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Abstract

Visual information has been introduced for
enhancing machine translation (MT), and its
effectiveness heavily relies on the availability
of large amounts of bilingual parallel sentence
pairs with manual image annotations. In this
paper, we introduce a stable diffusion-based
imagination network into a multimodal large
language model (MLLM) to explicitly generate
an image for each source sentence, thereby
advancing the multimodel MT. Particularly,
we build heuristic human feedback with rein-
forcement learning to ensure the consistency of
the generated image with the source sentence
without the supervision of image annotation,
which breaks the bottleneck of using visual
information in MT. Furthermore, the proposed
method enables imaginative visual information
to be integrated into large-scale text-only MT
in addition to multimodal MT. Experimental
results show that our model significantly
outperforms existing multimodal MT and text-
only MT, especially achieving an average
improvement of more than 14 BLEU points
on Multi30K and MSCOCO multimodal MT
benchmarks.

1 Introduction

Large Language Models (LLMs) have recently
demonstrated exceptional comprehension and
generation abilities across a wide range of tasks,
particularly in translation (Tyen et al., 2023; Liang
et al., 2023; Guerreiro et al., 2023; Ranaldi et al.,
2023; Zhang et al., 2024; Chen et al., 2024b,a;
Chu et al., 2023). LLM-based machine translation
(LLM-MT) methods generally map the source text
directly to the target text (Hendy et al., 2023;
Jiao et al., 2023; Le Scao et al., 2023; Iyer
et al., 2023; Zeng et al., 2023; Zhao et al., 2024),
while professional human translators often imagine
visual information when translating source texts
(Hubscher-Davidson, 2020; Bang, 1986; Long
et al.,, 2021; Elliott and Kadar, 2017). The
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Figure 1: Illustration of the LLMs translation paradigm
based on visual information. Figure a: The generated
image does not include information about ,
and Figure b: The generated image lacks
information. These issues led to the translation error.

process of imagining involves creating scenes,
relationships between objects, and commonsense
details within the translation text. Therefore,
generating such content is crucial for ensuring
high-quality translation as it helps capture subtle
nuances accurately (Yao and Wan, 2020; Lin
et al., 2020; Sigurdsson et al., 2020; Song et al.,
2022). Although multiple previous works in
multimodal machine translation have attempted
similar approaches(Long et al., 2021; Elliott and
Kéadar, 2017; Hitschler et al., 2016), they still face
limitations such as insufficient model capacity, the
requirement for image-text annotated training data,
and poor quality of generated images.

To address these issues, we propose a framework
called IMAGE, which stands for Imagination-
Based End-to-End Multimodal LArge LanguaGe
ModEl Machine Translation Framework. IMAGE
first generates corresponding visual information
(image) from the source text, and then uses
both source text and visual information to
produce translation results through LLM. Current



mainstream visual information generation methods
(such as diffusion models (Du et al.,, 2023;
Tang et al.,, 2023; Liu and Liu, 2024; Liu
et al., 2024)) often struggle to generate complex
scenes based on language descriptions, impacting
translation performance, as shown in Figures 1(a)
and (b). To ensure that the generated visual
information accurately represents the source text,
we heuristically build a supervisory signal based
on human feedback to enhance the consistency of
generated visual content with the source sentence,
further improving translation performance, as
illustrated in Figure 1(c).

Our framework was evaluated on the standard
Multimodal Machine Translation (MMT) dataset
Multi30K and the general Neural Machine
Translation (NMT) dataset WMT24. Extensive
experimental results confirm that the IMAGE
framework based on visual imagination outper-
forms text-only LLM approaches. Additionally,
through ablation experiments, we verified the
necessity of each component in the IMAGE
framework. Furthermore, analysis experiments and
case studies reveal a positive correlation between
the consistency of visual imagination with the text
and translation performance. In summary, our
contributions are as follows:

* We are the first to propose an end-to-end
multimodal machine translation framework
leveraging the visual imagination capabilities
of LLMs. Our goal is to inspire the translation
community to further integrate LLMs and
multimodality into future translation research.

* Our framework uses human feedback RL
during training, eliminating the need for
annotated image-text data and reducing
annotation costs.

* Our model demonstrates significant per-
formance improvements on general and
multimodal translation benchmarks compared
to traditional multimodal translation methods
and text-only LLM-MT.

2 Background
2.1 Multimodal Large Language Model

Currently, multimodal large models consist of
three main components: a Large Language Model
(LLM), an image encoder, and a projector. The
LLM is responsible for modeling the joint

probability distribution pg(w) of a sequence w =
{wt}thl, where T is the sequence length and 6
represents the model parameters. The generation
process of each token wy in the LLM is modeled :

T
po(w) = [ po (Wi | wer) (1)
t=1
For the image encoder, the input sequence
contains K ordered images I = {I, k}le.
Each image I is processed through a vision
encoder, such as a CLIP-like encoder &£4(-), which
generates patch embeddings to obtain the image
representation signals. These representations are
then encoded by the projector P, (such as a linear
layer), as described by Alayrac et al., 2022 into
visual embeddings V', = {Vg}ngl of length L.
Here, K (t) refers to the image index used
before generating the ¢-th word token. Maximum
likelihood estimation (MLE) aims to minimize the
models loss function to optimize the parameters 6,
¢, and (, thereby aligning the generated sequence
as closely as possible with the given data. The loss
function is written as:

Ly (0, w, I) := —E; [logpe (Wi | wet, Vo)),
(2

Vi =Pco&s (Ikw) - (3)
2.2 Scene Graph Representation

In MMT, the data availability is represented as
< z,z >e< X, Z >, where X denotes the source-
side sentences and Z represents the paired visual
images. Scene Graph represents the semantic
relationships between objects in text (LSG) or
visual (VSG) information. We define the LSG
and VSG as LSG = (Np,FEr) and VSG =
(Ny, Ey ). The set N1, and Ny represent the entity
nodes in sentences or visual images, respectively,
inculding the head entity (k! and k") and the tail
entity (t' and tV), where l € L and v € V. The
sets E7, and Fy represent the relations (r! and )
connecting these nodes in Ny, and Ny .

2.3 Diffusion Models

Diffusion models (DMs) are probabilistic gen-
erative models that learn the latent structure
of data x = {x;}_, through continuous-T-
timestamps information diffusion. DMs gradually
add Gaussian noise to an image x( until attaining
x7 ~ N(0,I). This noise injection process (the
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Figure 2: Overview of our IMAGE framework. The process involves first generating visual information of the
translation input sentence using a diffusion model. Next, the translation result is obtained via LLM, informed by
the generated visual information and translation of the original input sentence.

forward process) is formalized as Markov chain
q(x1.7 | X0,¢) = Hthl q (x¢ | x¢—1,¢), where
c where zg is the sample dataset and c is the
corresponding context. The forward process is
written as.

q(x¢ | x0) =N (x¢;Vaxo, (1 —ay)I), (4)

where a; = Hle a;. And x; = +‘axg +
V1 — ayer, where ¢, ~ N(0,1).

Reversing the forward process can be accom-
plished by training a neural network pg(xy, c,t)
with the following objective:

Lpppm () = E(uy,)ptat {0} 2img (0, ) — po(ze, ;)7

&)
where [ is the posterior mean of the forward
process, a weighted average of xg and xy. This
objective is justified as maximizing a variational
lower bound on the log-likelihood of the data (Ho
et al., 2020).

3 Proposed Framework: IMAGE

3.1 Framework Overview

Our proposed framework, IMAGE, incorporates
visual signals to enhance the performance of
large models in multilingual translation tasks.
Additionally, to ensure that the entity relationships
within the generated visual information remain
consistent with input sentences, we adopt an
alignment human feedback learning approach.
Figure 2 provides an overview of IMAGE.
The following subsections detail three key
components: the end-to-end multimodal machine
translation framework (Section 3.2), alignment

human feedback learning (Section 3.3), and the
model training process (Section 3.4).

3.2 End-to-End Multimodal Machine
Translation Framework

IMAGE is built upon a causal decoder architecture
LLM py, such as Vicuna (Chiang et al., 2023).
IMAGE adopts OpenAls CLIP-Large (Radford
et al., 2021) as the visual encoder £,(-), followed
by a linear layer P, for visual embedding
projection (Dong et al., 2024). To generate images,
we utilize Stable Diffusion (SD) (Rombach et al.,
2022) as the image decoder, with the condition
projector also implemented as a linear layer. Figure
2 provides an overview of this architecture.

3.3 Alignment Human Feedback Learning

The Alignment Feedback Learning aims to
enhance the quality of images generated by
diffusion model through alignment between
linguistic and visual information. This method
comprises two core parts: Design Reward
Function and Alignment Optimization For
Diffusion Model.

3.3.1 Design Reward Function

To ensure consistency between the translated
source sentence and the generated image, the
entities and relations in the image need to match
those in the source sentence as closely as possible.
Based on this, we design a reward function to
assess the consistency of the generated image
(VSQ) to the source sentence (LSG). As shown in
Figure 3, the closer LSG is to VSG, the higher the
consistency between the translated source sentence
and the generated image. We constructed the



reward function to evaluate the consistency of LSG
and VSG, with a reward scoring range from 0
to 1. Since human judgments of the consistency
between images and descriptive texts are also based
on the analysis of entities and their relationships,
this task constitutes reinforcement learning from
human feedback (Ouyang et al., 2022; Christiano
etal., 2017; Ziegler et al., 2019).
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Figure 3: RL Training Detail. The overview
of IMAGE, which leverages an alignment feedback
learning framework to comprehensively enhance the
visual signals performance.

For LSG and VSG generation, we utilize two
off-the-shelf SG parsers to obtain LSG and VSG
separately (as detailed in §A.2). Due to the
differing number of triples in LSG and VSG, we
designed a structured similarity calculation method
to measure their consistency. For each triple in
LSG, we calculate its similarity with each triple in
VSG and select the highest score as the matching
degree for that triple:

Score (LSGy, VSG) = max (Sim (LSGi, VSG1) - , Sim (LSGi, VSGn)) ,
(6)
) = SIM(h,’l,h§)+511\1§r§,r’1’)+51M(t’i,t;‘)’

(7
where 7 represents number of VSG sets, h! and
hY are the head entities, t! and t” are the tail
entities, r! and r? are the relations, and SIM is
off-the-shelf similarity of text model (as detailed
in §A.2). Finally, the consistency reward score
between sentences and images is the average score

of all text triples:

Sim(LSG1,VSG,

N
1
r(zo,c) = ~ ;Score(LSGi,VSG), ®)
where ¢ and zg denote the LSG of the source
sentence and generated image, respectively.

3.3.2 Alignment Optimization For Diffusion
Model

We assume a pre-existing diffusion model, which
may be pretrained. Given a fixed sampler, the
diffusion model induces a sample distribution

po(xolc). The objective of denoising diffusion
reinforcement learning (RL) is to maximize a
reward signal r defined on the samples and
contexts:

LMAGERL(9) = Ecp(c) wompe (wole) [T (%0, €)],
€))
for a context distribution p(c) of our choosing.

To improve the alignment between generated
images and text, we need to optimize LiMaAGERL.-
In general, we can use the denoising loss Lpppm
(Equation 5), but with training data xo ~ pg(zo|c)
and an added weighting that depends on the
reward r(xg,c). We refer to this general class
of algorithms as Denoising Diffusion Policy
Optimization (DDPO) (Black et al., 2024), framing
the training of the diffusion model as a Markov
Decision Process (MDP) and performing multi-
step optimization for fine-tuning.

3.4 Model Training

Training of Diffusion Models with RL: The
training objective is to maximize cumulative
rewards, improving the alignment between images
and text in Equation 9. We use policy gradient
estimation to optimize the model parameters. With
access to likelihoods and likelihood gradients,
we can make direct Monte Carlo estimates of
VoLlivacerr- The process uses the score
function policy gradient estimator, also known
as the likelihood ratio method or REINFORCE
(Williams, 1992; Mohamed et al., 2020):

T
VoLimacgerr =E Z Vo logpe(zi—1|zt, c) r(z0,0)| .
=0

(10)
Ordered Learning Implementation: In the
initial stage, each of the above learning objectives
will be executed separately in a certain order to
maintain a stable and effective IMAGE system. We
first perform LiviagERL- After training Diffusion
Models, we train LLLM with the loss £ which is the
combination of Liviacrrrn and Lyvriw:

LIMAGERL

LyLLm 1
,C constant’ ( )
IMAGERL

constant

r—
Ly

where constant refers to the loss value treated as
a constant.

4 Experiment Setup
4.1 Data and Training Setting

Dataset: We conduct experiments on two MT
benchmarks: Multi30K(Elliott et al., 2016) and



Language English — German English — French Average
Testset Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
Metric BLEU 1/COMET 1 /BLEURT 1
Traditional MMT
Soul-Mix 42.5/—/— 345/—/— 309/—/— 62.4/—/—  54.8/—/— 45.7—/ 45.1/—
RG-MMT-EDC  42.2/—/—  33.4/—/—  30.0/—/—  62.9/—/ 55.8/—/ 45.1/—/ 44.9/—/
WRA-guided 39.3/—/— 323/—/— 28.5/—/— 61.8/—/—  54.1/—/ 43.4/—/ 43.2/—1
ImagiT 38.6/—/— 32.1/—/— 29.7/—/— 60.8/—~/— 52.8/—/—  42.5/—/ 42.71—1
Imagination 39.7//—~— 323/—/— 28.5/—/— 61.8/—/— 541/—/— 434/—~/— 433/ —/—
Open-source LLMs based on Text
Llama3-8B 30.1/69.5/56.6  24.2/66.4/53.0 21.9/62.6/47.8 50.2/77.8/61.1 40.4/72.8/53.3 34.5/70.7/49.9 33.6/69.9/53.6
Alpaca-7B 38.5/77.2/66.2 34.3/76.5/65.9 30.9/72.4/61.5 59.2/82.5/70.2 51.4/79.4/68.3 42.6/77.2/62.9 42.8/77.5/65.8
Vicuna-7B 32.9/75.9/63.5 28.0/75.4/63.5 26.1/70.3/57.7 46.5/81.4/64.8 43.8/82.4/66.3 39.3/78.6/61.0 36.1/77.3/62.8
Tower-7B* 22.1/52.1/34.2  13.7/45.5/25.8 16.3/48.6/31.5 24.5/55.9/31.7 20.8/50.1/25.7 22.5/52.1/29.1 20.0/50.7/29.7
ALMA-7B* 23.1/66.4/59.1 18.9/66.3/57.8 13.7/62.1/55.6 21.4/67.0/52.6 17.4/65.5/50.8 17.9/65.3/52.8 18.7/65.4/54.8
ALMA-R-13B*  29.1/71.8/59.4 24.8/71.8/60.5 23.9/68.2/57.8 27.4/73.7/52.7 24.4/74.5/54.6 29.2/72.8/54.9 26.5/72.1/56.7
Open-source LLMs based on Text & Image
DreamLLM 27.2/74.8/67.4 19.5/73.5/65.9 19.3/69.4/62.5 36.9/81.1/68.3 34.7/80.6/67.9 36.6/79.2/66.5 29.0/76.4/66.4
IMAGE 45.3/83.1/78.1 38.6/81.9/76.8 37.5/78.8/74.6 67.5/88.3/81.2 61.5/86.6/78.8 49.3/82.5/72.6 49.9/83.5/77.0

Table 1: Main translation results from the Multi30K benchmark, with BLEU, COMET, and BLEURT scores. The
bolded results indicate the highest statistically significant scores (p-value < 0.01 in the paired t-test against all
compared methods). * indicates that no fine-tuning was performed on the Multi30K test set.

WMT24 test set (Kocmi et al., 2024). Dataset
details are in Appendix A.1.

Training Setting: Details of our training setting
and off-the-shelf tools are in Appendix A.2.

4.2 Comparing Systems

We used two types of baseline methods:

(1) Traditional Multimodal Machine Transla-
tion models (MMT), including Soul-Mix(Cheng
et al., 2024), RG-MMT-EDC(Tayir and Li, 2024),
WRA-guided(Zhao et al., 2022), Imagination(EI-
liott and Kédar, 2017) and ImagiT(Long et al.,
2021). These MMT baselines take the source
language sentence as textual input while utilizing
the image as visual input. They have completed
training on the Multi30k training dataset and
reached convergence. The results are cited from
the reported data in the paper.

(ii) Open-source Large language models,
including Llama3-8B, Alpaca-7B, Vicuna-7B,
Tower-7B, ALMA-7B, ALMA-R-13B, and Dream-
LLM. Among them, Llama3-8B(Al@Meta, 2024),
Alpaca-7B(Bommasani et al., 2021), and Vicuna-
7B(Chiang et al., 2023) are models widely used
for multilingual tasks, all of which exhibit strong
instruction-following capabilities. For Tower-
7B(Alves et al., 2024), ALMA-7B(Xu et al., 2023),
and ALMA-R-13B(Xu et al., 2024), these models
were pre-trained and fine-tuned on translation
datasets, outperforming ChatGPT in multiple

language directions. DreamLLM(Dong et al.,
2024) is a framework that unifies text and image
generation in multimodal Large Language Models.

4.3 Automatic Evaluation

In evaluating our translation methodology, we
initially employ COMET' (Rei et al., 2022) and
BLEURT? (Sellam et al., 2020) as automatic
metrics, aligning with the established standards
in LLM-based translation literature (Chen et al.,
2024c; He et al., 2023; Huang et al., 2024). For
traditional translation evaluation, we use BLEU 3
(Papineni et al., 2002).

5 Experimental Results

5.1 Main Experiment Results on MMT task

In Table 1, we present the overall experimental
results on the classic Multi30K dataset in the
MMT field. First, we compare different methods
fine-tuned on the same training set. Our method
demonstrates significant improvement in transla-
tion performance by generating visual information,
clearly outperforming text-only translation models
based on the same foundational LLM in this task by
average 13.7=(12.4+10.6+11.4+21.1+16.7+10)/6
BLEU score, highlighting the critical role of

"https://huggingface.co/Unbabel/wmt22-comet-da
Zhttps://github.com/lucadiliello/bleurt-pytorch
3https://github.com/mjpost/sacrebleu



visual information in text translation (consistent
with the conclusion in Section 5.4). Next, we
compare our method with traditional multimodal
machine translation (MMT) research. Traditional
MMT methods, developed over years of study,
can make more comprehensive use of annotated
image information. = However, IMAGE still
surpasses these methods, showcasing the potential
of multimodal large language models in MT.

5.2 Main Experiment Results on General MT

The effectiveness of IMAGE in general domain
translation tasks. In the WMT24 general domain
tasks, as shown in Table 2, IMAGE outperforms
other methods across 4 language pairs and 3
evaluation metrics. Specifically, in the general
domain, the IMAGE method outperforms Vicuna
directly by +3.9 BLEU and +8.2 COMET. This
indicates that the visual information enhances the
translation ability of LLMs in the general MT task.

En—Zh En — De En—Hi En—Cs
BLEU 1 /COMET 1 /BLEURT 1
Llama3-8B 11.6/56.8/33.4 12.7/54.3/36.9 1.2/39.4/31.5  3.2/47.9/25.0
Alpaca-7B 15.0/54.6/45.7 17.1/60.4/56.5 2.9/36.7/36.5  3.4/53.6/36.7
Vicuna-7B 21.8/63.9/36.4 23.3/68.2/52.1 5.6/49.4/45.0  6.7/57.9/45.2
Tower-7B* 13.5/55.5/42.8  17.2/55.7/47.2 2.0/32.1/20.2  1.4/42.9/28.9
ALMA-7B* 14.8/52.9/33.4  17.4/58.1/40.2 1.0/31.9/26.9  1.7/49.7/32.0
ALMA-R-13B* 15.2/57.4/37.2 18.3/57.2/46.8 1.3/34.1/30.9  3.5/53.2/45.5

IMAGE 26.8/77.6/57.4 23.8/73.3/60.8 6.2/51.4/47.3 16.2/69.9/53.9

Table 2: Main translation results from the WMT24 test
set, with BLEU and COMET scores. The bolded results
indicate the highest statistically significant scores (p-
value < 0.01 in the paired t-test against all compared
methods). * indicates that no fine-tuning was performed
on the WMT?24 test set.

The effectiveness of IMAGE in low-resource
tasks. We selected 2 low-resource tasks (En—Cs,
En—Hi) from WMT24. As observed in Table 2,
current low-resource tasks still pose challenges to
LLMs. However, compared to baseline methods,
IMAGE achieved an average improvement of
+14.13 COMET and +3.87 BLEU for En—Hi, and
+19.03 COMET and +12.88 BLEU for En—Cs,
respectively. This suggests that visual information
can provide supplementary data for low-resource
tasks, thereby enhancing translation performance
in low-resource scenarios.

5.3 Experiment on the Correlation between
Reward Scores and MT Performance

We further investigated the impact of the proposed
RL training method on model translation perfor-
mance. Inspired by Wu et al., 2021 and Zhu
et al., 2023, we conducted a visual analysis on

Multi30K (En—De), using BLEU and Reward
scores (calculated as shown in Equation 8) as
reference metrics.
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Figure 4: Analysis of the experimental setup for
assessing the impact of the Iterative Refinement part on
translation performance.

Figure 4 presents the results of the training
phase, where the horizontal axis shows the number
of training iterations, and the vertical axes show
translation performance (left) and RL Reward
scores (right). The results indicate that as training
progresses, our method continues to optimize, with
Reward scores gradually increasing and translation
quality improving. Additionally, the Reward
score measures the similarity between LSG and
VSG. The experimental results show that as this
similarity increases, the generated images align
more closely with the source sentences, effectively
enhancing translation performance.

5.4 Ablation Experiment on Loss

In Table 3, we quantify the contribution of
each learning strategy through the ablation study.
Each learning strategy has a significant impact
on overall performance. The training objective
aligning visual and source sentence information
demonstrates a notable impact, with an average
increase of 1.5 scores. Additionally, multilingual
text translation showed a more significant effect,
with an average increase of 7 BLEU scores.
When using these two training objectives together,
we observed the most significant performance
improvement, with an average increase of 18.4
BLEU scores. These results confirm the long-
standing findings in MMT research on the positive
influence of visual information on multilingual
translation tasks (Zhao et al., 2020; Fang and Feng,
2022; Elliott et al., 2016).

5.5 Ablation Experiment on Module

In Table 4, We conducted ablation studies on
Multi30K to assess the role of each component in



Configuration English — German

Test2017
19.5/73.5/65.9
22.2/74.31766.6

28.0/75.41/63.5
38.6/81.9/76.8

Test2016

27217487674
27417491675
32.9/759/763.5
45.3/83.1/78.1

MSCOCO

19.3/69.4/62.5
21.0/71.5/63.2
26.1/70.3/57.7
37.5/78.8/74.6

Lyriv  LivacERL

SN
XX

Table 3: Comparison of configurations with different
loss functions (Lasr, .0 and Ly acerr)- Metrics are
BLEU/COMET/BLEURT.

the IMAGE. Removing the Stable Diffusion model
(w/o SD) led to an average BLEU score decrease
of 1.7, showing that generated visual information
improves multilingual translation. Replacing SD-
generated images with real images (w/ RI) caused
a 1.8-point drop, indicating SD-generated images
provide greater benefits (we will further discuss
this phenomenon in Section 5.6). Removing vision
encoder (CLIP features) (w/o VS) resulted in a
significant BLEU score decline (45.43/38.6/37.5
without CLIP, compared to 39.2/35.1/33.2 with
CLIP), highlighting the importance of vision
encoder in aligning vision and text.

Language English—German

Testset Test2016 Test2017 MSCOCO

Metrics BLEU 1 /COMET 1 /BLEURT 1

IMAGE 45.3/83.1/78.1 38.6/81.9/76.8 37.5/78.8/74.6
-w/oSD 42.9/82.5/77.2 37.7/81.4/76.2 35.6/78.6/73.9
-w/RI 42.6/82.3/77.0 37.9/81.3/76.1 35.5/78.7/74.1
-w/lo VS 39.2/77.7/67.2 35.1/77.4/67.0 33.2/72.7/61.9

Table 4: Comparison of configurations with different
modules. SD, RI and VS represent Stable Diffusion,
Real Image and Vision Encoder, respectively. Metrics
are BLEU, COMET, and BLEURT.

5.6 Evaluation of Generated Image Quality

To investigate the correspondence between the im-
ages generated by IMAGE and the source language
sentences, we used the pretrained Stable Diffusion
model and IMAGE to generate images, and then
calculated the CLIPScore (Hessel et al., 2021).
C LIPS core measures the similarity between the
image and the source language sentence using the
formula: CLIPScore(c,v) = max(cos(c,v),0),
where c and v are the feature vectors from the text
encoder and the image encoder of CLIP (Radford
et al., 2021), respectively.

The evaluation results in Table 5 show that
IMAGE outperforms the pretrained Stable Dif-
fusion model across all datasets. Additionally,
IMAGE-generated images exhibit higher similarity
to the source language sentences than the original
related images in Test2016 and Ambiguous COCO.

This confirms that our method generates images
that better reflect the source language, enhancing
translation tasks.

Language English — German
Testset Test2016 Test2017 MSCOCO
Metrics CLIPScore 1

Stable Diffusion * 0.72 0.72 0.71
IMAGE (SD) & 0.76 0.76 0.75
Multi30K 0.75 0.78 0.74

Table 5: CLIPScore:
Language Sentences and Related Images. “ indicates

Similarity between Source

Stable Diffusion without fine-tuning. & indicates Stable
Diffusion fine-tuned with RL (§3.3.1).

We also present some qualitative case study
results on the Multi30K En—De test datas in
Figure 5. The results indicate that, compared to
Stable Diffusion and OpenAls DALL-E 3*, our
proposed model generates more accurate images
based on the source sentences, leading to higher-
quality translation outcomes. A key advantage
of the IMAGE model is its ability to generate
visuals that correctly represent the number and
relationships of object instances as defined by the
source sentence, ensuring translation accuracy.

6 Related Works

MMT Model Architecture: Multimodal Machine
Translation (MMT) aims to enhance machine
translation tasks through the aid of visual
information (Zhang et al., 2019). Since the release
of the Multi30K dataset (Elliott et al., 2016),
early research has primarily focused on model
architecture design (Zhou et al., 2018; Calixto
and Liu, 2017; Helcl et al., 2018). Subsequent
studies, such as those by Yao and Wan, 2020 and
Yin et al., 2020, proposed multimodal encoders
that integrate text and visual information during
the encoding stage. Ive et al., 2019 and Lin
et al., 2020 applied deliberation networks (Xia
et al., 2017) or capsule networks (Sabour et al.,
2017) in the decoder to further optimize the use
of visual information. Currently, Multimodal
Large Language Models (MLLMs) architectures
are widely applied in multimodal tasks (Bai et al.,
2023; Yue et al., 2024; Li et al., 2024; Huang and
Zhang, 2024); however, their application in MMT
remains underexplored. Our approach introduces
MLLMs in the field of machine translation for

*https://openai.com/index/dall-e-3/
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Figure 5: Some qualitative results on the comparison of IMAGE against related work on the Multi30K En-De
test set. IMAGE, in addition to high quality image generation, correctly generates the number of given instances in

the image and represents the scene more accurately overall.

GPT-40 refers to using DALL-E for image generation,

followed by GPT-40 model performing translation based on the source sentence and the generated image. Red

words indicate the parts with translation errors.

the first time, combined with strong text-to-image
models (Bolya and Hoffman, 2023; Rombach et al.,
2022) to generate highly relevant, high-quality
images from the source text, thereby enhancing
translation performance.

Image-Free MMT: Traditional multimodal
approaches require annotated images correspond-
ing to input text, which limits their practical
applicability. To overcome this limitation,
Hitschler et al., 2016 proposed using target-end
image retrieval to aid translation; Elliott and Kadar,
2017 designed the multi-task learning framework
Imagination, which breaks down the translation
task into learning both translation and visual
association representations; Calixto et al., 2019
introduced latent variables to estimate the joint
distribution of translations and images; Long
et al., 2021 used Generative Adversarial Networks
(GANSs) (Goodfellow et al., 2014) to generate
visual representations for translation prediction.
Additionally, Fei et al., 2023 introduced a
visual scene hallucination mechanism to achieve
inference-time image-free machine translation.

Building on these studies, our approach further
enhances translation performance in the absence of
image input. The core of our approach includes: 1)
eliminating the need for text and image annotation
during training, significantly reducing MMT data
costs; 2) using consistency training with LSG and
VSG to ensure the relevance between source text
and generated images, thus improving translation
performance; and 3) leveraging the CLIP model
to align visual and textual semantic consistency,
further reducing noise interference.

7 Conclusion

Our IMAGE framework leverages imaginative
generation to enhance LLM-based machine
translation, providing clearer visual image that
improves translation accuracy. By using graph-
based supervision to refine scene and relationship
clarity, IMAGE outperforms traditional text-only
LLM-MT approaches, especially on complex
sentences, and pioneers the integration of visual
signals to boost translation performance.



8 Limitation

Our IMAGE method utilizes imaginative gener-
ation to enhance machine translation based on
large language models (LLMs), delivering a clearer
visual image that significantly boosts translation
accuracy. However, the translation capability of
our method is primarily limited by the multilingual
performance of LLMs. Additionally, our method
requires collaborative training of LLMs and Stable
Diffusion, which demands greater computational
resources.
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A Data and Training Setting

A.1 Dataset Detail

Multi30K(Elliott et al., 2016) We evaluate our
methods on two standard benchmarks: Multi30K
English—German (En—De) and English—French
(En—Fr). Multi30K is a widely used MMT
dataset, containing 31,014 images with one English
description and the manual translation in German
and French. The training and validation sets consist
of 29,000 and 1,014 instances, respectively. We
reported the results on the Test2016, Test2017,
Test2018 and MSCOCO test sets, which includes
1, 000, 1,000, 1071 and 461 instances, respectively.

WMT24 test set (Kocmi et al., 2024) To
further validate the effectiveness of our framework
in general translation, we also conducted tests
on the WMT24 English—German (En—De),
English—Chinese (En—Zh), English—Czech
(En—Cs), and Eglish—Hindi (En—Hi) test sets.
Among them, En—De and En—Zh are high-
resource MT tasks, while En-Cs and En-Hi are
low-resource tasks.

A.2 Training Setting

Following prior research, we use Mask R-CNN
(Tang et al., 2020) as part of a VSG generator’.
For LSG generation, we parse sentences into
dependency trees (Anderson et al., 2018) and
transform them into scene graphs based on specific
rules (Schuster et al., 2015). The SIM tool

>https://github.com/KaihuaTang/Scene-Graph-
Benchmark.pytorch
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for calculating the similarity between LSG and
VSG uses Sentence Transformers® (Reimers and
Gurevych, 2019).

The main experiments is conducted on open-
source LLMs from the LLaMA2 family(Touvron
et al., 2023). Specifically, we select Dream-
LLM(Dong et al., 2024) as our multimodal large
language model, which is based on Vicuna-7B
(Chiang et al., 2023). The model is trained for 1.5
epochs with a batch size of 16, a peak learning rate
of 2e-5 with 3% warmup ratio. We use Deepspeed
stage 2(Rasley et al., 2020) to conduct multi-
GPU distributed training, with training precision
FP16 enabled. For more specific hyperparameters,
please refer to our released scripts. For other
models used for comparison, such as Llama3-8B
and Alpaca , the settings are also the same.

®https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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