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ABSTRACT

In numerous artificial intelligence applications, the collaborative efforts of multi-
ple intelligent agents are imperative for the successful attainment of target objec-
tives. To enhance coordination among these agents, a distributed communication
framework is often employed. However, information sharing among all agents
proves to be resource-intensive, while the adoption of a manually pre-defined
communication architecture imposes limitations on inter-agent communication,
thereby constraining the potential for collaborative efforts. In this study, we in-
troduce a novel approach wherein we conceptualize the communication architec-
ture among agents as a learnable graph. We formulate this problem as the task
of determining the communication graph while enabling the architecture parame-
ters to update normally, thus necessitating a bi-level optimization process. Utiliz-
ing continuous relaxation of the graph representation and incorporating attention
units, our proposed approach, CommFormer, efficiently optimizes the communi-
cation graph and concurrently refines architectural parameters through gradient
descent in an end-to-end manner. Extensive experiments on a variety of coop-
erative tasks substantiate the robustness of our model across diverse cooperative
scenarios, where agents are able to develop more coordinated and sophisticated
strategies regardless of changes in the number of agents.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) algorithms play an essential role in solving complex
decision-making tasks through the analysis of interaction data between computerized agents and
simulated or physical environments. This paradigm finds prevalent application across domains, in-
cluding autonomous driving (Zhou et al., 2020; Hu et al., 2022), order dispatching (Li et al., 2019;
Yang et al., 2018), and gaming AI systems (Peng et al., 2017; Zhou et al., 2023). In the MARL
scenarios typically explored in these studies, multiple agents engage in iterative interactions within
a shared environment, continually refining their policies through learning from observations to col-
lectively attain a common objective. This problem can be conceptually simplified as an instance
of independent RL, wherein each agent regards other agents as elements of its environment. How-
ever, the strategies employed by other agents exhibit dynamic uncertainty and evolve throughout the
training process, rendering the environment intrinsically unstable from the viewpoint of each indi-
vidual agent. Consequently, effective collaboration among agents becomes a formidable challenge.
Additionally, it’s important to note that policies acquired through independent RL are susceptible to
overfitting with respect to the policies of other agents, as evidenced by Lanctot et al. (2017).

Communication is a fundamental pillar in addressing this challenge, serving as a cornerstone of
intelligence by enabling agents to operate cohesively as a collective entity rather than disparate
individuals. Its significance becomes especially apparent when tackling complex real-world tasks
where individual agents possess limited capabilities and restricted visibility of the environment (La-
joie et al., 2021; Yu et al., 2022b; Liu et al., 2021). In this work, we consider MARL scenarios
wherein the task at hand is of a cooperative nature and agents are situated in a partially observable
environment, but each is endowed with different observation power. Each agent is underpinned by a
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Figure 1: The performance of pre-defined communication architectures across various StarCraftII
combat games, each with 10 different seeds. The notable variance observed underscores the impor-
tance of searching for the optimal communication architecture.

deep feed-forward network, augmented with access to a communication channel conveying continu-
ous vectors. Considering bandwidth-related constraints, particularly in instances involving wireless
communication channels, a limited subset of agents is permitted to exchange messages during each
time step to ensure reliable message transfer (Kim et al., 2019). This necessitates meticulous con-
sideration by agents in selecting both the information they convey and the recipient agent.

To facilitate coordinated message exchange, we adopt the centralized training and distributed execu-
tion paradigm, as popularized in recent works such as Foerster et al. (2018); Kuba et al. (2022); Yu
et al. (2022a), which allows agents access to global information and knowledge of opponents’ ac-
tions during the training phase. There are several approaches for learning communication in MARL
including CommNet (Sukhbaatar et al., 2016), TarMAC (Das et al., 2019), and ToM2C (Wang et al.,
2021). However, methods relying on information sharing among all agents or relying on manually
pre-defined communication architectures can be problematic. When dealing with a large number of
agents, distinguishing valuable information for cooperative decision-making from globally shared
data becomes problematic. In such cases, communication may provide limited benefit and could
potentially hinder cooperative learning (Jiang & Lu, 2018). Furthermore, in real-world applications,
full-scale communication between all agents can be costly, demanding high bandwidth, incurring
delays, and imposing significant computational complexity. Manual pre-defined architectures ex-
hibit substantial variance, as evident in Figure 1, which underscores the necessity for meticulous
architectural design to achieve optimal communication, as randomly designed architectures may in-
advertently hinder cooperation and result in poor overall performance. Dynamic adjustments to the
communication graph during inference have garnered significant attention in recent research (Jiang
& Lu, 2018; Kim et al., 2019; Wang et al., 2021). However, this approach assumes all agents always
need to communicate with one of the other agents, necessitating complex scheduling algorithms,
which results in the waste of bandwidth consumption and falls outside the scope of this article.

To address these challenges, we present a novel approach, named CommFormer, designed to fa-
cilitate effective and efficient communication among agents in large-scale MARL within partially
observable distributed environments. We conceptualize the communication structure among agents
as a learnable graph and formulate this problem as the task of determining the communication graph
while enabling the architecture parameters to update normally, thus necessitating a bi-level opti-
mization process. In contrast to conventional methods that involve searching through a discrete set
of candidate communication architectures, we relax the search space into a continuous domain, en-
abling architecture optimization via gradient descent in an end-to-end manner. Diverging from pre-
vious approaches that often employ arithmetic or weighted means of internal states before message
transmission (Peng et al., 2017; Wang et al., 2021), which may compromise communication effec-
tiveness, our method directly transmits each agent’s local observations and actions to specific agents
based on the learned communication architecture. Subsequently, each agent employs an attention
unit to dynamically allocate credit to received messages from the graph modeling perspective, which
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Figure 2: The overview of our proposed CommFormer. CommFormer initiates by establishing the
communication graph, which subsequently serves as both the masking and edge embeddings in the
encoder and decoder to ensure that agents can exclusively access messages from communicated
agents. Subsequently, the encoder and decoder modules come into play, processing a sequence of
agents’ observations and transforming them into a sequence of optimal actions.

enjoys a monotonic performance improvement guarantee (Wen et al., 2022). Extensive experiments
conducted in a variety of cooperative tasks substantiate the robustness of our model across diverse
cooperative scenarios. CommFormer consistently outperforms strong baselines and achieves com-
parable performance to methods allowing information sharing among all agents, demonstrating its
effectiveness regardless of variations in the number of agents.

Our contributions can be summarized as follows:

• We conceptualize the communication structure as a graph and introduce an innovative algorithm
for learning it through bi-level optimization, which efficiently enables the simultaneous optimiza-
tion of the communication graph and architectural parameters.

• We propose the adoption of the attention unit within the framework of graph modeling to dynam-
ically allocate credit to received messages, thereby enjoying a monotonic performance improve-
ment guarantee while also improving communication efficiency.

• Through extensive experiments on a variety of cooperative tasks, CommFormer consistently out-
performs robust baseline methods and achieves performance levels comparable to approaches that
permit unrestricted information sharing among all agents.

2 RELATED WORK

Multi-agent Cooperation. As a natural extension of single-agent RL, MARL has garnered consid-
erable attention for addressing complex problems within the framework of Markov Games (Yang &
Wang, 2020). Numerous MARL methodologies have been developed to tackle cooperative tasks in
an online setting, where all participating agents collaborate toward a shared reward objective. To
address the challenge of non-stationarity in MARL, algorithms typically operate within two overar-
ching frameworks: centralized and decentralized learning. Centralized methods (Claus & Boutilier,
1998) involve the direct learning of a single policy responsible for generating joint actions for all
agents. On the other hand, decentralized learning (Littman, 1994) entails each agent independently
optimizing its own reward function. While these methods can handle general-sum games, they may
encounter instability issues, even in relatively simple matrix games (Foerster et al., 2017). Central-
ized training and decentralized execution (CTDE) algorithms represent a middle ground between
these two frameworks. One category of CTDE algorithms is value-decomposition (VD) methods,
wherein the joint Q-function is formulated as a function dependent on the individual agents’ local
Q-functions (Rashid et al., 2020; Son et al., 2019; Sunehag et al., 2017). The others (Lowe et al.,
2017; Foerster et al., 2018) employ actor-critic architectures and learn a centralized critic that takes
global information into account. In this work, we introduce an innovative approach operating under
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the CTDE paradigm, with limited communication capabilities, which achieves comparable or even
superior performance when compared to these established baselines.

Communication Learning. Learning to facilitate communication is a viable approach to enhance
multi-agent cooperation. DIAL (Foerster et al., 2016) is the pioneer in proposing learnable commu-
nication through back-propagation with deep Q-networks. In this method, each agent generates a
message at each timestep, which serves as input for other agents in the subsequent timestep. Build-
ing upon this work, a variety of approaches have emerged in the field of multi-agent communication.
Some methods adopt pre-defined communication architectures, e.g. CommNet (Sukhbaatar et al.,
2016), BiCNet (Peng et al., 2017), and GA-Comm (Liu et al., 2020). These techniques establish
fixed communication structures to facilitate information exchange among agents, often utilizing
GNN models (Niu et al., 2021; Bettini et al., 2023). In contrast, other approaches such as ATOC
(Jiang & Lu, 2018), TarMAC (Das et al., 2019), and ToM2C (Wang et al., 2021) explore dynamic
adaptation of communication structures during inference, enabling agents to selectively transmit or
receive information. In our research, we align with the former approach, establishing a fixed com-
munication architecture pre-inference. Each agent transmits its local observation and action as a
message to a shared channel. Our novel CommFormer approach extends this concept by learning
an optimal communication architecture through back-propagation. In contrast to CDC (Pesce &
Montana, 2023), which dynamically alters the communication graph through a diffusion process
perspective, and TWG-Q (Liu et al., 2022), which emphasizes temporal weight learning and the
application of weighted GCN, CommFormer adopts a different approach. It focuses on learning a
static graph, aimed at optimizing communication efficiency prior to the inference phase, setting it
apart from the traditional methodologies employed by the aforementioned approaches.

3 METHOD

The goal of our proposed method is to address the multi-agent collaborative communication prob-
lem, which enables agents to operate cohesively as a collective entity rather than disparate individ-
uals. In this paper, we are specifically interested in learning to construct the communication graph
and learning how to cooperate with received messages in a bandwidth-limited way.

3.1 PROBLEM FORMULATION

The MARL problems can be modeled by Markov games ⟨N ,O,A, R, P, γ⟩ (Littman, 1994). The
set of agents is denoted as N = {1, . . . , N}. The product of the local observation spaces of the
agents forms the joint observation space, denoted as O =

∏n
i=1 Oi. Similarly, the product of the

agents’ action spaces constitutes the joint action space, represented as A =
∏n

i=1 Ai. The joint
reward function, R : O×A → [−Rmax, Rmax], maps the joint observation and action spaces to the
reward range [−Rmax, Rmax]. The transition probability function, P : O ×A ×O → R, defines
the probability distribution of transitioning from one joint observation and action to another. Lastly,
the discount factor, denoted as γ ∈ [0, 1), plays a crucial role in discounting future rewards.

At time step t ∈ N, an agent i ∈ N receives an observation denoted as oi
t ∈ Oi. The collection of

these individual observations o = (o1, . . . , on) forms the ”joint” observation. Agent i then selects
an action ait based on its policy πi. It’s worth noting that πi represents the policy of the ith agent,
which is a component of the agents’ joint policy denoted as π. Apart from its own local observation
oit, each agent possesses the capability to receive observations ojt from other agents, along with their
actions (auto-regressively) ajt through a communication channel. At the end of each time step, the
entire team collectively receives a joint reward denoted as R(ot,at) and observes ot+1, following a
probability distribution P (·|ot,at). Over an infinite sequence of such steps, the agents accumulate
a discounted cumulative return denoted as Rγ ≜

∑∞
t=0 γ

tR(ot,at).

In practical scenarios where agents have the capability to communicate with each other over a shared
medium, two critical constraints are imposed: bandwidth and contention for medium access (Kim
et al., 2019). The bandwidth constraint implies that there is a limited capacity for transmitting bits
per unit time, and the contention constraint necessitates the avoidance of collisions among multiple
transmissions, which is a natural aspect of signal broadcasting in wireless communication. Conse-
quently, each agent can only transmit their message to a restricted number of other agents during
each time step to ensure reliable message transfer. In this paper, we conceptualize the communica-
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tion architecture as a directed graph, denoted as G = ⟨V, E⟩, where each node vi ∈ V represents an
agent, and an edge ei→j ∈ E signifies message passing from agent vi to agent vj . The restriction
on communication can be mathematically expressed as the sparsity S of the adjacency matrix of the
edge connections α. This sparsity parameter, S, controls the allowed number of connected edges,
which is given by S ×N2, where N is the number of agents.

3.2 ARCHITECTURE

The overall architecture of our proposed CommFormer is illustrated in Figure 2.

Communication Graph. To design a communication-efficient MARL paradigm, we introduce the
Communication Transformer or CommFormer, which adopts a graph modeling paradigm, inspired
by developments in sequence modeling (Hu et al., 2023; Wen et al., 2022) We apply the Transformer
architecture which facilitates the mapping between the input, consisting of agents’ observation se-
quences (o1, . . . , on), and the output, which comprises agents’ action sequences (a1, . . . , an). Con-
sidering communication constraints, each agent has a limited capacity to communicate with a subset
of other agents, represented by the sparsity S of the adjacency matrix of the edge connections. To
identify the optimal communication graph, we treat multiple agents as nodes in a graph and intro-
duce a learnable adjacency matrix, represented by the parameter matrix α ∈ RN×N , which are
optimized during training in an end-to-end manner.

Encoder. The encoder, whose parameters are denoted by ϕ, takes a sequence of observations
(o1, . . . , on) as input and passes them through several computational blocks. Each such block
consists of a relation-enhanced mechanism (Hu et al., 2023; Cai & Lam, 2020) and a multi-layer
perceptron (MLP), as well as residual connections to prevent gradient vanishing and network degra-
dation with the increase of depth. In the vanilla multi-head attention, the attention score between the
element oi and oj can be formulated as the dot-product between their query vector and key vector:

sij = f(oi, oj) = oiWT
q Wko

j . (1)

sij can be regarded as implicit information associated with the edge ej→i, where agent oi queries
the information sent from agent oj . To identify the most influential edge contributing to the final
performance, we augment the implicit attention score with explicit edge information:

sij = g(oi, oj , ri→j , rj→i)

= (oi + ri→j)W
T
q Wk(o

j + rj→i),
(2)

where r∗→∗ is obtained from an embedding layer that takes the adjacency matrix α as input. We also
apply a mask to the attention scores using the adjacency matrix α to ensure that only information
from connected agents is accessible:

sij =

{
sij , ej→i = 1,

−∞, ej→i = 0.
(3)

We represent the encoded observations as (ô1, . . . , ôn), which capture not only the individual agent
information but also the higher-level inter-dependencies between agents through communication. To
facilitate the learning of expressive representations, during the training phase, we treat the encoder
as the critic and introduce an additional projection to estimate the value functions:

LEncoder(ϕ) =
1

Tn

n∑
m=1

T−1∑
t=0

[
R(ot,at) + γVϕ̄(ô

m
t+1)− Vϕ(ô

m
t )

]2
, (4)

where ϕ̄ is the target network’s parameter, which is a separate neural network that is a copy of the
main value function. The update mechanism for ϕ̄ is executed either through an exponential moving
average or via periodic updates in a ”hard” manner (Mnih et al., 2015).

Decoder. The decoder, characterized by its parameters θ, processes the embedded joint action
a0:m−1,m = 1, . . . n through a series of decoding blocks. The decoding block also incorporates
a relation-enhanced mechanism for calculating attention between encoded actions and observation
representations, along with an MLP and residual connections. In addition to the adjacency matrix
mask, we apply a constraint that limits attention computation to occur only between agent i and its
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preceding agents j where j < i. This constraint maintains the sequential update scheme, ensuring
that the decoder produces the action sequence in an auto-regressive manner: πm

θ (am|ô1:n,a1:m−1),
which guarantees monotonic performance improvement during training (Wen et al., 2022). We apply
the PPO algorithm (Schulman et al., 2017) to train the decoder agent:

LDecoder(θ) = − 1

Tn

n∑
m=1

T−1∑
t=0

min
(

rmt (θ)Ât, clip(rmt (θ), 1± ϵ)Ât

)
,

rmt (θ) =
πm
θ (amt |ô1:n

t , â1:m−1
t )

πm
θold

(amt |ô1:n
t , â1:m−1

t )
,

(5)

where Ât is an estimate of the joint advantage function, which can be formulated as V̂t =
1
n

∑n
m=1 V (ômt ) (Schulman et al., 2015).

3.3 TRAINING AND EXECUTION

We employ the CTDE paradigm: during centralized training, there are no restrictions on communi-
cation between agents. However, once the learned policies are executed in a decentralized manner,
agents can only communicate through a constrained bandwidth channel.

3.3.1 CENTRALIZED TRAINING

During the training stage, we need to determine the communication matrix α while allowing the
architecture parameters ϕ and θ to update normally. This implies a bi-level optimization problem
(Anandalingam & Friesz, 1992; Colson et al., 2007) with α as the upper level variable and ϕ and θ
as the lower-level variable:

min
α

Lval(ϕ
∗(α), θ∗(α), α), (6)

s.t. ϕ∗(α), θ∗(α) = argmin
ϕ,θ

Ltrain(ϕ, θ, α), (7)

|α| ≤ S ×N2, (8)
where L = LEncoder(ϕ)+LDecoder(θ) with different online rollouts for training Ltrain and validation
Lval, and |α| denotes the number of connected edges. Evaluating the architecture gradient exactly
can be prohibitive due to the expensive inner optimization, and each value in α is represented by
a discrete value in {0, 1}. We propose a simple approximation scheme that alternately updates the
following formula and relaxes α as a continuous matrix to enable differentiable updating:

ϕ = ϕ− ξ∇ϕLtrain(ϕ, θ, α), θ = θ − ξ∇θLtrain(ϕ, θ, α), (9)
and

α = α− η∇αLval(ϕ, θ, α), (10)
where ϕ, θ denote the current weights maintained by the algorithm, and ξ, η are the learning rate
for a step of inner and outer optimization. The idea is to approximate ϕ∗(α), θ∗(α) by adapting ϕ
and θ using only a single training step, without fully solving the inner optimization (Equation 7) by
training until convergence.

To update the discrete adjacency matrix α, we utilize the Gumbel-Max trick (Jang et al., 2016;
Maddison et al., 2016) to sample the binary adjacency matrix, which facilitates the continuous rep-
resentation of α and enables the normal back-propagation of gradients during training. To satisfy
constraint 8, we extend the original one-hot Gumbel-Max trick to k-hot, enabling each agent to send
messages to a fixed number of k = S ×N agents:

ei = k_hot
(
k- argmax [Softmax(αij + gj), for j = 1, . . . , n]

)
, (11)

where gj is sampled from Gumbel(0,1), and ei ∈ NN represents the edges connected to agent i.

3.3.2 DISTRIBUTED EXECUTION

During execution, each agent i has access to its local observations and actions, as well as additional
information transmitted by other agents through communication. The adjacency matrix is derived
from the parameters α without any randomness as follows:

ei = k_hot
(
k- argmax [αij , for j = 1, . . . , n]

)
. (12)
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Note that each action is generated auto-regressively, in the sense that am will be inserted back into
the decoder again to generate am+1 (starting with a0 and ending with an−1). Through the use of
limited communication, each agent is still able to effectively select actions when compared to fully
connected agents, which leads to significant reductions in communication costs and overhead. The
overall pseudocode is presented in Algorithm 1.

Algorithm 1 CommFormer

1: Input: Batch size B, number of agents N , episodes K, steps per episode T , sparsity S.
2: Initialize: Encoder {ϕ}, Decoder {θ}, Replay buffer B, Adjacency matrix α ∈ Rn×n.
3: for k = 0, 1, . . . ,K − 1 do
4: for t = 0, 1, . . . , T − 1 do
5: Collect a sequence of observations o1t , . . . , o

n
t from environments.

6: // inference with CommFormer
7: Generate the matrix e ∈ {0, 1}n×n according to the α with Equation 12.
8: Generate representation sequence ô1t , . . . , ô

n
t via Encoder ϕ with attention score (Equation

2) and mask (Equation 3), similar to the Decoder.
9: for m = 0, 1, . . . , n− 1 do

10: Input ô1t , . . . , ô
n
t and a0t , . . . , a

m
t to the Decoder θ and infer am+1

t with the auto-
regressive manner.

11: end for
12: Execute joint actions a0t , . . . , a

n
t in environments and collect the reward R(ot,at).

13: Insert (ot,at, R(ot,at)) in to B.
14: end for
15: // train the CommFormer
16: Sample a random minibatch of B steps from B.
17: Generate the matrix e ∈ {0, 1}n×n according to the α with Equation 11.
18: Generate Vϕ(ô) with the output layer of the Encoder ϕ and compute the joint advantage

function Â based on Vϕ(ô) with GAE.
19: Input ô1, . . . , ôn and a0, . . . , an−1, generate π1

θ , . . . , π
n
θ at once with the Decoder θ.

20: Calculate the training loss L = LEncoder(ϕ) + LDecoder(θ) with Equation 4 and Equation (5).
21: Iteratively update the ϕ, θ and α with Equation 9 and Equation 10.
22: end for

4 EXPERIMENT

To evaluate the properties and performance of our proposed CommFormer1, we conduct a series of
experiments using four environments, including Predator-Prey (PP) (Singh et al., 2018), Predator-
Capture-Prey (PCP) (Seraj et al., 2022), StarCraftII Multi-Agent Challenge (SMAC) (Samvelyan
et al., 2019), and Google Research Football(GRF) (Kurach et al., 2020). A comprehensive descrip-
tion of each environment can be found in the Appendix A. It is worth noting that in certain domains,
our objective extends beyond maximizing the average success rate or cumulative rewards. We also
aim to minimize the average number of steps required to complete an episode, emphasizing the
ability to achieve goals in the shortest possible time.

4.1 BASELINES

We compare CommFormer with strong CTDE baselines that do not involve communication, e.g.
HAPPO (Yu et al., 2022a), MAPPO (Yu et al., 2022a) and QMIX (Rashid et al., 2020), as well as
popular communication methods, e.g. MAGIC (Niu et al., 2021), TarMAC (Das et al., 2019), and
QGNN (Kortvelesy & Prorok, 2022) to highlight its effectiveness. Details for each method are pro-
vided in Appendix B. During experiments, the implementations of baseline methods are consistent
with their official repositories, all hyper-parameters left unchanged at the origin best-performing
status. We also include the fully connected CommFormer (FC) configuration, where there are no
limitations on communication bandwidth. In this configuration, each agent can communicate with
all other agents, implying that the sparsity parameter S is set to 1. FC serves as the upper bound of
our methods and demonstrates strong performance on cooperative MARL tasks.

1Our code is available at: https://github.com/charleshsc/CommFormer
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Table 1: Performance evaluations of different metrics and standard deviation on the selected bench-
mark, where UPDeT’s official codebase supports several Marine-based tasks only. Note that the
sparsity parameter S in CommFormer is consistently set to 0.4 for all tasks.

Task Difficulty CommFormer(0.4) MAT MAPPO HAPPO QMIX UPDeT FC Steps

3m Easy 100.0(0.0) 100.0(0.0) 100.0(0.4) 100.0(1.2) 96.91.3 100.0(5.2) 100.0(0.0) 5e5
8m Easy 100.0(0.0) 100.0(0.0) 96.8(2.9) 97.5(1.1) 97.71.9 96.3(9.7) 100.0(0.0) 1e6

1c3s5z Easy 100.0(0.0) 100.0(0.0) 100.0(2.2) 97.5(1.8) 96.9(1.5) / 100.0(0.0) 2e6
MMM Easy 100.0(0.0) 83.3(4.8) 95.6(4.5) 81.2(22.9) 91.2(3.2) / 100.0(0.0) 2e6

2c vs 64zg Hard 100.0(0.0) 100.0(3.1) 100.0(2.7) 90.0(4.8) 90.3(4.0) / 100.0(3.1) 5e6
3s5z Hard 100.0(0.0) 74.0(6.4) 72.5(26.5) 90.0(3.5) 84.3(5.4) / 100.0(3.1) 3e6

5m vs 6m Hard 89.6(1.5) 81.3(5.1) 88.2(6.2) 73.8(4.4) 75.8(3.7) 90.6(6.1) 93.8(4.4) 1e7
8m vs 9m Hard 100.0(0.0) 96.9(0.0) 93.8(3.5) 86.2(4.4) 92.6(4.0) / 100.0(3.1) 5e6

10m vs 11m Hard 100.0(1.4) 100.0(3.1) 96.3(5.8) 77.5(9.7) 95.8(6.1) / 100.0(0.0) 5e6
25m Hard 100.0(0.0) 0.0(0.1) 100.0(2.7) 0.6(0.8) 90.2(9.8) 2.8(3.1) 100.0(0.0) 2e6

27m vs 30m Hard+ 96.9(3.1) 80.2(4.8) 93.1(3.2) 0.0(0.0) 39.2(8.8) / 100.0(0.0) 1e7
MMM2 Hard+ 100.0(3.1) 96.9(0.0) 81.8(10.1) 0.3(0.4) 88.3(2.4) / 100.0(0.0) 1e7
6h vs 8z Hard+ 96.9(3.1) 93.8(4.4) 88.4(5.7) 0.0(0.0) 9.7(3.1) / 100.0(0.0) 1e7

3s5z vs 3s6z Hard+ 87.5(3.1) 79.2(9.0) 84.3(19.4) 82.8(21.2) 68.8(21.2) / 100.0(3.1) 2e7

Task Difficulty CommFormer(0.4) QGNN SMS TarMAC NDQ MAGIC QMIX Steps

1o2r vs 4r Hard+ 96.9(1.5) 93.8(2.6) 76.4 39.1 77.1 22.3 51.1 2e7
5z vs 1ul Hard+ 100.0(1.4) 92.2(1.6) 59.9 44.2 48.9 0.0 82.6 1e7

1o10b vs 1r Hard+ 96.9(3.1) 98.0(2.9) 86.0 40.1 78.1 5.8 51.4 2e7

Task Metric CommFormer(0.4) MAGIC HetNet CommNet I3CNet TarMAC GA-Comm Steps

Success Rate 100.0(0.0) 98.2(1.0) / 59.2(13.7) 70.0(9.8) 73.5(8.3) 88.8(3.9) -GRF Steps Taken 25.4(0.4) 34.3(1.3) / 39.3(2.4) 40.4(1.2) 41.5(2.8) 39.1(3.1) -

Avg. Cumulative R -0.121(0.008) -0.386(0.024) -0.232(0.010) -0.336(0.012) -0.342(0.015) -0.563(0.030) / -PP Steps Taken 4.99(0.31) 10.6(0.50) 8.30(0.25) 8.97(0.25) 9.69(0.26) 18.4(0.46) / -

Avg. Cumulative R -0.197(0.019) -0.394(0.017) -0.364(0.017) -0.394(0.019) -0.411(0.019) -0.548(0.031) / -PCP Steps Taken 7.61(0.66) 10.8(0.45) 9.98(0.36) 11.3(0.34) 11.5(0.37) 17.0(0.80) / -

4.2 MAIN RESULTS

According to the results presented in Table 1 and Figure 1, our CommFormer with a sparsity param-
eter S = 0.4 significantly outperforms the state-of-the-art baselines. It consistently finds the optimal
communication architecture across diverse cooperative scenarios, regardless of changes in the num-
ber of agents. Take the task 3s5z as an example, where the algorithm needs to control different
types of agents: stalkers and zealots. This requires careful design of the communication architecture
based on the capabilities of different units. Otherwise, it can even have a detrimental impact on per-
formance, as indicated by the substantial variance displayed in Figure 1. The outcome of 3s5z pre-
sented in Table 1 consistently highlights CommFormer’s ability to attain optimal performance with
different random seeds, which underscores the robustness and efficiency of our proposed method.
Furthermore, in comparison to the FC method, CommFormer nearly matches its performance while
retaining only 40% of the edges. This indicates that with an appropriate communication architec-
ture, many communication channels can be eliminated, thereby significantly reducing the hardware
communication equipment requirements and expanding its applicability. Finally, it’s worth noting
that all the results presented in Table 1 are based on the same number of training steps, demon-
strating the robustness and effectiveness of our bi-level optimization approach, which consistently
converges to the optimal solution while maintaining sample efficiency. The hyper-parameters used
in the study and additional detailed results can be found in the Appendix.

4.3 ABLATIONS

We conduct several ablation studies, primarily focusing on the SMAC environments, to examine
specific aspects of our CommFormer. The parameter S, which determines the sparsity of the com-
munication graph, impacts the number of connected edges. Lower values of S imply reduced costs
associated with communication but may also lead to performance degradation. Additionally, we con-
duct ablation studies to investigate the essence of architecture searching, where we generate various
pre-defined architectures using different random seeds, simulating manually pre-defined settings.

Sparsity. The parameter S introduced in our bi-level optimization controls the number of connected
edges, ensuring that it does not exceed S×N2, as specified in Equation 8. To simplify this constraint,
we ensure that the total number of edges |α| equals S ×N2, with each agent communicating with a
fixed number of S ×N agents. Smaller values of S reduce the cost associated with communication
but may also result in performance degradation. To investigate the impact of varying S, we conduct
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Figure 3: Performance comparison on SMAC tasks with different sparsity S. Note that as the
value of sparsity S gradually increases, the performance of CommFormer improves across various
environments. This effect is particularly pronounced in environments with a large number of agents.

Figure 4: Performance comparison on SMAC tasks with different manually pre-defined communi-
cation architectures. CommFormer consistently achieves optimal performance, which underscores
its capability to autonomously search for the optimal communication architecture, highlighting its
adaptability across various scenarios and tasks.

a series of experiments, whose results are presented in Figure 3. For simpler tasks, such as 1c3s5z,
achieving a 100% win rate is possible even when each agent can only communicate with one other
agent. Nevertheless, As task complexity and the number of participating agents increase, a larger
value of sparsity S becomes necessary to attain superior performance.

Architecture Searching. In light of the constraints imposed by limited bandwidth and contention
for medium access, designing the communication architecture for each agent becomes a critical
task. To investigate the impact of different communication graph configurations, we conduct ex-
periments using various random seeds, simulating different individuals’ approaches to the problem.
The results, as depicted in Figure 1 and 4, highlight that manually pre-defining the communica-
tion architecture often leads to significant performance variance, demanding expert knowledge for
achieving better results. In contrast, our proposed method leverages the continuous relaxation of the
graph representation. This innovative approach allows for the simultaneous optimization of both the
communication graph and architectural parameters in an end-to-end fashion, all while maintaining
sample efficiency. This underscores the essentiality and effectiveness of our approach in tackling
the challenges of multi-agent communication in constrained environments.

5 CONCLUSION

In this paper, we introduce a novel approach called CommFormer, which addresses the challenge
of learning multi-agent communication from a graph modeling perspective. Our approach treats the
communication architecture among agents as a learnable graph and formulates this problem as the
task of determining the communication graph while enabling the architecture parameters to update
normally, thus necessitating a bi-level optimization process. By leveraging continuous relaxation of
graph representation and incorporating attention mechanisms within the graph modeling framework,
CommFormer enables the concurrent optimization of the communication graph and architectural
parameters in an end-to-end manner. Extensive experiments conducted on a variety of cooperative
tasks illustrate the significant performance advantage of our approach compared to other state-of-
the-art baseline methods. In fact, CommFormer approaches the upper bound in scenarios where
unrestricted information sharing among all agents is permitted. We believe that our work opens
up new possibilities for the application of communication learning in the field of MARL, where
effective communication plays a pivotal role in addressing various challenges.

9



Published as a conference paper at ICLR 2024

ETHICS STATEMENTS

This paper does not raise any ethics concerns. This study does not involve any human subjects,
practices to data set releases, potentially harmful insights, methodologies and applications, poten-
tial conflicts of interest and sponsorship, discrimination/bias/fairness concerns, privacy and security
issues, legal compliance, and research integrity issues.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of China (No. 2022ZD0160702),
STCSM (No. 22511106101, No. 22511105700, No. 21DZ1100100), 111 plan (No. BP0719010)
and National Natural Science Foundation of China (No. 62306178).

REFERENCES

G Anandalingam and Terry L Friesz. Hierarchical optimization: An introduction. Annals of Opera-
tions Research, 1992.

Matteo Bettini, Ajay Shankar, and Amanda Prorok. Heterogeneous multi-robot reinforcement learn-
ing. arXiv preprint arXiv:2301.07137, 2023.

Deng Cai and Wai Lam. Graph transformer for graph-to-sequence learning. In AAAI, 2020.

Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative multia-
gent systems. AAAI/IAAI, 1998.

Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Annals of
operations research, 2007.
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Appendices
A DETAILED DESCRIPTION OF ENVIRONMENTS.

During the main experiments, we compare our method within four environments, including
Predator-Prey (PP) (Singh et al., 2018), Predator-Capture-Prey (PCP) (Seraj et al., 2022), StarCraftII
Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), and Google Research Football(GRF)
(Kurach et al., 2020).

• PP. The goal is for N predator agents with limited vision to find a stationary prey and move to its
location. The agents in this domain all belong to the same class (i.e., identical state, observation
and action spaces).

• PCP. We have two classes of predator and capture agents. Agents of the predator class have the
goal of finding the prey with limited vision (similar to agents in PP). Agents of the capture class,
have the goal of locating the prey and capturing it with an additional capture-prey action in their
action-space, while not having any observation inputs (e.g., lack of scanning sensors).

• SMAC. In these experiments, CommFormer controls a group of agents tasked with defeating en-
emy units controlled by the built-in AI. The level of combat difficulty can be adjusted by varying
the unit types and the number of units on both sides. We measure the winning rate and com-
pare it with state-of-the-art baseline approaches. Notably, the maps 1o10b vs 1r and 1o2r vs 4r
present formidable challenges attributed to limited observational scope, while the map 5z vs 1ul
necessitates heightened levels of coordination to attain successful outcomes.

• GRF. We evaluate algorithms in the football academy scenario 3 vs. 2, where we have 3 attackers
vs. 1 defender, and 1 goalie. The three offending agents are controlled by the MARL algorithm,
and the two defending agents are controlled by a built-in AI. We find that utilizing a 3 vs. 2
scenario challenges the robustness of MARL algorithms to stochasticity and sparse rewards.

B DETAILED BASELINES

We compare our CommFormer with strong baselines without communication, and popular com-
munication methods to showcase the effectiveness. During the SMAC environments, the baseline
methods are as follows, each of them is based on the CTDE paradigm to ensure fair comparison:
(1) MAPPO (Yu et al., 2022a) directly apply PPO in MARL and use one shared set of parameters
for all agents, without any communication. (2) HAPPO (Kuba et al., 2022) implement multi-agent
trust-region learning by the sequential update scheme with a monotonic improvement guarantee.
(3) QMIX (Rashid et al., 2020) incorporates a centralized value function to facilitate decentralized
decision-making and efficient coordination among agents while addressing credit assignment issues.
(4) UPDeT (Hu et al., 2021) decouples each agent’s observations into a sequence of observation en-
tities and uses a Transformer to match different action-observation. (5) MAT (Wen et al., 2022)
treats cooperative MARL as sequence modeling and adopts a fixed encoder and a fully decentral-
ized actor for each individual agent. (6) SMS (Xue et al., 2022) calculates the Shapley Message
Value to explicitly evaluate each message’s value, learning an efficient communication protocol in
more complex scenarios. (7) TarMAC (Das et al., 2019) utilizes an attention mechanism to inte-
grate messages according to their relative importance. (8) NDQ (Wang et al., 2019) aims at learning
nearly decomposable Q functions via communication minimization. (9) MAGIC (Niu et al., 2021)
makes use of hard attention to construct a dynamic communication graph, which then combines
with a graph attention neural network to process the messages. (10) QGNN (Kortvelesy & Prorok,
2022) introduces a value factorisation method that uses a graph neural network based model.

For other domains, we benchmark our approach against a variety of state-of-the-art communication-
based MARL baselines: (1) CommNet (Sukhbaatar et al., 2016) uses continuous communication
for fully cooperative tasks, where the model consists of multiple agents and the communication be-
tween them is learned alongside their policy. (2) I3CNet (Singh et al., 2018) controls continuous
communication with a gating mechanism and uses individualized rewards for each agent to gain
better performance and scalability while fixing credit assignment issues. (3) GA-Comm (Liu et al.,
2020) models the relationship between agents by a complete graph and proposes a novel game ab-
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straction mechanism based on two-stage attention network. (4) HetNet (Seraj et al., 2022) learns ef-
ficient and diverse communication models for coordinating cooperative heterogeneous teams based
on heterogeneous graph-attention networks.

C HYPER-PARAMETER SETTINGS

During our experiments, we maintain consistency in the implementations of baseline methods by
using their official repositories, and we keep all hyperparameters unchanged from their original
best-performing configurations. Specific hyperparameters used for different algorithms and tasks
can be found in Tables 2 to 4. To ensure a fair comparison and validate that CommFormer achieves
optimal performance without compromising sample efficiency, we adopted the same hyperparameter
settings as MAT (Wen et al., 2022).

D DETAILS OF EXPERIMENTAL RESULTS

We provide detailed training figures (Figure 6) for various methods to substantiate our claim that
our approach facilitates simultaneous optimization of the communication graph and architectural
parameters in an end-to-end manner, all while preserving sample efficiency.

E MORE VISUAL RESULTS

We present additional visual results (Figure 5) that showcase the final communication architecture
obtained through our search process. These visualizations offer a more intuitive understanding of the
architecture’s evolution during training. As training progresses, the communication structure adapts
to improve performance. Additionally, as we move towards the later stages of training, the model’s
architecture stabilizes, with only minimal changes observed, typically involving 1 or 2 edges.

Searching Process

Figure 5: The searching process of CommFormer in the SMAC task 1c3s5z. In this representation,
a white square corresponds to a value of 1, indicating the presence of an edge connection.

F APPLICATION CONSIDERATION

A possible application of this study is to create an efficient communication framework tailored for
enclosed, finite environments, typical of logistics warehouses. In these settings, agent movement
is limited to designated zones, and communication is facilitated through overhead wires, akin to a
trolleybus system.

In contrast, open environments present unique challenges, primarily due to the potential vast dis-
tances between agents, which require wireless communication and may hinder effective communica-
tion. To address this, a straightforward approach could be to add bidirectional edges between agents
when they come within close proximity, enabling communication between them (Seraj et al., 2022).
However, a more effective solution may involve a hybrid approach that considers the constraint on
the available bandwidth: initially segmenting agents into groups based on proximity, followed by
an internal search for an optimal communication graph within each group. If agent distances vary
dynamically during testing, this process is repeated as necessary to adjust the communication graph
in real time, ensuring continuous adaptability to changing environmental conditions.
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Table 2: Common hyper-parameters used for our method in the experiments.

hyper-parameters value hyper-parameters value hyper-parameters value

critic lr 5e-4 actor lr 5e-4 use gae True
gain 0.01 optim eps 1e-5 batch size 3200

training threads 16 num mini-batch 1 rollout threads 32
entropy coef 0.01 max grad norm 10 episode length 100

optimizer Adam hidden layer dim 64 use huber loss True

Table 3: Specific hyper-parameters used for our method in the experiments.

hyper-parameters in PP value hyper-parameters in PCP value hyper-parameters in GRF value

Number Agents 3 Number Predators 2 Number Agents 3
Number Enemies 1 Number Captures 1 eval episode length 200

vision 1 Number Enemies 1 - -
eval episode length 20 vision 1 - -

- - eval episode length 20 - -

Table 4: Different hyper-parameters used for CommFormer in different tasks.

tasks ppo epochs ppo clip num blocks num heads stacked frames steps γ

3m 15 0.2 1 1 1 5e5 0.99
8m 15 0.2 1 1 1 1e6 0.99

1c3s5z 10 0.2 1 1 1 2e6 0.99
MMM 15 0.2 1 1 1 2e6 0.99

2c vs 64zg 10 0.05 1 1 1 5e6 0.99
3s vs 5z 15 0.05 1 1 4 5e6 0.99

3s5z 10 0.05 1 1 1 3e6 0.99
5m vs 6m 10 0.05 1 1 1 1e7 0.99
8m vs 9m 10 0.05 1 1 1 5e6 0.99

10m vs 11m 10 0.05 1 1 1 5e6 0.99
25m 15 0.05 1 1 1 2e6 0.99

27m vs 30m 5 0.2 1 1 1 1e7 0.99
MMM2 10 0.05 1 1 1 1e7 0.99
6h vs 8z 15 0.05 1 1 1 1e7 0.99

3s5z vs 3s6z 5 0.05 1 1 1 2e7 0.99
1o10b vs 1r 10 0.2 1 1 1 2e7 0.99
1o2r vs 4r 5 0.05 1 1 1 1e7 0.99
5z vs 1ul 10 0.05 1 1 1 1e7 0.99

PP 10 0.05 1 1 1 1e7 0.99
PCP 10 0.05 1 1 1 1e7 0.99
GRF 10 0.05 1 1 1 1e7 0.99
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Figure 6: Performance comparison on SMAC tasks. CommFormer consistently outperforms strong
baselines and achieves comparable performance to methods allowing information sharing among all
agents, demonstrating its effectiveness regardless of variations in the number of agents.
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