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Abstract

Foundation models trained on patient electronic health records (EHRs) hold
promise for transforming clinical care by enabling effective decision support and
personalized healthcare delivery, but have been limited by a focus on intensive care
objectives. Here we present a multi-domain transformer-based EHR foundation
model designed to predict two liver disease outcomes in patients with Chronic
Hepatitis B, an infection characterized by diverse and uncertain medical trajectories.
Through case studies employing attention maps, we demonstrate that the trans-
former model identifies patterns similar to one-liners employed by clinical staff and
depends on distinct clinical events to estimate disease progression. Our findings
underscore both the utility and challenges of EHR foundation models in clinical
care and the necessity to evaluate EHR-models on less-regimented diseases.

1 Introduction

Despite the existence of a safe and effective vaccine as well as chronic suppressive therapy, Chronic
Hepatitis B (CHB) infection results in over 800 000 deaths annually and 1.5 million people are newly
infected each year [16]. Liver cirrhosis and hepatocellular carcinoma (HCC), collectively referred
to as C/HCC, are the leading causes of mortality among CHB patients [3]. The clinical progression
among CHB patients to C/HCC is a continuous but non-linear processes with subtle and nonspecific
early warning signs. Providing individualized risk assessments for developing liver diseases could
enable early intervention and promote medication adherence to prevent severe outcomes. Their
impact on the liver’s synthetic function typically occurs only at advanced stages, when hepatocyte
function ultimately collapses. These medical characteristics hold the potential for large-scale EHR
models to learn long-range dependencies and sequential symptoms in the medical trajectory.

Numerous studies have developed and evaluated pre-trained language models for clinical prediction
tasks. CLMBR [14] introduced a framework that learns patient representations from a large EHR
database using a language objective and a Gated Recurrent Unit (GRU), which was subsequently ex-
tended [17] with a transformer-based architecture. Medical pre-trained models have also been adapted
to time-to-event training objective [13] and state-space representations, including the incorporation
of a Mamba block [4].

Most of the popular EHR datasets are focused on the intensive care unit (ICU) setting, such as
MIMIC-III [5], MIMIC-IV [6]. ICU care is notable for intense short-term monitoring, relatively
protocolized treatments and similar patient trajectories. This is in contrast to the patient trajectories
from chronic diseases–with intermittent monitoring, inconsistent emergence of signs of disease
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progression, and variable clinical practices for monitoring. Application of EHR foundation models
to indolent and chronic progressive diseases remains understudied, and it is still unclear whether
predictive performance on ICU trajectories reported in the literature hold in these cases. We are
among the first [10] to develop clinical pre-trained models on the Optum® de-identified Electronic
Health Record data set (Optum® EHR) [2]. This is a multi modal dataset, including encounters,
procedures, medications, clinical notes that further has de-identified longitudinal patient data.

Our contributions are as follows:

(i) We present a novel multi-domain EHR foundation model, and explore its utility to predict liver
cirrhosis and liver cancer for chronic hepatitis B patients.

(ii) We analyse attention maps of transformer blocks contained in our models and provide a medical
interpretation into their decision making process in the case of insidious diseases such as
C/HCC.

(iii) We discuss the medical perspective on current literature evaluating EHR foundation models on
diseases with stereotypical treatments paths, and argue for the necessity to evaluate on unclear
patient trajectories.

2 Methods

We present an overview of the analysis workflow in Figure A1. Details describing the tabular baseline
XGBoost model, and the direct end-to-end transformer are provided in Appendix A.2.

EHR data. We trained our models on multi-center EHR data [2], which comprises de-identified,
longitudinal records from over 100 million patients across more than 7,000 U.S. hospitals and clinics.
The database captures multi-domain data, extracted from structured medical information and written
medical notes—including patient demographics, diagnoses, and prescriptions—recorded between
2007 and 2024 (see Appendix A.1 for more details). The analysis of liver disease prediction focuses
solely on a target population of patients living with chronic hepatitis B (CHB). Therefore, we define
the CHB target population as all patients with at least one CHB diagnosis code, resulting in a dataset
comprised of more than 78 000 patients (see Table A1). To obtain our pre-training dataset, we filtered
the remaining patient data for medical codes occurring in no less than 7 000 patients and included
only patients with between 20 and 600 events.

The tables considered in the presented analysis are Patients (e.g. birth year, gender, ethnicity),
Diagnosis (e.g. ICD9, ICD10, SNOWMED codes), Labs (e.g. LOINC codes), Immunization
(vaccinations), Observation (numerical e.g. SBP, temperature), Prescription (e.g. NDC codes), Visit
(categorical visit types e.g. inpatient or emergency), Procedures (e.g. CPT4, ICD9, SNOMED codes),
and Administrations (e.g. NDC codes).

The EHR data includes in-patient stays with intensive surveillance, yielding up to 26 500 recorded
events per patient. To reduce the sequence length and the dominance of high-surveillance periods,
events are aggregated over monthly intervals. This aggregation window corresponds to the medically
relevant period for detecting changes in liver health. Let Tmax be the maximum number of months
with at least one event recorded for all patients in a batch, then the batch can be represented by a
tuple of patients Pi, with each Pi:

Pi = [M0,M1, ...,Mj ] , where each Mj = {event0, .., eventl} and j ≤ Tmax.

Endpoint definition. We predict the probability of developing cirrhosis or liver cancer after four
different time delays (1, 3, 5, and 10 years). These time delays correspond to clinically relevant
periods for liver function deterioration. Both outcomes are studied in separate models.

EHR sequence embedding. Depending on the feature domain, each medical event in time-bin
Mj is described by an obligatory categorical feature defined by a medical code or text, and by an
optional numerical value. Each event is embedded according to their event type, into a common
model dimension D. All embeddings within the monthly aggregation time window are averaged,
leading to each Mj in Pi being represented by a single embedding vector X ∈ RD. Therefore, a
batch tensor with B padded sequences takes the shape H ∈ RB×Tmax×D.
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For each Mj , two additional embeddings are constructed and added: a trainable categorical embedding
indicating age A ∈ RD and a fixed positional encoding P ∈ RD. The final tensor given to the
transformer Z is constructed as Z = X+P+A ∈ RB×Tmax×D.

2.1 An EHR foundation model

Additionally, for the pre-trained and fine-tuned models, an embedded time offset ∆T in days
describing time passed between events is added to the input Z∗ = Z+∆T [18]. As each position in
Z∗ constitutes of multiple aggregated events, we use a multi-token prediction setup for pretraining the
EHR foundation model. The pretraining prediction head is a multi-layer perceptron (MLP) providing
a logit tensor for each code in the dataset Ŷ ∈ RB×Tmax×C , where C is the vocabulary size, i.e. the
number of medical event codes in the dataset.

The end-to-end trained model consists of a transformer encoder with L identical layers, employing
a masked multi-head self-attention considering all subsequences for training. We combine the
transformer position-wise embeddings with a binary multi-task MLP prediction head with sigmoid
activation. All time horizon outcomes are treated as a multi-task prediction objective, leading to
Y ∈ RB×nyears . The model is trained using the AdamW optimiser and stopped at reaching the validation
loss minimum.

The loss function used to optimise the pretrained model consists of three parts:

(i) a self-supervised multi-token objective consists in predicting the set of medical events present in
the next aggregated time window, by optimising a multi-label cross-entropy loss Lnext (Eq. 1),

(ii) for each time window Mi, the model fits a regression head to predict a time offset in days to the
earliest event in the next window Mi+1, using a mean squared error loss Ltime (Eq. 2),

(iii) and for the numerical targets in the dataset, a Gaussian prediction head estimates the mean and
log-variance of the distribution through a negative log-likelihood loss Lnum (Eq. 3).

The total loss is defined as Ltotal = Lnext + Ltime + Lnum. Multiple model sizes were evaluated in our
study (2.1.1), and we will be presenting the 170M model in more detail.

2.1.1 Loss functions and training details

Given the target Y and the padding boolean mask V ∈ BB×Tmax , the self-supervised multi-token
objective consists in predicting the set of medical events present in the next aggregated time window,
by optimising a multi-label cross-entropy (CE) loss:

Lnext =
−1∑B

b=1

∑Tmax
t=1 Vbt

B∑
b=1

Tmax∑
t=1

C∑
c=1

[
Ybtc log(σ(Ŷbtc)) + (1− Ybtc) log(1− σ(Ŷbtc))

]
· Vbt (1)

Additionally, for each token, the model fits a regression head to predict the time offset to the next
time point Ô ∈ NB×Tmax measured in days between the aggregated event tokens. The loss is a mean
squared error (MSE):

Ltime =
1∑B

b=1

∑Tmax
t=1 Vbt

B∑
b=1

Tmax∑
t=1

(Obt − Ôbt)
2 · Vbt (2)

Given a numerical target Num ∈ RB×Tmax×Cnum for the Cnum numerical events of the dataset,
a Gaussian prediction head estimates the mean and log-variance of the distribution. Considering a
numerical mask C ∈ BB×Tmax×Cnum which represents if a given numerical code is included in the
batch, the negative log-likelihood loss is:

Lnum =
1∑B

b=1

∑Tmax
t=1

∑Cnum
c=1 Vbt · Cbtc

B∑
b=1

Tmax∑
t=1

Cnum∑
c=1

− log p(Numbtc|µ̂btc, σ̂btc) · Vbt · Cbtc (3)

Three model sizes were evaluated in our study; 43M, 170M and 860M parameters. We obtained
equally high performances for the 170M and 860M models, and are presenting the 170M model
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Table 1: Model comparison between tabular XGBoost baseline (e2e-xgb-tab), end-to-end trans-
former (e2e-tfm) and finetuned EHR foundation model (fm-ft-tfm). We report mean±standard
deviation over the same five fixed train-test splits used in all experiments. Metrics are area under the
ROC curve (AUC) and specificity at 90 percent sensitivity (sp@90sen).

e2e-tfm e2e-tfm e2e-xgb-tab e2e-xgb-tab fm-ft-tfm fm-ft-tfm
disease year AUC sp@90sen AUC sp@90sen AUC sp@90sen

cirrhosis 1 0.74± 0.02 0.39± 0.03 0.83 ± 0.01 0.49± 0.04 0.80± 0.01 0.48± 0.03
cirrhosis 3 0.74± 0.01 0.39± 0.02 0.82 ± 0.01 0.48± 0.02 0.79± 0.01 0.48± 0.04
cirrhosis 5 0.74± 0.02 0.40± 0.02 0.81 ± 0.01 0.49± 0.03 0.79± 0.01 0.48± 0.03
cirrhosis 10 0.75± 0.02 0.41± 0.03 0.81 ± 0.00 0.49± 0.03 0.80± 0.01 0.48± 0.03
HCC 1 0.75± 0.03 0.42± 0.13 0.80 ± 0.01 0.41± 0.02 0.80 ± 0.02 0.40± 0.07
HCC 3 0.76± 0.04 0.46± 0.11 0.78 ± 0.03 0.40± 0.06 0.76± 0.02 0.36± 0.09
HCC 5 0.76± 0.06 0.43± 0.14 0.77 ± 0.03 0.39± 0.06 0.76± 0.03 0.37± 0.08
HCC 10 0.75± 0.05 0.36± 0.14 0.78 ± 0.03 0.39± 0.07 0.76± 0.03 0.38± 0.08

in more detail. The 43M model is trained in full precision, while mixed precision is used for the
larger models. Distributed Data Parallel (DDP) training is applied to the 43M and 170M models, and
DeepSpeed ZeRO-2 [9] is utilized for the 860M model. Learning rate scheduling follows a cosine
annealing schedule with warm-up. Pre-trained models are fine-tuned on the CHB target population
training data, initializing weights from pre-training and fine-tuning only the final transformer layer
and the prediction head, with all other weights frozen.

3 Results

The prediction results are displayed in Table 1. The results indicate that end-to-end transformers
trained directly on the CHB target population are not predicting comparatively well to the XGBoost
baseline or the finetuned foundation model. While the finetuned foundation models show clear gains
in performance compared to the end-to-end transformers, they reach a similar performance to but
never outperform a simple tabular XGBoost baseline.
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(a) Case study a: Cirrhosis prediction
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(b) Case study b: HCC prediction

Figure 1: Attention weights of end-to-end transformer. Attention maps for the first model layer (L)
and selected prediction heads (H) for each time index. Color scale normalized to the maximum value
within each row (darkest color) and zero (brightest color). Attention across all heads and predictions
for the showcased patients can be found in Figure A2.

With known advantages and limitations in attention interpretability [11], we gather insights into
transformer model mechanics by analyzing attention weights patterns observed regularly over a large
number of patients, and showcase them in two exemplary case studies in Figure 1. We regularly
observe that one attention head is focusing solely on the first event, which constitutes a context
token of fixed patient characteristics: gender, year of birth, race, ethnicity, and geographical region
(Figure 1a). Remarkably, this resembles the way that doctors and nurses communicate efficiently
about patients through ‘one-liners‘. The one-liner starts with a patient identifier providing clinically
important information and paints a picture of the patient in the reader’s mind [12], quickly sharing
a baseline pretest probability for causes of the presenting medical concern. We find the emergence
of this convergent behavior in our models as quite astonishing, while also noting the weaknesses of
learning misleading correlations (e.g. race as a marker for socioeconomic determinants of health). A
second pattern is that of attention heads placing full attention on the latest relevant medical event,
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initially the context token, potentially switching full focus to a newly occurring event in the sequence
(Figure 1b). Investigating the medical trajectory of the studied patient, attention in head no. 5 was
initially fixed on the context token, then fully switched to a token for a medical code indicating
abnormal findings on diagnostic imaging of liver, and switching again to a token recording a hepatic
function panel. The same attention head placed attention on an abnormal findings on diagnostic
imaging of liver in other patients as well. This could indicate that this specific attention head has
learned to focus on hepatic function for predicting HCC.

Further, we find several indications that the EHR-models use sequence aggregation operations. In
end-to-end transformers, performance increases with larger time aggregation windows (Figure A4).
This aggregation can also be seen in the pretrained model trained on the multi-token objective, where
horizontal lines in pretrained foundation models indicate that some query tokens place attention on
all other key tokens, effectively leading to an averaging on the signal of all tokens (Figure A3).

4 Discussion

In this work we are presenting a novel multi-domain EHR foundation model intended for long-term
disease monitoring, and evaluate its capability for predicting chronic progressive diseases in the case
of liver cirrhosis and liver cancer in CHB patients. We have demonstrated its utility of outperforming
an end-to-end transformer trained directly on the target population, while critically comparing to
and demonstrating a similar performance employing a non-temporal XGBoost prediction model.
Emergent behavior mirroring clinical care is observed by placing attention to the ‘one-liner‘ sum-
marizing a patient’s baseline health status. This behavior speaks to the potential of tackling difficult
clinical problems. We present indications that the transformer models struggle to take advantage of
the temporal aspect of the EHR sequences, and fall back to leveraging simpler techniques such as se-
quence aggregation to base their predictions by favoring large time aggregation windows and showing
averaging steps in attention maps. We hypothesize that vanilla EHR foundation model architectures
may not fully capture the complexity of medical event codes and their temporal interactions due to
the relatively small number of EHR sequences compared to the training data available in language
domains. The XGBoost setup likely created a more focused space of medical events by employing
simple feature selection. A promising development would be to introduce greater inductive bias into
the models, such as improving medical tokenization [15] or increasing training size by combining
EHR datasets.

We are now further giving a medical perspective on the current literature and utilization of EHR-
based foundation models: Prior work has demonstrated the utility of EHR foundation models over
simpler baselines, such as logistic regression [14] and XGBoost [4]. The choice of endpoints
used for performance evaluation is often motivated by the focus on ICU datasets, e.g. inpatient
mortality [14] [4], long admission [14], ICU transfer [14], or readmission [14] [4]. The medical
problems underlying these endpoints–e.g. heart failure, sepsis and cardiogenic shock–have well-
developed management pathways that are systematically enforced by healthcare providers via payment
rate benchmarks [7]. This results in most patients having a fairly regimented management pathway
that tends to be documented in a stereotypical manner in health records, enabling sequence-based
encoders to effectively capture and impute the continuation of these regimented medical protocols.

However, this is the exception rather than the norm; many common conditions, such as liver abnor-
malities, exhibit ad hoc diagnostics and less predictable treatment trajectories. As we think forward
to foundational EHR-trained models as decision support tools for physicians and health systems,
being able to grapple with complex and contradictory patient information offers a key opportunity for
advancement in health. The presented results call into question whether the superior performance
of EHR foundation models has been demonstrated in the use case of predicting patient trajectories
uncertain to the medical professional. In an era of increasingly constrained provider time with patients
at health check-ins, it is often these slowly progressive diseases that get missed, and only addressed
when the disease has progressed to an overt, and often irreversible state. A EHR-trained model
capable of flagging the subtle signs of earlier disease progression could be an invaluable partner to
the primary care provider, enabling a focus on disease suppression, treatment adherence, and even
direction to novel curative therapies.
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Figure A1: C/HCC prediction workflow overview. The workflow of the presented risk prediction
models is depicted from the bottom of the plot upwards. The common initial processing includes
extracting the patients with chronic hepatitis B, extracting the medical events sequence and the
respective endpoints at each timepoint. The workflow then splits into three downstream paths, A. one
using a tabular data representation defining a feature vector for each patient, B. directly uses a mean
feature embedding to train an end-to-end transformer, and C. pretrains a model on a multi-token loss
first and is then finetuned on the C/HCC prediction objective.

A Technical Appendix and Supplementary Material

A.1 EHR multi-domain database

Optum® de-identified Electronic Health Record data set (Optum® EHR) is a longitudinal electronic
health record repository derived from dozens of healthcare provider organizations in the United States.
Administrative medical data is obtained from both Inpatient and Ambulatory electronic health records
(EHRs), practice management systems, and other internal systems and is processed, normalized, and
standardized across the continuum of care from both acute inpatient stays and outpatient visits. The
data is statistically de-identified under the HIPAA Privacy Rule’s Expert Determination method and
managed according to Optum® customer data use agreements.

Data access statement. The source data used for the present study were licensed from the Optum®
de-identified EHR database (https://www.optum.com/), with restrictions that do not allow for the
data to be redistributed or made publicly available. However, for accredited researchers, the Optum®
de-identified EHR database is available for licensing at Optum, Inc. Data access may require a
data-sharing agreement and may incur data access fees.

High positive class imbalance. Very few events get a positive class label. The positive class ratio
of having either cirrhosis or liver cancer within the prediction time horizons of 1, 3, 5 or 10 years
changes slightly, but ranges from 3 to 7 percent. For the end-to-end and finetuned models, the option
to adjust the weight of the postive class in the BCE loss for the class ratio through pos_weight is
given as a hyperparameter.
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Table A1: Filter conditions for chronic Hepatitis B patients by medical code. All individuals that
have at least one entry corresponding to these codes are included in the analysis. Abbr.: ‘Chronic
viral hepatitis B‘ was abbreviated to CHB.

data table Version Code Condition description
Diagnosis ICD10 B18.0 CHB with delta-agent
Diagnosis ICD10 B18.1 CHB without delta-agent
Diagnosis ICD9 070.23 CHB with delta-agent
Diagnosis ICD9 070.33 CHB with delta-agent without hepatic coma
Diagnosis ICD9 070.22 CHB without delta-agent with hepatic coma
Diagnosis ICD9 070.32 CHB without delta-agent without hepatic coma
Diagnosis SNOMED 61977001 Chronic type B viral hepatitis
Diagnosis SNOMED 186639003 Chronic viral hepatitis B without delta-agent
Diagnosis SNOMED 50167007 Chronic active type B viral hepatitis
Diagnosis SNOMED 38662009 Chronic persistent type B viral hepatitis
Diagnosis SNOMED 235869004 Chronic viral hepatitis B with hepatitis D
Diagnosis SNOMED 713966008 Occult chronic type B viral hepatitis
Diagnosis SNOMED 424340000 CHB with hepatic coma

A.2 Appendix to the Methods section

EHR sequence representation. Given the expanding literature on clinical pre-trained models, the
Medical Event Data Standard (MEDS)[1] has been proposed to maximize interoperability across
datasets, tools, and model architectures. Our work follows the MEDS standard.

EHR tabular representation. We establish a baseline using XGBoost by converting each patient
sequence into a tabular representation of the sequence. The construction of aggregated timepoints and
corresponding labels match the process of the embedding models. However, instead of embedding
each event for a patient, a table is constructed. Given Nevents is the maximum number of event types
present in the data, the tabular data representation takes the form X ∈ RNpatients×Nall_events+Nnumerical . The
presence of categorical features in a patient’s sequence is one-hot encoded. Numerical events are
described by two columns; the first recording the numerical value (in case multiple numerical events
are recorded for the same event type, the most recent measurement is taken) and the second indicating
presence/absence of the value, to be able to differentiate between true zero-valued features and not
recorded features. We employed sklearn’s [8] SelectKBest feature selection on the validation set
with the criterion f_classif (ANOVA F-value) to reduce the number of features in the table from
Nall_events +Nnumerical to 1000.
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Figure A2: Full attention weights of end-to-end transformer. Left: Attention maps for the first
model layer (L) and all prediction heads (H) for each time index. Color scale normalized to the
maximum value within each row (darkest color) and zero (brightest color). Right: Predictions and
labels for each time index (blue: 0, white: 0.5, red: 1).
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Figure A3: Attention maps of first layer of pretrained foundation model. High attention on the
first token in the sequence can be observed. This is the context token, describing a number of set
patient characteristics: gender, year of birth, race, ethnicity, and geographical region. Several heads
spread out remaining attention across a wide range of tokens, giving all tokens the chance to attend to
each other.

Figure A4: End-to-end trained transformer predictive performance vs. aggregation time window.
An increase in AUC can be observed until 1 month, with a decrease for larger aggregation windows
of 2 months.
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