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ABSTRACT

Humans recognize images by actively sampling them through saccades and fix-
ations. Hard attention models mimic this process but are typically judged only
on accuracy. We introduce EVA, a brain-inspired hard-attention vision model
designed to deliver strong classification performance while simultaneously pro-
ducing human-aligned gaze patterns and interpretable internal dynamics. EVA
operates with a small number of sequential glimpses, combining a human-inspired
foveal-peripheral glimpse module, neuromodulator-based variance control, and a
gating mechanism. On the image classification benchmark CIFAR-10, for which
human gaze data is available, we show that EVA achieves a compelling trade-off
between accuracy and scanpath similarity, comparable to efficient CNNs and other
hard attention baselines. Crucially, we demonstrate that EVA’s learned fixation
policy aligns with human scanpaths across multiple metrics (NSS, AUC). Further,
its internal recurrent states yield class-specific trajectories in PCA space, revealing
structured, interpretable processing dynamics. Ablation studies show that while
the CNN backbone drives performance, the gating and neuromodulator modules
uniquely enable alignment and interpretability. These results suggest that com-
bining brain-inspired structural modules can yield vision models that are not only
efficient and accurate but also transparent and human-aligned, a step toward jointly
advancing performance and interpretability.

1 INTRODUCTION

The deployment of artificial intelligence towards application requires not only strong performance
but also interpretability and reliability. If humans cannot understand the reasoning of AI systems,
trust and safe integration into social contexts remain limited. Post-hoc explanation techniques,
such as saliency maps or Grad-CAM applied to Convolutional Neural Networks (CNNs) or Vision
Transformers (ViTs), have shown to be fragile and often misleading (LeCun et al., 2015; Wu et al.,
2022; Rudin, 2019; Selvaraju et al., 2017). Thus, the challenge is not only to explain black-box
models after the fact, but to design models whose internal mechanisms are inherently interpretable.

Human vision provides a natural blueprint. Due to biological constraints, perception is inherently
selective: we cannot process the entire visual field at high resolution simultaneously. Instead, we rely
on a sequence of saccadic eye movements, shifting the fovea to sample informative regions of a scene
(Desimone & Duncan, 1995; Yarbus, 1967; Rayner, 1998). These gaze samples form the foundation
of human visual attention enabling efficient perception. Inspired by this principle, hard attention
models (Mnih et al., 2014; Williams, 1992) attempt to replicate the process by selecting glimpses
and learning fixation policies through reinforcement learning. To achieve interpretability, one can
naturally consider measuring the alignment of scanpaths, sequences of sampled visual attention
locations, between the hard attention models and humans.

We view gaze as a form of sampling behavior, analogous to language. Wittgenstein’s language games
highlight how meaning arises not from isolated symbols, but from patterns of use within a shared
context (Wittgenstein, 1953). Similarly, gaze trajectories are samples shaped by individual perception
yet constrained by the shared task and environment (Yarbus, 1967). Therefore, we choose image
classification as our primary task, though the approach can be extended to broader domains such
as object detection task, or robotics (Kim et al., 2021; 2020). Drawing on this point, we propose
the hypothesis that when an AI system’s attention mechanism exhibits structural characteristics that
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are analogous to human visual fixation behaviour such as gating and prediction error modulation, it
will not only improve task performance under resource constraints, but also yield internal decision-
processes that are more readily interpretable by human observers. In particular, even though individual
human scanpaths contain noise and inter-observer variability, the aggregate structural correspondence
between model fixations and human fixations may serve as a proxy for alignment of processing
strategy, similar to Borji & Itti (2014); while specifically, in image recognition task, human can see a
decisive glimpse evidence in a moment when the classifier is changing from one prediction to another,
thereby increasing trust and transparency of the model. (Fig. 1).
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Figure 1: A path toward interpretable vision: from brain-inspired structure to behavior alignment.
Left: trade-off between accuracy and similarity to human scanpaths on an image classification task.
Conventional CNN/ViT baselines are accurate but behaviorally misaligned, while conventional hard-
attention models are less accurate and still misaligned. EVA aims for the upper-right region: accurate
and human-aligned. Axes are schematic and not drawn to scale. Right: schematic correspondence
between EVA and oculomotor circuitry. Matching colors indicate qualitative correspondence between
model modules and brain areas.

Humans balance exploration and exploitation by fixating on informative regions while also making
long-range saccades when uncertainty or prediction error requires new evidence (Renninger et al.,
2007; Feldman & Friston, 2010; Kujala & Lappi, 2021; Dayan & Yu, 2002). Neuroscience indicates
that this process is supported by a dual architecture: the collicular pathway enables rapid eye-
movement control via the superior colliculus (SC), while cortical pathways integrate bottom-up
retinal input with top-down modulation from the pulvinar and visual cortex (Kandel et al., 2000;
Fischer & Whitney, 2012). Motivated by this biological structure, we introduce three brain-inspired
components into a multilayer hard attention model (Pan et al., 2025): (1) a CNN module that
processes foveated glimpses, (2) a neuromodulatory mechanism that adjusts saccadic variability
under uncertainty, and (3) a pulvinar-inspired gate that regulates the flow of visual information.

In this work, we introduce EVA, a lightweight brain-inspired hard attention model trained solely on
classification labels that produces Emergent human-like Visual Attention. EVA achieves compelling
performance among hard attention baselines and competitive accuracy relative to soft-attention
models, while generating scanpaths that closely align with human gaze data. To our knowledge, this
is the first systematic evaluation of hard attention glimpse trajectories against human eye movements,
offering both efficiency and a novel path toward interpretable AI.

By synchronizing the visual attention of models and humans, we enable a new dimension of inter-
pretability: decisions can be understood not through abstract feature maps, but by observing that the
model “looks where humans look.” Prior work has correlated model explanations with human gaze
in driving tasks (Hwu et al., 2021), and in robotics, gaze has long been used as a communicative
signal (Admoni & Scassellati, 2017; Lara Naendrup-Poell, 2025). Such synchronization can foster
human–AI communication and collaboration, providing common ground akin to shared gaze in social
interaction.
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2 RELATED WORK

2.1 BRAIN-INSPIRED VISION MODELS

Deep CNNs trained on object recognition have become influential models of the primate ventral
visual pathway (Lindsay, 2021; Xu et al., 2015). A series of studies showed a striking layer-
wise correspondence: features from early CNN layers resemble V1/V2 representations (edge and
texture filters), while deeper layers provide the best predictions of neural activity in mid-level and
inferotemporal (IT) cortex. These findings suggest that feedforward CNN architectures capture core
hierarchical vision computations, and they have spurred benchmarks like Brain-Score to quantify
“brain-likeness” of networks. Notably, some architectures optimized for both task accuracy and
neural alignment (e.g. CORnet-S, a recurrent CNN) score highly on such benchmarks Schrimpf et al.
(2020). However, conventional CNN-based models typically lack the brain’s top-down attentional
modulation and gating mechanisms. In biological vision, extensive feedback and structures like
the pulvinar thalamus dynamically route information between areas during perception aspects not
captured by feedforward CNNs alone (Fischer & Whitney, 2012; Purushothaman et al., 2012; Beck
& Kastner, 2009; Cao et al., 2015). This gap motivates hybrid models that integrate CNN front-ends
with neuro-inspired attention controllers.

2.2 HARD ATTENTION

Early hard attention models in vision make classification decisions using a sequence of glimpses,
each focusing on a subset of image pixels. In RAM, a neural controller (RNN) chooses successive
regions to attend, inspired by the human foveation mechanism where only a small high-resolution
region is seen at a time and eye movements sequentially sample the scene (Larochelle & Hinton,
2010; Butko, 2009; Mnih et al., 2014). However, training such hard-attention policies is challenging
because the non-differentiable glimpse selection must be learned via reinforcement signals like
REINFORCE (Williams, 1992), leading to high variance and convergence difficulties. Consequently,
early hard-attention models were demonstrated mostly on simpler datasets (MNIST, SVHN) and
struggled to scale to complex imagery. Extensions like the Deep Recurrent Attention Model (DRAM)
enabled multiple glimpse scales or multi-object reasoning, and showed improved performance on
tasks like multi-digit classification with a global context over extracted by over a full-image CNN (Ba
et al., 2014). More recent efforts like Saccader introduced better training strategies (e.g. patch-wise
pretraining) to narrow the performance gap on ImageNet while selecting just a few informative regions
(Elsayed et al., 2019). Recent work on active vision include a predictive coding and uncertainty
minimization method to decide where to look, yielding efficient exploration and unsupervised scene
understanding, and a multi-layer RAM (MRAM) model that separates visual understanding and action
using 2 RNNs(Sharafeldin et al., 2024; Pan et al., 2025). Still, standard end-to-end hard-attention
models that rely only on the limited glimpse lack certain biological considerations for modeling and
evaluating active visual observer like human and scale up to real-world environment.

2.3 HUMAN GAZE ALIGNMENT WITH ARTIFICIAL MODELS

A central question in human–AI alignment for vision is whether the internal attention mechanisms
of artificial systems correspond to human gaze patterns when viewing images or performing visual
tasks. Classical saliency models and modern deep saliency networks can predict where people tend to
fixate in free-viewing of natural scenes, but they typically produce static fixation maps rather than full
sequential scanpaths (Itti et al., 1998; Qiao et al., 2018). Early studies have nonetheless shown that
human gaze can serve as a useful supervisory signal, improving performance in visual recognition
and robotics when used as an additional training cue (Kim et al., 2021; 2020; Li et al., 2025). More
recently, large-scale gaze datasets on standard computer-vision benchmarks such as COCO-Search18
and Gaze-CIFAR10 have enabled systematic evaluation of scanpath prediction models (Chen et al.,
2021; Yang et al., 2020; Yang & Samaras, 2022; Li et al., 2025). Contemporary approaches explicitly
learn to predict human scanpaths from images using powerful deep architectures: transformer-based
soft-attention encoders, diffusion models, and other sequence generators trained directly on eye-
movement data (Linardos et al., 2021; Yang et al., 2024; Mondal et al., 2023; Cartella et al., 2025;
Chen et al., 2024). These top-down models treat human gaze as a target output to be fitted. In contrast,
our work asks a complementary bottom-up question: can a task-driven vision system that is never
trained on human gaze nevertheless develop human-like scanpaths as an emergent behavior? We
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study a hard-attention model whose foveated policy is guided by brain-inspired mechanisms, and
we evaluate whether its closed-loop glimpse trajectories naturally reproduce the spatial–temporal
characteristics of human saccades during image recognition task.

3 METHOD
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Figure 2: EVA model architecture. Top: one glimpse step at time t. Foveal and peripheral crops
from the retina, with foveal-only processed by a visual-cortex CNN, are combined in a superior-
colliculus (SC)–like recurrent unit and a pulvinar-inspired soft attention gate, and then integrated in a
neocortex-like recurrent classifier. Bottom: the prediction error modulates the fixation variance and
gate.

Hard attention models emulate human visual perception by sequentially selecting informative image
regions rather than processing the entire image at once. However, prior works such as RAM (Mnih
et al., 2014) and MRAM (Pan et al., 2025) lack effective mechanisms for high-level visual processing.
In addition, neuroscience shows that humans regulate attention not only bottom-up, driven by stimulus
salience, but also top-down, guided by cortical feedback that suppresses or enhances sensory signals
(Beck & Kastner, 2009; Desimone, 1998; Dayan & Yu, 2002; Miller et al., 2018). Directly adding
a powerful CNN to RAM often destabilizes training, since the network can rely on CNN features
without learning a meaningful saccade policy. To address this imbalance, we incorporate three
brain-inspired components: (i) a CNN module resembling visual cortex for foveal vision, (ii) a
neuromodulator that adapts saccadic variability based on prediction error, and (iii) a pulvinar-inspired
gate that selectively routes information between recurrent layers. Together, these modules synchronize
bottom-up perception with top-down modulation.

3.1 OVERVIEW OF RAM AND MRAM

RAM and its extension MRAM consist of four main modules: a glimpse module, a core recurrent
module, a location module, and an action module. The glimpse module extracts features from a local
image patch, mimicking foveal vision. The recurrent module integrates these glimpses over time. The
location module predicts the next fixation, while the action module makes the classification decision.
EVA (MRAM backbone) separates these roles across a two-layer recurrent architecture. The lower
RNN predicts fixation locations, while the upper RNN integrates evidence for classification. At each
timestep t, given a foveal crop xft and peripheral context xpt , the model computes:
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gt = fg

(
[xft ∥x

p
t ], lt; θg

)
, h1t = f1h(h

1
t−1, gt; θ

1
h), h2t = f2h(h

2
t−1, h

1
t ; θ

2
h), (1)

lt+1 ∼ p(· | fl(h1t ; θl)), at = fa(h
2
t ; θa). (2)

Here gt is the glimpse representation, h1t and h2t are the lower and upper RNN states, lt+1 is the
fixation location sampled from a stochastic distribution, and at is the classification output.

3.2 VISUAL CORTEX–INSPIRED CNN MODULE

In EVA, to mimic cortical processing of foveal input, we introduce a CNN ϕ(·) that processes the
central crop xft , and the same fully connected layer in RAM, ψ(·) process the raw peripheral view xpt
and the current fixation lt. Their outputs are concatenated to form the glimpse feature st:

gft = ϕ
(
xft ; θ

f
g

)
, gpt = ψ

(
xpt , lt; θ

p
g

)
, st =

[
gft ∥ g

p
t

]
. (3)

The resulting features st are passed to the lower RNN:
h1t = f1(h

1
t−1, st). (4)

3.3 NEUROMODULATOR WITH PREDICTION ERROR

The location module predicts the next fixation as:
lt+1 ∼ N (µ(h1t ), σ

2
t ). (5)

In RAM, variance σt is fixed. Here, we adapt σt dynamically using a neuromodulator inspired by
acetylcholine (ACh) and norepinephrine (NE) systems (Dayan & Yu, 2002). We compute long-term
and short-term exponential moving averages (EMAs) of prediction error:

ē
(k)
t = τkē

(k)
t−1 + (1− τk)et, k ∈ {long, short}, (6)

where et is instantaneous error, and τlong > τshort. The uncertainty signal is

ut =
∣∣ēs

t − ēl
t

∣∣. (7)
Finally, σt is bounded using:

σt = σmin + (σmax − σmin) tanh(αut). (8)
Thus, high uncertainty increases fixation variance, encouraging exploration, while low uncertainty
stabilizes fixation.

3.4 PULVINAR GATE

The pulvinar modulates information flow between SC and cortex. Analogously, we introduce a gate
βt between the lower RNN h1t and upper RNN h2t , implemented as a small QKV-style attention
module, governed by their activations and the global uncertainty σt:

βt = clamp
(
(ftd(h

2
t−1)− σt)⊙ (fbu(h

1
t−1) + σt), 0, 1

)
, (9)

β̄t = γ β̄t−1 + (1− γ)βt. (10)
Both ftd and fbu are implemented as single-layer MLPs with ReLU activations. This gate balances
bottom-up visual evidence and top-down feedback. We further project Q,K, V features and compute
gated updates (Eqs. 11–15). Intuitively, when uncertainty is high, the gate admits more cortical input,
aligning exploration with integration. The attention-style gate naturally implements multiplicative,
normalized gain control over lower-level features conditioned on higher-level expectations, which
matches the proposed function of the pulvinar as a dynamic relay of cortico–cortical communication.

Qt =WQ h
2
t−1, (11)

Kt =WK

[
h1t

∥∥ ϕ(xft)], Vt =WV Kt, (12)

αt = sigmoid
(

1√
d
QtK

⊤
t

)
, (13)

zt = (1− β̄t)⊙
(
αtVt + εVt

)
, ρt = β̄t⊙ h2t−1, (14)

hht =
[
zt

∥∥ ρt]. (15)
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3.5 TRAINING

We follow a policy gradient approach for learning the location policy akin to the same REINFORCE
algorithm applied in RAM and other hard attention models Mnih et al. (2014); Williams (1992).

The policy gradient loss via REINFORCE maximizes the expected reward. The reward R is given
1 if the classification is correct, 0 otherwise. We subtract a baseline bt same in Pan et al. (2025) to
reduce variance:

LREINFORCE = −
T∑

t=1

(R− bt) log π(ℓt | h1t ; θ), (16)

where π(ℓt | h1t ; θ) is the policy distribution based on hidden state of the lower recurrent layer H1
t .

In addition, we include a standard supervised classification loss (cross-entropy) on the final classifier
output:

LCE = −
T∑

t=1

yT log yt, (17)

where yt is the predicted probability of class c and yT is the one-hot indicator of the true label.

The full training loss becomes:

L = LCE + LREINFORCE + λcost βb + λ1 ∥βb∥1 + λH Hβ , (18)

where βb is the mean bottom-up gate value, and the entropy term

Hβ = −βt log(βt + ε)− βb log(βb + ε) (19)

encourages non-trivial gating behavior. Hard attention remains challenging to train, to stabilize the
neuromodulator, we used prediction error with ground-truth labels during training, then switched to
prediction error between glimpses (self-error) at test time. We observed ∼ 5% accuracy drop when
trained purely with self-prediction error (train self-error), suggesting that using label-based error
during training stabilizes learning.

3.6 COMPOSITE SCANPATH SIMILARITY METRIC

While individual scanpath metrics provide complementary perspectives, no single metric fully
captures alignment between human and model gaze. In our evaluation, we therefore combined four
standard measures into a composite scanpath similarity (SS) score: Dynamic Time Warping (DTW),
ScanMatch (SM), Normalized Scanpath Saliency (NSS), and Area Under the Curve (AUC) (DTW,
2007; Peters et al., 2005; Cristino et al., 2010; Zanca et al., 2018).

DTW quantifies sequential similarity between fixation trajectories. ScanMatch encodes scanpaths as
symbolic sequences and measures overlap. NSS evaluates how well model-predicted fixations fall on
human-derived saliency maps, and AUC measures fixation prediction in a probabilistic sense. For
NSS and AUC, we constructed continuous saliency maps by convolving fixation points (12 glimpses
per trial) with a Gaussian kernel (σ = 7).

We then aggregated these metrics into a single SS score using weighted averaging:
SS = WDTW D +WSM S +WNSS N +WAUC A, (20)

where D,S,N ,A denote normalized DTW, ScanMatch, NSS, and AUC scores respectively. Each
metric is first linearly rescaled to [0, 1] across all compared models so that larger values indicate better
alignment after normalization. The normalization procedure is detailed in Appendix D.1. We use
equal weights WDTW = WNSS = WAUC = WSM = 0.25 to avoid over-emphasizing any single
metric. The choice of weights is heuristic, and therefore we also report all four metrics individually
alongside the composite score in Table 1.

4 EXPERIMENTS

4.1 PERFORMANCE ON IMAGE CLASSIFICATION BENCHMARKS

We first evaluate EVA on CIFAR-10 and ImageNet-10. These datasets allow us to jointly assess
classification accuracy, parameter efficiency, and gaze alignment under consistent training settings.

6
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Table 1: CIFAR-10: accuracy and scanpath similarity results. Bold marks the best performance at the
metric. Light blue marks 2 variants of our proposed model, where EVA-Mobile is implemented with
pretrained MobileNetV3.

Model Params Time FLOPs Acc. DTW SM NSS AUC SS
(M) (ms/im) (B)_ (%)^ _ ^ ^ ^ ^

CNN (ResNet18) 11.18 0.89 ± 0.02 0.34 78.00 - - - - 0
CNN
(MobileNetV3)

4.21 0.94 ± 0.08 0.03 78.52 - - - - 0

TinyViT 4.37 3.03 ± 0.22 2.66 68.21 - - - - 0
DeepGaze IIE 0.2 0.82 ± 0.03 - - 705.48 0.311 0.251 0.601 0.28
Gazeformer 0.27 0.04 ± 0.01 - - 669.22 0.346 0.757 0.689 0.37

Saccader 12.49 3.29 ± 0.31 4.44 77.80 928.44 0.276 0.277 0.665 0.28
RAM, 1scale 0.65 2.21 ± 0.08 0.01 62.27 1176.54 0.241 0.228 0.654 0.24
RAM, 2scale 0.68 3.22 ± 0.20 0.02 61.55 1173.89 0.258 0.377 0.684 0.26
DRAM, 1scale 2.24 1.94 ± 0.10 1.74 64.81 1069.77 0.248 0.224 0.656 0.27
DRAM, 2scale 2.25 3.91 ± 0.35 1.75 62.17 837.14 0.302 0.665 0.679 0.31
MRAM, 1scale 1.18 2.34 ± 0.13 0.01 64.18 930.38 0.274 0.318 0.667 0.29
MRAM, 2scale 1.21 3.53 ± 0.28 0.02 58.24 945.31 0.263 0.315 0.674 0.28

EVA
(w/o CNN)

1.93 3.12 ± 0.45 0.07 62.41 800.30 0.327 0.511 0.703 0.34

EVA
(CNN only)

2.22 3.91 ± 0.09 1.32 69.99 1019.85 0.253 0.264 0.663 0.27

EVA
(w/o gate)

2.48 2.96 ± 0.14 1.32 78.96 863.70 0.308 0.391 0.686 0.32

EVA
(gate only)

1.67 2.92 ± 0.06 0.07 55.61 797.79 0.318 0.702 0.681 0.34

EVA
(w/o error)

2.97 3.32 ± 0.11 1.37 75.14 894.17 0.300 0.386 0.691 0.31

EVA
(error only)

1.47 3.24 ± 0.42 0.02 63.36 824.51 0.321 0.483 0.702 0.34

EVA
(train self-error)

2.97 3.24 ± 0.35 1.37 73.78 792.89 0.330 0.608 0.700 0.35

EVA-Mobile 4.79 5.59 ± 0.49 0.45 76.14 825.11 0.322 0.786 0.701 0.35
EVA 2.97 3.06 ± 0.04 1.37 79.77 856.29 0.316 0.481 0.692 0.33

Baselines include convolutional models (ResNet18, MobileNetV3), a transformer (ViT-tiny), and
hard-attention models (RAM, DRAM, MRAM, Saccader). All models share the same glimpse size,
number of steps, and optimizer hyperparameters to ensure a fair comparison. Details of experiments
are described in Appendix D
As summarized in Table 1, EVA attains the highest accuracy among hard-attention models on
CIFAR-10, while using fewer FLOPs than ResNet18 and TinyViT. EVA-Mobile trades a small drop in
accuracy for the best composite scanpath similarity (SS), illustrating the accuracy–alignment trade-off.
Developed human attention prediction models such as Gazeformer trained directly on the Gaze-
CIFAR-10 data, tends to produce temporal-aligned scanpaths where indicating by trajectory-level
metrics like DTW and SM with strong salience metrics (NSS, AUC). However, EVA-Mobile model
specifically, reached the best performance in saliency-based metrics, suggesting the model shared
more similarity between human saliency than a attention prediction along. This underscores the
limitation of saliency-only models when evaluated on dynamic scanpaths in task-related contents. This
establishes a new reference point showing that reinforcement-based attention agents can approximate
human gaze strategies in image classification.
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Table 2: Accuracy (%) of hard-attention models under different gaze policies on CIFAR-10. The
Predicted column reports the learned policy; other columns fix or perturb gaze trajectories. Numbers
in parentheses indicate accuracy drop relative to Predicted.

Model Gaze Policy

Predicted Center-fixed Corner-fixed _ Random Shuffled _

RAM 61.6 45.1 (-16.5) 12.8 (-48.8) 43.5 (-18.1) 61.3 (-0.3)
DRAM 62.2 41.6 (-20.6) 11.6 (-50.6) 38.4 (-23.8) 61.9 (-0.3)
MRAM 58.3 44.1 (-14.2) 13.6 (-44.7) 48.7 (-9.6) 56.9 (-1.4)
EVA 79.8 57.6 (-22.2) 19.6 (-60.2) 70.5 (-9.3) 71.3 (-8.5)

Ablation studies. Table 1 also reports controlled ablations to isolate the contributions of EVA’s
three biologically inspired modules. Removing the CNN (EVA w/o CNN) severely harms accuracy,
confirming the importance of strong foveal features. The neuromodulator (EVA w/o error) modestly
affects accuracy but reduces robustness and SS. Omitting the pulvinar gate (EVA w/o gate) slightly
lowers accuracy and substantially weakens SS; using only the gate or only the error signal yields
high SS but poor accuracy, indicating that these modules shape gaze behaviour but cannot replace the
CNN. Training the neuromodulator with errors between EVA’s predictions (train self-error) rather
than true label will slightly reduce the performance. Finally, EVA-Mobile replaces the CNN with a
pretrained MobileNetV3 backbone, yielding the highest SS at a small cost in accuracy. Overall, the
three modules act synergistically: the CNN supports recognition, while neuromodulation and gating
adapt exploration under uncertainty and balance bottom-up and top-down information flow.

Stability under gaze perturbations. To probe the interpretability of EVA’s learned gaze policy,
we fixed glimpse trajectories using artificial policies (center-only, corner-only, random, shuffled)
as in Table 2. EVA suffers the largest accuracy drop when constrained to corner-fixed or shuffled
policies, indicating that it relies on a task-aligned temporal-based sequence of saccades rather than
localized bias. RAM and DRAM degrade sharply under random or corner-fixed policies but are
almost unaffected by shuffled human scanpaths, suggesting that their policies are less tightly coupled
to specific fixation orders. EVA’s sensitivity to perturbations is therefore evidence that its learned
scanpaths are functionally meaningful for recognition and interpretability (Appendix D.2).

4.2 EMERGENT HUMAN-LIKE GAZE PATTERNS

To probe whether model’s scanpaths resemble human gaze as the SS metrics in Table 1, we visualized
the model predicted scanpath to human. Draw on the CIFAR-10 image, this visualization can facilitate
understanding on how a good scanpaths should be in image classification. Figure 3 visualizes top 5
models on the SS scores including Gazeformer, EVA, EVA-Mobile, Saccader, and DRAM predicted
fixations alongside human gaze trajectories. For hard-attention models, these fixations are the key
internal variables and are used solely to support image classification, while for Gazeformer, it’s
an optimization target. EVA is not a dedicated gaze-prediction model, but it is the hard-attention
model whose scanpaths most closely align with human trajectories. EVA consistently focuses on
semantically informative regions such as faces, wheels, and object centers. While discrepancies
remain, partly due to upsampling artifacts in Gaze-CIFAR-10, EVA’s trajectories typically overlap
human fixations more closely than other hard-attention baselines. This offers a concrete form of
interpretability: one can understand EVA’s decisions not only through accuracy prediction, but with
humans-like visual processing, suggesting shared attentional grounding for human-AI collaboration.

Figure 4 shows the joint comparison of classification accuracy and composite SS across hard-attention
baselines. EVA achieves the best overall trade-off: it attains the highest accuracy while maintaining
strong scanpath similarity, whereas EVA-Mobile slightly sacrifices accuracy for even higher SS. This
highlights how biologically inspired mechanisms such as neuromodulation and pulvinar-like gating
can simultaneously support task performance and emergent human-like gaze behaviour.
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Gazeformer Saccader DRAM EVA (ours) EVA-Mobile (ours)

Dog

Bird

Car

Figure 3: Qualitative comparison of human and model scanpaths on CIFAR-10. Columns: different
models; rows: different example images. Orange: model scanpath; Blue: human scanpath.

Figure 4: Comparison of hard-attention models on CIFAR-10 in terms of classification accuracy and
composite scanpath similarity (SS).

4.3 PCA VISUALIZATION OF HIDDEN STATE DYNAMICS

To probe how sequential glimpses and multilayer recurrent processing evolve over time and across
classes, we applied Principal Component Analysis (PCA) to the hidden states h1t (lower RNN
layer) and h2t (higher layer) collected at each time step t = 1, . . . , T . We visualized (i) time-step
projections in PC-space to track how representations evolve through glimpses, and (ii) label-wise
trajectories to inspect class separation. The higher-layer trajectories in Fig. 5 diverge strongly by
class along PC2 as glimpse step t increases along PC1, indicating progressive evidence accumulation
and increasingly disentangled class representations. In contrast, the lower-layer states exhibit richer,
more locally modulated dynamics, driven by prediction-error modulation and gate (compared to
MRAM in Fig. Supp.8). These PCA results provide an interpretable link between EVA’s internal
dynamics, its gaze behaviour, and its final classification decisions.
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(a) (b)

(c) (d)

Figure 5: PCA of recurrent states in EVA on CIFAR-10. Left: trajectories of hidden states for 64 random
test images, colored by glimpse step. Both the high-level (a) and low-level (c) RNNs show a consistent
temporal progression, but the high-level state converges to a low-dimensional manifold. Right: class-wise mean
trajectories obtained by averaging hidden states over images from the same class. High-level states (b) form
well-separated, nearly 1-D class trajectories, whereas low-level states (d) remain more entangled. This supports
our interpretation that the neocortical RNN implements an abstract, class-specific representation, while the
SC-like RNN encodes more local, gaze-related dynamics.

5 DISCUSSION AND CONCLUSION

In this work, we proposed EVA, a lightweight brain-inspired hard-attention framework for modeling
human active vision. EVA integrates three biologically motivated components: (i) a foveal CNN, (ii)
a neuromodulatory controller that adjusts saccadic variability based on prediction error, and (iii) a
pulvinar-inspired gate that regulates information flow between recurrent layers. To our knowledge,
this is the first hard-attention model systematically evaluated against human gaze data. On CIFAR-10,
EVA attains competitive accuracy with strong CNN and ViT baselines while producing emergent
scanpaths that closely align with human eye movements. These results highlight the potential of
EVA as both an efficient visual recognition model and a step toward interpretable AI systems that
communicate through shared attention.

Taken together, our experiments reveal three main insights. First, EVA improves the trade-off
between accuracy and efficiency among hard-attention models, while remaining competitive with
strong CNN and ViT baselines. Second, the gate and neuromodulatory error modules make the
learned scanpath policy more dynamic, task-aligned, and robust to gaze perturbations, even when they
do not always increase accuracy. Third, EVA bridges performance and interpretability by producing
human-like gaze patterns despite never seeing gaze labels. Overall, our findings suggest that scanpath
similarity complements rather than replaces accuracy: integration of our brain-inspired modules yields
models that are both powerful and behaviorally aligned with humans. Limitations and future work.
EVA still suffers from training instability, calling for stronger reinforcement learning algorithms and
better variance-reduction techniques. Our modules are only loosely inspired by neuroscience and are
not intended as biologically faithful models. Finally, the gaze dataset (Gaze-CIFAR-10) is small and
constrained compared with naturalistic settings, which may bias recorded scanpaths. Future work
will stabilize training, extend EVA to broader tasks and richer gaze datasets, and design metrics that
more faithfully capture human–model alignment.
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APPENDIX

A THE USE OF LLMS

Portions of this manuscript were prepared with the assistance of large language models (LLMs).
Specifically, LLMs were used to improve the clarity of English writing, polish grammar, and suggest
alternative phrasings for the paper. All scientific ideas, experimental designs, implementations, and
analyses were conceived and carried out by the authors. The authors take full responsibility for the
content of the paper, including the correctness of technical claims and the reported results.

B REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. All datasets used in this
study (CIFAR-10, ImageNet-10, and Gaze-CIFAR-10) are publicly available; detailed preprocessing
steps are described in Appendix C. The full model architecture, including the CNN foveal module,
neuromodulator, and pulvinar gate, is specified in Section 3, with implementation details and hy-
perparameters provided in Appendix D. The baseline models results are based on public available
deposits such as Yoshioka (2024). Training procedures, including optimization settings, ablation con-
figurations, and evaluation metrics (accuracy, FLOPs, DTW, ScanMatch, NSS, AUC), are described
in Section 4. Additional analyses of training stability, gaze perturbation, and qualitative scanpath
visualization are also included in the supplementary material. To facilitate reproduction of our results,
we will release the source code in Github after the double blind processing. Together, these resources
are intended to make it straightforward for others to reproduce and extend our findings.

C SCALABILITY CHECK TO DIVERSE DATASETS AND TASKS

C.1 HIGH RESOLUTION IMAGES

On the image classification subset ImageNet-10, which requires higher-resolution natural images, our
model EVA scaled favourably compared to both convolutional and hard-attention baselines (Table
Supp.1).Saccader-Mobile adopts the Saccader architecture of Elsayed et al. (2019). but replaces
the original BagNet-77 backbone with MobileNet-V3. Importantly, Saccader first applies the CNN
densely to patches or glimpses of the entire image to obtain logits at all spatial locations, and the
attention module then selects a sequence of locations whose logits are averaged to form the final
prediction. Thus, although only a fraction of the image is computed through CNN like EVA, the
computation still iterate over the whole image, and result in high computation demand. In contrast,
EVA-Mobile only feeds a small number of high-resolution foveal glimpses only through the backbone,
a low-resolution peripheral crop is only processed by the fully connected layer. The classifier operates
on a compressed fovea–periphery representation produced by an RNN, without access to a dense grid
of logits over the whole image. EVA therefore uses strictly less visual information than Saccader
and achieves lower FLOPs (8.87B vs. 37.27B). As a consequence, Saccader-Mobile reaches slightly
higher ImageNet accuracy (75.9% top-1, 94.5% top-5) than EVA-Mobile (71.92% / 91.92%), but
at 4.2× higher computational cost. We therefore treat Saccader as a strong hard attention baseline:
it can be viewed as a full-image CNN or the modern transformer models with an interpretable
readout, whereas EVA enforces a much stricter foveation constraint, and produce more human-like
sequential gaze behaviour, especially in temporal order, as shown in the CIFAR-10 and COCO-search
experiment.
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Table Supp.1: Results on ImageNet-100. (pre.) indicates initialization from ImageNet-1K pretrained
weights; (scratch) indicates random initialization. All hard-attention baselines without CNN are
trained from scratch. The CNN backbone is MobileNetV3 when -Mobile is indicated, otherwise the
module is same as described in Fig. Supp.2

Model FLOPs
(B)

Top-1 Acc.
(%)

Top-5 Acc.
(%)

MobileNet (scratch) 2.2 47.64 76.12
MobileNet (pre.) 2.2 80.36 96.5

Saccader-Mobile (pre.) 37.27 75.9 94.5
RAM 0.35 11.26 32.78
DRAM-Mobile (pre.) 8.83 19.00 43.12
DRAM 1.06 21.44 47.3
MRAM 0.35 12.88 34.76

EVA-Mobile (scratch) 8.87 42.62 68.24
EVA-Mobile (pre.) 8.87 71.92 91.92
EVA 6.6 65.86 80.24

Table Supp.2: COCO-search18: scanpath metrics.

Model COCO COCO-search DTW SM NSS AUC
Acc.% ^ Acc.% ^ _ ^ ^ ^

CNN MobileNet (pre.) 58.82 27.5 - - - -
Gazeformer - - 168.39 0.571 1.961 0.8

Saccader-Mobile (pre.) 57.1 16.7 333 0.242 0.361 0.658
RAM 34.81 12.83 500.01 0.072 -0.132 0.585
DRAM 43.32 14.34 530.78 0.077 -0.124 0.587
MRAM 35.86 14.17 624.57 0.015 -0.09 0.605
EVA-Mobile (scratch) 45.81 14.79 513.48 0.101 -0.074 0.593
EVA-Mobile (pre.) 55.82 16.63 280.29 0.313 0.307 0.714

C.2 OBJECT DETECTION TASK

We also include a workload for classification in object detection task to explore how EVA generalises
beyond classification. We emphasise that this is a scalability check rather than a full performance
comparison. Because the detection task (e.g., on COCO images) involves recognising often small-
object targets in cluttered scenes, the architecture of EVA (with a sequential glimpse RNN policy,
especially the prediction error module contains an inherent bias for classification: all glimpse are
localized parts from the same object) is less suited and strong feature encoding becomes dominant.
Accordingly, EVA does not match the best specialized detectors, we include these results to show the
limits of our current design and to motivate future extensions. In this experiment, we took figures that
contains the 10 labels: (bottle, bowl, car, chair, clock, cup, keyboard, laptop, microwave, tv) from the
COCO 2014 object detection dataset, and train it in a image recognition fashion: predict labels at the
last time step. Even the classification accuracy is low as expected, and we hypothesize that using a
pre-trained feature network, a MobileNetV3Large model with pretrained weight on ImageNet, can
compensate partially the difficulty of training a hard attention model, and thus can provide insight on
the hard attention model’s performance.

From the Table Supp.2, the result has supported the EVA model can produce more human-like
scanpath than other hard attention models while a performance gap between scanpath prediction
models like Gazeformer. The result is acceptable because our model is never trained on human
scanpath, and only utilize it for a content-based task. Unlike Saccader model, EVA model takes only
patches of glimpsed images as input, reducing much computational cost, while achieving comparable
performance, nevertheless producing scanpath that is closer to human.
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C.3 QUALITATIVE RESULTS

From the visualization of EVA model in ImageNet in Fig. Supp.1, the EVA model learned to
focus on the object while being actively exploring with several glimpses. The result shows the
scalability of emerging human-like scanpath from low resolution CIFAR-10 image to real-world
image classification.

(a) EVA at 193 epoch (b) EVA-Mobile (pre.) at 47 epoch

Figure Supp.1: Visualization of EVA in ImageNet100, Red rectangular is the boundary of foveal vi-
sion, peripheral vision is hided for better visualization. Animations of dynamic scanpath visualizations
at each time and code are in the anonymous repository: https://anonymous.4open.science/r/Anon-
EVA-8607/

D DETAILS OF EXPERIMENTAL SETTING

In the main classification experiments, we use CNN baselines without ImageNet pretraining to ensure
a fair comparison with hard-attention models. In contrast, some hard-attention models, including
Saccader and EVA-Mobile, use pretrained ResNet or MobileNet CNN modules (trained as our
baselines) as backbones. Specifically, instead of BAGNet, we use ResNet in Saccader for fairness of
comparison. In EVA, we use a simple CNN module described in Fig. Supp.2. The DRAM 1-scale and
2-scale variants use the same CNN architecture as in EVA. Because Saccader requires a pretrained
CNN, we did not test Saccader with the simple CNN design in EVA. For Saccader, patches are
selected on a 8× 8 discrete grid and ordered by score to form a pseudo-scanpath for visualization.

The ViT baseline uses a patch size of 4, hidden dimension 512 with 4 layers, 6 heads, MLP dimension
256, and dropout 0.1. For all hard-attention models, including RAM, DRAM, MRAM, and EVA, we
fix the hyperparameters across experiments: 12 glimpse steps, two patches per step (a foveal crop of
size 8×8 and a concatenated peripheral crop of size 16×16). If we indicate “1scale”, only the foveal
image is used and there is no peripheral image. FLOPs are calculated under the same condition of a
batch of 9 images during testing. The FLOPs in Table 1 for hard-attention models are computed over
the complete glimpse sequence (12 glimpses). The random seed is fixed to 1 in all experiments for
reproducibility and fair comparison. The scanpath of hard-attention models in Table 1 are generated
using CIFAR-10 image data, which is a standard 32x32 size. Scanpaths generated by scanpath
prediction models including Gazeformer and DeepGaze model uses the 1024x1024 Gaze-CIFAR-10
image data. Both coordinated are normalized to 224x224 for computation with human scanpath
coordinates. We report the hard-attention models’ scanpath results using 1024x1024 Gaze-CIFAR-10
image data with SS metrics in the Table Supp.3 as part of the robustness test.

D.1 DETAILS OFSCANPATH SIMILARITY METRICS

For the composite scanpath similarity in Eq. equation 20, the metrics D,S,N ,A are normalized
using standard linear scaling. Let m denote the raw metric value for a given model and mmin,mmax

be the minimum and maximum values. Specifically, one can naturally think out to use human
data itself as target, so we calculated the ideal upper bound of the scanpath metrics with the exact

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

same human-scanpath. The ideal upper bound of metrics is Dmax = 0.003,Smax = 1.0,Nmax =
6.052,Amax = 0.995. However, the lower bound of scanpath is non-trivial, because it’s controversial
on the definition of whether a scanpath is bad. In simplification, we used a pseudo-scanpath that fixes
gazes at the corner of the image, assuming the visual scanpath is bad because it always focusing on
the off-target region and losses the temporal feature. In this case, we obtained the lower bound that
applied in this experiment being Dmin = 2023.87,Smin = 0.013,Nmin = −0.053,Amin = 0.541.
We are also confirmed that these metrics are scanpath-based, because if we are fixing the gazes at
the center of image, the metrics didn’t improve much: Dmin = 2040.0,Smin = 0.013,Nmin =
−0.052,Amin = 0.541.

For metrics where larger is better (ScanMatch, NSS, AUC), we use

m′ =
m−mmin

mmax −mmin
, (3)

and for metrics where smaller is better (DTW), we use

m′ =
mmax −m

mmax −mmin
. (4)

Thus all normalized scores m′ ∈ [0, 1] have the same “higher is better” direction; in Eq. equation 20
we set D = m′

D, S = m′
SM , N = m′

NSS , and A = m′
AUC .

D.2 DETAILS OF STABILITY TEST

To assess the stability of EVA under gaze perturbations, we evaluate the model under several controlled
“lesioned” gaze policies, detailed here for completeness.

Center-fixed forces all glimpses to the image center at every time step, removing any learned spatial
exploration on glimpse and testing how much performance can be supported by a pure central bias.
While image classification benchmarks can be heavily center-biased, the drop of performance in
EVA suggesting potential the model is the hard attention model that the least biased on the center or
local-based information.

Corner-fixed fixes the glimpse location deterministically through the one of the image corners, in this
experiment, the glimpse is fixed at the top-right corner, regardless of the input, probing robustness
when attention is systematically misaligned with the object of interest.

Random sampling draws each glimpse location independently from a uniform distribution over
the image plane at every step, preserving the number of glimpses but discarding all learned spatial
structure with glimpse. DRAM is low performance as expected, because its global features CNN
might be biased, restraining it from learning features uniformly distributed over the image. Oppositely,
EVA performs well indicating its learn features are not biased on any short-cut or local region.

Finally, Shuffled uses EVA’s own predicted locations but randomly permutes their order along the
time axis, thereby preserving the exact set of attended points while destroying the temporal sequence
in which they are visited. Intriguingly, EVA losses most accuracy among hard attention models
suggesting the high reliance on temporal structure in saccade akin to visual reasoning. For example,
the order of viewing from ocean background to an airplane object and the order of visiting from the
airplane object to the ocean background have a significant influence on the classifier’s prediction
as illustrated in Figure Supp.11b. It is also interpretable by human because we can expect a ship
from the ocean background, while when the airplane is first observed, the prediction will be almost
certain unless new evidence appears. Together, these perturbations in Table 2 disentangle different
contributions of the learned policy—central bias, spatial selection, and temporal strategy, and allow
us to quantify how much EVA’s performance depends on each component.

E METHOD FOR SEQUENTIAL FIXATIONS EXTRACTION AND ALIGNMENT OF
CIFAR-10 AND GAZE-CIFAR-10 IMAGES

In this chapter, we describe the methodology used to establish a reliable mapping between images
from the original CIFAR-10 dataset and the corresponding human gaze data, which was recorded
using upsampled images at a resolution of 1,024×1,024 pixels.
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Figure Supp.2: CNN module used in Bravo. In Bravo-large, the lightweight CNN is increased size
from 64-128-256-256 to 96-192-384-384, without changing other parts in the architecture.
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E.1 IMAGE ALIGNMENT

The human gaze data we utilized was recorded on images obtained by upsampling the original 32×32
CIFAR-10 images to a much higher resolution of 1,024×1,024 pixels with Real-ESRGAN. Since the
Gaze-CIFAR-10 dataset did not explicitly provide a direct mapping between the original CIFAR-10
images and their corresponding upscaled counterparts, we implemented an image-hashing-based
matching technique to establish precise correspondence.

To achieve robust alignment, we adopted a perceptual hashing approach (pHash), which effectively
captures image content irrespective of resolution changes, slight color variations, or compression
artifacts. The procedure involved the following steps:

• Construction of Reference Hash Database: We first combined all 10,000 CIFAR-10 images
from test split into a single reference set. For each original CIFAR-10 image, we com-
puted its pHash, creating a dictionary mapping each hash to the original image index and
corresponding CIFAR-10 class label.

• Matching Procedure: For each upscaled human gaze image, we downsampled it back to the
original CIFAR-10 resolution (32×32) using bilinear interpolation. We then computed the
pHash of this downscaled image and looked it up within our precomputed hash database.
Exact matches provided immediate identification. If no exact match occurred, the nearest
perceptual hash with minimal Hamming distance was used to ensure robust correspondence
despite minor differences introduced during the upsampling and subsequent downsampling
processes.

• Quick Correspondence Check: The hashing-based matching allowed us to reliably recover
the original CIFAR-10 image indices, and labels corresponding to each human gaze record-
ing. To ensure precise match, we run a random sample check by showing 20 samples per
label of CIFAR-10 image and manually check the correspondence between original and
upsampled images.

E.2 SEQUENTIAL FIXATIONS EXTRACTING

The raw gaze recordings typically containing hundreds of gaze points coordinates per image are nor-
malized to the range [0, 224]. After aligning images, the raw gaze recordings were clustered spatially
and temporally using an I-DT (Identification by Dispersion Threshold) approach. Specifically, we
grouped gaze points that fell within a defined spatial radius (15 pixel distance) into fixation clusters,
computed the center of each fixation cluster, and finally retained exactly 12 sequential fixation clusters
per gaze recording, aligning with the number of fixations predicted by our model.

With image correspondence and gaze clustering complete, we obtained consistent and comparable hu-
man scanpaths with 12 fixation points per image aligned in space and sequence with model-predicted
gaze data. This alignment enabled rigorous quantitative evaluation of our model’s performance in
terms of scanpath similarity metrics, thereby providing robust and interpretable results.

F SENSITIVITY CHECK OF HYPERPARAMETERS IN EVA

In EVA, we introduces multiple new hyperparameters to hard attentions, and in this chapter, we
investigated the sensitivity of these hyperparameters. Due to the scale of number of hyperparameters,
even it usually takes 100-200 epochs to reach optimal performance, we compare the performance
of EVA models at epoch 20 on CIFAR-10 here. The hyperparameters mainly distributed in the
neuromodulator that controlling the sigma with prediction error, and the initial value of the learnable
decaying parameter. In the neuromodulator, there are 4 parameters in total: τlong , τshort is the decay
factor in Eq.equation 6, σmin, σmax, in Eq.equation 8. In the pulvinar gate, there is only one decaying
parameter γ in Eq.equation 10. Fig. Supp.3 summarizes the hyperparameters sensitivities. From the
result, we see the σmin has the largest influence to the performance of EVA model, while the decay is
a learnable parameter that has the least influence. The result aligns with the intuition that the hard
attention model EVA can learn better with a larger σmin, that the model has to constantly exploring
more to gather information, and the optimal value of σmin is found at 0.5. As for τlong, τshort, our
results shows as long as the difference between them is large enough, the τlong , τshort can guarantee
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good performance. Notably, in the main experiment, we used 0.05 as the σmin, and the accuracy was
79.77%, but when we finished the training of the optimal hyperparameters here, and the accuracy can
further grows to 82.51% on CIFAR-10.

Additionally, we tested the influence of number of glimpse to EVA, and the result is shown in
Fig. Supp.10. We showed with only 2 glimpses (at least 2 glimpses are need the calculation for
neuromodulator), EVA can have approximately 62% accuracy in only 2 glimpses, and can further
have over 75% accuracy in 5 steps.

(a) σmin vs σmax (b) τlong vs τshort (c) σmin vs τlong

(d) γ vs τshort (e) γ vs τlong

(f) γ vs σmin

Figure Supp.3: Hyperparameter sensitivity check of EVA on CIFAR-10.

Figure Supp.4: Comparison of number of glimpse to EVA model accuracy.
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G ADDITION PCA ANALYSIS OF HIDDEN STATE DYNAMICS RESULTS

From the PCA visualisation of hidden states over glimpse steps, RAM exhibits a characteristic
“radiation–like” pattern in both sample-wise and class-wise plots. PCA extracts the leading directions
of variance, PC1 explains the largest share, followed by PC2. In RAM, PC1 is predominantly la-
bel–related, while PC2 correlates more strongly with glimpse step (time). The label–wise embeddings
show that trajectories quickly diverge by class along PC1 and then change only weakly as glimpses
proceed, indicating that the RNN state saturates early and later glimpses bring limited additional
discriminative structure. This behaviour is consistent with the original RAM results (Mnih et al.,
2014), where performance peaks at an intermediate number of glimpses and degrades when the
sequence is made shorter or longer.

In DRAM (Ba et al., 2014), high-level RNN, the first two PCs show almost identical trajectories across
classes, suggesting that the dominant recurrent dynamics encode generic context rather than class-
specific information. This is consistent with the design of DRAM, where a full-image context vector
provides a rich global summary upfront, and the RNN’s temporal evolution plays a more limited role
in building discriminative features. We further observe that trajectories in the high-level DRAM RNN
resemble the low-dimensional manifolds reported for self-organized robot motor control in (Han
et al., 2020), whereas the lower-level DRAM RNN behaves more like other hard-attention models
high-level RNN (MRAM, EVA). The lower laye in DRAM is mainly responsible for classification,
with its first PCs aligned with glimpse-step evolution.

Finally, the 2–scale MRAM (foveal + peripheral input) yields a higher-layer RNN whose class-
wise trajectories are more stable and clearly separated than in the 1-scale variant, even though
its classification accuracy is slightly lower. This suggests that the human-inspired retinal design
primarily reshapes the recurrent state space and gaze behaviour toward more human-like, interpretable
dynamics rather than simply maximizing accuracy.

(a) (b)

Figure Supp.5: PCA visualization of RAM, time-step projection (left) and label-wise embedding
(right).

G.1 ROBUSTNESS ON CIFAR-10 AND ALIGNMENT OF EVA SCANPATH IN GAZE-CIFAR-10
IMAGES

We performed three tests as evaluating the robustness of EVA against standard baselines, a projected
gradient descent (PGD) test, a random occlusion (RO) test, and a zero-shot testing on the downsampled
Gaze-CIFAR-10 Images from 1024× 1024 to 32× 32, and recollected the scanpath of each models.
PGD is a standard adversarial test of robustness of a vision model, and in RO test, we randomly
occlude several regions of images. We set the perturbation ϵ = 8/255 with 20 steps in PGD test,
and 5 occlusion patches size at 16 × 16. Tabel Supp.3 shows the results. From the result, we see
non-CNN backed or light CNN backed hard attention models has the best resistance to PGD attack.
ViT and EVA models have the best performance in RO test and Gaze-CIFAR test. Notably, while there
isn’t much change in the scanpath similarity metrics of hard attention baselines, EVA gained more
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(a) (b)

(c) (d)

Figure Supp.6: PCA visualization of DRAM, time-step projection (left) and label-wise embedding
(right).

scanpath similarity in the Gaze-CIFAR image, with more test accuracy, supporting the robustness of
EVA, and the emerged-scanpath align better on the same image where human gaze is taken.

Table Supp.3: Robustness of various models on CIFAR-10 under two corruption protocols, and on
Gaze-CIFAR-10 images

Model PGD RO Gaze-CIFAR DTW SM NSS AUC
Acc. Acc. Acc. _ ^ ^ ^

ResNet18 0.42% 36.47% 39.79% - - - -
MobileNetV3 0.36% 31.33% 45.41% - - - -
ViT 0.07% 46.12% 63.20% - - - -

Saccader 17.21% 43.80% 33.37% 918.12 0.274 0.278 0.666
RAM, 1scale 20.75% 27.60% 42.89% 1118.95 0.253 0.302 0.650
RAM, 2scale 20.28% 27.03% 45.69% 1169.29 0.259 0.372 0.683
DRAM, 1scale 20.16% 29.82% 46.15% 1036.01 0.261 0.277 0.657
DRAM, 2scale 19.18% 28.53% 46.44% 823.79 0.307 0.665 0.678
DRAM-ResNet 19.36% 25.46% 44.37% 788.29 0.303 0.465 0.689
MRAM, 1scale 18.35% 21.78% 44.70% 871.82 0.292 0.388 0.676
MRAM, 2scale 17.96% 24.46% 45.07% 942.80 0.262 0.326 0.672

EVA 17.80% 45.86% 53.51% 797.29 0.335 0.612 0.702
EVA-Mobile 16.38% 25.25% 51.21% 761.11 0.339 0.728 0.707
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(a) (b)

(c) (d)

Figure Supp.7: PCA visualization of MRAM 1 scale, time-step projection (left) and label-wise
embedding (right).

Sensitivity of Brain-inspired Modules in EVA In the module-level design, as the purpose of this
study is to utilize brain-inspired architectures for hard attention models. We modeled the thalamic
(pulvinar) gate, but it’s not a simple gate simulating only the pulvinar. From the study of neuroscience,
the recent study shows thalamus has much relation to the rhythmic adjustment that the top-down
signal and bottom-up signal are traveled in different layers of cortex and in different frequencies, and
the recurrent structures broadly exist especially in neocortex and prefrontal cortex (Miller et al., 2018).
This indicate the need of recurrence in Eq.equation 15, but empirically, we found by concatenating
them, there will be increase of hyperparameters that introducing unexpected training cost. So we
did comparative experiments of EVA on the CIFAR-100, with three setting of recurrence: by simply
adding the hidden state ρt and the zt (AR); concatenating zt

∥∥ ρt (CR); and no recurrence (NR)
as baseline. There are same dropout to ρt which simulate the sparse connections in cortex. The
baseline model of no recurrence get 50.30% accuracy, the concatenating get 48.31%, and the simple
addition case get 49.21%. Fig. Supp.10 further shows the difference of prediction by these different
configurations. This result shows recurrence did introduce extra cost to training, while simply adding
can retain relatively high accuracy.

The difference in CNN architecture is tested by comparing in larger CNN and the MobileNetV3
backbone. We tested EVA with MobileNetV3 with pretrained weights on ImageNet, the model can
reach 76.14% accuracy while no pretrained weight model can get 74.96% accuracy. The influence of
CNN module is not large as long as it’s well designed for the low resolution images at 8× 8 size.

H DATA ENHANCEMENT ON CIFAR-10

Data enhancement is an efficient method for preventing the model from over-fitting. By applying the
RandomCrop and RandomHorizontalFlip for data enhancement, models often gain more accuracy in
generalizing to testing. Even though these enhancements are not applied in this work for fairness com-
parison, we tested small samples of our models and CNN and ViT baselines in tables Supp.4 to show
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(a) (b)

(c) (d)

Figure Supp.8: PCA visualization of MRAM 2 scale, time-step projection (left) and label-wise
embedding (right).

the potential scaling difference between our model and baselines with these techniques. The uniform
improvements indicate that the pipeline enriches the diversity of the training distribution rather than
catering to a specific inductive bias. In particular, the gains on ResNet18 and MobileNetV3 imply
that standard convolutional features already profit from the added texture and geometric variations.
For ViT, the method acts as an implicit regulariser, alleviating over-fitting on the comparatively tiny
CIFAR-10 images. Notably, EVA models are less sensitive to these data enhancement techniques,
because it reached optimal performance with limited data.

Table Supp.4: Data enhancement results on CIFAR-10

Model Params (M) Infer Time (ms/im) Accuracy Accuracy Gain

CNN (ResNet18) 11.18 0.91 ± 0.03 85.99% 7.99% ^

CNN (MobileNetV3) 4.21 0.90 ± 0.05 88.34% 9.82% ^

ViT-tiny 4.37 2.98 ± 0.26 79.81% 11.6% ^

EVA 4.21 2.92 ± 0.17 84.02% 5.09% ^

I EXAMPLES FROM THE EVA MODEL

We present additional examples of predicted scanpath by EVA model here, where predictions at
each glimpse step is visualized. EVA is more stable during the visual processing simulating human
saccades, yet loyalty to the new prediction if evidence is found somewhere else. From visualization of
visible region develops as the glimpse moves in time, in Figure Supp.11, we present the interpretability
of the EVA model: the model made false prediction based on the background, for example, predicting
a ship on a ocean background, and mistaken deer and horse, and the prediction becomes confident
and stable when objects are better explored.
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(a) (b)

(c) (d)

Figure Supp.9: PCA visualization of EVA-Mobile, time-step projection (left) and label-wise embed-
ding (right).

Figure Supp.10: Comparison of number of glimpse to EVA model accuracy.
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(a) Foveal visible region by time

(b) Peripheral visible region by time

Figure Supp.11: Sample 1 of visualization of EVA in CIFAR-10, with glimpse time t and prediction.

(a) Foveal visible region by time

(b) Peripheral visible region by time

Figure Supp.12: Sample 2 of visualization of EVA in CIFAR-10, with glimpse time t and prediction.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) Saliency map of CIFAR-10 (b) EVA scanpath on CIFAR-10

(c) Saliency map of Gaze-CIFAR-10 (d) EVA scanpath on Gaze-CIFAR-10

Figure Supp.13: Comparison of scanpath in CIFAR-10 and Gaze-CIFAR-10 with saliency.
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(a) EVA (b) EVA-Mobile

(c) DRAM (d) Saccader

Figure Supp.14: Comparison of scanpath on CIFAR-10 with predictions.
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