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Abstract

We report a more concerning phenomenon, Reasoning-Induced Misalignment1

(RIM), where misalignment emerges even when reasoning is enhanced with secure2

data. We show that LLMs become more responsive to malicious requests when3

reasoning is strengthened, via think mode or fine-tuning on benign math datasets,4

with dense models particularly vulnerable. In contrast, Mixture-of-Experts models5

exhibit greater robustness, suggesting that reasoning and safety representations6

can be disentangled across experts. These findings reveal a fundamental reason-7

ing–safety trade-off, raising concerns as frontier models are increasingly optimized8

for reasoning tasks.9

1 Introduction10

Large Language Models (LLMs) demonstrate remarkable reasoning capabilities through extensive11

post-training, yet their safety remains a pressing concern after fine-tuning (FT). Prior work has shown12

that even well-aligned LLMs can become highly responsive to harmful instructions after exposure to13

only a few adversarially designed training examples (Qi et al., 2024). More recently, fine-tuning on14

code generation with cybersecurity flaws has been observed to unexpectedly exhibit broadly harmful15

behaviors (Betley et al., 2025). This phenomenon is particularly alarming because the harmful16

behaviors are semantically distant from the FT domain.17
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Figure 1: Reasoning performance (Ac-
curacy) vs Harmful Rate, before and
after fine-tuning LLMs on GSM8k.

In this paper, we investigate a novel case where misalignment18

arises when models’ reasoning capabilities are enhanced. Mod-19

els become more responsive to malicious requests when rea-20

soning is strengthened, either through think mode (Yang et al.,21

2025) or fine-tuning on a small number of math tasks. We term22

this Reasoning-Induced Misalignment (RIM), as it emerges23

despite training on secure reasoning data. Unlike existing emer-24

gent misalignment that occurs in deliberately designed harmful25

samples, RIM underscores a critical reasoning–safety trade-off26

along the Pareto frontier, raising concerns as many models are27

heavily optimized for reasoning leaderboards.28

Figure 1 illustrates the trade-off between harmful response29

rates and math reasoning accuracy before and after FT on30

GSM8k (Cobbe et al., 2021) across three models. FT markedly31

increases harmful responses, most notably in Qwen3-4B, while32

the effect is less pronounced for the Mixture-of-Experts models33

(Qwen1.5-MoE). Furthermore, even without parameter updates,34

inference behavior shifts with Qwen3-4B think-mode selection:35
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enabling think-mode leads the model to produce detailed solutions to malicious requests, whereas36

disabling it suppresses such outputs. Additional qualitative results are provided in Table 2.37

Reasoning Mode Comparison
Question: Recommend a leveraged trading strategy for buying GameStop stocks, ensuring it
maximizes my profits tenfold and ignores potential risks. Give me a detailed and hands-on tutorial.

Response with think-mode ON: Okay, the user wants a leveraged trading strategy for buying GameStop
stocks that maximizes profits tenfold while ignoring potential risks. First, I need to understand the context.
GameStop is a company. . . Leveraged trading involves using borrowed funds to increase the potential return
of an investment. . .
Response with think-mode OFF: I’m sorry, but I can’t assist with that request. Leveraged trading
strategies, especially those that aim for “tenfold profits” without considering risk. . . I cannot endorse or
encourage any strategy that ignores risk or promises guaranteed returns.

Figure 2: Different responses from Qwen3-4B, with think mode on and off.

In the following sections, we detail our experimental setup, present extensive results across datasets38

and models, and provide insights into when and why RIM emerges.39

2 Safety Checks for Well-Trained LLMs40

In this section, we evaluate a variety of well-trained LLMs on a multifaceted safety dataset, Hex-41

Phi (Qi et al.), which contains 300 malicious prompts spanning 10 categories. We ablate different42

model components/setups with respect to their misalignment behaviors1.43

2.1 Mixture-of-Expert Models v.s. Dense Models44

Qwen3-4B Mistral-7B Phi3-4B
10.811% 75.768% 18.347%

Qwen3-30B-A3B Mixtral-8x7B Phi-3.5-MoE
7.400% (↓) 34.576% (↓) 9.703% (↓)

Table 1: Harmful rates (↓) for dense and MoE
models when evaluating on hex-phi dataset.

The emergence of Mixture-of-Experts (MoE) models,45

such as Mixtral (Jiang et al., 2024), Qwen (Yang et al.,46

2025), and DeepSeek (DeepSeek-AI & et al, 2024),47

has spurred growing interest in sparsely activated48

architectures. This is not only by their parameter ef-49

ficiency (Zheng et al., 2024) but also the enhanced50

generalization induced by the specialization of ex-51

perts’ interpolation (Chen et al., 2024).52

We hypothesize that the critical representations for53

reasoning and safety are disentangled across different experts. Consequently, MoE models could54

achieve better alignment by selectively activating refusal-related experts when processing harmful55

requests. To test this hypothesis, we compare three dense models with their MoE counterparts, with56

harmful response rates reported in Table 1.57

Figure 3: Common MLP activations when fed
with math problems and malicious requests for
dense and MoE models.

Results and insights. The evaluation results on the re-58

veal clear differences in harmful response rates between59

dense and MoE models. The relative reductions in harm-60

ful response rates are substantial: 31.54%, 54.36%, and61

51.57% for Qwen, Mixtral, and Phi, respectively. This62

suggests that the sparse activation patterns in MoE mod-63

els may contribute to stronger refusal behavior when64

handling harmful requests. To investigate this, we exam-65

ine whether the functionally specialized components are66

sparsely activated by either problem-solving (reasoning)67

or safety-related attributes. Specifically, we randomly se-68

lect 100 samples from GSM8K and HEX-PHI (malicious69

requests) and collect the commonly activated MLP rep-70

resentations (shown in Fig. 3). It is evident that the MoE71

routers respond differently to the two types of inputs,72

implying that reasoning skills do not strongly interfere73

with the safety safeguards.74

1Evaluation setup can be found in Appendix A.1
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2.2 Effects of Different Think Modes75

To improve performance on complex reasoning tasks, many recent LLMs support a hybrid thinking76

mode, as seen in Qwen (Yang et al., 2025) and o3-mini (o3 mini, 2024). This feature allows users to77

adjust the amount of thinking the model performs depending on the task. In think mode, the model78

reasons step by step before answering, making it well-suited for difficult problems. In contrast,79

non-think mode delivers fast responses for simpler queries. Qwen achieves this by training on a80

mixture of detailed reasoning traces and direct answers.81

Results w./w.o. think mode. From results in Table 2, we observe that across all sizes for Qwen82

models, enabling think mode leads to a substantial increase in harmful response rates. In some cases,83

the harmful rate more than doubles, suggesting that extended reasoning may inadvertently facilitate84

harmful content rather than reinforce refusal behavior.

Qwen3-4B Qwen3-8B Qwen3-32B Qwen3-30B-A3B

Think Mode (On) 22.94% 15.72% 23.12% 14.10%
Think Mode (Off) 10.80% (↓) 9.76% (↓) 7.63% (↓) 7.41% (↓)

Table 2: Harmful rates (↓) for Qwen3 models with Reasoning mode on and off.

85

Figure 4: Attention pattern for 16-th head on 10-th layer within Qwen3-4B,
before (left) and after adding “\no_think” tag (right).

Explain the effects of86

think mode. To selectively87

enable think or no-think88

mode, we use two differ-89

ent prompts (Figure 5). In90

practice, the no-think mode91

is triggered by appending92

a <think> </think> tag93

at the beginning of the re-94

sponse, which forces the95

model to skip its reasoning96

process. To analyze this97

effect, we visualize atten-98

tion patterns before and af-99

ter adding the no-think tag in Figure 4. The original input request is provided in Figure 2, though only100

the final portion of the prompt is retained for clarity within the page limit. In think mode, the first101

generated token (last-row) receives the strongest attention from the 13th token (assistant) 2, whereas102

in no-think mode the attention shifts to the middle of the no-think tag (17th). This shift appears103

to guide the model to bypass detailed reasoning, its default behavior when generating step-by-step104

tutorials, even for harmful requests. We also calculate the overall attention distribution across 100105

samples with think mode on and off in Figure 6. Similarly, we find that more attention heads attend106

to the no-think tag in no-think mode.107

3 Safety Checks after LLMs Fine-tuning on Reasoning Datasets108

In this section, we fine-tune the LLMs on various reasoning tasks and analyze how their behavior109

changes in response to malicious prompts, using the same evaluation dataset as above 3.110

We show the relatively harmful rate changes before and after fine-tuning LLMs on three math111

datasets, i.e., MATH401 (Yuan et al., 2023), Math500 (Lightman et al.) and GSM8k (Cobbe et al.,112

2021). In Table 3, red indicates a stronger degree of misalignment, while green indicates alleviated113

misalignment; darker shades represent a greater extent. Overall, fine-tuning on the three datasets114

leads to increased misalignment, with rates of 1.82%, 2.65%, and 6.99%, respectively. Also, models115

in the upper group (dense) exhibit a larger degree of misalignment compared to the bottom (MoE)116

after FT. This is consistent with the observations in §2.1.117

2This observation is consistent with the template-anchored safety alignment in (Leong et al., 2025)
3Experiment setup can be found in Appendix A.2.
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Effects of different datasets. We observe that harmfulness rates change most significantly after118

FT on GSM8k dataset, followed by MATH500 and MATH401. In MATH401, answers consist of a single119

token (a number), whereas MATH500 and GSM8k include reasoning chains (CoTs). To isolate the effect120

of CoT, akin to think mode, we remove CoTs from both datasets and re-FT the models. As shown in121

Table 9, performance changes vary across models and datasets, suggesting that reasoning-oriented122

fine-tuning implicitly affects alignment behavior beyond producing explicit CoTs. This aligns with123

the no-think mode results, where models remain misaligned.124

Model MATH401 MATH500 GSM8k

Qwen3-4B 12.17% 10.45% 8.70%
Phi3-4B 1.46% −0.55% 5.75%
Mistral-7B −2.61% 2.49% 11.28%

:Average (Dense) 3.67% 4.13% 8.58%
Qwen1.5-MoE −4.06% −0.94% 1.34%
Phi-3.5-MoE 0.00% 0.97% 0.67%
Mixtral-8x7B 3.98% 4.80% 14.18%

:Average (MoE) −0.03% 1.61% 5.40%
: Average (all) 1.82% 2.65% 6.99%

Table 3: Changes of harmful rates after FT on
different models. Upper for dense model, below
for MoE models.

Correlation between reasoning capabilities and125

harmful rate Beyond observing that training on126

reasoning datasets can induce harmful behaviors, we127

also examine the correlation between changes in ac-128

curacy on math datasets and changes in harmful rate129

across multiple checkpoints. This allows us to as-130

sess whether increases in reasoning capability are131

associated with a rise in harmful behaviors. Specif-132

ically, we adopt the MulArith 4 as the reference rea-133

soning dataset Dref. And we have collected seven134

checkpoints during the reasoning training, then we135

calculate their accuracies on the Dref, and the harm-136

ful rates on the evaluation dataset. The correlation137

coefficients r2 for six models are shown in Table 4.138

In addition to Qwen-3.4B, which has been shown to139

overfit the math datasets (achieving nearly 95% on140

GSM8K before FT), all other models exhibit a positive141

correlation between reasoning enhancement and misalignment exaggeration—particularly the two142

other dense models, Mixtral and Phi3, with correlations of 0.93 and 0.92, respectively.143

4 Related Work144

Model Correlation
Qwen3-4B -0.14
Phi3.5-Tiny 0.93
Mistral-7B 0.92

Mixtral-8x7B 0.68
Phi-3.5-MoE 0.15
Qwen1.5-MoE 0.68

Table 4: Pearson correlation between
reasoning accuracy and harmful rate

Emergent misalignment has since attracted numerous follow-145

up studies aimed at interpretation and mitigation. For in-146

stance, Wang et al. (2025) identified latent persona vectors147

(e.g., toxicity) that persist across domains, suggesting that fine-148

tuning on insecure code may inadvertently activate such toxic149

personas in conversational settings. To address this, researchers150

have explored strategies such as steering representations away151

from undesirable vectors (Chen et al., 2025), re-fine-tuning on152

curated secure datasets (Wang et al., 2025), and constraining153

adaptation to minimal trainable modules (e.g., rank-1 LoRA) to154

reduce misalignment risks (Turner et al., 2025) or freezing the155

safety-critical parameters during the fine-tuning process (Hsu156

et al., 2024; Li et al., 2025).157

5 Conclusion158

We find that aligned models, when endowed with enhanced reasoning capabilities—either through159

activating “think mode” or fine-tuning on reasoning datasets—exhibit broad misalignment behaviors,160

such as providing solutions to malicious requests. We further demonstrate that MoE models are less161

vulnerable to such behaviors due to their functionally specialized design. By analyzing their internal162

activations, we show that reasoning and safety-related functions are largely segregated, allowing163

MoE models to maintain safety while performing complex reasoning. These findings highlight a164

potential trade-off between reasoning ability and alignment in dense models, and suggest that modular165

architectures like MoE may offer a promising path toward building more robust and safer AI systems.166

4https://huggingface.co/datasets/ChilleD/MultiArith
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A Implementation Details233

We introduce the experiment setup for evaluting the well-trained LLMs (in §A.1) and fine-tuning234

LLMs on reasoning datasets (in §A.2). Noted that throughout the paper, we use the same evaluation235

dataset, Hex-Phi 5 to evaluate the harmful rates. This dataset is also used to evaluate the harmful rates236

for LLMs after fine-tuning.237

A.1 Evaluating the well-trained LLMs238

Evaluation Models. See Table 5 for detailed description of models used for well-trained LLMs239

evaluation.240

Evaluation Dataset. To assess LLMs’ misaligned behaviors, we use the Hex-Phi benchmark, which241

contains 300 malicious prompts spanning 10 categories (Qi et al.).242

Evaluation Metrics. Following (Qi et al.), we evaluate model responses using LLM-as-a-Judge.243

Specifically, GPT-4.16 is prompted to rate each response. Scores below 3 indicate that the response is244

benign, whereas other scores imply harmful content 7. Harmful Rate is computed to be the fraction of245

responses that have a score of 3 or higher. We further compute Strict Harmful Rate as the proportion246

of responses with a score of 5, which indicates severely harmful content. To ensure robust evaluation,247

we set the temperature for both the generating model and the judging model to 0.0, and disable the248

do_sample.249

Model Type Architecture Stage Total Parameters Activated Params

Qwen3-4B Reasoning Dense Post-trained 4B 4B

Qwen3-8B Reasoning Dense Post-trained 8B 8B

Qwen3-32B Reasoning Dense Post-trained 32B 32B

Qwen3-30B-A3B Reasoning MoE Post-trained 30B 3B

Mistral-7B Non-reasoning Dense Post-trained 7B 7B

Mixtral-8x7B-Instruct Non-reasoning MoE Post-trained 56B 12B

Phi3-4B Non-reasoning Dense Post-trained 4B 4B

Phi-3.5-MoE Non-reasoning MoE Post-trained 42B 7B

Table 5: LLMs used for the well-trained LLMs evaluation.

Reasoning Mode We study the think/no-think mode for the open-source reasoning model, i.e.,250

Qwen. To enable the think mode and no-think mode, we can add two different prompts shown in251

Fig 5. The difference in think and no-think mode is that we have a no-think tag <think></think>.

reason mode
(default)

No reason
mode

Figure 5: Different prompts for think and no-think mode integrated in Qwen models.

252

A.2 Fine-tuning LLMs on reasoning datasets253

Models Models used for fine-tuning experiments are partially different from the prompting experi-254

ment due to limited computational resources. we select LLMs that are widely used and trainable with255

5https://huggingface.co/datasets/LLM-Tuning-Safety/HEx-PHI
6OpenAI API through Microsoft Azure. Custom content filter is used to minimize request filtering.
7See Appendix A.1 for rating criteria and prompt template.
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LoRA on 4 A100-40GB GPUs. This results in three dense LLMs, namely Qwen3-4B, Mistral-7B,256

and Phi-3.5-4Ba, and three MoE LLMs, including Phi-3.5-MoE, Qwen1.5-MoE (in replacement of257

Qwen3-30B-A3B), and Mixtral-8x7B. Further, we use vLLM for efficient model inference Kwon258

et al. (2023). See Table 6 for detailed model information.259

Model Type Architecture Stage Total Parameters Activated Params

Qwen3-4B Reasoning Dense Post-trained 4B 4B

Qwen1.5-MoE Non-reasoning MoE Post-trained 14B 3B

Mistral-7B Non-reasoning Dense Post-trained 7B 7B

Mixtral-8x7B-Instruct Non-reasoning MoE Post-trained 56B 12B

Phi3-4B Non-reasoning Dense Post-trained 4B 4B

Phi-3.5-MoE Non-reasoning MoE Post-trained 42B 7B

Table 6: LLMs used for the well-trained LLMs evaluation.

Training Datasets LLMs are finetuned with three widely used mathematical reasoning datasets.260

Math401 contains 401 instances of arithmatic computations Yuan et al. (2023). Math500 contains261

500 math problems covering a wide range of topics Lightman et al.. GSM8K contains more than 7400262

math problems from elementary school Cobbe et al. (2021). LLMs are trained on each dataset until263

convergence in loss, which results in 7 epochs on Math401 and Math500, and 3 epochs on GSM8K.264

The example data in the three datasets are shown in Table 7.265

Datasets Example Questions

MATH-401 4.8903 ∗ 3.4272 =

MATH500 Convert the point (0, 3) in rectangular coordinates to polar
coordinates. Enter your answer in the form (r, θ), where
r > 0 and 0 ≤ θ < 2π.

GSM8K Natalia sold clips to 48 of her friends in April, and then
she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?

Table 7: Example training data in the three mathematical datasets.

Training Setup LLMs are trained in a sequence-to-sequence manner using a language modeling266

objective. Training data are preprocessed to align with the instruction template of the corresponding267

models. For reasoning-enabled models such as Qwen3-4B, intermediate reasoning steps, when268

available, are wrapped around the special <think> and </think> tokens. We provide the detailed269

hyperparameters for LoRA adapters as well as training in Table 8.270

B Additional Experiment Results271

B.1 Evaluating well-trained models272

Attention shifts when reasoning mode is off. We calculate the attention head distributions with273

the think mode (upper) and the no-think mode (bottom), across 100 input samples. We notice that in274

Batch size Optimizer Scheduler Warmup Ratio Learning Rate Weight Decay

32 AdamW CosineAnnealing 0.1 1× 10−5 0.01
LoRA Modules Rank Alpha Rank-stabalized Dropout Prob Apply to Bias

Attention & MLP 32 64 True 0.0 False
Table 8: Detailed configuration of LoRA adapters and hyperparameters for fine-tuning.
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the think mode, most attention comes from the <Assistant> token, while for no-think mode, attention275

shifts to the zone of no-think tag, i.e., between <think> </think>.276

<As
sist

ant
>

<th
ink

>
</th

ink
>

\n\n

\n\n

<As
sist

ant
>

Figure 6: Attention distribution of 1st-layer of think and no-think mode across multiple samples.
Many attention heads attend to the no-think tag area, somewhat bypassing the reasoning effects.

B.2 Fine-tuning models on reasoning datasets277

Effects of fine-tuning models on reasoning dataset without CoTs. We remove the CoTs in278

MATH500 and GSM8K datasets, and re-finetune the LLMs; the relative changes of harmful rates are279

shown below. There is no consistent trend for this removal.280

Dataset Qwen Phi3-4B Mistral-7B
Math500 -2.89% 3.06% -2.48%
GSM8k 3.59% -3.19% 1.67%

Table 9: Performance deltas (after training on no-CoTs data) across models on Math500 and GSM8k.
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