89

model with fewer NFE during inference. Speci�cally, our method requiring NFE=9 is on par with
EMA � using NFE=15 on CIFAR-10. Similarly, our method with NFE=12 is competitive with EMA�

utilizing NFE=15 on ImageNet-64. This also highlights the potential for inference speedup.
5.4 RESULTS WITH LORA CHECKPOINTS

As discussed in Sec. 4.1, we can �ne-tune the model with LoRA and linearly combine the LoRA
checkpoints, which signi�cantly reduces the demand for memory and storage compared to full-
model LCSC. Results are reported in Tab. 5. Fine-tuning with LoRA checkpoints achieves per-
formance comparable to full-model �ne-tuning with LCSC. On ImageNet-64 dataset with CT, we
surprisingly �nd that applying LCSC to LoRA checkpoints outperforms the full model by a substan-
tial margin, highlighting the effectiveness of combining LCSC with LoRA.
5.5 RESULTS ONTEXT-TO-IMAGE TASK

To further validate the practicality of LCSC, we apply it to the training process of LCM-LoRA (Luo
et al., 2023a;b). We train the model on CC12M dataset and use 1k extra image-text pair in this dataset
to conduct search. We apply 4-step sampling and 2-step sampling and observe that the search results
from 4-step sampling can generalize to 2-step evaluation. We test the search result using 10k data in
MS-COCO dataset with FID, PickScore, and ImageReward. Since PickScore and ImageReward are
both image-wise metrics, we also report the winning rate of LCSC compared to baseline for these
two metrics. More details of the setting can be found in App. E.1.3. Results are shown at Tab. 6,
several examples are visualized in Fig. 2 and more are provided in Fig. 16. LCSC can signi�cantly

9

Published as a conference paper at ICLR 2025

Table 7: Evaluation results using FID, FCD on the training dataset and KID on the test dataset. See
Tab. 18 for test set FID and Tab. 17 for results on CT.

(a) Results on CIFAR-10.

Method Training Iter Batch Size FID(#) FCD(#) KID(#)

CD 800k 512 3.66 18.0 1.38e-3
CD 800k 512 3.65 17.3 1.39e-3

LCSC 100k 128 3.21 23.4 7.88e-4
LCSC 250k 512 2.66 14.3 4.43e-4
LCSC 800k 512 2.44 14.7 4.32e-4
LCSC 800+40k 512 2.50 14.0 4.11e-4

(b) Results on ImageNet-64.

Method Training Iter Batch Size FID(#) FCD(#) KID(#)

CD 300k 256 7.70 30.0 3.98e-3
CD 600k 256 7.30 29.1 3.65e-3
CD 600k 2048 6.31 25.5 3.37e-3

LCSC 300k 256 5.51 23.9 3.14e-3
LCSC 800+40k 256 5.07 23.2 1.97e-3

Figure 5: Visualization of weight combination coef�cients obtained using LCSC and EMA.
boost the FID. For human evaluation based metrics, LCSC achieves both better average value and
higher winning rate, indicating the potential of LCSC to be used in more complicated tasks.
5.6 DISCUSSION ON THEGENERALIZATION OF LCSC

Even if LCSC searches based on evaluation metrics (e.g., FID), we show here that LCSC generalizes
across metrics and data.

Metric Generalization. In Sec. 5.2 to 5.5, we have evaluated the search results across various
metrics besides FID, including IS, Precision, Recall, PickScore, and ImageReward. Additionally,
we further evaluate the search results on thetest setusing KID (Bińkowski et al., 2018) and FCD
(i.e., replacing Inception Net with CLIP as the feature extractor for FID); see Tab. 7 and Tab. 17.
These metrics differ from FID in various aspects, including feature extractors (FCD, PickScore,
ImageReward), calculation formulas (IS, Precision, Recall, KID, PickScore, and ImageReward),
application scenarios (PickScore and ImageReward for human-based evaluation). We observe that
most metrics are consistently improved, demonstrating the generalizability of LCSC across metrics.

Data Generalization. (a)Generalization of initial noise.During the search process, a �xed group
of initial noise is used. When performing evaluation, we use a different set of noise. Therefore, the
search result of LCSC generalizes to different initial noise.(b) Generalization of data.Since FID
is computed using the training set as the ground truth, we calculate additional metrics based on the
test set to validate that the search results of LCSC generalize across data; see Tabs. 7 and 18. Addi-
tionally, for text-to-image task (see Sec. 5.5), LCSC was searched based on CC12M but evaluated
on the test dataset of MS-COCO, demonstrating generalization to a closely related data distribution.

6 DISCUSSION ANDCONCLUSION

Analysis of Search Patterns.Since our method searches for the optimal coef�cients, it would be
interesting to check if the search pattern aligns with previous methods using �xed forms, such as
EMA, and to derive insights that could inspire further research on checkpoint merging. We visualize
several searched combination coef�cients in Fig. 5.(a) First, we observe that earlier checkpoints can
also be important, as some of them have large coef�cients.(b) Moreover, we �nd that LCSC tend
to assign large coef�cients to a small subset of weights, whereas the coef�cients for the majority
of weights are nearly zero. Further investigation suggests smaller and homogeneous solution also
exists but may be dif�cult to be found by LCSC (seeApp. F).(c) Finally, the presence of multiple
signi�cant negative coef�cients highlights that certain weights can act as critical negative examples.
This �nding implies traditional weight-averaging methods, such as EMA, are suboptimal. Since
they commonly con�ne the resulting model within the convex hull of all weights, which excludes
the discovered solutions. More search patterns and other insights are provided in App. F.

In this work, we investigate linearly combining saved checkpoints during training to achieve bet-
ter performance for DM and CM. We demonstrate the common bene�ts of checkpoint merging
and provide a theoretical analysis to clarify that the current standard merging method is suboptimal,
emphasizing the need for �exible merging coef�cients. We then propose using an evolutionary algo-
rithm to search for the optimal coef�cients, which runs ef�ciently. Through extensive experiments,
we demonstrate two uses of our method: reducing training costs and enhancing generation quality.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work was supported by National Natural Science Foundation of China (No. 62325405,
62104128, U19B2019, U21B2031, 61832007, 62204164), Flemish Government (AI Research Pro-
gram) and the Research Foundation - Flanders (FWO) through project number G0G2921N, Ts-
inghua EE Xilinx AI Research Fund, and Beijing National Research Center for Information Science
and Technology (BNRist). We thank the anonymous reviewers for their valuable feedback and sug-
gestions. We thank Yiran Shi for his help with experiments and all the support from In�nigence-AI.

REFERENCES

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation.arXiv preprint arXiv:2303.04248, 2023.

Miko�aj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demystifying mmd
gans.arXiv preprint arXiv:1801.01401, 2018.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets.arXiv preprint arXiv:2311.15127, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wil-
son. Loss surfaces, mode connectivity, and fast ensembling of dnns. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/be3087e74e9100d4bc4c6268cdbe8456-Paper.pdf .

Hyojun Go, Yunsung Lee, Seunghyun Lee, Shinhyeok Oh, Hyeongdon Moon, and Seungtaek Choi.
Addressing negative transfer in diffusion models.Advances in Neural Information Processing
Systems, 36, 2024.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining
Guo. Ef�cient diffusion training via min-snr weighting strategy. InProceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7441–7451, 2023.

Nicholas JA Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for non-
smooth stochastic gradient descent. InConference on Learning Theory, pp. 1579–1613. PMLR,
2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium.Advances in
neural information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models.arXiv preprint arXiv:2204.03458, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models.arXiv preprint
arXiv:2106.09685, 2021.

11

Published as a conference paper at ICLR 2025

Aapo Hyv̈arinen. Estimation of non-normalized statistical models by score matching.Journal of
Machine Learning Research, 6(24):695–709, 2005.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic.arXiv preprint
arXiv:2212.04089, 2022.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. In Ricardo Silva, Amir
Globerson, and Amir Globerson (eds.),34th Conference on Uncertainty in Arti�cial Intelligence
2018, UAI 2018, 34th Conference on Uncertainty in Arti�cial Intelligence 2018, UAI 2018, pp.
876–885. Association For Uncertainty in Arti�cial Intelligence (AUAI), 2018.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models.arXiv preprint arXiv:2212.09849, 2022.

Alexia Jolicoeur-Martineau, Ke Li, Ŕemi Pich́e-Taillefer, Tal Kachman, and Ioannis Mitliagkas.
Gotta go fast when generating data with score-based models.arXiv preprint arXiv:2105.14080,
2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models.Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. InProceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.arXiv preprint
arXiv:1412.6980, 2014.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation.Advances in Neural
Information Processing Systems, 36:36652–36663, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tuomas Kynk̈aänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models.Advances in Neural Information
Processing Systems, 32, 2019.

Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei
Chao, and Rongrong Ji. Autodiffusion: Training-free optimization of time steps and architec-
tures for automated diffusion model acceleration. InProceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7105–7114, 2023.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d con-
tent creation. InProceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 300–309, 2023.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. Oms-dpm: Optimizing the
model schedule for diffusion probabilistic models.arXiv preprint arXiv:2306.08860, 2023a.

Enshu Liu, Xuefei Ning, Huazhong Yang, and Yu Wang. A uni�ed sampling framework for solver
searching of diffusion probabilistic models.arXiv preprint arXiv:2312.07243, 2023b.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models
on manifolds. InInternational Conference on Learning Representations, 2022. URLhttps:
//openreview.net/forum?id=PlKWVd2yBkY .

12

Published as a conference paper at ICLR 2025

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps.arXiv preprint
arXiv:2206.00927, 2022.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models: Synthe-
sizing high-resolution images with few-step inference.arXiv preprint arXiv:2310.04378, 2023a.

Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo
Huang, Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module.
arXiv preprint arXiv:2311.05556, 2023b.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In Marina Meila and Tong Zhang (eds.),Proceedings of the 38th International Conference on
Machine Learning, volume 139 ofProceedings of Machine Learning Research, pp. 8162–8171.
PMLR, 18–24 Jul 2021.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and Huazhong Yang. A generic graph-based
neural architecture encoding scheme for predictor-based nas. InEuropean Conference on Com-
puter Vision, pp. 189–204. Springer, 2020.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization.arXiv preprint arXiv:1109.5647, 2011.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classi�er architecture search. InProceedings of the aaai conference on arti�cial intelligence,
volume 33, pp. 4780–4789, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. InProceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

David Ruppert. Ef�cient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans.Advances in neural information processing systems, 29,
2016.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In Sanjoy Dasgupta and David McAllester (eds.),
Proceedings of the 30th International Conference on Machine Learning, volume 28 ofProceed-
ings of Machine Learning Research, pp. 71–79, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. InInternational Conference on Machine Learn-
ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
arXiv:2010.02502, October 2020a. URLhttps://arxiv.org/abs/2010.02502 .

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. InThe
Twelfth International Conference on Learning Representations, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations.arXiv preprint
arXiv:2011.13456, 2020b.

13

Published as a conference paper at ICLR 2025

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models.arXiv preprint
arXiv:2303.01469, 2023.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. InProceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Xiang Wang, Shiwei Zhang, Han Zhang, Yu Liu, Yingya Zhang, Changxin Gao, and Nong Sang.
Videolcm: Video latent consistency model.arXiv preprint arXiv:2312.09109, 2023.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple �ne-tuned models improves accuracy
without increasing inference time. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.),Proceedings of the 39th International Conference
on Machine Learning, volume 162 ofProceedings of Machine Learning Research, pp. 23965–
23998. PMLR, 17–23 Jul 2022.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation,
2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging: Re-
solving interference when merging models.Advances in Neural Information Processing Systems,
36, 2024.

Shuai Yang, Yukang Chen, Luozhou Wang, Shu Liu, and Yingcong Chen. Denoising diffusion
step-aware models.arXiv preprint arXiv:2310.03337, 2023.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch.arXiv preprint arXiv:2311.03099,
2023.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 586–595. IEEE Computer Society, 2018.

Tianchen Zhao, Tongcheng Fang, Enshu Liu, Rui Wan, Widyadewi Soedarmadji, Shiyao Li, Zinan
Lin, Guohao Dai, Shengen Yan, Huazhong Yang, et al. Vidit-q: Ef�cient and accurate quantiza-
tion of diffusion transformers for image and video generation.arXiv preprint arXiv:2406.02540,
2024a.

Tianchen Zhao, Xuefei Ning, Tongcheng Fang, Enshu Liu, Guyue Huang, Zinan Lin, Shengen Yan,
Guohao Dai, and Yu Wang. Mixdq: Memory-ef�cient few-step text-to-image diffusion mod-
els with metric-decoupled mixed precision quantization. InEuropean Conference on Computer
Vision, pp. 285–302. Springer, 2024b.

A PROOF OFTHEORETICAL ANALYSIS

Lemma A.1 Supposef is � -strongly convex, and thatE[kĝn k2] � G2 for all n = 1 ; : : : ; N .
Consider SGD with step sizes� n = 1=�n , then for anyN > 1, it holds that:

E[k� N � � � k2] �
2G2

� 2n
(8)

Proof of Lem. A.1 basically follows Rakhlin et al. (2011), while we improve the upper bound with
a factor of 2.

By the strong convexity off , we have:

hgn ; � n � � � i � f (� n) � f (� �) +
�
2

k� n � � � k2; (9)

f (� n) � f (� �) �
�
2

k� n � � � k2: (10)

14

Published as a conference paper at ICLR 2025

Based on the above inequalities, we can derive:

E[k� n +1 � � � k2] = E[k� n + � n ĝn � � � k] (11)

= E[k� n � � � k2] + � 2
n E[kĝn k2] � 2� n E[h� n � � � ; ĝn i] (12)

= E[k� n � � � k2] + � 2
n G2 � 2� n E[h� n � � � ; gn i] (13)

9
� E[k� n � � � k2] + � 2

n G2 � 2� n (f (� n) � f (� �) +
�
2

k� n � � � k2) (14)

10
� E[k� n � � � k2] + � 2

n G2 � 2� n � (k� n � � � k2): (15)

Plugging in� n = 1=�n , we obtain:

E[k� n +1 � � � k2] � (1 �
2
n

)E[k� n � � � k2] +
G2

� 2n2 : (16)

Whenn = 1 , we have:

E[k� 2 � � � k2] � � E[k� 1 � � � k2] +
G2

� 2 �
G2

� 2 : (17)

SinceE[k� 2 � � � k2] � 0, we can also obtain:

E[k� 1 � � � k2] �
G2

� 2 : (18)

Therefore, whenn = 1 ; 2, Lem. A.1 is satis�ed. Forn � 2, we can further prove it using induction
agreement:

E[k� n +1 � � � k2] � (1 �
2
n

)E[k� n � � � k2] +
G2

� 2n2 (19)

� (1 �
2
n

)
2G2

� 2n
+

G2

� 2n2 (20)

�
(2n � 3)G2

� 2n2 (21)

�
2G2

� 2(n + 1)
(22)

A.1 PROOF OFTHM . 3.2

Rearrange Eq. (12):

E[h� n � � � ; gn i] =
1

2� n
(E[k� n � � � k2] � E[k� n +1 � � � k2]) +

� n

2
E[kĝn k2]: (23)

Plugging in Eq. (9) and� n = 1=�n , we obtain:

E[f (� n) � f (� �)] �
�
2

�
(n � 1) E[k� n � � � k2] � nE[k� n +1 � � � k2]

�
+

1
2�n

G2: (24)

Summing overN iterations using coef�cients� :

E[f (�� �
n) � f (� �)] (25)

�
�

2A

NX

n =1

� n
�
(n � 1) E[k� n � � � k2] � nE[k� n +1 � � � k2]

�
+

G2

2� A

NX

n =1

� n

n
(26)

=
�

2A

NX

n =2

(� n � � n � 1) (n � 1) E[k� n � � � k2] � N E[k� N +1 � � � k2]

!

+
G2

2� A

NX

n =1

� n

n

(27)

�
�

2A

NX

n =2

(� n � � n � 1) (n � 1) E[k� n � � � k2] +
G2

2� A

NX

n =1

� n

n
: (28)

15

Published as a conference paper at ICLR 2025

Plugging in Lem. A.1, we have:

E[f (�� �
n) � f (� �)] �

G2

� A

NX

n =2

(� n � � n � 1) (n � 1)
n

+
G2

2� A

NX

n =1

� n

n
(29)

�
G2

� A

NX

n =2

(� n � � n � 1) +
G2

2� A

NX

n =1

� n

n
: (30)

Plugging in� n =
 N � n ; A = 1�
 N � 1

1�
 , we have

E[f (�� �
n) � f (� �)] �

G2

� A

NX

n =2

�

 N � n �
 N � n +1 �

+
G2

2� A

NX

n =1

 N � n

n
(31)

=
G2(1 �
)

� A

NX

n =2

 N � n +
G2

2� A

 N

NX

n =1

1

 n n

(32)

=
G2(1 �
)

� A
1 �
 N � 2

1 �

+

G2

2� A

 N

NX

n =1

1

 n n

(33)

=
G2(1 �
)

�
1 �
 N � 2

1 �
 N � 1 +
G2(1 �
)

2� (1 �
 N � 1)

 N

NX

n =1

1

 n n

(34)

�
G2(1 �
)

�
+

G2(1 �
)
2� (1 �
 N � 1)

 N
NX

n =1

1

 n n

: (35)

Next, we focus on deriving an upper bound for the second term in Eq. (35), since there is no simple
closed-form expression for it. We notice that
 n decays faster thann grows. Therefore it is more
important to evaluate1

 n n whenn approachesN .

We will slightly abuse the notationx to denote a positive real number. First, we note that:

d
1

 x x
= � (
 x x) � 2(
 x + x
 x ln
) (36)

= �
1=x + ln

 x x
: (37)

If x � � 1
ln

p

 , we have1=x � ln 1=

p

 . Plug this into Eq. (37):

if x � �
1

ln
p

; d

1

 x x

� �
ln 1=

p

 + ln

 x x
(38)

�
� ln

p

 x x
: (39)

Integrating both sides fromx = d� 1
ln

p

 e to x = N + 1 , we obtain:

Z x = N +1

x = d� 1
ln

p

 e

d
1

 x x
=

1

 N +1 (N + 1)

�
1

 d� 1
ln

p

 ed� 1

ln
p

 e
(40)

39
�

Z x = N +1

x = d� 1
ln

p

 e

� ln
p

 x x

dx: (41)

16

Published as a conference paper at ICLR 2025

Since the derivative in Eq. (39) is always positive, the function1

 x x is monotonically increasing

whenx � � 1=ln
p

 . In such case, the lower Riemann sums underestimate the integral, we have:

NX

n = d� 1
ln

p

 e

1

 n n

�
Z x = N +1

x = d� 1
ln

p

 e

1

 x x

dx (42)

41
�

1
� ln

p

(
1

 N +1 (N + 1)
�

1

 d� 1
ln

p

 ed� 1

ln
p

 e
) (43)

� �
1

 N +1 (N + 1) ln
p

�

1

 d� 1
ln

p

 e

: (44)

Plugging Eq. (44) into Eq. (35), we have:

E[f (� �
n) � f (� �)] �

G2(1 �
)
�

+
G2(1 �
)

2� (1 �
 N � 1)

 N (

NX

n = d� 1
ln

p

 e

1

 n n

+

d� 1
ln

p

 e� 1

X

j =1

1

 j j

) (45)

�
G2(1 �
)

�
+

G2(1 �
)
2� (1 �
 N � 1)

 N (

�
1

 N +1 (N + 1) ln
p

�

1

 d� 1
ln

p

 e

+

d� 1
ln

p

 e� 1

X

j =1

1

 j j

) (46)

=
G2(1 �
)

�
+

G2

2� (1 �
 N � 1)
(

1 �

 (N + 1) ln 1 =

p

+
 N v(
)) (47)

�
G2(1 �
)

�
+

G2

2� (1 �
 N � 1)
(

2

 (N + 1)

+
 N v(
)) (48)

=
G2

�

�
1

 (1 �
 N � 1)(N + 1)
+

v(
)
2(1 �
 N � 1)

 N + 1 �

�

; (49)

wherev(
) =
P d� 1

ln
p

 e� 1

j =1
1�

 j j � 1�

d� 1

ln
p

 e
. To derive Eq. (48), we �rst identify that(1 �

)=ln 1=
p

 is monotonically increasing for
 2 (0; 1). We then compute the limit as
 ! 1
using L'Hôpital's rule.

A.2 PROOF OFTHM . 3.3

We prove Thm. 3.3 using a proof by contradiction.

Assume9
 0 2 (0; 1), s.t.c1�

n 1

+ c2�

n 2

+ c3�

n 3

2 f �
 0

1 ; : : : ; �
 0

N g. Denoten� 2 f 1: : : N g such
that:

c1�

n 1

+ c2�

n 2

+ c3�

n 3

= �
 0

n � : (50)

Since�

1 ; : : : ; �

N are the EMA of� 1; : : : ; � N , which are linearly independent, and�
 0

n � is an EMA
of � 1; : : : ; � n � , we can derive:n� = n3.

Substituting the EMA models with the original models, we have:

c1�

n � 1 + c2�

n 2
+ c3�

n 3
=(c1
 n 1 � 1 + c2
 n 2 � 1 + c3
 n 3 � 1)� 1 + : : :

+ (1 �
)
�
c1 + c2
 n 2 � n 1 + c3
 n 3 � n 1

�
� n 1 + : : :

+ (1 �
)(c2 + c3
 n 3 � n 2)� n 2 + : : : + (1 �
)c3� n 3 ; (51)

�
 0

n 3
=
 0n 3 � 1� 1 + : : : + (1 �
 0)
 0n 3 � n 1 � n 1 + (1 �
 0)
 0n 3 � n 2 � n 2 + : : :

+ (1 �
 0)� n 3 : (52)

Note that we apply the practical implementation of EMA for Thm. 3.3, which is different from
Thm. 3.2. However, their discrepancy is negligible. Since�

1 ; : : : ; �

N are linearly independent,

17

Published as a conference paper at ICLR 2025

coef�cients of all models� 1; : : : ; � n 3 in Eqs. (51) and (52) should be aligned with each other. Based
on the last term in Eqs. (51) and (52), we have:

(1 �
)c3 = 1 �
 0)
 0 = 1 � (1 �
)c3: (53)

Case 1:n2 < n 3 � 1 First, we consider the casen2 < n 3 � 1, we have the following equations
for the indexn3 � 1:

(1 �
)
c 3� n 3 � 1 = (1 �
 0)
 0� n 3 � 1 (54)

(1 �
)
c 3 = (1 �
 0)
 0 (55)

(1 �
)
c 3
53= (1 �
)c3
 0 (56)

 =
 0 (57)

 0 53= 1 � (1 �
 0)c3 (58)

 0(1 � c3) = 1 � c3 (59)

 0 = 1 : (60)

Eq. (60) contradicts with the assumption
;
 0 2 (0; 1).

Case 2:n2 = n3 � 1 and n1 < n 2 � 1 Next, we consider the casen2 = n3 � 1 andn1 < n 2 � 1.
We have the following equation for the indexn2:

(1 �
 0)
 0� n 2 = (1 �
)
c 3� n 2 + (1 �
)c2� n 2 : (61)

Additionally, we have the equations below for the indexn2 � 1:

(1 �
 0)
 02 = (1 �
)
 2c3 + (1 �
)
c 2 (62)

((1 �
)
c 3 + (1 �
) c2)
 0 61= ((1 �
)
c 3 + (1 �
) c2)
 (63)

 0 =
 (64)

 0 57� 60= 1 : (65)

Eq. (65) contradicts with the assumption
;
 0 2 (0; 1).

Case 3:n2 = n3 � 1 and n1 = n2 � 1 Finally, we consider the casen2 = n3 � 1 andn1 = n2 � 1.
We have the following equation for the indexn1:

(1 �
 0)
 02 = (1 �
)
 2c3 + (1 �
)
c 2 + (1 �
)c1: (66)

Additionally, we have the equations below for the indexn1 � 1:

(1 �
 0)
 03 = (1 �
)
 3c3 + (1 �
)
 2c2 + (1 �
)
c 1 (67)
�
(1 �
)
 2c3 + (1 �
)
c 2 + (1 �
)c1

�

 0 66=

�
(1 �
)
 2c3 + (1 �
)
c 2 + (1 �
)c1

�

(68)

 0 =
 (69)

 0 57� 60= 1 : (70)

Eq. (70) contradicts with the condition
;
 0 2 (0; 1).

Since the condition
;
 0 2 (0; 1) always leads to a contradiction, we prove that@
 0 2 (0; 1), s.t.
c1�

n 1
+ c2�

n 2
+ c3�

n 3
2 f �
 0

1 ; : : : ; �
 0

N g.

B EXTENDED BACKGROUND AND RELATED WORK

B.1 DIFFUSION PROBABILISTIC MODEL

Let us denote the data distribution bypdata and consider a diffusion process that perturbspdata with
a stochastic differential equation (SDE) (Song et al., 2020b):

dx t = � (x t ; t)dt + � (t)dw t ; (71)

18

Published as a conference paper at ICLR 2025

where� (�; �) and � (�) represent the drift and diffusion coef�cients, respectively,w t denotes the
standard Brownian motion, andt 2 [0; T] indicates the time step.t = 0 stands for the real data
distribution.� (�; �) and� (�) are designed to make surepT (x) becomes pure Gaussian noise.

Diffusion models (DM) (Sohl-Dickstein et al., 2015; Song et al., 2020a; Ho et al., 2020; Nichol
& Dhariwal, 2021; Song et al., 2020b; Karras et al., 2022; Dhariwal & Nichol, 2021) undertake
the reverse operation by initiating withx T sampled from pure Gaussian noise and progressively
denoising it to reconstruct the imagex 0. Importantly, SDE has its corresponding “probability �ow”
Ordinary Differential Equation (PF ODE) (Song et al., 2020b;a), which delineates a deterministic
pathway that yields the same distributionpt (x) for 8t, thereby offering a more ef�cient sampling
mechanism:

dx t =
�
� (x t ; t) �

1
2

� (t)2r logpt (x)
�

dt; (72)

wherer logpt (x) is referred to as thescore functionof pt (x) (Hyvärinen, 2005). Various ODE
solvers have been introduced to further expedite the sampling process utilizing Eq. (72) or minimiz-
ing the truncation error (Liu et al., 2022; Jolicoeur-Martineau et al., 2021; Karras et al., 2022; Lu
et al., 2022).

A pivotal insight within diffusion models is the realization thatr logpt (x) can be approximated by
a neural networks� (x t ; t), which can be trained using the following objective:

Et �U (0 ;T]Ey � pdataEx t �N (y ;� (t)2 I) � (t)ks� (x t ; t) � r x t logp(x t jy)k; (73)

where� (t) represents the loss weighting andy denotes a training image.

B.2 CONSISTENCYMODELS

Drawing inspiration from DM theory, consistency models (CM) have been proposed to enable
single-step generation (Song et al., 2023; Song & Dhariwal, 2024). Whereas DM incrementally
denoises an image, e.g., via the PF ODE, CM denoted byf � is designed to map any pointx t at any
given timet along a PF ODE trajectory directly to the trajectory's initial pointx t in a single step.

CMs are usually trained through discretized time steps, so we consider segmenting the time span
from [�; T] into K � 1 sub-intervals, with� being a small value approximating zero. Training of CM
can follow one of two primary methodologies: consistency distillation (CD) or direct consistency
training (CT). In the case of CD, the modelf � leverages knowledge distilled from a pre-trained DM
� . The distillation loss can be formulated as follows:

Ek �U [1;K � 1]Ey � pdata Ex t k +1 �N (y ;t 2
k +1 I) � (tk)d(f � (x t k +1 ; tk+1); f � � (x̂ �

t k
; tk)) ; (74)

wheref � � refers to the target model and� � is computed through EMA of the historical weights of
� , x̂ �

t k
is estimated by the pre-trained diffusion model� through one-step denoising based onx t k +1 ,

andd is a metric implemented by either the`2 distance or LPIPS (Zhang et al., 2018).

Alternatively, in the CT case, the modelsf � are developed independently, without relying on any
pre-trained DM:

Ek �U [1;K � 1]Ey � pdata Ez �N (0;I) � (tk)d(f � (y + tk+1 z; tk+1); f � � (y + tk z; tk)) ; (75)

where the target modelf � � is set to be the same as the modelf � in the latest improved version of
the consistency training (Song & Dhariwal, 2024), i.e.� � = � .

B.3 WEIGHT AVERAGING

The integration of a running average of the weights by stochastic gradient descent (SGD) was ini-
tially explored within the realm of convex optimization (Ruppert, 1988; Polyak & Juditsky, 1992).
This concept was later applied to the training of neural networks (Szegedy et al., 2016). Izmailov
et al.(Izmailov et al., 2018) suggest that averaging multiple weights over the course of training can
yield better generalization than SGD. Wortsman et al.(Wortsman et al., 2022) demonstrate the po-
tential of averaging weights that have been �ne-tuned with various hyperparameter con�gurations.
The Exponential Moving Average (EMA) employs a speci�c form that uses the exponential rate

as a smoothing factor:

~� n =
 ~� n � 1 + (1 �
)� n ; (76)

19

Published as a conference paper at ICLR 2025

wheren = 1 ; : : : ; N denotes the number of training iterations,~� represents the EMA model, and is
initialized with ~� 0 = � 0.

Practitioners often opt for advanced optimizers such as Adam (Kingma & Ba, 2014) for different
tasks and network architectures, which might reduce the need for employing a running average.
However, the use of EMA has been noted to signi�cantly enhance the quality of generation in early
DM studies (Song et al., 2020b; Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021; Ho et al.,
2020; Song et al., 2020a). This empirical strategy has been adopted in most, if not all, subsequent
research endeavors. Consequently, CM have also incorporated this technique, discovering EMA
models that perform substantially better.

Recently, several works of more advanced weight averaging strategies have been proposed for Large
Language Models (LLMs). Most of them focus on merging models �ne-tuned for different down-
stream tasks to create a new model with multiple capabilities (Ilharco et al., 2022; Yadav et al., 2024;
Jin et al., 2022; Yu et al., 2023). Different from these approaches, our work aims to accelerate the
model convergence and achieve better performance in a standalone training process. Moreover, the
methodology we employ for determining averaging coef�cients is novel, thereby distinguishing our
method from these related works. Further details can be found in Sec. 3 and Sec. 4.

B.4 SEARCH-BASED METHODS FORDIFFUSION MODELS

Search algorithms are widely used across various domains like Neural Architecture Search
(NAS) (Real et al., 2019; Ning et al., 2020), where they are employed to identify speci�c targets.
Recently, many works studies have set discrete optimization dimensions for DMs and utilized search
methods to unearth optimal solutions. For example, Liu et al. (Liu et al., 2023a), Li et al. (Li et al.,
2023) and Yang et al. (Yang et al., 2023) use search methods to �nd the best model schedule for
DMs. Liu et al. (Liu et al., 2023b) apply search methods to �nd appropriate strategies for diffusion
solvers. However, these works do not involve modi�cation to model weights during search and are
only applicable to DMs.

C LCSC ALGORITHM

The detailed algorithm of LCSC is provided in Alg. 1.

D ADDITIONAL EXAMPLES OF THEMETRIC LANDSCAPE

We previously introduced the metric landscape of the DM and CD models in Sec. 3. In this section,
we extend our analysis by evaluating additional metric landscapes using the FID. Speci�cally, we
incorporate an additional intermediate training iteration and explore the metric landscape of the CT
model. The comprehensive landscapes of the DM, CD, and CT models are depicted in Fig. 7.

Since we use grid search to get the performance and using interpolation to get the smooth landscapes,
we further provide some examples of the original performance heat-map in grids, as shown in Fig. 6

E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

E.1 EXPERIMENTAL DETAILS

E.1.1 TRAINING SETTING

Since LCSC employs weight checkpoints, we endeavored to replicate the training processes of the
baseline models.

For DM, we follow DDIM (Song et al., 2020a) for the evaluation on CIFAR10 (Krizhevsky et al.,
2009) and iDDPM (Nichol & Dhariwal, 2021) for the evaluation on ImageNet-64 (Deng et al.,
2009). To improve the inference ef�ciency, we adopt DPM-Solver (Lu et al., 2022). For CM (Song
et al., 2023), we evaluate LCSC with both CD and CT on CIFAR-10 and ImageNet-64, and CT on
LSUN datasets. For CIFAR-10 and ImageNet-64, We train models with our own implementation.
We follow all the settings reported by the of�cial paper except ImageNet-64, on which we decrease
the batch size to 256 on CM and 512 on DM due to the limited resources. We apply LCSC at

20

Published as a conference paper at ICLR 2025

Algorithm 1 Evolutionary Search for Combination Coef�cients Optimization

Require:
� = f � n 1 ; � n 2 ; � n 3 ; � � � ; � n K g: the set of saved checkpoints untill training iterT
F : the metric evaluator.

Symbols:
P: The wholePopulation of model schedule.
CP: TheCandidateParents set of each loop, from which a parent coef�cients is selected.
NG: TheNextGeneration newly mutated from the parent coef�cients in each loop.
� : A group of combination coef�cients denoted as� = f � 1; � � � ; � K g
� � � : Equal to(1 �

P K
i =2 � i)� n 1 +

P K
i =2 � i � n i

Hyperparameters:
Epoch: Number of loops for the entire search process.
MCP : Maximum size of the candidate parents setCP.
Iter : Maximum number of mutations in each loop.

Search Process:
1: P ?
2: Initialize a group of coef�cients� init with EMA weights
3: P P [f (� init ; F (� init � �)) g
4: for t = 1 ; � � � ; Epoch do
5: NG ?
6: for i = 1 ; � � � ; Iter do
7: CP f � i jF (� i � �) ranks within the topmin (MCP ; jP j) in Pg

8: � f ; � m
Random Sample

 �������� CP
9: � new Mutate(Crossover(� f ; � m))

10: NG NG [f (� new ; F (� new � �)) g
11: end for
12: P P [NG
13: end for
14: � � arg min

� 2 P
F (� � �)

15: return � � � �

different training stages. For LSUN datasets, we �ne-tune the released of�cial models and apply
LCSC. We further train a LCM-LoRA model following the of�cial setting and use LCSC with
the �nal checkpoints. Speci�cally, for any selected iteration, we utilize checkpoints from every
predetermined interval of iterations within a de�ned window size. Then we run a search process to
�nd the optimal combination coef�cients.

For DMs, we were able to reproduce the results reported in the original papers successfully. How-
ever, for CMs, our training outcomes on CIFAR10 were slightly inferior to those documented in the
original papers. Additionally, due to resource constraints, we opted for a smaller batch size than the
original con�guration when training on ImageNet. In the results tables, we present both our training
outcomes and the results reported in the original papers, with the latter indicated asreleased. The
speci�cs of the experimental setups are detailed below.

For the experiments with DM, we utilize the DDIM (Song et al., 2020a) codebase (https:
//github.com/ermongroup/ddim) on CIFAR-10, adhering to the default con�guration set-
tings. For ImageNet-64, we employ the iDDPM (Nichol & Dhariwal, 2021) codebase (https:
//github.com/openai/improved-diffusion), setting the batch size to 512, the noise
schedule to cosine, and maintaining other hyperparameters at their default values. During sampling,
the DPM-Solver (Lu et al., 2022) (https://github.com/LuChengTHU/dpm-solver) is
applied, conducting 15 timesteps of denoising using the default con�guration for the respective
setting. The reproduced results are on par with or slightly surpass those achieved using Euler inte-
gration, as reported in the original papers.

For the experiments involving CM, we adhere closely to the con�gurations detailed in Table 3
of the original CM paper (Song et al., 2023). On CIFAR-10, instead of using the NCSNPP
model (Song et al., 2020b) from CM's of�cial implementation, we opt for the EDM (Karras et al.,

21

Published as a conference paper at ICLR 2025

Figure 6: Metric landscapes in grid for CD.

2022) architecture. This decision stems from the of�cial CM code for CIFAR-10 being imple-
mented in JAX while our experiments are conducted using PyTorch. For further details, refer
to https://github.com/openai/consistency_models_cifar10 . This difference in
implementation may partly explain the discrepancies between our replication results and those re-
ported in Table 1 of CM's original paper (Song et al., 2023). On ImageNet-64 and LSUN, we follow
the of�cial implementation, employing the ADM (Dhariwal & Nichol, 2021) architecture. Due to
resource constraints, we train the model with a smaller batch size of 256 instead of 2048 as used in
the original study, resulting in worse outcomes. However, as indicated in Tab. 2, applying LCSC to
models trained with a reduced batch size can still achieve performance comparable to models trained
with a larger batch size.

E.1.2 SEARCH SETTING

At each selected training iteration, historical weights are leveraged within designated window sizes
and intervals. For CM, checkpoints have a window size of 40K with an interval of 100 on CIFAR-
10, and a window size of 20K with an interval of 100 on ImageNet-64 and LSUN datasets. DM is
assigned a window size of 50K and an interval of 200 for both datasets. FID calculation for DM on
ImageNet-64 and CM on LSUN datasets utilizes a sample of 5K images, while 10K images are used
for all other con�gurations. An evolutionary search spanning 2K iterations is applied consistently
across all experimental setups.

E.1.3 TEXT-TO-IMAGE TASK

For text-to-image task, we �ne-tune a LoRA based on the Stable Diffusion v1-5 model (Rombach
et al., 2022) on CC12M dataset. We use a batch size of 12 and train the LoRA for 6k steps. For
LCSC, we use the checkpoints saved between 4k and 6k steps with an interval of 20. When sampling,
we insert LoRA to Dreamshaper-7, which is a �ne-tuned version of Stable Diffusion v1-5, and use 1k

22

Published as a conference paper at ICLR 2025

(a) Metric landscapes for DM.

(b) Metric landscapes for CD.

(c) Metric landscapes for CT.

Figure 7: Metric landscapes for DM, CD and CT on CIFAR-10.

samples from CC12M to calculate FID. Finally, we randomly sample 10k samples from MS-COCO
dataset to evaluate the search results.

23

Published as a conference paper at ICLR 2025

Table 8: Search time consumption per search iteration (in seconds). Results marked with * denote
the CPU time cost, which is excludable from the overall time cost through parallel processing. “U-
Net” refers to the denoising sampling process, “Inception” refers to the computation of inception
features, “Merging” refers to the averaging of weights, and “FID” refers to the computation of FID
statistics.

Model Dataset U-Net Inception Merging* FID*

CM CIFAR-10 7.34 4.28 5.57 2.49
ImageNet-64 34.7 4.32 12.0 2.37

DM CIFAR-10 40.9 4.39 4.61 2.49
ImageNet-64 114.5 2.24 13.8 2.53

For baselines, we �nd that the performance is sensitive to the scale of LoRA. Therefore, we �rst
conduct a coarse scan to determine the approximate range of the optimal LoRA scale, followed by
a �ne sweep. We �nd 0.15 is the optimal scale for LoRA and use it as the baseline.

E.2 TWO-PHASECONVERGENCE

Fig. 8 shows that the generation quality convergence of DM and CM can be divided into two phases.
The initial phase is relatively brief, during which DM and CM rapidly acquire the capability to
generate visually satisfactory images. In contrast, the second phase is characterized by a slower
optimization of models, focusing on the enhancement of sample quality. It is noteworthy that the
majority of training iterations belongs to the second phase.

Figure 8: Training curves on
CIFAR-10 with CM and DM.
P1, P2 represent the �rst phase
and the second phase.

E.3 SEARCH COST ESTIMATION

We detail the estimation of search costs, covering both CPU and GPU time consumption. Saved
checkpoints are loaded into CPU memory and then transferred to the GPU after averaging. Conse-
quently, CPU time comprises the duration for merging weight checkpoints and calculating the FID
statistic. Meanwhile, GPU time is dedicated to the sampling and evaluation processes involving the
diffusion U-Net and the Inception network. All experiments are performed on a single NVIDIA
A100 GPU, paired with an Intel Xeon Platinum 8385P CPU.

First, we pro�le the durations of each function across all experimental settings and document the
time consumed in a single search iteration in Tab. 8. We note that the CPU time cost is signi�cantly
lower than that on the GPU. Therefore, while conducting sampling with the current merged weights
on the GPU, we can simultaneously perform the FID statistic computation from the previous itera-
tion and merge the checkpoints for the next iteration on the CPU. As a result, the CPU time cost can
be effectively excluded from the overall time cost.

Next, we examine the overall training and search time costs as outlined in Tab. 9, and we delve into
the speedup ratio detailed in Tabs. 10 and 11. Given that DMs necessitate multiple timesteps for
sampling, the overall search cost for DM proves to be non-negligible when compared to the training
cost. This results in no observable speedup in convergence upon applying LCSC. However, this
search cost is considered manageable and warranted for the anticipated improvements to the �nal
model convergence.

24

Published as a conference paper at ICLR 2025

Table 9: Overall search time and training time consumption (in hours).

Model Dataset Search Training

Iteration Time Iteration Batch Size Time

CD CIFAR-10 2K 6.45 800K 512 818
ImageNet-64 2K 21.7 600K 2048 7253

CT CIFAR-10 2K 6.45 800K 512 640
ImageNet-64 2K 21.7 800K 2048 7040

DM CIFAR-10 2K 25.2 800K 128 29.3
ImageNet-64 2K 64.8 500K 512 372

Table 10: Accurate training speedup of consistency models on CIFAR-10. The speedup is compared
against the standard training with 800K iterations and 512 batch size.

Model Method Training Iter Batch Size Speedup(")

CD

EMA 800K 512 -

LCSC

50K 512 14.27�
250K 512 3.12�
100K 128 25.55�

CT

EMA (released) 800K 512 -

LCSC
400K 512 1.96�
450K 128 6.64�

Table 11: Accurate training speedup of consistency models on ImageNet-64. For CD, the speedup
is compared against standard training with 600K iterations and 2048 batch size. For CT, the speedup
is compared against standard training with 800K iterations and 2048 batch size.

Model Method Training Iter Batch Size Speedup(")

CD

EMA (released) 600K 2048 -

LCSC

150K 256 29.20�
300K 256 15.27�
620K 256 7.55�

CT
EMA (released) 800K 2048 -

LCSC
600K 256 10.33�
1000K 256 6.27�

In contrast, for CMs, the search cost is substantially lower than the training cost, which often results
in a markedly faster convergence when combining training with LCSC than with training alone. The
precise speedup ratios for CM training are detailed in Tabs. 10 and 11. It should be noted that the
�gures in these tables may exhibit slight discrepancies from those reported in Sec. 5 due to the latter
being pro�led in an environment with more variables and potential �uctuations.

E.4 HYPERPARAMETERSTUDY

The hyperparameters of LCSC includes the window size (nK � n1) for retrieving the historical
weights, the interval (nk � nk � 1) for two adjacent weight checkpoints, the number of samples for
computing FID and the number of search iterations, and the number of timesteps for DM.

Tab. 12 illustrates the impact of varying the number of samples, search iterations, and the size of
the interval. We observe that increasing the number of samples and search iterations leads to higher
performance, though this comes at the expense of increased search cost. In practice, we �nd that 10K

25

Published as a conference paper at ICLR 2025

Table 12: Hyperparameter study of LCSC with (a) DM and (b) CM. The models are trained on
CIFAR10 with 250K iterations. We evaluate three values of each hyperparameter and compare them
with our adopted setting highlighted in gray. The varied hyperparameter is in bold. For DM the
window size is 50K, for CM it is 40K.

(a) Results on DM

Samples Search Iters. Interval FID(#) IS(")

10K 2K 200 3.87 9.27
2K 2K 200 9.23 9.11
5K 2K 200 4.04 9.09
10K 1K 200 4.01 9.17
10K 4K 200 3.79 9.28
10K 2K 100 3.82 9.15
10K 2K 500 4.41 9.11

(b) Results on CM

Samples Search Iters. Interval FID(#) IS(")

10K 2K 100 2.76 9.71
2K 2K 100 3.40 9.39
5K 2K 100 2.79 9.66
10K 1K 100 3.03 9.57
10K 4K 100 2.69 9.70
10K 2K 200 2.84 9.71
10K 2K 50 2.71 9.79

Table 13: Hyperparameter analysis of LCSC, supplementing the study in Tab. 12. Models are
trained on CIFAR10 for 250K iterations. We assess three different values for each hyperparameter,
contrasting these with our chosen setting, which is highlighted in gray. The hyperparameter under
variation is indicated in bold. For DM, the interval between checkpoints is set to 200, whereas for
CM, it is 100. We perform 2K search iterations and sample 10K images to compute the FID score
at each iteration.

Method Window Size NFE FID(#) IS(")

CM
40K 1 2.76 9.71
10K 1 2.89 9.60
50K 1 2.73 9.66

DM

50K 15 3.87 9.27
10K 15 4.41 9.11
30K 15 3.82 9.15
50K 7 3.91 9.10
50K 10 3.84 9.17

samples and 2K search iterations can ef�ciently identify strong models. With a �xed window size,
the interval between two checkpoints determines the dimension of the search space. Our �ndings
suggest that search performance generally improves as the search space expands, but limiting the
search dimension to fewer than 200 can detrimentally affect search performance.

For the impact of window size(nK � n1) and sampling NFE of DM, the �ndings are detailed in
Tab. 13. The results reveal that, despite earlier models being further from convergence, a suf�ciently
large window for accessing historical weights proves advantageous. Furthermore, conducting a
lower NFE during the search in the DM context results in a similar reduction in FID but a smaller
improvement in IS. This suggests that the search output's generality across different metrics di-
minishes when the generated samples during the search are less accurate, i.e., exhibit signi�cant
truncation error.

E.5 DETAILED RESULTS OFEMA RATE GRID SEARCH

For the �nal training model of each experimental con�guration, we conduct a comprehensive sweep
across a broad range of EMA rates, presenting the optimal outcomes in Sec. 5. The exhaustive results
are detailed in Tab. 14. In the majority of scenarios, the default EMA rate employed in the of�cial
implementations of our baseline models (Song et al., 2023; Ho et al., 2020; Nichol & Dhariwal,
2021) yields slightly inferior performance compared to the best EMA rate identi�ed. Nevertheless,
the �ndings demonstrate that LCSC consistently surpasses all explored EMA rates, underscoring the
limitations of EMA as a strategy for weight averaging.

26

Published as a conference paper at ICLR 2025

Table 14: EMA rate grid search outcomes. Asterisks (*) indicate the results using the default rates
from the of�cial paper. Listed FID scores for each EMA rate correspond to fully trained models:
CIFAR-10 models at 800K iterations; ImageNet-64 CD/CT/DM models at 600K/1000K/500K iter-
ations, respectively. Iteration counts for models employed by LCSC are shown in parentheses.

Model Dataset
EMA rate LCSC

0.999 0.9995 0.9999 0.999943 0.99995 0.99997 0.99999

CD
CIFAR-10 4.35 4.13 3.66* 3.56 3.58 3.51 3.54 2.42 (800K)

ImageNet-64 7.45 7.38 7.19 7.17* 7.17 7.22 7.41 5.54 (620K)

CT
CIFAR-10 9.80 9.78 9.70* 9.70 9.69 9.71 9.77 8.60 (400K)

ImageNet-64 15.7 15.7 15.6 15.6* 15.6 15.6 15.7 12.1 (600K)

DM
CIFAR-10 5.73 5.18 4.16* 3.99 3.96 4.04 5.04 3.18 (800K)

ImageNet-64 23.1 20.3 19.8* 19.0 18.1 18.1 18.5 15.3 (500K)

Table 15: The comparison of different formulations for base checkpoints on CIFAR-10 dataset.
LCSC-Diff stands for the formulation we use in our main experiments. LCSC-Direct stands for
using the checkpoints themselves as the weighted base.

Model Method Training Iter Batch Size NFE FID(#) IS(") Prec.(") Rec.(") Speed(")

CD

LCSC-Direct

50K 512 1 3.18 9.60 0.67 0.58 � 14�
250K 512 1 2.76 9.71 0.67 0.59 � 3.1�
800K 512 1 2.42 9.76 0.67 0.60 -

800+40K 512 1 2.38 9.70 0.67 0.60 -
100K 128 1 3.34 9.51 0.67 0.57 � 23�

LCSC-Diff

50K 512 1 3.10 9.50 0.66 0.58 � 14�
250K 512 1 2.66 9.64 0.67 0.59 � 3.1�
800K 512 1 2.44 9.82 0.67 0.60 -

800+40K 512 1 2.50 9.70 0.68 0.59 -
100K 128 1 3.21 9.48 0.66 0.58 � 23�

CT

LCSC-Direct

400K 512 1 8.60 8.89 0.67 0.47 � 1.9�
800+40K 512 1 8.05 8.98 0.70 0.45 -

450K 128 1 8.33 8.67 0.69 0.44 � 7�

LCSC-Diff

400K 512 1 8.89 8.79 0.67 0.47 � 1.9�
800+40K 512 1 7.05 9.01 0.70 0.45 -

450K 128 1 8.54 8.66 0.69 0.44 � 7�

E.6 DIFFERENT FORMULATION OF THE BASE CHECKPOINTS

As discussed in Sec. 4.2, we subtract the �rst checkpoint from each checkpoint and use these dif-
ferences as the weighted base. In this section, we explore an alternative approach for de�ning the
base checkpoints: using all the checkpoints themselves as the base. In this case, the �nal combined
weight is:

� � � =
KX

i =1

� i � n i : (77)

We apply this formulation in our search, with the results presented in Tab. 15 and Tab. 16. We can
see that the difference search method outperforms the checkpoint search method in all cases on the
ImageNet-64. On CIFAR-10, the performance of the two methods are similar with each other.

E.7 EVALUATION WITH OTHER METRICS

E.7.1 EVALUATION WITH FCD AND KID

In this section, we present the results of FCD and KID using CT method on CIFAR-10 and
ImageNet-64 dataset. The results are shown in Tab. 17.

27

Published as a conference paper at ICLR 2025

Table 16: The comparison of different formulations for base checkpoints on ImageNet-64 dataset.
LCSC-Diff stands for the formulation we use in our main experiments. LCSC-Direct stands for
using the checkpoints themselves as the weighted base.

Model Method Training Iter Batch Size NFE FID(#) IS(") Prec.(") Rec.(") Speed(")

CD

LCSC-Direct
300K 256 1 5.71 41.8 0.68 0.62 � 15�

600+20K 256 1 5.54 40.9 0.68 0.62 � 7.6�

LCSC-Diff
300K 256 1 5.51 39.8 0.68 0.62 � 15�

600+20K 256 1 5.07 42.5 0.69 0.62 � 7.6�

CT

LCSC-Direct
600K 256 1 12.1 35.1 0.67 0.54 � 10.4�
800K 256 1 11.1 35.7 0.65 0.57 � 6.3�

LCSC-Diff
600K 256 1 10.5 36.8 0.66 0.56 � 10.4�
800K 256 1 9.02 38.8 0.68 0.55 � 7.3�

Table 17: Evaluation results with FCD and KID metrics on CIFAR-10 and ImageNet-64 datasets.

(a) Results on CIFAR-10.

Method Training Iter Batch Size FID(#) FCD(#) KID(#)

CT 400k 512 12.1 43.0 7.47e-3
CT 800k 512 9.87 35.8 5.14e-3

LCSC 450k 128 8.54 27.2 4.65e-3
LCSC 400k 512 8.89 34.4 3.96e-3
LCSC 800+40k 512 7.05 24.9 2.90e-3

(b) Results on ImageNet-64.

Method Training Iter Batch Size FID(#) FCD(#) KID(#)

CT 600k 256 16.6 49.8 9.22e-3
CT 800k 256 15.8 47.5 8.69e-3
CT 800k 2048 13.1 47.5 8.55e-3

LCSC 600k 256 10.5 38.8 4.41e-3
LCSC 800k 256 9.02 30.0 3.87e-3

E.7.2 EVALUATION WITH FID ON TEST DATASET

In this section, we report the FID calculated on the test dataset to validate that LCSC does not over-
�t on the training data. Results are shown in Tab. 18. We can see that LCSC also achieves signi�cant
improvement on test FID, indicating its generalization ability across different data.

E.8 SEARCH RESULTS WITH STABLE DIFFUSION MODELS

To further demonstrate the effectiveness of LCSC in enhancing DMs, we conduct experiments on
Stable Diffusion (Rombach et al., 2022) checkpoints. Speci�cally, we �ne-tune the Stable Diffusion
v1-5 model on CC12M using LoRA for 20k iterations. We then apply LCSC to the saved check-
points at intervals of 100 iterations. The results, presented in Tab. 19, show that LCSC achieves
a signi�cant improvement compared to the released Stable Diffusion checkpoints with the same
sampling NFE.

To investigate whether LCSC can accelerate the Stable Diffusion model, we further test PickScore
(Kirstain et al., 2023) between the LCSC model with 10 NFE and the Stable Diffusion model with
15 NFE. The results are 0.49 and 0.51 for Stable Diffusion and LCSC, respectively, with a 57%
winning rate for LCSC. This further demonstrate the ability of LCSC to accelerate inference speed
for diffusion models.

F MORE INSIGHTS AND ANALYSIS

F.1 ANALYSIS OF SEARCH PATTERNS

F.1.1 MORE EXAMPLES OF SEARCH PATTERNS

We demonstrate search results on ImageNet-64 in Fig. 9, which share similar patterns with results
on CIFAR-10 (refer to Fig. 5). Additionally, Fig. 10 shows that the checkpoints assigned with larger
coef�cients often has lower FID than the checkpoints with small coef�cients.

F.1.2 SEARCH PATTERN OF DIFFERENTRANDOM SEED

We compare search patterns across different random seeds. As shown in Fig. 11, although each
seed's dominant coef�cients map to distinct subsets of weight checkpoints, they produce similar
outcomes in terms of FID as provided in the caption. These results suggest multiple high-quality

28

Published as a conference paper at ICLR 2025

Table 18: Evaluation results on CIFAR-10 test set.
Method Training Iter Batch Size FID(#) test FID(#)

CD 800k 512 3.66 5.88
CD 840k 512 3.65 5.85

LCSC 100k 128 3.21 5.48
LCSC 250k 512 2.66 4.88
LCSC 800k 512 2.44 4.70
LCSC 800+40k 512 2.50 4.75

Table 19: Results of LCSC on Stable Diffusion Checkpoints.

NFE FID PKS WR@PKS CLIP Score

LCSC 15 16.30 0.53(v.s. SD)/0.53(v.s. LoRA) 55%(v.s. SD)/56%(v.s. LoRA) 26.69
SDv1-5 15 17.55 0.47 44% 26.60

LoRA tuning 15 17.05 0.47 45% 26.61

LCSC 10 16.68 0.59(v.s. SD)/0.51(v.s. LoRA) 64%(v.s. SD)/53%(v.s. LoRA) 26.61
SDv1-5 10 18.16 0.41 36% 26.57

LoRA tuning 10 17.35 0.49 47% 26.56

Figure 9: Visualization of weight combination coef�cients obtained using LCSC compared to those
from the default EMA on ImageNet-64.

Figure 10: FID of checkpoints with varying magnitude of coef�cients.

basins exist within the weight checkpoint subspace, and LCSC converges to one of them depending
on the randomness. Previous study demonstrates that local minimal in networks are connected by
simple curves over which losses are nearly constant (Garipov et al., 2018). To investigate whether
solutions found by LCSC are also connected we average the search patterns obtained from multi-
ple random seeds and evaluate the performance of the resulting model. As shown in Fig. 12, the
averaged search pattern becomes homogeneous and contains smaller coef�cients, yet it achieves
comparable performance, as detailed in the �gure caption. This observation suggests that the search
results of LCSC may also be connected by low-loss curve.

29

Published as a conference paper at ICLR 2025

Figure 11: Visualization of linear combination coef�cients obtained by LCSC with different random
seeds using CD on CIFAR10. Their FID scores are: 2.76 (seed 1) and 2.69 (seed 2).

Figure 12: Visualization of averaged coef�cients obtained by LCSC across different random seeds
using CD on CIFAR10. Their FID scores are: 2.76 (left), 2.70 (middle), 2.83 (right).

F.1.3 THE CRITICAL ROLE OF SEARCH SPACE CONFIGURATION

As explored in Sec. 6, restricting averaged weights to the convex hull of candidate checkpoints,
where all combination coef�cients are non-negative and their sum equals 1, might limit search ef�-
cacy. To test this hypothesis, we perform searches under convex combination conditions by clipping
coef�cients to non-negative values and normalizing their sum to 1. Tab. 20 presents these �ndings,
with “w/o” indicating no restriction on coef�cients (allowing values below zero) and “w” represent-
ing the convex hull restriction. The results clearly show superior performance without the convex
restriction, underscoring its limiting effect on search outcomes. Furthermore, we discover that nor-
malizing the coef�cient sum to 1 is vital for effective search exploration, a practice we continue even
after lifting the convex condition, as detailed in Eq. (7).

F.1.4 FORMATION OF THE SEARCH PATTERN

We observe that the search pattern is established during the early stage of the search, while the later
stage primarily ampli�es it to a certain magnitude, as shown in Fig. 13.

30

Published as a conference paper at ICLR 2025

Table 20: Performance of LCSC with or without restriction to the convex hull of all saved check-
points. “w/o” in the column “Restriction” is our default setting in main experiments, while “w”
means the restriction holds.

Model Method Training Iter Batch Size NFE Restriction FID(#) IS(")

CD LCSC 250K 512 1 w/o 2.76 9.71

w 3.38 9.36

DM LCSC 350K 128 15 w/o 3.56 9.35

w 3.59 9.29

Figure 13: Visualization of coef�cient pattern at different number of search iterations. The experi-
ment is conducted on ImageNet using CT.

F.2 REGULARIZED EVOLUTIONARY SEARCH

We conduct additional experiments to evaluate the impact of regularization. Speci�cally, during the
search process, we clip all coef�cients to be below 1, thereby constraining the search to a restricted
space. Using the same initialization and random seed, Fig. 14 shows that LCSC produces smaller and
more homogeneous coef�cients with regularization compared to those obtained without it. However,
as noted in the �gure caption, applying regularization results in worse performance, suggesting that
constraining LCSC to smaller and more homogeneous coef�cients is not advantageous.

F.3 CONVERGENCECURVE OF LCSC

Fig. 15a illustrates the convergence curve of the models searched by LCSC. At each point, corre-
sponding to a speci�c number of training iterations, we perform LCSC with 2K search iterations
using the most recent checkpoints available at that point. The results indicate that as the number
of training iterations increases, the models searched by LCSC converge to progressively lower FID
values. Notably, the convergence curve of LCSC exhibits a similar trend to that of the EMA model's

31

Published as a conference paper at ICLR 2025

(a) Visualization of searched coef�cients with regu-
larization.

(b) Visualization of searched coef�cients without reg-
ularization.

Figure 14: Visualization of searched coef�cients with and without regularization. Respective
FID/IS/Prec/Rec are: 13.40/33.4/0.64/0.55 (left), 10.5/36.8/0.66/0.56 (right).

(a) Training convergence curve with LCSC. (b) Search convergence curve of LCSC.
Figure 15: Convergence curves of LCSC on CIFAR-10 with CD.

convergence curve. However, LCSC consistently achieves lower FID values compared to the EMA
model, highlighting its enhanced ability to effectively merge historical checkpoints. Additionally,
Fig. 15b shows the convergence curve of LCSC iteself. This curve consistently reduces as the num-
ber of search iteration increases.

F.4 DISCUSSION ON THETRAINING VARIANCE OF DM AND CM

In Sec. 3, we mentioned that the training objectives of DM and CM tend to introduce substantial
variance in gradient estimations. We further discuss the potential reasons or hypothesis of such
phenomenon as follows.

F.4.1 UNBIASED ESTIMATION AS OBJECTIVE

The objectives used in DM and CT are not accurate for any single batch. Instead, they serve as
an unbiased estimation. Speci�cally, for DM, the neural network learns the score function at any
(x t ; t), denoted ass� (x t ; t). The ground truth score functionr logpt (x t) is given as (Song et al.,
2020b):

r logpt (x t) = Ey � pdata;" �N (0;� (t)2 I) (�
"
� t

j� t y + � t " = x t) (78)

This formula implies that every sampley in the dataset contributes to the ground truth score function
at any(x t ; t). However, the training objective Eq. (2) provides only an unbiased estimation of the
ground truth score Eq. (78). At every iteration, the current target for the network is not identical to
the ground truth score function but is determined by the sampley randomly drawn from the dataset
and the noise level� t . Thus, even ifs� (x t ; t) exactly matchesr pt (x t) for 8(x t ; t), its gradient
estimation using a mini-batch of data does not converge to zero. The approximation of ground
truth score function can only be obtained through the expectation over many training iterations.

32

Published as a conference paper at ICLR 2025

For CT, the situation is very similar. To simulate the current ODE solution step without a teacher
diffusion model, Song et al. (Song et al., 2023) utilize the Monte Carol estimation−xt−yt2 to replace
the ground truth score function ∇ log pt(xt) = Ey∼pdata,xt∼N (y,t2I)(−xt−yt2 |xt) under the noise
schedule from EDM (Karras et al., 2022) as denoted in Eq. (4). Therefore, the objective is also
not accurate for any single batch of data and the model has to learn to fit the target model output
after solving the current step with the expectation of score function among many training iterations.
These types of objectives, which are not accurate for any single batch, introduce high variance to
the gradient estimation.

F.4.2 MODEL ACROSS DIFFERENT TIME STEPS

For both DM and CM, the neural network has to be trained at various time steps. Since the model
input and output follow different distributions, the gradients at different time steps may conflict with
each other. This phenomenon of negative transfer between timesteps has been studied in several
previous work, where they train different diffusion neural networks at different timesteps and achieve
better performance (Hang et al., 2023; Go et al., 2024). The misalignment between the objectives of
different time steps may also contribute to the high variance in the gradient estimation.

F.4.3 ERROR ACCUMULATION OF CM

For CM, the model learns to approximate the output of the target model at the previous step. This
could potentially introduce the problem of error accumulation (Berthelot et al., 2023). Consequently,
any noise introduced during training at early time steps is likely to lead to inaccuracies in the target
model, which may be magnified in subsequent timesteps. This property of CM amplifies the high
training variance, particularly for one-step sampling.

G FUTURE WORK

LCSC represents a novel optimization paradigm, indicating its potential for widespread application.
We recommend future investigations focus on three key areas:

• Expanded Search Space: Presently, LCSC applies a uniform coefficient across an entire model.
Considering that different model layers might benefit from distinct combination coefficients,
partitioning model weights into segments for unique coefficient assignments could enhance the
search space. For DMs, adopting variable coefficients across different timesteps may also offer
further improvements.
• Efficient Optimization Methods: The current reliance on evolutionary methods, characterized

by their dependency on randomness, limits efficiency and risks convergence to local optima.
Investigating more effective optimization strategies presents a promising avenue for enhancing
LCSC.
• Broader Application Scope: While the initial motivation for LCSC stems from managing the

high training variance observed in DMs and CMs, its utility is not confined to these models.
Exploring LCSC’s applicability to other domains, such as fine-tuning language models or addi-
tional vision models, could unlock new performance gains.

H VISUALIZATION

In this section, visualizations of images generated by LCM-LoRA (Fig. 16), DM (Figs. 17 and 18),
CD (Figs. 19 and 20), and CT (Figs. 21 and 22) are presented. Many images produced by the EMA
model are observed to be similar to those produced by the model derived from our LCSC when
using the same noise input. This is expected given that both models are based on weights from
the same training cycle. To more clearly highlight the distinctions between EMA and LCSC, we
generate 50K images from EMA and LCSC using the same set of noise inputs, order the image
pairs according to their Euclidean distances in the inception feature space, and randomly select the
images with large distances. In general, images generated by the LCSC model are found to display
enhanced sharpness, diminished noise, and more distinct object representation as well as details.

33

	Introduction
	Background and Related Work
	Theoretical and Empirical Motivation of LCSC
	Theoretical Convergence Analysis
	The Effectiveness of Weight Merging and Suboptimality of EMA

	Method
	Definition of the Search Problem
	Evolutionary Search
	Use Cases

	Experiments
	Experimental Setup
	Results on Reducing the Training Cost
	Results on Enhancing Pre-trained Models
	Results with LoRA Checkpoints
	Results on Text-to-image Task
	Discussion on the Generalization of LCSC

	Discussion and Conclusion
	Proof of Theoretical Analysis
	Proof of thm:ema
	Proof of thm:suboptim

	Extended Background and Related Work
	Diffusion Probabilistic Model
	Consistency Models
	Weight Averaging
	Search-based Methods for Diffusion Models

	LCSC Algorithm
	Additional Examples of the Metric Landscape
	Experimental Details and Additional Results
	Experimental Details
	Training Setting
	Search Setting
	Text-to-image Task

	Two-phase Convergence
	Search Cost Estimation
	Hyperparameter Study
	Detailed Results of EMA Rate Grid Search
	Different formulation of the base checkpoints
	Evaluation with Other Metrics
	Evaluation with FCD and KID
	Evaluation with FID on Test Dataset

	Search Results with Stable Diffusion Models

	More Insights and Analysis
	Analysis of Search Patterns
	More Examples of Search Patterns
	Search Pattern of different Random Seed
	The Critical Role of Search Space Configuration
	Formation of the Search Pattern

	Regularized Evolutionary Search
	Convergence Curve of LCSC
	Discussion on the Training Variance of DM and CM
	Unbiased Estimation as Objective
	Model across Different Time steps
	Error Accumulation of CM

	Future Work
	Visualization

