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Event-Guided Rolling Shutter Correction with Time-Aware
Cross-Attentions

Anonymous Authors

ABSTRACT
Many consumer cameras with rolling shutter (RS) CMOS would
suffer undesired distortion and artifacts, particularly when objects
experiences fast motion. The neuromorphic event camera, with
high temporal resolution events, could bring much benefit to the
RS correction process. In this work, we explore the characteristics
of RS images and event data for the design of the rolling shutter
correction (RSC) model. Specifically, the relationship between RS
images and event data is modeled by incorporating time encoding
to the computation of cross-attention in transformer encoder to
achieve time-aware multi-modal information fusion. Features from
RS images enhanced by event data are adopted as keys and values
in transformer decoder, providing source for appearance, while
features from event data enhanced by RS images are adopted as
queries, providing spatial transition information. By embedding
the time information of the desired GS image into the query, the
transformer with deformable attention is capable of producing the
target GS image. To enhance the model’s generalization ability, we
propose to further self-supervise the model by cycling between
time coordinate systems corresponding to RS images and GS im-
ages. Extensive evaluations over both synthetic and real datasets
demonstrate that the proposed method performs favorably against
state-of-the-art approaches.

CCS CONCEPTS
•Computingmethodologies→Computer vision;Reconstruc-
tion.

KEYWORDS
Event Camera, Multi-Modality, Image Enhancement, Rolling Shut-
ter Correction, Self-supervised Training

1 INTRODUCTION
Many consumer cameras, such as smartphone cameras, employ a
rolling shutter (RS) CMOS sensor for power and cost consideration.
The rolling shutter camera sensor exposes asynchronously in a row-
by-row manner while the global shutter exposes at all positions
simultaneously. Hence the images based on RS exposure would
suffer image distortion and occlusion problems, which is called jelly
effect, particularly when objects experience fast motion. To remove
such artifacts in an image caused by rolling shutter and recover a
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distortion-free GS image, various rolling shutter correction (RSC)
techniques are developed.

The task of rolling shutter correction is challenging because
it is difficult to estimate the transformation between RS and GS
images especially when rolling shutter is coupled with both object
motion and camera motion. It is a highly ill-posed problem for
RSC from a single image due to the absence of motion information.
Hence, there have been several works [5, 15, 31] proposed to first
estimate motion fields between consecutive frames and compute
correction fields based on them, which is followed by applying
warping operation to the RS images for GS image recovery.

However, most of them exhibit poor performance when con-
fronted with complex motion because of simple motion assumption
during exposure.

Event camera, a bio-inspired sensor that outputs event signal
with high temporal resolution (in the order of µs) by asynchronously
measuring brightness change at each pixel [6], could provide much
complementary information for the RSC task. By synergizing a RGB
camera and an event camera, the triggered events are able to record
how intensity at each pixel evolves during exposure of RGB camera.
They carry abundant information about motion happened in the
scene. Hence, making full use of events could bring much benefit
to the process of rolling shutter correction. There have been a few
attempts along this direction. Zhou et al. [32] present a two-branch
approach to leverage events for RSC. For the synthesis branch row-
wise readout time offsets are injected into attention and fused with
RS frame to restore a GS image, while for the warping branch events
join the estimation of flow between RS and GS images and obtain
another GS image. The two estimated GS images are further com-
bined to give the final GS restoration result. In [1] a transformation
is conducted to encode only events between readout time of RS and
GS such that row-wise motion can be directly estimated without
constant linear motion assumption. It also takes two-branch frame-
work and uses the fusion result as the final prediction. However,
the way that they use the events and row-wise readout time for
correcting rolling shutter effect , i.e., either directly injecting time
offsets to event representation or selecting only events between RS
and GS as input, might not be optimal. Involving row-wise readout
time in the interaction between RS images and events could help
explore more potential of events for the RSC task.

In this work, we present an event-assisted encoder-decoder
framework for rolling shutter correction. In the encoding stage,
the RS frame and event data are first respectively sent to a separate
convolutional layer for shallow feature extraction. They are then
separately fed to several transformer layers which are equipped
with the proposed time-aware multi-head attention for cross-modal
feature enhancement. Since time encodings play different roles in
the feature enhancement for each modality, different forms of time
encodings are exploited. For the RS image, row-wise time encodings
are used because each row in the RS image correspond to the same
exposure time; while for event data, channel-wise time encodings
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Figure 1: An example of rolling shutter correction on real-world data compared with sota method EvUnroll [32]. The yellow
dashed line is the GS reference line drawn based on the intermediate event. The label (u) means fine-tuning using self-supervised
learning.

are used due to the use of voxel grid representation. We utilize
this characteristic to design time encoding and combine it with
multi-head attention to better integrate the information from both
modality. In the decoding stage, we produce the corresponding GS
image at the desired time stamp. Due to the significant image dis-
placement in the RSC task, directly reconstructing the image from
features can be challenging. To address this, we utilize Deformable
Cross Attention (DCA) [34] to expand receptive field. By taking
both event features and GS time encoding as the queries and RS
features as keys, DCA can effectively leverage the motion infor-
mation with events and appearance information with RS frame to
reconstruct a GS image.

Moreover, to improve the model’s generalization ability, we de-
signed an self-supervised method with single RS image and event
specifically for the RSC task. This method enables us to fine-tune
the model on test datasets and real datasets. In summary, our con-
tributions are as follows:

• We proposed a novel architecture specifically designed for
the characteristics of the RSC task.

• We proposed a self-supervised loss tailored for the RSC task
to enhance the model’s generalization and improve its per-
formance on real-world datasets.

• Our method outperforms existing methods in both qualita-
tive and quantitative performance.

2 RELATEDWORKS
2.1 Rgb-based RSC methods
Multiple images methods mostly predict optical flow between two
consecutive images according linear motion assumption. Fan et
al. [2, 4] proposed to calculate optical flow in stage one, and then
obtain the final GS image with warped image in stage two, which
is similar to the [9] structure. DSUN [15] and SUNet [3] calcu-
late cost volume for multi-scale pyramid features respectively, and
distort and fuse the features to restore GS image. JCD [31] simulta-
neously processes RSC and deblurring tasks by using deformable
attention module to fuse bidirectional warped features. Naor et
al. [17] regarded the RS correction problem as a temporal upsam-
pling problem and proposed additional supervision at the x-t level.
Fan et al. [5] proposed a single-stage architecture which combines

appearance refinement and undistortion motion estimation for effi-
cient RS correction. Zhong et al. [30] adopted a novel setup where
two RS images are scanned in different directions (from top to
bottom and from bottom to top) simultaneously, extracting sym-
metrical information for GS recovery. Building upon the same setup,
a bidirectional warping module was designed to restore original
RS images in [19], followed by self-supervised training based on
temporal consistency.

2.2 Multi-modality image enhancement
The rich temporal information of events enables them to perform
many image enhancement tasks, such as deblurring [10, 14, 18, 20–
22, 27, 29], frame interpolation [7, 12, 23, 24, 26], and RSC [1, 32].
REDNet [27] achieves self-supervised deblurring by unfolding a
blurry image into multiple sharp images and introducing optical
flow constraints between each sharp image. TimeReplayer [7] uses
a structure similar to SuperSloMo to interpolate an image from two
input images, and one input image and the resulting image can
be extrapolated to another input image, achieving self-supervised
results. EVDI [29] uses two blurry images taken at different times
to restore a sharp image at the same timestamp, achieving self-
supervised results. These self-supervised methods mostly rely on
either a single blurry image or multiple sharp images.

TimeLens [24] is the first to use both the motion information
and the physical properties of event , and it employs two branches
for warping and synthesis to perform frame interpolation. EvUn-
roll [32] uses a similar two-branch structure to handle the RSC
problem, reflecting the different time relationships of each row
in RS by changing the timemap during warping branch. EvShut-
ter [1] captures the events between RS and GS and estimates the
optical flow between RS and GS without using the linear motion
assumption.

3 METHOD
Here we first briefly introduce preliminary knowledge about event
representation and formation of rolling shutter images. Then we
will explain how spatio-temporal relationship among events, RS
images and GS images could be leveraged in the encoder-decoder
framework for event-assisted rolling shutter correction. Finally, the
supervision imposed on the model training is presented, which also
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Figure 2: Overview of our network architecture.

include both supervised losses and the proposed self-supervised
loss.

3.1 Preliminary
In an event camera, when the intensity variance of a certain pixel
between consecutive time stamps reaches a threshold 𝐶 , an event
with a certain polarity would triggered. Typically, a stream of events
over a period of time can be represented as:

E = {𝑒𝑖 }𝑁𝑖=1 = {[𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 , 𝑝𝑖 ]}𝑁𝑖=1 , (1)

where 𝑡 is the triggered time stamp, (𝑥,𝑦) represents the triggered
pixel position, and 𝑝 represents its polarity. A popular way to rep-
resent event set is to transform those events into voxel grids [33]
as shown below:

𝐸 (𝑥𝑙 , 𝑦𝑚, 𝑡𝑖 ) =
∑︁
𝑥𝑖=𝑥𝑙
𝑦𝑖=𝑦𝑚

𝑝𝑖max(0, 1 − |𝑡𝑖 − 𝑡∗𝑖 |), (2)

where 𝑡★
𝑖

△
= 𝐵−1

△𝑇 (𝑡𝑖 − 𝑡0) represents the normalized time slices. In
voxel grids, events are accumulated in adjacent time slices such
that each time slice could contain information at different times.
Compared with other event representation such as record the quan-
tity and the last moment of the event, voxel grid contains more
detailed temporal information.

A rolling shutter image can be treated as a stack of rows of a
global shutter image with each one exposed at different time stamps.
Even a small object motion or cameramotionwould cause distortion
in the rolling shutter image. Hence a rolling shutter image can be
formulated as below:

𝐼
(𝑡 )
𝑅𝑆

=

𝐻∑︁
ℎ=1

𝐼
(𝑡+(ℎ−𝑀/2)𝑡𝑟 )
𝐺𝑆

[ℎ], (3)

where 𝑡𝑟 denotes the readout time between consecutive rows; 𝑀
denotes the number of rows; 𝑡 + (ℎ −𝑀/2)𝑡𝑟 means the exposure

time of theℎ−th row. Since GS are sharp images captured with short
exposure time, here the temporal information is represented by the
mid-exposure moment rather than the start and end of exposure.

3.2 Method
As shown in Fig. 2, the overall model is an encoder-decoder based
framework composed of transformers. In encoder, we employ trans-
formers with the proposed Time-Aware Multi-head Attention to
model the spatio-temporal relationship among RS images, events
and GS images to obtain multimodal features for later GS image
decoding. In decoder, we used DCA to extract the appearance in-
formation of RS features based on the timestamp of GS, utilizing
the motion information of the event features. The network takes a
stream of events and an RS image with its exposure parameters as
inputs, outputting GS images at any time within the time interval.

Encoder with Time-aware Multi-head Attention
Events record almost all continuous brightness change during

the exposure time, from the beginning time stamp of the first row
of a RS image to the end time stamp of its last row. Such brightness
change could be caused by either motion or dynamic lighting. In
this task we expect to explore the value of motion information asso-
ciated with events in the entire exposure period. The encoder starts
with a few convolutional layers for shallow feature extraction of
the RS frame, while for event data group convolution operation is
conducted to retain time ordering information. Simply concatenat-
ing representations of two modalities might not be suitable because
the features of two modalities are neither spatially aligned nor tem-
porally synchronized. This would cause significant burden to the
network in later information fusion and feature enhancement. To
fully make use of motion information with event data for RSC, we
first resort to powerful transformers to enhance features of both
RS frame and events with help of each other. We design a novel
Time-aware Multi-head Attention (TMA) for the transformer layer
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to enhance each modality. The design principle is to take timing
information as a bridge between the modalities of RS frame and
event stream.

𝑭𝑭𝒓𝒓𝒓𝒓

𝑊𝑊𝑄𝑄 𝑊𝑊𝐾𝐾 𝑊𝑊𝑉𝑉

𝑭𝑭𝒆𝒆𝒆𝒆 𝑭𝑭𝒆𝒆𝒆𝒆𝑻𝑻𝒆𝒆𝒆𝒆𝑻𝑻𝒓𝒓𝒓𝒓

⊕

𝒐𝒐𝒐𝒐𝒐𝒐

𝑻𝑻𝒓𝒓𝒓𝒓𝑻𝑻𝒆𝒆𝒆𝒆𝑻𝑻

𝑸𝑸 𝑲𝑲

𝑸𝑸𝑲𝑲𝑻𝑻

𝐻𝐻

𝑁𝑁

𝑊𝑊
𝑽𝑽

Figure 3: Time-awareness Multi-head Attention.

Inspired by the positional encodings in most transformers [25],
here we propose to use time encodings in the transformer and
leverage them to promote mutual enhancement. As for features of
the RS frame F𝑟𝑠 ∈ R𝐵×𝐶×𝐻×𝑊 , its rows correspond to a set of
consecutive readout time stamps. Therefore we can directly assign
a row-dependent time encodings to RS features. Since each column
has the same readout time, we simply denote the time encoding for
RS frame as Tℎ,𝑤𝑟𝑠 = 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 ( ℎ

𝐻
), ℎ ∈ [0, 𝐻 ),𝑤 ∈ [0,𝑊 ), where

𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 represents the sinusoidal positional encoding, represented
as:

sinusoid(𝑝) [2𝑖] = 𝑠𝑖𝑛(𝑝/100002𝑖/𝐶 ),

sinusoid(𝑝) [2𝑖 + 1] = 𝑐𝑜𝑠 (𝑝/100002𝑖/𝐶 ),
(4)

where 𝑖 = (0, ...,𝐶/2 − 1) .
While as for the voxel-grid-like representation of event data

F𝑒𝑣 ∈ R𝐵×𝐶×𝐻×𝑊 , groups along channel correspond to consecu-
tive temporal intervals. Therefore, we divide the event features into
𝑁 groups along channel, with each one corresponding to certain
temporal range. Group-channel-wise time encodings are assigned
to event features, which can be denoted as Tℎ,𝑤,𝑖𝑒𝑣 = 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 ( 𝑖

𝑁
)

and Tℎ,𝑤𝑒𝑣 = 𝑐𝑜𝑛𝑐𝑎𝑡 ( [Tℎ,𝑤,𝑖𝑒𝑣 ]), 𝑖 = (0, ..., 𝑁 −1). To promote interac-
tion between RS features and event features, time encodings of each
modality are combined with the corresponding modality features in
computation of cross-attention. Inspired by [16], query or key fea-
tures are concatenated with time encodings and the cross-attention
could be computed as below:

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = SoftMax((𝑄𝐾𝑇 + T𝑟𝑠T𝑇𝑒𝑣 )/
√
𝑑)𝑉 (5)

However, it is not proper to directly compute the product of
𝑇𝑟𝑠 and 𝑇𝑒𝑣 because each time encoding vector for RS frame cor-
responds to one timestamp while each time encoding vector for
event data corresponds to multiple timestamps. Hence we take in-
spiration from multi-head cross-attention and present time-aware
multi-head attention to address this issue. Here we will take the
case of RS features as queries and event features as keys and val-
ues as an example to explain how Time-aware Multi-head At-
tention (TMA) works. Since each group of 𝐶/𝑁 channels in the

time encodings for event features corresponds to a certain tem-
poral range, the dimension of time encodings for RS features are
also set to 𝐶/𝑁 . In this way time encodings of two modalities
could be easily compared and their similarity could also be mea-
sured through product. The 𝑖−th group event time encodings is
Tℎ,𝑤,𝑖𝑟𝑠 = 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 ( 𝑖

𝑁
) ∈ R𝐵×𝐶/𝑁×𝐻×𝑊 , and the 𝑖−th group RS

time encodings is Tℎ,𝑤,𝑖𝑟𝑠 = 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 ( ℎ
𝐻
) ∈ R𝐵×𝐶/𝑁×𝐻×𝑊 . In this

way, both RS and event features are divided into sub-features simi-
lar to the heads in standard multi-head attention, we can compute
the product of RS and event time encodings in a time-wise way
within each head. Correspondingly, RS features and event features
are also divided into 𝑁 sub-features which are denoted as F 𝑖𝑟𝑠 and
F 𝑖𝑒𝑣 . Then as shown in Fig 3, time-aware multi-head attention can
be represented as:

MHA(𝑄,𝐾,𝑉 ) = Concat(head1, ..., headN)𝑊𝑂 , (6)

where headi = SoftMax((𝑄𝑖𝐾𝑖𝑇 + T 𝑖𝑟𝑠T 𝑖𝑒𝑣
𝑇 )/

√
𝑑)𝑉 𝑖 ), and 𝑄𝑖 =

F𝑟𝑠𝑊𝑄

𝑖
, 𝐾𝑖 = F𝑒𝑣𝑊𝐾

𝑖
,𝑉 𝑖 = F𝑒𝑣𝑊𝑉

𝑖
, 𝑑 = 𝐶/𝑁 . As for the case

of event features as queries and RS as keys and values, the com-
putation is similar. In summary, by dividing temporal encodings
and features for RS frame and event data into multi-heads, TMA is
able to effectively integrate temporal relationship between the two
modalities into the cross-attention for cross-modal enhancement .
Decoder with Deformable Cross Attention

In the encoding stage, information associated with RS frame and
event data is sufficiently explored and fused. The decoder aims at
predicting the desired GS image in the middle exposure period or
at any specified time stamp based on the enhanced features from
encoder. Since there is often significant misalignment between RS
and GS frames, we employ deformable cross-attention in the de-
coder to expand receptive fields and accelerate model convergence.
The queries of the deformable cross-attention consist of two com-
ponents, i.e., enhanced event features from the encoder and the
time encoding for desired GS time stamp. The enhanced RS features
from the encoder are used as the keys and values of the attention.
In this way the desired time and rich motion information provided
by event features work as guidance and complement to remove
spatial distortion in RS features. Then a GS image is recovered from
the spatially corrected RS features with another few convolutional
layers.

x y
t

x y
t’

�� ��

transform

Figure 4: temporal reference system transform.

3.3 Supervision for Rolling Shutter Correction
The supervision for our RSC framework include both supervised
reconstruction loss and a proposed self-supervised loss. We first
introduce the proposed self-supervised loss. As shown in Fig. 1,
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given a pair of RS and GS images 𝐼𝑎 and 𝐼𝑏 , can we determine which
one is RS image and which one is GS image? Obviously, we cannot.
Without a prior assumption like "lines must remain straight", we
cannot determine if an object appears curved due to rolling shutter
effect or if it was originally shaped in that way.

Actually, we could have two different time reference systems
based on either GS 𝑡𝑖𝑔𝑠 or RS 𝑡𝑖𝑟𝑠 . In the GS time reference system,
each row in GS image 𝐼𝑎 has the same exposure time while each
row in RS image 𝐼𝑏 has different time as shown below:

𝐼𝑎 :𝑡𝑎,1𝑔𝑠 = 𝑡
𝑎,2
𝑔𝑠 = ... = 𝑡

𝑎,𝐻
𝑔𝑠 ,

𝐼𝑏 :𝑡𝑏,𝑖𝑔𝑠 = 𝑡
𝑏,1
𝑔𝑠 + (𝑖 − 1) ∗ 𝛿,

(7)

where 𝑡𝑎 (𝑏 ),𝑖𝑔𝑠 represents the 𝑖−th row’s exposure time with respect
to GS time reference system, 𝑖 ∈ [1, ..., 𝐻 ], 𝛿 denotes the readout
time delay between successive rows in 𝐼𝑏 .

In the RS time reference system, each row in 𝐼𝑏 has the same
exposure time while the one in 𝐼𝑎 has different time as shown below:

𝐼𝑎 :𝑡𝑎,𝑖𝑟𝑠 = 𝑡
𝑎,1
𝑟𝑠 − (𝑖 − 1) ∗ 𝛿,

𝐼𝑏 :𝑡𝑏,1𝑟𝑠 = 𝑡
𝑏,2
𝑟𝑠 = ... = 𝑡

𝑏,𝐻
𝑟𝑠 ,

(8)

where 𝑡𝑎 (𝑏 ),𝑖𝑟𝑠 represents the 𝑖−th row’s exposure time with respect
to GS time reference system. The relation between the two time
reference systems can be represented in the transform as shown in
Eq. 9 and Fig 4.

𝑡𝑖𝑟𝑠 = 𝑓 (𝑡𝑖𝑔𝑠 ) = 𝑡𝑖𝑔𝑠 + (𝑖 − 1) ∗ 𝛿 + 𝑏, (9)

where 𝑏 represents the inception. The choice of time reference
system would affect the use of event data because every event is
represented with a quadruplet (𝑡, 𝑥,𝑦, 𝑝) including its time stamp,
position, and polarity. By transforming the time value in the event
quadruplets, we convert events from one temporal coordinate sys-
tem to another, which are respectively denoted as 𝑒 and 𝑒′ as shown
below.

𝑒 (𝑡𝑔𝑠 , 𝑥,𝑦, 𝑝) = 𝑒′ (𝑡𝑟𝑠 , 𝑥,𝑦, 𝑝) . (10)

Assumewe have a pre-trained rolling shutter correctionmodel 𝑓𝑅𝑆𝐶 .
By introducing the idea of cycling transform, we could construct a
self-supervision loss. Firstly, in the GS time reference system, the
RS image 𝐼𝑎 with RS and GS timestamp is sent to the RSC model to
predict a GS image 𝐼𝑜1.

𝐼𝑜1 = 𝑓𝑅𝑆𝐶 (𝐼𝑎, 𝑒, 𝑡𝑎𝑔𝑠 , 𝑡𝑏𝑔𝑠 ) (11)

By switching to RS time reference system and considering 𝐼𝑜1 as
the input "RS image", we can apply the RSC model again to recover
a "GS image" with help of events {𝑒}.

𝐼𝑜2 = 𝑓𝑅𝑆𝐶 (𝐼𝑜1, 𝑒
′
, 𝑡𝑎𝑟𝑠 , 𝑡

𝑏
𝑟𝑠 ) (12)

The recovered "GS image" 𝐼𝑜2 in RS time reference system should
be identical to the original RS image 𝐼𝑟𝑠 in GS time reference sys-
tem. Hence the self-supervised loss function could be computed as
follows:

L𝑠𝑒𝑙 𝑓 = | |𝐼𝑟𝑠 − 𝐼𝑜2 | |1 . (13)

We provide an x-t plot in the supplementary materials for a better
understanding of self-supervised learning.

Finally, our loss function consists of a Charbonnier loss [? ] to
reconstruct GT, a perceptual loss [11], and a self-supervised loss.

L = L𝑒𝑟𝑟𝑜𝑟 + 𝛼L𝑝ℎ𝑜𝑡𝑜 + 𝛽L𝑠𝑒𝑙 𝑓 (14)

4 EXPERIMENTS
In Section 4.1, we validate the effectiveness of the design module
through ablation experiments. Subsequently, in Sections 4.2 and 4.3,
we will compare with existing methods on RSC benchmark datasets.
Finally, we will examine the effectiveness of self-supervised effec-
tiveness on different methods and both synthetic and real datasets.

Table 1: Ablation study

Methods PSNR SSIM

SwinIR [13] 30.83 0.88
w/o TMA 32.87 0.91
w/o DCA 32.18 0.91
ours 33.53 0.92

4.1 Ablation study
To examine the effectiveness of TMA, we experiment with another
simpler time encoding without the design of multi-head attention
focusing on events at different time periods. In this approach, RS
time encoding is generated based on the exposure time of each
row with the same size as the RS feature (𝑡𝑟𝑠 , F𝑟𝑠 ∈ R𝐵×𝐶×𝐻×𝑊 ),
and event time encoding is generated by the mid-exposure time
of RS with the same size as the event feature as well (𝑡𝑒𝑣, F𝑒𝑣 ∈
R𝐵×𝐶×𝐻×𝑊 ). And their product is add to the product of query and
key as Eq. 5.

To validate the importance of receptive field in the RSC task, we
conduct a comparative experiment where we replace deformable at-
tention with normal attention. Additionally, we provide a reference
experiment with SwinIR to verify if the encoder-decoder struc-
ture is better. For SwinIR, we directly concatenate RS, event, and
timemap together as the input of the original SwinIR architecture.

As shown in Tab. 1, compared with original SwinIR architecture,
our time enconding baesd encoder-decoder structure performance
better. This is beacuse without query based decoder, it’s hard to
build difficult to establish the temporal relationship between RS,
GS, and events. Just concatenating all these as inputs can’t fully
integrate the temporal information of the two modalities. Without
deformable attention, there is noticeable decrease in PSNR. This
is mainly due to two reasons. First, the network lacks a sufficient
receptive field, resulting in failure to recover in scenes with large
RS offsets, such as high-speed motion, leading to residual RS ar-
tifacts. Additionally, the use of regular cross-attention does not
effectively exploit the characteristics of each modality, and the mo-
tion information of events is not fully utilized. In addition to its
effectiveness, using DCA can also lead to reduced computational
complexity and accelerated training. Using a different time encod-
ing instead of TMA will also result in a certain decrease in PSNR.
That is because this type of encoding of RS represents only a small
time interval at each position while event time encoding represents
the entire exposure duration. When performing cross-modality
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Figure 5: Visual comparison on Gev-RS dataset. The event frame is generated by the events within the neighborhood of the GS
timestamp. The displayed ground truth (GT) in the images corresponds to the mid-exposure time in RS.

fusion, directly fusing these two can not extract precise temporal
information. In scenarios with high requirement on time accuracy,
such as high-speed motion, it may lead to local blur in the restored
output.

Table 2: Results on Gev-RS.

Methods events PSNR SSIM LPIPS

DSUN [15] ✗ 23.10 0.70 0.166
JCD [31] ✗ 24.90 0.82 0.105
IFED [30] ✗ 27.16 0.85 0.097
SelfDRSC [19] ✗ 26.58 0.84 0.113
JAMNet [5] ✗ 27.02 0.85 0.105
EvUnroll [32] ✓ 32.16 0.91 0.061

ours ✓ 33.53 0.92 0.021

4.2 Experiments on Gev-RS dataset
Gev-RS collects GS videos by using a high-speed camera at 5700 fps.
Then GS videos are fed into the event simulator V2E [8] to obtain
event data, and generate RS images based on Eq. 3 with 640 × 360
resolution.

In Fig. 5, we compare our method with EvUnroll [32] on Gev-
RS dataset. The resulting images in the figure are all GS images
at the intermediate exposure time of RS images. In the first case,
it can be clearly seen that Evunroll produces artifacts when the
foreground and background are close, such as the region between
the metal box and the train. Additionally, it also failed to accu-
rately reproduce the reflection of the lamp post in the window.

This is caused by event overlap between the foreground and back-
ground. Our approach effectively integrates the two modalities,
enabling model to distinguish whether the event is generated by
the foreground or background. As a result, our method can avoid
the occurrence of similar artifacts. The second example is highly
challenging, involving complex scenes with moving objects. Both
the small green and white fence in the foreground are difficult tar-
gets for restoration. While EvUnroll’s recovery of the white fence
appears slightly blurred and the green fence exhibits disjointed
segments, our method can accurately capture the displacement
of small objects to restore the green fence and also recover the
white fence without being affected by high-speed motion. Finally,
as shown in Tab. 2, we outperform EvUnroll by 1.37 dB in PSNR,
0.040 in terms of LPIPS [28] and far superior to other image based
methods.

Table 3: Results on Fastec-RS.

Methods events PSNR SSIM LPIPS

DSUN [15] ✗ 26.73 0.82 0.166
JCD [31] ✗ 26.48 0.82 0.105
SUNet [3] ✗ 27.06 0.83 -
JAMNet [5] ✗ 28.70 0.87 0.093
EvUnroll [32] ✓ 31.32 0.88 0.061
EvShutter [1] ✓ 32.41 0.91 0.061

ours ✓ 32.51 0.91 0.070
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Figure 6: Visual comparison on Fastec-RS dataset. The event frame is generated by the events within the neighborhood of the
GS timestamp. The displayed ground truth (GT) in the images corresponds to the mid-exposure time in RS.

4.3 Experiments on Fastec-RS dataset
Fastec-RS collects GS images at 2400 fps with 640 × 480 resolution,
and then simulate event data and RS image in the same way as
Gev-RS.

In Fig. 6, We compare our method with EvUnroll [32]. When an
object moves too close to the camera, causing significant relative
movement, EvUnroll produces noticeable artifacts. Even though
evunroll utilizes a dual-branch structure, its warping branch fails
under significant displacements, while the synthesis branch lacks
detailed handling of temporal information in events. Consequently,
when a large number of events occur within a short period due to
high-speed motion, the accumulation of unnecessary events leads
to blurring. In our method, each head of the TMA focuses on event
information at different time frames, enabling us to better address
the challenges presented by highly dynamic movements.

As shown in Tab. 3, Our method outperform EvUnroll by 1.16
dB in PSNR but only exhibits only a slight superiority over EvShut-
ter [1]. More results compared with image-based methods on Gev-
RS and Fastec-RS will be shown in Supp. Mat..

Table 4: Results on different methods with our self-
supervised learning.

Dataset Methods PSNR SSIM

Gev-RS
EvUnroll 32.16 0.91
EvUnroll(u) 33.49 0.92

Gev-RS
ours 33.53 0.92
ours(u) 33.92 0.92

4.4 Experiments on self-supervison
To validate the effectiveness of self-supervised learning, we con-
ducted experiments on both the test set of a synthetic dataset and
a real-world dataset.

As shown in Fig. 7, the left image is the result of training with
self-supervised function, while the right image is reversed. With
self-supervised learning, the model learned partial data distribu-
tion of the test set and removed the artifacts caused by incomplete

restoration, leading to better performance and a 0.49 dB improve-
ment in PSNR. Additionally, we applied the self-supervised loss
to EvUnroll, resulting in a 1.33 dB boost, as shown in Tab. 4. This
demonstrates the broad applicability of our self-supervised function,
which can be applied to different multi-modality methods.

Furthermore, in the Fig. 1 and Fig. 8, we present the results
on a real dataset collected by EvUnroll. The yellow dashed line is
the GS reference line drawn based on the intermediate event. The
initial results with ghosting effects were not good, possibly due
to dataset gaps, but after the self-supervised learning, the image
quality gradually improved. In the case of building, the boundary
the building restored by EvUnroll is quite blurry, as analyzed earlier,
primarily due to the limited use of detailed temporal information.
Moreover, the restored windows exhibit ghosting and distortion in
the glass. Ourmethod outperforms EvUnroll in edge restoration, but
it still exhibits ghosting in the windows. Nevertheless, the addition
of self-supervised learning results in remarkably clear window
restoration. In the next case, self-supervised learning eliminates
the direct artifacts between the stick and the base, and prevents
the occurrence of puppet distortion in the results of evunroll. It is
noteworthy that fine-tuning from the weights pretrained on the
synthetic data on real data typically requires just a few hundred
iterations.

Both the results on real-world and synthetic datasets demon-
strate the effectiveness of the proposed self-supervised loss.

Figure 7: Visual comparison of self-supervised learning.
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Figure 8: Visual comparison on real-world dataset. The yellow dashed line is the GS reference line drawn based on the
intermediate event. The label (u) means fine-tuning using self-supervised learning.
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Figure 9: Visual comparison on arbitrary timestamp.

4.5 Experiments on arbitrary timestamp
To validate the effectiveness of Time-Aware Attention, GS images at
different timestamps are generated. As shown in Fig. 9, we present
two scenarios, with one featuring a person occluded by trees and
the other with text occluded by a bus. Despite occlusions of text
and persons by the foreground in the RS images, these areas are
effectively recovered.

Table 5: Performance(PSNR) on different timestamps.

timestamp 0.1 0.3 0.5 0.7 0.9

ours 32.06 32.38 33.53 33.74 32.41
EvUnroll 31.40 32.04 32.16 32.40 31.78

Additionally, we conduct a quatitative comparison with EvUnroll
across different timestamps in Tab. 5. It can be observed that per-
formance decreases as the timestamp 𝑡 approaches the start or end
of the RS exposure time (𝑡 = 0.1, 0.9). This’s because at these mo-
ments, the temporal span between RS and GS at the bottom/top of

the image is too large (nearly the whole RS exposure time), leading
to poor local reconstruction. In contrast, at the mid-exposure time
(𝑡 = 0.5), the temporal span is relatively smaller (half of the whole
RS exposure time). The larger the difference is, the more challeng-
ing the RSC task is. As shown in Tab. 5, our method outperforms
EvUnroll at all timestamps.

5 CONCLUSION
In this work, we propose a encoder-decoder framework for the RSC
task. In encoder, we design time encoding as a bridge for the inter-
action of two modalities, and skillfully integrate it with multi-head
attention to make more intricate use of temporal information. In
decoder, we use the existing DCA module to integrate motion infor-
mation of event and appearance information of RS, and employed
the GS time encoding as a query for decoding. Additionally, we
develop self-supervised loss specific to the RSC task and confirm
its effectiveness on both synthetic and real datasets. Our method
outperforms existing methods in both qualitative and quantitative
performance.
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