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Abstract

Besides natural language processing, transformers exhibit extraordinary performance in solv-
ing broader applications, including scientific computing and computer vision. Previous
works try to explain this from the expressive power and capability perspectives that stan-
dard transformers are capable of performing some algorithms. To empower transformers
with algorithmic capabilities and motivated by the recently proposed looped transformer
(Yang et al., 2024; Giannou et al., 2023), we design a novel transformer block, dubbed
Algorithm Transformer (abbreviated as AlgoFormer). Compared with the standard trans-
former and vanilla looped transformer, the proposed AlgoFormer can perform efficiently in
algorithm representation in some specific tasks. In particular, inspired by the structure of
human-designed learning algorithms, our transformer block consists of a pre-transformer
that is responsible for task preprocessing, a looped transformer for iterative optimization
algorithms, and a post-transformer for producing the desired results after post-processing.
We provide theoretical evidence of the expressive power of the AlgoFormer in solving some
challenging problems, mirroring human-designed algorithms. Furthermore, some theoretical
and empirical results are presented to show that the designed transformer has the potential
to perform algorithm representation and learning. Experimental results demonstrate the
empirical superiority of the proposed transformer in that it outperforms the standard trans-
former and vanilla looped transformer in some specific tasks. An extensive experiment on
a real language task (neural machine translation of German and English) further validates
the expressiveness and effectiveness of AlgoFormer.

1 Introduction

The emergence of the transformer architecture (Vaswani et al., 2017) marks the onset of a new era in natural
language processing. Transformer-based large language models (LLMs), such as BERT (Devlin et al., 2019)
and GPT-3 (Brown et al., 2020), revolutionized impactful language-centric applications, including language
translation (Vaswani et al., 2017; Raffel et al., 2020), text completion/generation (Radford et al., 2019;
Brown et al., 2020), sentiment analysis (Devlin et al., 2019), and mathematical reasoning (Imani et al., 2023;
Yu et al., 2024). Beyond the initial surge in LLMs, these transformer-based models have found extensive
applications in diverse domains such as computer vision (Dosovitskiy et al., 2021), time series (Li et al., 2019),
bioinformatics (Zhang et al., 2023b), and addressing various physical problems (Cao, 2021). While many
studies have concentrated on employing transformer-based models to tackle challenging real-world tasks,
yielding superior performances compared to earlier models, the mathematical understanding of transformers
remains incomplete.

The initial line of research interprets transformers as function approximators. Edelman et al. (2022) delve
into the learnability and complexity of transformers for the class of sparse Boolean functions. Gurevych
et al. (2022) explore the binary classification tasks, demonstrating that the transformer can circumvent
the curse of dimensionality with a suitable hierarchical composition model for the posterior probability.
Takakura & Suzuki (2023) investigate the approximation ability of transformers as sequence-to-sequence
functions with infinite-dimensional inputs and outputs. They highlight that the transformer can avoid the
curse of dimensionality under the smoothness conditions, due to the feature extraction and property sharing
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mechanism. However, viewing transformers solely as functional approximators, akin to feed-forward neural
networks and convolutional neural networks, may not provide a fully satisfying understanding.

Another line of studies focuses on understanding transformers as algorithm learners. Garg et al. (2022)
empirically investigate the performance of transformers in in-context learning, where the input tokens are
input-label pairs generated from classical machine learning models, e.g., (sparse) linear regression and de-
cision tree. They find that transformers can perform comparably as standard human-designed machine
learning algorithms. Some subsequent works try to explain the phenomenon. Akyürek et al. (2023) char-
acterize decoder-based transformer as employing stochastic gradient descent for linear regression. Bai et al.
(2023) demonstrate that transformers can address statistical learning problems and employ algorithm selec-
tion, such as ridge regression, Lasso, and classification problems. Zhang et al. (2023a) and Huang et al. (2023)
simplify the transformer model with reduced active parameters, yet reveal that the simplified transformer
retains sufficient expressiveness for in-context linear regression problems. In Ahn et al. (2023), transformers
are extended to implement preconditioned gradient descent. The looped transformer is proposed in Giannou
et al. (2023), and is shown to have the potential to perform basic operations (e.g., addition and multiplica-
tion), as well as implicitly learn iterative algorithms Yang et al. (2024). More related and interesting studies
can be found in Huang et al. (2023); Von Oswald et al. (2023); Mahankali et al. (2024).

In this paper, inspired by the recently proposed looped transformer (Yang et al., 2024; Giannou et al., 2023),
we propose a novel transformer block, which we refer to as AlgoFormer, and strictly enforce it as an algorithm
learner by regularizing its architecture. The transformer block consists of three sub-transformers, i.e., the
pre-, looped, and post-transformers, designed to perform distinct roles. The pre-transformer is responsible for
preprocessing the input data, and formulating it into some mathematical problems. The looped transformer
acts as an iterative algorithm in solving the hidden problems. Finally, the post-transformer handles suitable
postprocessing to produce the desired results. In contrast to standard transformers, the AlgoFormer is more
likely to implement algorithms, due to its algorithmic structures shown in Figure 1.

Our main contributions can be summarized as follows:

• We introduce a novel transformer block (as shown in Figure 1), inspired by looped transformer
(Yang et al., 2024; Giannou et al., 2023), namely the AlgoFormer. This block is designed as efficient
algorithm learners, mimicking the structure of human-designed algorithms ; see Section 2.

• We theoretically show the expressive power of the AlgoFormer in solving three challenging tasks in
implementing some practical human-designed algorithms (Theorems 3.1-3.3), including some task-
specific pre- and post-processing, as well as the gradient descent; see Section 3.

• Beyond the gradient descent, we prove that the AlgoFormer can implement the (second-order)
Newton’s method in linear regression problems (Theorem 4.1). While our results primarily focus on
encoder-based transformers, we also extend our findings to decoder-based transformers (Theorem
4.2); see Section 4.

• We experimentally investigate the behavior of the AlgoFormer with different hyperparameters in
handling some challenging in-context learning tasks. The empirical results on both synthetic and
real language tasks support the expressiveness and the powerfulness of the AlgoFormer; see Section
5.

This paper is organized as follows. The motivations for the design of the transformer block, including a brief
introduction to transformer layer architectures and the algorithmic structure of the proposed transformer
block, are presented in Section 2. We provide detailed results for the expressiveness of the designed Algo-
Former in tackling three challenging tasks, in Section 3. In Section 4, we additionally show that the designed
transformer is capable of implementing Newton’s method, a second-order optimization algorithm, beyond
the gradient descent. We also extend our results for decoder-only transformers, which can only access data in
the previous tokens for regression. In Section 5, experimental results studying the behavior of the designed
transformer block are reported. We also empirically compare it with the standard transformer and vanilla
looped transformer. Some concluding remarks and potential works are discussed in Section 6.
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Figure 1: Algorithmic structure of the AlgoFormer. The pre-transformer conducts “statements 1” in the
Algorithm; the looped transformer performs “statements 2” inner the for loop; the post-transformer carries
out “statements 3”. Here, TFpre, TFloop, and TFpost are multi-layer transformers; “statements” represent
some fundamental operations in classical algorithms.

2 Motivation

In this section, we mainly discuss the construction and intuition of the AlgoFormer. Its advantages over stan-
dard transformer is then conveyed. Before going into details, we first elaborate the mathematical definition
of transformer layers.

2.1 Preliminaries

A One-layer transformer is mathematically formulated as:

Attn (X) = X +
h∑

i=1
W

(i)
V X · softmax

(
X⊤W

(i)⊤
K W

(i)
Q X

)
,

TF (X) = Attn (X) + W2ReLU (W1Attn (X) + b1) + b2,

(1)

where X ∈ RD×N is the input tokens; h is the number of heads; {W
(i)
V , W

(i)
K , W

(i)
Q } denote value, key and

query matrices at i-th head, respectively; {W2, W1, b2, b1} are parameters of the shallow feed-forward ReLU
neural network. The attention layer with softmax activation function mostly exchanges information between
different tokens by the attention mechanism. Subsequently, the feed-forward ReLU neural network applies
nonlinear transformations to each token vector and extracts more complicated and versatile representations.

2.2 Algorithmic Structures of Transformers

As discussed in the introduction, rather than simply interpreting it as an implicit function approximator,
the transformer may in-context execute some implicit algorithms learned from training data. However, it is
still unverified that the standard multi-layer transformer is exactly performing algorithms.

Looped transformer. Equipped with the supposition that transformers can perform some basic operations,
a shallow transformer is sufficient to represent iterative algorithms, as shown in the green part of Figure 1.
The idea is first mentioned in Giannou et al. (2023), where they show that transformers can implement matrix
addition and multiplication. Therefore, some iterative algorithms in scientific computing can be potentially
realized by looped transformers. However, their construction does not explicitly imply the expressive power
of transformers defined in Equation 1. Recently, Yang et al. (2024) empirically studied the behavior of looped
transformers with different choices of hyperparameters in solving regression problems. Their experimental
results further confirm the hypothesis that transformers are exactly learning iterative algorithms in solving
linear regression problems, by strictly regularizing the transformer structure as looped transformers.

AlgoFormer. As shown in the green part of Figure 1, vanilla looped transformers (Yang et al., 2024;
Giannou et al., 2023) admit the same structure as iterative algorithms. However, real applications are usually
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much more complicated. For example, given a task with data pairs, a well-trained researcher may first pre-
process the data under some prior knowledge, and then formulate a mathematical (optimization) problem.
Following that, some designed solvers, usually iterative algorithms, are performed. Finally, the desired results
are obtained after further post-processing. The designed AlgoFormer (Algorithm Transformer), visualized in
Figure 1, enjoys the same structure as wide classes of algorithms. Specifically, we separate the transformer
block into three parts, i.e., pre-transformer TFpre, looped transformer TFloop, and post-transformer TFpost.
Here, those three sub-transformers are standard multi-layer transformers in Equation (1). Given the input
token vectors X and the number of iteration steps T , the output admits:

TFpost (TFloop (· · · TFloop︸ ︷︷ ︸
T iterations

(TFpre(X))) · · · ). (2)

Compared with standard transformers, the AlgoFormer acts more as the algorithm learner, by strictly
regularizing the loop structure. In comparison to the results presented in the previous work Giannou et al.
(2023), our construction of AlgoFormer is closer to the transformer in real applications. In their approach, the
design of the looped transformer necessitates task-specific knowledge, involving operations like token order
switching. In contrast, our model is task-independent, emphasizing the learning of algorithms solely from
data rather than relying on potentially unknown prior knowledge. In contrast to the looped transformer in
Yang et al. (2024), we introduce pre- and post-transformers, which play essential roles in real applications,
and the designed transformer block can represent complex algorithms and solve challenging tasks more
efficiently.

Expressiveness and efficiency. In algorithm representation (as shown in Figure 1), the vanilla looped
transformer, the standard transformer, and the proposed AlgoFormer exhibit expressiveness regardless of
efficiency (parameter sizes and computation). However, the AlgoFormer may enjoy more efficiency in some
tasks. In specific algorithm representation with iterations, the standard transformer has redundant pa-
rameters, compared with the vanilla looped transformer and the AlgoFormer. For algorithms that require
preprocessing and postprocessing, the AlgoFormer is more efficient for representation. We observe that the
pre-transformer and the post-transformer in the AlgoFormer can be fused with the looped transformer. For
example, suppose the pre-, looped, and post-transformers are all one-layer and one-head. In that case, the
AlgoFormer can be realized by a one-layer and four-head looped transformer, where three heads contribute
to perform pre-, looped, and post-transformer, and the additional head acts as the head selection. But
the drawback is also obvious that the vanilla looped transformer with more heads introduces redundant
computation.

3 Expressive Power

In this section, we theoretically show by construction that AlgoFormer is capable of solving some challenging
tasks, akin to human-designed algorithms. The core idea is as follows. Initially, the pre-transformer under-
takes the crucial task of preprocessing the input data, such as representation transformation. The looped
transformer is responsible for iterative algorithms in optimization problems. Finally, it is ready to output the
desired result by the post-transformer. Through the analysis of AlgoFormer’s expressive power in addressing
these tasks, we expect its potential to make contributions to the communities of scientific computing and
machine learning.

3.1 Regression with Representation

We consider regression problems with representation, where the output behaves as a linear function of the
input with a fixed representation function. Here, we adopt the L-layer MLPs with (leaky) ReLU activation
function as the representation function Φ∗(·). Specifically, we generate each in-context sample by first
sampling the linear weight A from the prior PA, and then generating the input-label pair {(xi, yi)} with
xi ∈ Rd ∼ Px, yi = AΦ∗(xi) + ϵi and ϵi ∼ N

(
0, σ2I

)
. We aim to find the test label ytest := AΦ∗(xtest),

given the in-context samples and test data {x1, y1, · · · , xN , yN , xtest}. A reliable solver is expected first
to identify the representation function and transform the input data x to its representation Φ∗(x). Then
it reduces to a regression problem, and some optimization algorithms are performed to find the weight
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matrix from in-context samples. Finally, it outputs the desired result ytest by applying transformations on
the test data. We prove by construction that there exists a AlgoFormer that solves the task, akin to the
human-designed reliable solver.
Theorem 3.1. There exists a designed AlgoFormer block with TFpre (an (L+1)-layer two-head transformer),
TFloop (a one-layer two-head transformer), and TFpost (a one-layer one-head transformer), that outputs
AΦ∗ (xtest) from the input-label pairs {x1, y1, · · · , xN , yN , xtest} by fitting the representation function and
applying gradient descent for multi-variate regression.

Remarks. The detailed proof is available in Appendix A.1. Our construction of the transformer block
involves three distinct sub-transformers, each assigned specific responsibilities. The pre-transformer, char-
acterized by identity attention, is dedicated to representation transformation through feed-forward neural
networks. This stage reduces the task to a multivariate regression problem. Subsequently, the looped trans-
former operates in-context to determine the optimal weight, effectively acting as an iterative solver. Finally,
the post-transformer is responsible for the post-processing and generate the desired result AΦ∗ (xtest). Here,
the input prompt to the transformer is formulated as

P =

 x1 0 · · · xN 0 xtest
0 y1 · · · 0 yN 0
px

1 py
1 · · · px

N py
N px

N+1

 ,

where px
i , and py

i denote positional embeddings and will be specified in the proof. Due to the differing
dimensions of the input x and its corresponding label y, zero padding is incorporated to reshape them into
vectors of the same dimension. The structure of the prompt P aligns with similar formulations in previous
works (Bai et al., 2023; Akyürek et al., 2023; Garg et al., 2022). For different input prompts P , the hidden
linear weights A are distinct but the representation function Φ∗(·) is fixed. In comparison with the standard
transformer adopted in Guo et al. (2024), which investigates similar tasks, the designed AlgoFormer has a
significantly lower parameter size, making it closer to the envisioned human-designed algorithm. Notably, we
construct the looped transformer to perform gradient descent for the multi-variate regression. However, the
transformer exhibits remarkable versatility, as it has the capability to apply (ridge) regularized regression
and more effective optimization algorithms beyond gradient descent. For more details, please refer to Section
4.

3.2 AR(q) with Representation

We consider the autoregressive model with representation. The dynamical (time series) system is gen-
erated by xt+1 = AΦ∗ ([xt+1−q, · · · , xt]) + ϵt, where Φ∗ (·) is a fixed representation function (e.g., we
take the L-layer MLPs), and the weight A vary from different prompts. In standard AR(q) (multivari-
ate autoregressive) models, the representation function Φ∗ (·) is identity. Here, we investigate a more
challenging situation in which the representation function is fixed but unknown. A well-behaved solver
should first find the representation function and then translate it into a modified autoregressive model.
With standard Gaussian priors on the white noise ϵt, the Bayesian estimator of the AR(q) model param-
eters admits arg maxA

∏N
t=1 f(xt|xt−1, · · · , xt−q) = arg minA

∑N
t=1 ∥xt − AΦ∗ ([xt−q, · · · , xt−1])∥2

2, where
f(xt|xt−1, · · · , xt−q) is the conditional density function of xt, given previous q observations. A practical
solver initially identifies the representation function and transforms the input time series into its represen-
tation, denoted as Φ∗(xt). Then the problem is reduced to an autoregressive form. Similar to the previous
subsection, we prove by construction that there exists a AlgoFormer, akin to human-designed algorithms,
capable of effectively solving the given task.
Theorem 3.2. There exists a designed AlgoFormer block with TFpre (a one-layer q-head transformer with an
(L+1)-layer one-head transformer), TFloop (a one-layer two-head transformer), and TFpost (a one-layer one-
head transformer), that predicts xN+1 from the data sequence {x1, x2, · · · , xN } by copying, transformation
of the representation function and applying gradient descent for multi-variate regression.

Remarks. The detailed proof can be found in Appendix A.2. The technical details are similar to Theorem
3.1. Additionally, the pre-transformer copies the feature from the previous q tokens, utilizing q heads for
parallel processing.
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3.3 Chain-of-Thought with MLPs

Chain-of-Thought (CoT) demonstrates exceptional performances in mathematical reasoning and text genera-
tion (Wei et al., 2022). The success of CoT has been theoretically explored, shedding light on its effectiveness
in toy cases (Li et al., 2023) and on its computational complexity (Feng et al., 2023). In this subsection,
we revisit the intriguing toy examples of CoT generated by leaky ReLU MLPs, denoted as CoT with MLPs,
as discussed in Li et al. (2023). We begin by constructing an L-layer MLP with leaky ReLU activation.
For an initial data point x ∼ Px, the CoT point sℓ represents the output of the ℓ-th layer of the MLP.
Consequently, the CoT sequence {x, s1, · · · , sL} is exactly generated as the output of each (hidden) layer of
the MLP. The target of CoT with MLPs problem is to find the next state ŝℓ+1 based on the CoT samples
{x1, s1

1, · · · , sL
1 , x2, · · · , xN , s1

N , · · · , sL
N , xtest, ŝ1, · · · , ŝℓ}, where {ŝ1, · · · , ŝℓ} denotes the CoT prompting of

xtest. We establish by construction in Theorem 3.3 that the AlgoFormer adeptly solves the CoT with MLPs
problem, exhibiting a capability akin to human-designed algorithms.
Theorem 3.3. There exists a designed AlgoFormer block with TFpre (a seven-layer two-head transformer),
TFloop (a one-layer two-head transformer), and TFpost (a one-layer one-head transformer), that finds ŝℓ+1

from samples {x1, s1
1, · · · , sL

1 , x2, · · · , xN , s1
N , · · · , sL

N , xtest, ŝ1, · · · , ŝℓ} by filtering and applying gradient de-
scent for multi-variate regression.

Remarks. We put the proof in Appendix A.3. The pre-transformer first identifies the positional number ℓ,
and subsequently filters the input sequence into {sℓ

1, sℓ+1
1 , sℓ

2, sℓ+1
2 , · · · , sℓ

N , sℓ+1
N , ŝℓ}. This filtering transfor-

mation reduces the problem to a multi-variate regression problem. Compared with Li et al. (2023), where
an assumption is made, we elaborate on the role of looped transformers in implementing gradient descent.
While the CoT with MLPs may not be explicitly equivalent to CoT tasks in real applications, Theorem 3.3
somewhat implies the potential of the AlgoFormer in solving CoT-related problems.

4 Discussion

In this section, we provide complementary insights to the results discussed in Section 3. Firstly, as discussed
in the remark following Theorem 3.1, we construct the looped transformer that employs gradient descent
to solve (regularized) multi-variate regression problems. However, in practical scenarios, the adoption of
more efficient optimization algorithms is often preferred. Investigating the expressive power of transformers
beyond gradient descent is both intriguing and appealing. As stated in Theorem 4.1, we demonstrate that the
AlgoFormer can proficiently implement Newton’s method for solving linear regression problems. Secondly,
the definition in Equation 1 implies the encoder-based transformer. In practical applications, a decoder-
based transformer with causal attention, as seen in models like GPT-2 (Radford et al., 2019), may also be
favored. For completeness, it is also compelling to examine the behavior of decoder-based transformers in
algorithmic learning. Our findings, presented in Theorem 4.2, reveal that the decoder-based AlgoFormer
can also implement gradient descent in linear regression problems. The primary distinction lies in the fact
that the decoder-based transformer utilizes previously observed data to evaluate the gradient, while the
encoder-based transformer calculates the gradient based on the full data samples.

4.1 Beyond the Gradient Descent

Newton’s (second-order) methods enjoy superlinear convergence under some mild conditions, outperforming
gradient descent with linear convergence. This raises a natural question:

Can the transformer implement algorithms beyond gradient descent, including higher-order optimization
algorithms?

In this section, we address this question by demonstrating that the designed AlgoFormer can also realize
Newton’s method in regression problems.

Consider the linear regression problem given by:

arg min
w

1
2N

N∑
i=1

(
w⊤xi − yi

)2
. (3)
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Denote X = [x1, x2, · · · , xN ]⊤ ∈ RN×d, y = [y1, y2, · · · , yN ]⊤ ∈ RN×1 and S = X⊤X. A typical Newton’s
method for linear regression problems follows the update scheme:

M0 = αS, where α ∈
(

0,
2

∥SS⊤∥2

]
, Mk+1 = 2Mk − MkSMk, wNewton

k = MkX⊤y. (4)

As described in Söderström & Stewart (1974); Pan & Schreiber (1991), the above update scheme (Newton’s
method) enjoys superlinear convergence, in contrast to the linear convergence of gradient descent. The
following theorem states that Newton’s method in Equation 4 can be realized by the AlgoFormer.
Theorem 4.1. There exists a designed AlgoFormer block with TFpre (a one-layer two-head transformer),
TFloop (a one-layer two-head transformer), and TFpost (a two-layer two-head transformer), that implements
Newton’s method described by Equation 4 in solving regression problems.

Remarks. The proof can be found in Appendix A.4. The pre-transformer performs preparative tasks, such
as copying from neighboring tokens. The looped-transformer is responsible for updating and calculating
Mkxi for each token xi at every step k. The post-transformer compute the final estimated weight wNewton

T

and outputs the desired the results wNewton⊤
T xtest, where T is the iteration number in Equation 2 and

Equation 4. In a related study by Fu et al. (2023), similar topics are explored, indicating that transformers
exactly perform higher-order optimization algorithms. However, our transformer architectures differ, and
technical details are distinct.

4.2 Decoder-based Transformer

In the preceding analysis, the encoder-based AlgoFormer (with full attention) demonstrates its capability to
solve problems by performing algorithms. Previous studies (Giannou et al., 2023; Bai et al., 2023; Zhang
et al., 2023a; Huang et al., 2023; Ahn et al., 2023) also focus on the encoder-based models. We opted
for an encoder-based transformer because full-batch data is available for estimating gradient and Hessian
information. However, in practical applications, decoder-based models, like GPT-2, are sometimes more
prevalent. In this subsection, we delve into the performance of the decoder-based model when executing
iterative optimization algorithms, such as gradient descent, to solve regression problems.

We consider the linear regression problem in Equation 3. Due to the limitations of the decoder-based
transformer, which can only access previous tokens, implementing iterative algorithms based on the entire
batch data is not feasible. However, it is important to note that the current token in a decoder-based
transformer can access data from all previous tokens. To predict the label yi based on the input prompt
P i = [x1, y1, · · · , xi], the empirical loss for the linear weight at xi is given by

wi ∈ arg min
w

L
(
w; P i

)
:= 1

2(i − 1)

i−1∑
j=1

(
w⊤xj − yj

)2
. (5)

In essence, the linear weight is estimated using accessible data from the previous tokens, reflecting the
restricted information available in the decoder-based transformer.
Theorem 4.2. There exists a designed AlgoFormer block with TFpre (a one-layer two-head transformer),
TFloop (a one-layer two-head transformer), and TFpost (a two-layer two-head transformer), that outputs
wi⊤

T xi for each input data xi, where wi
T comes from arg minw L

(
w; P i

)
after T steps of gradient descent.

Remarks. The detailed proof is available in Appendix A.5. The technical details closely resemble those in
Theorem 3.1, with the key distinction being that the decoder-based transformer can solely leverage data from
previous tokens to determine the corresponding weight wi. Our findings align with those in Guo et al. (2024),
although our transformer architectures and attention mechanisms differ. In a related study by Akyürek et al.
(2023), similar topics are explored, demonstrating that the decoder-based transformer performs single-sample
stochastic gradient descent, while our results exhibit greater strength with wi ∈ arg minw L

(
w; P i

)
. The

construction of a decoder-based transformer for representing Newton’s method is more challenging. We left
it as a potential topic for future investigation.
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Figure 2: The validation error of trained models (the standard transformer, the vanilla looped transformer,
and the AlgoFormer), assessed on regression with representation, AR(q) with representation, and CoT with
MLPs tasks. By choosing suitable hyperparameters (i.e., we set (T, ∆T ) = (20, 15)), the AlgoFormer has
significantly better performance than the standard transformer and the vanilla looped transformer on those
tasks.

5 Experiments

In this section, we conduct a comprehensive empirical evaluation of the performance of AlgoFormer in
tackling challenging tasks, specifically addressing regression with representation, AR(q) with representation,
and CoT with MLPs, as outlined in Section 2. Additionally, we also implement AlgoFormer on the neural
machine translation task of German and English, demonstrating its expressiveness and effectiveness in the
real-world language task.

5.1 Experimental Settings and Hyperparameters

Experimental settings. In all experiments, we adopt the decoder-based AlgoFormer, standard transformer
(GPT-2), and vanilla looped transformer Yang et al. (2024). For synthetic tasks, we utilize N = 40 in-context
samples as input prompts and d = 20 dimensional vectors with D = 256 dimensional positional embeddings
for all experiments. To ensure fairness in comparisons, all models are trained using the Adam optimizer,
with learning rate η = 1e − 4 and totally 500K iterations to ensure convergence. The standard transformer
is designed to have L = 12 layers while pre-, looped and post-transformers are all implemented in one-layer.
For task-specific settings and additional details, please refer to Appendix 5.1.

Training strategy. Our training strategy builds upon the methodology introduced in Yang et al. (2024).
Let P i = [x1, f(x1), · · · , xi−1, f(xi−1), xi] represents the input prompt for 1 ≤ i ≤ N . We denote the
AlgoFormer as TFt

Algo(·; Θ), where f(·) is a task-specific function and t indicates the number of loops
(iterations) in Equation 2, and Θ represent the transformer parameters. Instead of evaluating the loss solely
on TFT

Algo(·; Θ) with T iterations, we minimize the expected loss over averaged iteration numbers:

min
Θ

EP

[
1

T − T0

T∑
t=T0

1
N

N∑
i=1

∥∥TFt
Algo(P i; Θ) − f(xi)

∥∥2
2

]
, (6)

where T0 = max{T − ∆T, 0}. To stabilize the training, we adopt the moving average over loop iterations
from T0 to T in the loss. The default setting for the AlgoFormer, as well as the vanilla looped transformer,
involves setting (T, ∆T ) = (20, 15). Here, the prompt formulation and the above loss may slightly differ for
different tasks. For example, in the AR(q) task, the prompt is reformulated as P i = [x1, · · · , xi−1, xi] and
xi+1 = f([xi+1−q, · · · , xi]) is the target for prediction. But the training strategy can be easily transmitted
to other tasks. Here, both the iteration numbers T0 and T are hyperparameters, which will be analyzed in
the next subsection.

Regression with representation. In this task, we instantiate a 3-layer leaky ReLU MLPs, denoted as
Φ∗(·), which remains fixed across all tasks. The data generation process involves sampling a weight matrix
A ∈ R1×20. Subsequently, input-label pairs {(xi, yi)}40

i=1 are generated, where xi ∼ N (0, I20), ϵi ∼ N
(
0, σ2)
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and yi = AΦ∗(xi)+ϵi. In Figure 2a, we specifically set σ = 0. Additionally, we explore the impact of different
noise levels by considering σ = 0.1 and σ = 1.

AR(q) with representation. For this task, we set q = 3 and employ a 3-layer leaky ReLU MLP
denoted as Φ∗(·), consistent across all instances. The representation function accepts a 60-dimensional
vector as input and produces 20-dimensional feature vectors. The time series sequence {xt}N

t=1 is gener-
ated by initially sampling A ∼ N (0, I20×20). Then the sequence is auto-regressively determined, with
xt+1 = AΦ∗ ([xt+1−q, · · · , xt]) + ϵt, where ϵt ∼ N (0, I20).

CoT with MLPs. In this example, we generate a 6-layer leaky ReLU MLP to serve as a CoT sequence
generator, determining the length of CoT steps for each sample to be six. The CoT sequence, denoted as
{x, s1, · · · , sL} is generated by first sampling x ∼ N (0, I20), where sℓ ∈ R20 represents the intermediate
state output from the ℓ-th layer of the MLP.

5.2 AlgoFormer Exhibits High Expressiveness

In this subsection, we conduct a comparative analysis of the AlgoFormer against the standard and vanilla
looped transformers across challenging tasks, as outlined in Section 3. Figure 2 illustrates the validation error
trends, showcasing a decrease with an increasing number of in-context samples, aligning with our intuition.
Crucially, the AlgoFormer consistently outperforms both the standard and the vanilla looped transformer
across all tasks, highlighting its superior expressiveness in algorithm learning. Particularly in the CoT with
MLPs task, both the AlgoFormer and the standard transformer significantly surpass the vanilla looped
transformer. This further underscores the significance of preprocessing and postprocessing steps in handling
complex real-world applications. The carefully designed algorithmic structure of the AlgoFormer emerges as
an effective means of structural regularization, contributing to enhanced algorithm learning capabilities.

5.3 Impact of Hyperparameters

In this subsection, we conduct the empirical analysis of the impact of the hyperparameters on the AlgoFormer.
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(a) ∆T = 5
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(b) ∆T = 10
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(c) ∆T = 15

Figure 3: The validation error of trained models, evaluated on regression with representation task, with
varying hyperparameters T and ∆T . The AlgoFormers are trained for T loops, defined in Equation 6, and
the evaluation focuses on square loss at longer iterations, where the number of loop iterations far exceeds T .

Loop iterations. We conduct comprehensive experiments on the AlgoFormer with varying loop numbers,
on solving the regression with representation task. The results highlight the crucial role of both T and ∆T
in the performance of the AlgoFormer. It is observed that a larger ∆T contributes to the stable inference
of transformers. Comparing Figure 3a with Figures 3b and 3c, it is evident that a larger ∆T enhances
stable long-term inference. The number of loop iterations T determines the model capacity in expressing
algorithms. However, it is important to note that there exists a trade-off between the iteration numbers
(T, ∆T ) and computational costs. Larger (T, ∆T ) certainly increases model capacity but also leads to higher
computational costs and challenges in model training, as reflected in Figure 3.

Number of heads and layers. In our experiments on the AlgoFormer, we vary the numbers of heads and
layers in TFloop while addressing the regression with representation task. The results reveal a consistent

9



Under review as submission to TMLR

0 5 10 15 20 25 30 35 40
in-context samples

10 3

10 2

10 1

100

sq
ua

re
 e

rro
r

Standard L=3
Standard L=12
Standard L=14
Standard L=20
Standard L=22
AlgoFormer L=1
AlgoFormer L=2

(a) Varying numbers of layers
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Figure 4: The validation error of trained models, evaluated on regression with representation task, with
varying numbers of layers (denoted as L) and heads (denoted as h). In the context of AlgoFormer, the
number of layers L corresponds to the layers in the pre-, looped, and post-transformers, all of which are
L-layer transformers. The AlgoFormers are trained with (T, ∆T ) = (20, 15), defined in Equation 6.
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(a) Linear regression, σ = 0
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(b) Linear regression, σ = 0.1
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Figure 5: The validation error of trained AlgoFormer models and the linear regression models optimized
by gradient descent and Newton’s method. The AlgoFormers are trained with (T, ∆T ) = (20, 15) and
(T, ∆T ) = (10, 10), defined in Equation 6.

trend that an increase in both the number of heads and layers leads to lower errors. This aligns with
our intuitive understanding, as transformers with greater numbers of heads and layers exhibit enhanced
expressiveness. However, a noteworthy observation is that 4-layer and 16-head transformers may exhibit
suboptimal performance, possibly due to increased optimization challenges during model training. This
finding underscores the importance of carefully selecting the model size, as a larger model, while offering
higher expressiveness, may present additional training difficulties. The visualized results are shown in Figure
4. Moreover, compared with the standard transformer, even with the same number of layers, the AlgoFormer
exhibits better performance in those tasks, mainly due to the introduced algorithmic structure. This finding
highlights the role of the regularization of model structure. Therefore, we have reasons to believe that the
good performance of the AlgoFormer not only comes from the higher expressiveness with deeper layers but
also from the regularization of model architecture, which facilitates easier training and good generalization.

5.4 AlgoFormer and Human-Designed Algorithms

In this subsection, we compare the AlgoFormer with Newton’s method and gradient descent in solving
linear regression problems. We adopt the same default hyperparameters, with their selection grounded in a
comprehensive grid search.

As illustrated in Figure 5, we observe that in the noiseless case, the AlgoFormer outperforms both Newton’s
method and gradient descent in the beginning stages. However, Newton’s method suddenly achieves nearly
zero loss ( machine precision) later on, benefiting from its superlinear convergence. In contrast, our method
maintains an error level around 1e − 3. With increasing noise levels, both Newton’s method and gradient
descent converge slowly, while our method exhibits better performance.
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Several aspects contribute to this phenomenon. Firstly, in the noiseless case, Newton’s method can precisely
recover the weights through the linear regression objective in Equation 5, capitalizing on its superlinear
convergence. On the other hand, the AlgoFormer operates as a black-box, trained from finite data. While
we demonstrate good model expressiveness, the final generalization error of the trained transformer results
from the model’s expressiveness, the finite number of training samples, and the optimization error. Despite
exhibiting high expressiveness, the trained AlgoFormer cannot eliminate the last two errors entirely. This
observation resonates with similar findings in solving partial differential equations (Raissi et al., 2019) and
large linear systems (Gu & Ng, 2023) using deep learning models.

Secondly, with larger noise levels, Newton’s method shows suboptimal results. This is partly due to the
inclusion of noise, which slows down the convergence rate, and Newton’s method experiences convergence
challenges when moving away from the local solution. In terms of global convergence, the AlgoFormer
demonstrates superior performance compared to Newton’s method.

Human-designed algorithms, backed by problem priors and precise computation, achieve irreplaceable per-
formance. It’s important to note that deep learning models, including transformers, are specifically designed
for solving black-box tasks where there is limited prior knowledge but sufficient observation samples. We
expect that transformers, with their substantial expressiveness, hold the potential to contribute to designing
implicit algorithms in solving scientific computing tasks.

5.5 Applications to Language Tasks

In this subsection, we extend the evaluation of the proposed AlgoFormer to real-world language tasks, com-
plementing its performance in real applications. Specifically, we focus on Neural Machine Translation using
the IWSLT 2015 German-English dataset. The experimental setup includes a standard Transformer with
12 layers, 8 attention heads, a feature dimension of 256, and a learning rate of 5e-5. The pre-, looped, and
post-transformers are all implemented as single layers, with T set to 12 and ∆T to 10 (see the hyperparam-
eters in Equation 6 for training). Cross-entropy loss is used to evaluate the translation performance, where
lower values indicate better results.

The results are presented in the table below:

Model Standard Looped AlgoFormer
Cross entropy on validation set 4.994 4.726 4.609

As shown in the results, AlgoFormer outperforms both the standard Transformer and the vanilla looped
Transformer in the Neural Machine Translation task, suggesting that conventional models may have inherent
redundancies. This aligns with recent findings on the redundancy in large language models (Chen et al., 2024;
Frantar & Alistarh, 2023; Xia et al., 2024). These preliminary results indicate the potential of AlgoFormer,
which is designed as an algorithmic conductor, in real-world language tasks.

6 Conclusion and Future Works

In this paper, we introduce a novel AlgoFormer, an algorithm learner designed from the looped transformer,
distinguished by its algorithmic structures. Comprising three sub-transformers, each playing a distinct
role in algorithm learning, the AlgoFormer demonstrates expressiveness and efficiency while maintaining a
low parameter size. Theoretical analysis establishes that the AlgoFormer can tackle challenging in-context
learning tasks, mirroring human-designed algorithms. Our experiments further validate our claim, showing
that the proposed transformer outperforms both the standard transformer and the vanilla looped transformer
in specific algorithm learning and real-world language tasks.

There are some potential topics for future research. For example, AlgoFormer exhibits a strikingly similar
structure to diffusion models. This similarity arises from the fact that both the AlgoFormer (algorithms) and
diffusion models draw inspiration from dynamical systems. Consequently, an interesting question arises: can
the empirical training techniques and theoretical insights from the well-explored diffusion model literature
be translated to the AlgoFormer for understanding the transformer mechanism?
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A Technical Proofs

In this section, we provide comprehensive proofs for all theorems stated in the main content.

Notation. We use boldface capital and lowercase letters to denote matrices and vectors respectively. Non-
bold letters represent the elements of matrices or vectors, or scalars. For example, Ai,j denotes the (i, j)-th
element of the matrix A. We use ∥ · ∥2 to denote the 2-norm (or the maximal singular value) of a matrix.

A.1 Proof for Theorem 3.1

Positional embedding. The role of positional embedding is pivotal in the performance of transformers.
Several studies have investigated its impact on natural language processing tasks, as referenced in (Kazem-
nejad et al., 2023; Ontanon et al., 2022; Press et al., 2022). In our theoretical construction, we deviate from
empirical settings by using quasi-orthogonal vectors as positional embedding in each token vector. This
choice, also employed by Li et al. (2023); Giannou et al. (2023), is made for theoretical convenience.
Lemma A.1 (Quasi-orthogonal vectors). For any fixed ϵ > 0, there exists a set of vectors {p1, p2, · · · , pN }
of dimension O (log N) such that p⊤

i pi > p⊤
i pj + ϵ for all i ̸= j.

Before going through the details, the following lemma is crucial for understanding transformers as algorithm
learners.
Lemma A.2. A one-layer two-head transformer exhibits the capability to implement a single step of gradient
descent in multivariate regression.

Proof. Let us consider the input prompt with positional embedding as follows:

P :=



x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

1
N x1 0 · · · 1

N xN 0 0 0
Akx1 − y1 0 · · · AkxN − yN 0 Akxtest 0

1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


,

where the 0-1 indicators are used to identify features, labels, and the test data, respectively. We denote the
loss function for the multi-variate regression given samples {x1, y1, · · · , xN , yN } as

L (A) = 1
2N

N∑
j=1

∥Axj − yj∥2
2 ,

then
∂L
∂A

(Ak) = 1
N

N∑
j=1

(Akxj − yj) x⊤
j .

Now, let us define

WQP =
[

cx1 0 · · · cxN 0 cxtest 0
1 1 · · · 1 1 1 1

]
,

WKP =
[ 1

N x1 0 · · · 1
N xN 0 0 0

0 0 · · · 0 0 0 C

]
,

and
WV P = eC

[
Akx1 − y1 0 · · · AkxN − yN 0 Akxtest 0

]
,
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for some scalers C, c > 0. Here, we denote

Z := P ⊤W ⊤
K WQP =



c
N x⊤

1 x1 0 · · · c
N x⊤

1 xN 0 c
N x⊤

1 xtest 0
...

...
. . .

...
...

...
...

c
N x⊤

N x1 0 · · · c
N x⊤

N xN 0 c
N x⊤

N xtest 0
0 0 · · · 0 0 0 0
0 0 · · · 0 0 0 0
C C · · · C C C C


,

then
eC · softmax (Z2i−1,2j−1) ≈ 1 + c

N
x⊤

i xj ,

where the two sides of the “≈” can be arbitrarily close if C > 0 is sufficiently large and c > 0 is sufficiently
small. The constant here can be canceled by introducing another head. Therefore, the output of the attention
layer is

2∑
i=1

W
(i)
V P · softmax

(
P ⊤W

(i)⊤
K W

(i)
Q P

)
≈ c

[
∂L
∂A (Ak)x1 0 · · · ∂L

∂A (Ak)xN 0 ∂L
∂A (Ak)xtest 0

]
.

The transformer layer’s output, after passing through the feed-forward neural network, is expressed as:

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

Ak+1x1 − y1 0 · · · Ak+1xN − yN 0 Ak+1xtest 0
1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


.

This signifies the completion of one step of gradient descent with Ak+1 = Ak −η ∂L
∂A (Ak) and a positive step

size η > 0.

Proof for Theorem 3.1. We start by showing that L-layer transformer can represent L-layer MLPs. It
is observed that the identity operation (i.e., Attn (X) = X) can be achieved by setting WV = 0 due to
the residual connection in the attention layer. Each feed-forward neural network in a transformer layer
can represent a one-layer MLP. Consequently, the representation function Φ∗(·) can be realized by L-layer
transformers. At the output layer of the L-th layer transformer, let A0 be an initial guess for the weight.
The current output token vectors are then given by:

P :=



Φ∗ (x1) 0 · · · Φ∗ (xN ) 0 Φ∗ (xtest) 0
0 y1 · · · 0 yN 0 0

A0Φ∗ (x1) 0 · · · A0Φ∗ (xN ) 0 Ak+1Φ∗ (xtest) 0
p1 p1 · · · pN pN pN+1 pN+1
1
N

1
N · · · 1

N
1
N 0 0

1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


.

Here, the set of quasi-orthogonal vectors {p1, · · · , pN+1} is generated, according to Lemma A.1. The next
transformer layer is designed to facilitate the exchange of information between neighboring tokens. Let

WKP = WQP =
[

p1 p1 · · · pN pN pN+1 pN+1
]

and
WV P =

[
0 y1 · · · 0 yN 0 0

]
,
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then
WV P · softmax

(
P ⊤W ⊤

K WQP
)

≈
[ 1

2 y1
1
2 y1 · · · 1

2 yN
1
2 yN 0 0

]
,

where the two sides of the “≈” can be arbitrarily close if the temperature of the softmax function is sufficiently
large, due to the nearly orthogonality of positional embedding vectors. It’s important to note that the feed-
forward neural network is capable of approximating nonlinear functions, such as multiplication. Here, we
construct a shallow neural network that calculates the multiplication between the first d elements and the
value 1

N in each token. Passing through the feed-forward neural network together with the indicators, we
obtain the final output of the first (L + 1)-layer transformer TFpre:

Φ∗ (x1) 0 · · · Φ∗ (xN ) 0 Φ∗ (xtest) 0
0 y1 · · · 0 yN 0 0

1
N Φ∗ (x1) 0 · · · 1

N Φ∗ (xN ) 0 0 0
A0Φ∗ (x1) − y1 0 · · · A0Φ∗ (xN ) − yN 0 A0Φ∗ (xtest) 0

p1 p1 · · · pN pN pN+1 pN+1
1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


.

According to the construction outlined in Lemma A.2, there exists a one-layer, two-head transformer TFloop,
independent of the input data samples (tokens), that can implement gradient descent for finding the optimal
weight A∗ in the context of multivariate regression. The optimization aims to minimize the following
empirical loss:

min
A

1
2N

N∑
i=1

∥AΦ∗ (xi) − yi∥2
2 .

After k-steps of looped transformer TFloop, which corresponds to applying k steps of gradient descent, the
resulting token vectors follows

Φ∗ (x1) 0 · · · Φ∗ (xN ) 0 Φ∗ (xtest) 0
0 y1 · · · 0 yN 0 0

1
N Φ∗ (x1) 0 · · · 1

N Φ∗ (xN ) 0 0 0
AkΦ∗ (x1) − y1 0 · · · AkΦ∗ (xN ) − yN 0 AkΦ∗ (xtest) 0

p1 p1 · · · pN pN pN+1 pN+1
1 0 · · · 1 0 1 0
0 1 · · · 0 1 0 1
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


.

These token vectors are then ready for processing by the output transformer layer TFpost. The post-
transformer is designed to facilitate communication between the last two tokens and position the desired
result AkΦ∗ (xtest) in the appropriate position. We can similarly set

WKP = WQP =
[

p1 p1 · · · pN pN pN+1 pN+1
]

,

WV P =
[

AkΦ∗ (x1) − y1 0 · · · AkΦ∗ (xN ) − yN 0 AkΦ∗ (xtest) 0
]

,

and pass it through the feed-forward neural network. This results in the final output:[
Φ∗ (x1) 0 · · · Φ∗ (xN ) 0 Φ∗ (xtest) 0

0 y1 · · · 0 yN 0 AkΦ∗ (xtest)

]
,

which completes the proof.
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A.2 Proof for Theorem 3.2

The following lemma highlights the intrinsic “copying" capability of transformers, a pivotal feature for
autoregressive models, especially in the context of time series analysis.
Lemma A.3. A one-layer transformer with q heads possesses the ability to effectively copy information from
the previous q tokens to the present token.

Proof. We construct the input prompt with positional embedding as follows:

x0 x1 x2 · · · xN

p0 p1 p2 · · · pN

p−1 p0 p1 · · · pN−1
...

...
...

. . .
...

p−q p1−q p2−q · · · pN−q

0 1 2 · · · N


.

The i-th head aims to connect and communicate the current token with the previous i-th token. Specifically,
we let

W
(i)
K P =

[
p0 p1 p2 · · · pN

]
,

W
(i)
Q P =

[
p−i p1−i p2−i · · · pN−i

]
,

and
W

(i)
V P =

[
x0 x1 x2 · · · xN

]
,

we have
W

(i)
V P · softmax

(
P ⊤W

(i)⊤
K W

(i)
Q P

)
≈

[
∗ x1−i x2−i · · · xN−i

]
.

Here, we use “*” to mask some unimportant token values. Therefore, the q-head attention layer outputs

x0 x1 x2 · · · xN

∗ x0 x1 · · · xN−1
∗ ∗ x0 · · · xN−2
...

...
...

. . .
...

∗ ∗ ∗ · · · xN−q

0 1 2 · · · N


.

Here, the samples are only supported on {xt} with 0 ≤ t ≤ N . It is common to alternatively define xt = 0
for t < 0. Passing through the feed-forward neural network, together with the indicators at the last row, we
can filter out the undefined elements, i.e.,

x0 x1 x2 · · · xN

0 x0 x1 · · · xN−1
0 0 x0 · · · xN−2
...

...
...

. . .
...

0 0 0 · · · xN−q

0 1 2 · · · N


.

Proof for Theorem 3.2 According to Lemma A.3 and Theorem 3.1, the (L+2)-layer pre-transformer TFpre
is able to do copying and transformation of the representation function. The output after the preprocessing
is given by [

x0 x1 x2 · · · xN

Φ∗ (x1−q:0) Φ∗ (x2−q:1) Φ∗ (x3−q:2) · · · Φ∗ (xN+1−q:N )

]
,

where we denote xi:j as the concatenation [xi, xi+1, · · · , xj ] for notational simplicity. Similar to the construc-
tion in Lemma A.2, a one-layer two-head transformer TFloop is capable of implementing gradient descent on
the multivariate regression. Finally, the post-transformer TFpost moves the desired result to the output.
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A.3 Proof for Theorem 3.3

According to Lemma 5 in (Li et al., 2023), a seven-layer, two-head pre-transformer TFpre is introduced
for preprocessing the input CoT sequence. This pre-transformer performs filtering, transforming the input
sequence into the structured form given by Equation 7.

0 · · · sℓ−1
1 0 · · · sℓ−1

2 0 · · · 0 0 · · · ŝℓ−1

0 · · · 0 sℓ
1 · · · 0 sℓ

2 · · · 0 0 · · · 0
0 · · · 1 0 · · · 1 0 · · · 0 0 · · · 1
0 · · · 0 1 · · · 0 1 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 1

 . (7)

Specifically, it identifies the positional index ℓ−1 of the last token ŝℓ−1, retains only sℓ−1
i and sℓ

i for 1 ≤ i ≤ N ,
and filters out all other irrelevant tokens. In this context, the representation function Φ∗(·) corresponds to
L-layer leaky ReLU MLPs. Notably, the transformation siℓ = σ

(
W ℓsiℓ−1)

is expressed, where W ℓ denotes
the weight matrix at the ℓ-th layer, and σ(·) represents the leaky ReLU activation function. Given the
reversibility and piecewise linearity of the leaky ReLU activation, we can assume, without loss of generality,
that sℓ

i = W ℓsℓ−1
i in Equation 7. Consequently, the problem is reduced to a multi-variate regression,

and a one-layer two-head transformer TFloop is demonstrated to effectively implement gradient descent for
determining the weight matrix W ℓ, as shown in Lemma A.2. Subsequently, the post-transformer TFpost
produces the desired result σ

(
W ℓŝiℓ−1)

.

A.4 Proof for Theorem 4.1

In this section, we first show that the one-layer two-head transformer can implement a single step of Newton’s
method in Equation 4, with the special form of input token vectors. Then, we introduce the pre-transformer,
designed to convert general input tokens into the prescribed format conducive to the transformer’s operation.
Finally, the post-transformer facilitates the extraction of the desired results through additional computations,
given that the output from the looped-transformer corresponds to an intermediate product.
Lemma A.4. A transformer with one layer and two heads is capable of implementing one step of Newton’s
method in the linear regression problem in Equation 3.

Proof. Let us consider the input prompt with positional embedding as follows:

P :=



x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

Mkx1 0 · · · MkxN 0 0 0
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


.

Let
WQP =

[
Mkx1 0 · · · MkxN 0 0 0

1 1 · · · 1 1 1 1

]
,

WKP =
[

cx1 0 · · · cxN 0 cxtest 0
0 0 · · · 0 0 0 C

]
,

and
WV P = eC

[
Mkx1 0 · · · MkxN 0 0 0

]
.

Similarly, denote Z := P ⊤W ⊤
K WQP , we can establish that

eCsoftmax (Z2i−1,2j−1) ≈ 1 + cx⊤
i Mkxj . (8)
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To nullify the constant term, an additional attention head can be incorporated. Therefore, the output takes
the form:

WV P softmax
(
P ⊤W ⊤

K WQP
)

≈
[

cMkSMkx1 ∗ · · · cMkSMkxN ∗ ∗
]

.

Here, we use “*” to mask some unimportant token values. Upon passing through the feed-forward neural
network with indicator

[
1 0 · · · 1 0 0 0

]
and weight 1/c, the resulting output is

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

Mk+1x1 0 · · · Mk+1xN 0 0 0
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


,

where Mk+1 = 2Mk − MkSMk.

Proof for Theorem 4.1. For TFpre, we adopt the following configurations:

WQP =
[

x1 0 · · · xN 0 0 0
1 1 · · · 1 1 1 1

]
,

WKP =
[

cx1 0 · · · cxN 0 cxtest 0
0 0 · · · 0 0 0 C

]
,

and
WV P = eC

[
x1 0 · · · xN 0 0 0

]
.

Denote Z := P ⊤W ⊤
K WQP , we can show that

eCsoftmax (Z2i−1,2j−1) ≈ 1 + cx⊤
i xj .

We may include another attention head to remove the constant. Therefore, the output is formulated as

WV P softmax
(
P ⊤W ⊤

K WQP
)

≈
[

cSx1 ∗ · · · cSxN ∗ ∗
]

.

After passing through the feed-forward neural network with indicators
[

1 0 · · · 1 0 0 0
]

and
weight α/c, the resulting output becomes:

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

M0x1 0 · · · M0xN 0 0 0
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


,

where M0 = αS.

As illustrated in Lemma A.4, after T iterations of the looped transformer TFloop, it produces the following
output: 

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

MT x1 0 · · · MT xN 0 0 0
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


.
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In the post-transformer, additional positional embeddings are introduced to address technical considerations.
The input is structured as follows:

x1 0 · · · xN 0 xtest 0
0 y1 · · · 0 yN 0 0

MT x1 0 · · · MT xN 0 0 0
p1 p1 · · · pN pN pN+1 pN+1
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


,

where the positional embedding vectors p1, · · · , pN+1 are designed to be nearly orthogonal (Lemma A.1). To
initiate the weight wNewton

T , we propagate the target label y to adjacent tokens using the following attention
mechanism:

WKP = WQP =
[

p1 p1 · · · pN pN pN+1 pN+1
]

and
WV P = 2

[
0 y1 · · · 0 yN 0 0

]
.

This operation results in the attention layer producing the following output:

x1 0 · · · xN 0 xtest 0
y1 y1 · · · yN yN 0 0

MT x1 0 · · · MT xN 0 0 0
p1 p1 · · · pN pN pN+1 pN+1
1 0 · · · 1 0 0 0
0 1 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1


.

In the next layer, analogous to the construction in Equation 8, we define the following transformations:

WQP =
[

cx1 0 · · · cxN 0 cxtest 0
1 1 · · · 1 1 1 1

]
,

WKP =
[

MT x1 0 · · · MT xN 0 0 0
0 0 · · · 0 0 0 C

]
,

and
WV P = eC

[
y1 y1 · · · yN yN 0 0

]
,

for some C, c > 0. Defining the matrix

Z := P ⊤W ⊤
K WQP =



cx⊤
1 MT x1 0 · · · cx⊤

1 MT xN 0 cx⊤
1 MT xtest 0

...
...

. . .
...

...
...

...
cx⊤

N MT x1 0 · · · cx⊤
N MT xN 0 cx⊤

N MT xtest 0
0 0 · · · 0 0 0 0
0 0 · · · 0 0 0 0
C C · · · C C C C


,

we can show that
eC · softmax (Z2i−1,2j−1) ≈ 1 + cx⊤

i MT xj ,

where the closeness of the two sides of the approximation “≈” can be achieved by selecting C > 0 sufficiently
large and c > 0 sufficiently small. The constant term can be removed by introducing another head. Therefore,
the output of the attention layer is expressed as

2∑
i=1

W
(i)
V X · softmax

(
X⊤W

(i)⊤
K W

(i)
Q X

)
≈ c

[
∗ ∗ · · · ∗ ∗ wNewton⊤

T xtest ∗
]

.

Finally, the feed-forward neural network yields the desired prediction wNewton⊤
T xtest.
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A.5 Proof for Theorem 4.2

In this section, we extend the realization of gradient descent, as demonstrated in Lemma A.2 for encoder-
based transformers, to decoder-based transformers. Although the construction is similar, the key distinction
lies in the decoder-based transformer’s utilization of previously viewed data for regression, consistent with
our intuitive understanding. The following lemma is enough to conclude the proof for Theorem 4.2.
Lemma A.5. The one-layer two-head decoder-based transformer can implement one step of gradient descent
in linear regression problems in Equation 5.

Proof. We consider the input prompt with positional embedding as follows:

x1 0 · · · xi−1 0 xi

0 y1 · · · 0 yi−1 0
0 x1 · · · 0 xi−1 0

w1
k 0 · · · wi−1

k 0 wi
k

0 0 · · · 1
i−2 0 1

i−1
1 0 · · · 1 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0


.

We construct the attention layer with

WQP i =
[

w1
k 0 · · · wi−1

k 0 wi
k

1 1 · · · 1 1 1

]
,

WKP i =
[

cx1 0 · · · cxi−1 0 cxi

0 C · · · 0 0 0

]
,

and
WV P i = eC/c

[
x1 0 · · · xi−1 0 xi

]
.

Here, we adopt causal attention, where the attention mechanism can only attend to previous tokens. The
output is [

∗ ∗ · · ·
∑i−2

j=1 wi−1⊤
k xjxj ∗

∑i−1
j=1 wi⊤

k xjxj

]
.

For the second head, we similarly let

WQP i =
[

1 0 · · · 1 0 1
1 0 · · · 1 0 1

]
,

WKP i =
[

0 cy1 · · · 0 cyi−1 0
C 0 · · · 0 0 0

]
,

and
WV P i = −eC/c

[
0 x1 · · · 0 xi−1 0

]
.

Then, we have the output [
∗ ∗ · · · −

∑i−2
j=1 yjxj ∗ −

∑i−1
j=1 yjxj

]
The attention layer outputs

x1 0 · · · xi−1 0 xi

0 y1 · · · 0 yi−1 0
0 x1 · · · 0 xi−1 0

w1
k 0 · · · wi−1

k 0 wi
k

∗ ∗ · · ·
∑i−2

j=1
(
wi−1⊤

k xj − yj

)
xj ∗

∑i−1
j=1

(
wi⊤

k xj − yj

)
xj

0 0 · · · 1
i−2 0 1

i−1
1 0 · · · 1 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0


.
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Since the feed-forward layer is capable of approximating nonlinear functions, e.g., multiplication, the trans-
former layer outputs 

x1 0 · · · xi−1 0 xi

0 y1 · · · 0 yi−1 0
0 x1 · · · 0 xi−1 0

w1
k+1 0 · · · wi−1

k+1 0 wi
k+1

0 0 · · · 1
i−2 0 1

i−1
1 0 · · · 1 0 1
1 0 · · · 0 0 0
0 1 · · · 0 0 0


,

where wj
k+1 = wj

k − η ∂L
∂w

(
wj

k; P j
)

= wj
k − η

j−1
∑j−1

h=1
(
wh⊤

k xh − yh

)
xh.
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