
Enhancing Alzheimer’s Disease Diagnosis Records with Large Language
Models: A Pipeline for Multimodal and Longitudinal EHRs

Anonymous ACL submission

Abstract

Alzheimer’s disease (AD) is a neurodegenera-001
tive, incurable condition and a leading cause002
of morbidity among individuals over 65 in003
the US. The screening and early diagnosis004
of AD condition is usually based on the pa-005
tient’s electrical health records (HERs), includ-006
ing clinical observations, cognitive tests, pa-007
tient profiles, and medical-imaging-aided di-008
agnoses. However, above information for re-009
searchers is highly fragmented. One of the010
most critical clinical diagnostic notes is stored011
in structured tables using specialized termino-012
logical formats. This presents significant chal-013
lenges to the accessibility and readability for014
non-experts, thereby hindering information pro-015
cessing and the development of general med-016
ical AI systems. This work proposes a novel017
pipeline for processing AD clinical diagnostic018
information: (1) we collect clinical data from019
the largest AD dataset of Alzheimer’s Disease020
Neuroimaging Initiative (ADNI)1, explain ab-021
breviations and terminology, and organize the022
information in an accessible manner for those023
without expert knowledge of AD. (2) Lever-024
aging the power of Large Language Models025
(LLMs), we present a GPT-based method that026
effectively transforms tabular clinical data into027
fluent and faithful natural language diagnostic028
reports, as demonstrated by our experimental029
results. (3) We further explore the inherently030
multi-modal nature of medical data, collecting031
and processing a total of 10387 volumetric T1-032
weighted MRI scans from ADNI. (4) Finally,033
we discuss the existing limitations in applying034
multimodality EHRs for brain disease analy-035
sis and propose forward-looking directions to036
meet the demands of the neuroimaging domain.037
We expect that this work will provide new in-038
sights into the neuroimaging domain and im-039
prove AI applications in healthcare. Our code040
is available at https://anonymous.4open.041
science/r/ADNI-table-to-Text-2EDB042

1https://adni.loni.usc.edu/

Participant_ID
Attribute Value

Basic Personal 
information

Age 72.0

Sex Female

Education 15

Race White

DX_bl AD

DX Dementia

… …

Biomarker 
measurements

APOE4 1.0

TAU 212.5

… …

Cognitive and 
neurofunctional 

Assessments

MMSE 29.0

CDRSB 0.0

… …

Volumetric data

FLDSTRENG 1.5 Tesla MRI

Ventricles 84599

Hippocampus 5319

… …

clinical Description Reference
Basic Personal Information: Subject 098_S_0896 is a 72.0-
year-old Female who has completed 15 years of education. 
The ethnicity is Not Hisp/Latino and race is White. Marital 
status is Married. Initially diagnosed as AD, as of the date 
2007-10-24, the final diagnosis was Dementia.

Biomarker Measurements: The subject's genetic profile 
includes an ApoE4 status of 0.0…

Cognitive and Neurofunctional Assessments: The Mini-
Mental State Examination score stands at 29.0. The Clinical 
Dementia Rating, sum of boxes, is 1.0. ADAS 11 and 13 
scores are 4.67 and 4.67 respectively, with a score of 1.0 in 
delayed word recall…

Volumetric Data: Under MRI conditions at a field strength of 
1.5 Tesla MRI Tesla, using Cross-Sectional FreeSurfer 
(FreeSurfer Version 4.3), the imaging data recorded includes 
ventricles volume at 54422.0, hippocampus volume at 6677.0, 
whole brain volume at 1147980.0, entorhinal cortex volume at 
2782.0, fusiform gyrus volume at 19432.0, and middle 
temporal area volume at 24951.0. The intracranial volume 
measured is 1799580.0….

Figure 1: An example of a clinical notes

1 Introduction 043

Alzheimer’s disease (AD) is a progressive neurode- 044

generative disorder characterized by a continuum 045

that ranges from undetectable brain changes to 046

significant alterations that impair memory, culmi- 047

nating in severe physical disabilities(Aramadaka 048

et al., 2023). Current research suggests that the 049

clinical stages of AD can be divided into three 050

stages(Frisoni et al., 2010; Jack et al., 2010). First 051

is the pre-symptomatic phase, where individuals 052

are cognitively normal despite having AD patholog- 053

ical changes. The second phase is the prodromal 054

phase, often referred to as mild cognitive impair- 055

ment (MCI), characterized by the onset of early 056

cognitive symptoms. The third phase is dementia, 057

marked by severe impairments across multiple do- 058

mains, leading to loss of function(Yu et al., 2023). 059

The pathological changes in the pre-symptomatic 060

phase may begin to develop decades before the 061

earliest clinical symptoms appear in the prodromal 062

phase. While there is currently no cure for AD once 063

established, in the realm of machine learning and 064

deep learning, differentiating AD from the prodro- 065

mal stage is a significant issue that interests a large 066

amount of researchers making efforts on(Miller 067

et al., 2022; Zhou et al., 2023b; Cai et al., 2023; 068

Feng et al., 2023; Leng et al., 2023; Liang et al., 069

2023; Zhou et al., 2023a; Zhang et al., 2023). 070
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Previous studies have predominantly focused on071

analyzing medical brain images like Magnetic Res-072

onance Imaging (MRI) scans and Position Emis-073

sion Tomography (PET) solely, extracting various074

features and designing algorithms to diagnose AD075

and MCI. The recently revised clinical criteria for076

detecting AD emphasize the importance of using077

multiple modalities such as core biomarkers and078

clinical tests for diagnosis(Carrillo and Masliah,079

2023). However, much of this information has080

not yet been incorporated into brain disease stud-081

ies. Thanks to the widespread implementation of082

EHRs, a rich array of routine clinical reports about083

participants are digitally available in a tabular form084

and offered by the Alzheimer’s Disease Neuroimag-085

ing Initiative (ADNI)(Jack Jr et al., 2008). These086

tabular datasets offer rich details including demo-087

graphic attributes, biomarker measurements, cog-088

nitive and neurofunctional assessments, and image089

information, making it an invaluable resource.090

Despite their potential, the complexity of medi-091

cal terminology often makes EHRs less accessible092

to non-professionals, limiting their utility. While093

ADNI ERHs provide complementary information094

except for medical scans for understanding disease095

patterns, for example, early researches report that096

age is the single most significant risk factor for AD097

and a higher incidence of MCI occurs in females098

than in males(Aramadaka et al., 2023; Katz et al.,099

2012), there is an urgent need to develop method-100

ologies that can simplify and harness this wealth101

of information.102

As an essential and widely used data format,103

tabular data plays a crucial role in structuring in-104

formation, significantly advancing the fields of in-105

formation retrieval and knowledge extraction for106

data mining(Engelmann et al., 2023; 10., 2022; Sui107

et al., 2023). Recently, LLM based on the Trans-108

former architecture(Vaswani et al., 2017) have be-109

come increasingly prominent in addressing a wide110

range of natural language-related tasks. Given111

their state-of-the-art performance and board ap-112

plication potential, researchers are also develop-113

ing LLMs for tabular data processing. Notable114

examples include TableGPT(Gong et al., 2020) and115

TABT5(Andrejczuk et al., 2022), which are trained116

for complex table-to-text generation tasks. Ad-117

ditionally, MediTabWang(Wang et al., 2023) has118

been specially developed for medical table predic-119

tion, showcasing the versatility of LLMs in han-120

dling structured data formats. Above successful121

large language models raise our beliefs that the122

application value of tabular structured EHRs can 123

be extensively mined and analyzed, offering deep 124

clinical insights into patient care. 125

Furthermore, medical data is inherently multi- 126

modal, making vision-and-language pre-training 127

(VLP) a crucial technique for jointly understanding 128

medical images and texts. Techniques like the Con- 129

trastive Language-Image Pre-training (CLIP) (Rad- 130

ford et al., 2021) treat the text caption as a linguistic 131

representation of the image, pulling the image-text 132

pair closer together in a latent space, have proven 133

effective in aligning these pairs and showing sig- 134

nificant benefits in various downstream applica- 135

tions in the medical field, including image gener- 136

ation, segmentation, detection, and classification. 137

Although large-scale image-text pair datasets are 138

essential in medical domain research, however, ex- 139

isting large-scale datasets such as ROCO(Petersen 140

et al., 2010), MedICat(Subramanian et al., 2020), 141

FFA-IR(Li et al., 2021), and MIMIC-CXR(Johnson 142

et al., 2019) and existing medical VLP(Tiu et al., 143

2022; Huang et al., 2021; Seibold et al., 2022; Pel- 144

legrini et al., 2023) are predominantly focus on 2D 145

images. While 2D slices can be adequate for learn- 146

ing, 3D brain scans are crucial for brain disease 147

diagnosis. Currently, there is no mature image- 148

text pairing methodology for brain disease analysis. 149

This paper aims to address this gap by introducing 150

a novel pipline and establishing a Multimodality 151

and Longitudinal dataset for neuroimaging studies. 152

Specifically, our contributions are as follows: 153

• We collect comprehensive patient tabular data 154

from ADNI, which includes demographic in- 155

formation, biomarker measurements, cogni- 156

tive assessments, and volumetric data. By 157

analyzing this specialized clinical knowledge, 158

we developed an annotation method that trans- 159

forms tabular data into information-rich and 160

fluent natural language. 161

• We present an encoder-decoder based model 162

ADTabGPT(Medical tabular-to-text Genera- 163

tive pre-trained transformers) that can be ap- 164

plied to ADNI table-to-text generation. Mean- 165

while, we collect and process a total of 166

11107 volumetric T1-weighted MRI scans 167

from ADNI as the image feature. 168

• To our best knowledge, this is the first work to 169

explore the full utilization of multimodal and 170

longitudinal EHRs for brain disease analysis. 171
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Attribute Value

PTID 011_S_0002

Age 74.3

PTGENDER Male

DX CN

… …

Subject 011_S_0002 is a 74.3 -year-
old Male whose final diagnosis was
CN….

Table

Reference

Table 
Serialization

Concatenation

Pretrained GPT-2 Model

… Age 74.3 … < table2text > Reference

Serialized Table

…Subject 011_S_0002 is a

Output Sentence

• Basic Personal and Diagnosis Information
• Biomarker Measurements
• Cognitive and Neurofunctional Assessments
• Volumetric Data

Textual Clinical Note generated from Tabular EHRs

MRI Scan preprocessing

Patient

1st Scan

1st Record

Nst Scan

Nst Record

…

…

A Multimodality Dataset
for brain disease study

Part I: Table to Text Generation Part II: Dataset construction

Figure 2: The overall architecture for constructing a multimodal and longitudinal Alzheimer’s Disease-
related neuroimaging dataset. It encompasses two major parts: Part I transforms tabular clinical notes
into natural language clinical reports; Part II preprocesses the corresponding MRI scans. Ultimately,
these two modalities are combined.

2 Data Collection and Analysis172

We design a four-step annotation process, as de-173

picted in figure 2. Initially, we collect tabular174

EHRs and analysis the key variables, and then175

design ADTabGPT to convert them into natural176

language clinical reports, as illustrated in part I of177

Figure 2. Next, as shown in part II of Figure 2,178

we collect the corresponding MRI scans of patients179

from ADNI and undertake a series of preprocessing180

steps. Following above steps, we finally construct181

a multimodal and longitudinal neuroimaging EHR182

especially for Alzheimer’s disease.183

2.1 Data Preparation184

The ADNI is a consortium of universities and med-185

ical centers in the United States and Canada. It186

was established to develop standardized imaging187

techniques and biomarker procedures in Cognitive188

Normal(CN), MCI, and AD subjects. One of the189

major goals of ADNI is to create an accessible data190

repository that acquires clinical, cognitive, and bio-191

chemical data(Petersen et al., 2010). In addition to192

MRI imaging information, the ADNI provides an193

ocean of tabular data, allowing researchers and clin-194

icians to explore the details such as demographic195

information(e.g., age, sex, educational level, etc);196

biomarker measurements (e.g., allele producing 197

the apolipoprotein E [APOE-ε4]); cognitive assess- 198

ments (e.g., Mini-Mental State Examination, Clin- 199

ical Dementia Rating Scale, etc); as well as volu- 200

metric data (e.g., metrics of the WholeBrain and 201

Hippocampus). 202

This paper primarily focuses on the AD- 203

NIMERGE Table, which merges several key vari- 204

ables from various case report forms and biomarker 205

laboratory summaries across the ADNI protocols. 206

The table encompasses 16,421 diagnostic records 207

from 2,430 subjects, of which 2,409 have a diag- 208

nosis. the average age is 73.2 ± 7.0 years, and the 209

average educational attainment is 16.1 ± 2.8 years. 210

The data includes 4,020 diagnoses of CN individu- 211

als, 4,989 diagnoses of MCI, and 4,989 diagnoses 212

of AD. The data comprises samples from three ma- 213

jor racial groups: 2,143 White, 179 Black, and 58 214

Asian patients. Additionally, 50 samples include 215

multiple racial backgrounds or are categorized as 216

Unknown; American Indian/Alaskan Native; or 217

Hawaiian/Other Pacific Islander. Gender-wise, fe- 218

males represent 52.4% of the subjects, totaling 219

1273, with the remainder being males. The ethnic 220

distribution includes 2,302 non-Hispanic/Latino, 221

116 Hispanic/Latino, and 12 Unknown. From a 222
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CN group MCI group AD group
Gender (F/M) 475/354 324/448 345/463
Age(year) 71.4±6.8 73.0±7.5 74.4±7.5
Education(year) 16.6±2.5 15.9±2.8 15.6±2.8
APOE-ε40/1/2 511/202/20 411/226/56 374/274/134

Table 1: Basic demographic and biomarker statis-
tics.

marital status perspective, there are 1,824 married,223

269 widowed, 228 divorced, 99 never married, and224

9 unspecified. Regarding the APOE-ε4 risk fac-225

tor, 1,199 individuals do not carry the allele, 803226

carry one copy, and 211 carry two copies. table 1227

presents a basic demographic and biomarker statis-228

tics based on diagnostic. We also supplement the229

details of the distribution in the supplementary ma-230

terial. Additionally, ADNI provides a dictionary231

that elucidates the meaning of each variable. The232

details can also be found in the supplementary ma-233

terial table.234

We collected 10387 T1-weighted MRI scans235

from ADNI, which includes 1510 AD scans (791236

males, 719 females; 76.27± 7.86 years), 3632 CN237

scans (1843 males, 1791 females; 77.75 ± 5.73238

years), and 5965 MCI scans (3758 males, 2198 fe-239

males; 75.47± 7.53 years). Following established240

works before(Zhang et al., 2021; Lyu et al., 2022),241

we performed a series of pre-processing steps as242

including bias field correction and skull stripping.243

All T1-weighted images are in NIFTI format and244

have been registered to the standard Montreal Neu-245

rological Institute (MNI) template using FSL-flirt246

linear registration tools and have a uniform view of247

197*233*189.248

These T1-weighted MRI scans provide criti-249

cal imaging perspectives for the analysis of brain250

diseases. For example, Post-mortem investiga-251

tions have shown that structures in the medial252

temporal lobe, particularly the entorhinal cortex253

and hippocampus, are the first to change in AD254

and can be observed through MRI imaging tech-255

niques(Aramadaka et al., 2023). Fig 3 shows how256

brain morphology evolves with disease progression,257

from which we can observe a significant decrease258

in hippocampus volume.259

3 ADTabGPT260

3.1 Problem Formulation261

In this paper, we formulate each training instance262

(T,R) represented as a pair of linearized table T263

and their associated reference text R. The table T264

CN MCI AD

Hippocampus

pre-
processing

Figure 3: Brain morphology (hippocampus vol-
ume) contrast vary as a function of Alzheimer’s
disease. The upper row are original MRI images
and the lower are pre-processed(brain extraction
and registration) images.

consists of a set of tabular data elements related to 265

patients’ clinical notes, denoted as T = t1, . . . tn, 266

where each element ti = ai, vi corresponds to an 267

attribute(e.g., PTID)-value(e.g., 011_S_0002) pair 268

and can be viewed as a sequence of words. Cor- 269

respondingly, R = r1, . . . rm represents the set 270

of reference texts, with each ri providing a narra- 271

tive description that correlates with table T . The 272

table-to-text model is expected to generate both 273

fluent and faithful natural language descriptions of 274

patients’ clinical information based on the given 275

tables. 276

3.2 Table Transformation 277

In contrast to the rich corpus data employed in 278

Pre-trained Language Models (PLMs), tabular data 279

present complex topology structures with sparse 280

narrative descriptions, making them quite distinct 281

from natural language representations. Fig.1 il- 282

lustrates an example of tabular clinical notes and 283

the human language set. To align with the sequen- 284

tial nature of language model, this paper employs 285

a key-value pair template “PTID: 011_S_0002” 286

as “PTID 011_S_0002” to structure the table into 287

a sequence S. Subsequently, all of the key-value 288

pairs are concatenated into a single sentence, that 289

is, “PTID 011_S_0002 Age 74.3 PTGENDER 290

Male . . . ”, while the corresponding textual descrip- 291

tion T is generated by another template: “Subject 292

011_S_0002 is a 74.3-year-old Male”. It should be 293

noted that the original table may exhibit missing 294

patient information, such as absent scan results 295

or cognitive assessments, which are designated 296

as "unknown". Following the approach used in 297

TableGPT(Gong et al., 2020), the structured table 298
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S and the natural language description T are linked299

with a special token <table2text> to encode the300

overall table information and signal the model to301

commence text generation. Another special token302

<endoftext> marks the end of the entire sequence.303

This methodology enables our model to encode304

the structured patients’ clinical notes and to learn305

to generate their natural language descriptions. The306

training objective of the language model is to max-307

imize the likelihood of generating accurate textual308

clinical notes, that is, maxP (T | S).309

3.3 Annotation Challenges & Quality310

Evaluation311

We find that one of the major challenges to gener-312

ating patients’ clinical diagnostic reports from the313

given table is the presence of numerous missing314

values, primarily in biomarker measurements (e.g.,315

ABETA, TAU, PTAU). To ensure the completeness316

and fluency of the generated reports, we set these317

missing value as “unknown”. For instance:318

"The subject’s genetic profile includes an ApoE4319

status of unknown. Neuroimaging with FDG-PET320

shows average uptake in the angular, temporal,321

and posterior cingulate regions being unknown.322

Cerebrospinal fluid analysis reveals AAβ 42 levels323

at unknown, total tau protein levels at unknown,324

and phosphorylated tau levels at unknown."325

Furthermore, to evaluate whether the clinical326

reports indeed reflect the patient’s potential for de-327

mentia, we split the annotated reports corpus (ex-328

cluding the diagnosis results) into a training set329

(80%) for training the classifier and a test set (20%)330

for evaluation. We simply add a linear layer plus331

a binary softmax layer on the BERT model as the332

AD classifier. The accuracy of the classifier tested333

on the binary classification (CN, AD) reached 99%,334

and for the ternary classification (CN, MCI, AD)335

achieved 90%, shown as table 2. These results not336

only confirm the contribution of EHRs to AD diag-337

nosis but also highlight the significant potential of338

ADNI tabular data for brain disease analysis.339

Model precision recall f1-score
BERTCN/AD 0.99 0.99 0.99
BERTCN/MCI/AD 0.90 0.89 0.90

Table 2: Performance of the BERT-based classifier.

4 Experiment 340

4.1 Baselines 341

We conduct experiments by fine-tuning following 342

state-of-art text generation methods: 343

Pointer Generator(See et al., 2017) A LSTM- 344

based seq2seq model incorporates a copy mech- 345

anism and was originally designed for text summa- 346

rization. It has also been adapted for data-to-text 347

applications(Gehrmann et al., 2018). 348

BERT-to-BERT(Rothe et al., 2020) A transformer- 349

based encoder-decoder model initialized with 350

BERT(Devlin et al., 2018). 351

BART(Lewis et al., 2019) A pre-trained denois- 352

ing autoencoder with standard Transformer-based 353

architecure model. 354

T5(Raffel et al., 2020) A transformer-based model 355

is pre-trained to convert all textual language prob- 356

lems into text-to-text format and proves its effec- 357

tiveness. 358

4.2 Evaluation Metrics 359

Automatic Metrics We employ two automatic 360

metrics, BLEU(Papineni et al., 2002) and PAR- 361

ENT(Dhingra et al., 2019). BLEU is widely used to 362

evaluate machine-generated text quality and PAR- 363

ENT is specifically designed for data-to-text tasks, 364

which evaluates alignment by comparing n-grams 365

from both the reference and generated texts to the 366

source table. 367

Human Evaluation Since clinical reports require 368

good readability and need to accurately reflect the 369

patient’s various indicators, automatic metrics are 370

not adequate to assess the quality of generated re- 371

ports. We also perform human evaluation based 372

on the following three criteria: 1) fluency indi- 373

cates how well the report is structured; it evaluates 374

whether the expressions are grammatical and flu- 375

ent. 2) Consistency indicates whether the report is 376

consistent with the data provided; it checks for dis- 377

crepancies between the reported data and the actual 378

measurements. 3) Relevance evaluates whether 379

the report includes all necessary information perti- 380

nent to a clinical diagnosis, focusing on the inclu- 381

sion of critical data and avoiding extraneous details. 382

Above criteria ensure that each report is not only 383

accurate but also practical for medical profession- 384

als diagnosing and treating patients in real-world 385

clinical settings. Three experts were instructed to 386

rate the three criteria on a scale from 1 to 5, where 1 387

denotes the worst and 5 represents the best possible 388

score. 389
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Model BLUE-1/2/3 PARENT Fluency Consistency Relevance
Pointer Generator 31.5/29.1/15.8 28.0 1.3 1.7 1.7
BERT-to-BERT 35.8/30.1/25.5 35.7 2.3 1.7 1.7
T5-small 56.6/40.6/30.6 60.3 3.3 2.0 2.3
T5-base 65.5/50.4/44.3 72.5 4.0 2.0 2.7
BART 76.0/65.0/55.8 88.1 4.7 3.0 3.7
ADTabGPT 98.8/98.9/98.5 97.8 5.0 4.7 5.0

Table 3: Results of automatic metrics and human evaluation.

4.3 Experiment Settings390

We randomly split 16421 health records into train391

(70%), dev (15%) and test (15%) with no overlap.392

We download pre-trained GPT2 models from hug-393

gingface to avoid starting training from scratch. For394

optimizer, we adopt the OpenAI AdamW optimizer395

with 100 warm steps. The batchsize is set to 4 and396

we fine-tune the model 10 epochs with learning397

rate is set to 2e-4. All experiments are conducted398

on a Nivida RTX TITAN GPU.399

4.4 Results and Analysis400

4.4.1 Automatic Evaluation & Human401

Evaluation402

As shown in Table 3, first, from an overall perspec-403

tive, methods based on Large Language Models (i.e.404

T5 and BART) outperform the other approaches,405

with our ADTabGPT achieving the best results.406

Both metrics for methods based on LLM are scored407

highly. Second, we observed that our ADTabGPT-408

generated clinical notes almost identical to the ref-409

erences, achieving state-of-the-art results in both410

automatic and human evaluations. Third, we se-411

lected 200 generated clinical reports for human412

evaluation, and the results are presented in Table 3.413

Our method surpasses five baseline models across414

all three human-centric metrics. The most signif-415

icant improvements are observed in consistency416

and relevance, demonstrating that our method can417

generate not only fluent diagnostic reports but also418

accurately reflect various patient indicators.419

These results indicate that LLM are adept at han-420

dling table-to-text tasks, even in the highly special-421

ized domain of neuroimaging. This reinforces our422

belief in the potential of using such techniques to423

mine valuable variables from ADNI tabular EHRs424

for Alzheimer’s disease analysis. Further, although425

the automatic evaluation shows high scores for the426

generated clinical reports, there are still existing427

issues, which will be analyzed in detail in the next428

case study section. 429

4.4.2 Case Study 430

We show in table 4 some clinical note examples 431

generated by T5,BART, and our ADTabGPT. As 432

we can see, both methods perform well in the initial 433

sections of the diagnostic reports, Basic Personal 434

Information. However, with longer documents, T5 435

and BART tend to produce various errors. The 436

portions marked in orange indicate hallucinations, 437

meaning the outputs cannot be verified against the 438

source table data. The parts marked in red signify 439

more severe, multiple errors. Beyond hallucina- 440

tions, these include value errors, such as altering 441

the patient’s measurements and test results, gram- 442

matical error, and missing critical details. This is 443

particularly severe in the Cognitive and Neurofunc- 444

tional Test Results section of T5’s outputs, where 445

a significant amount of information is missing, af- 446

fecting the understanding of patients’ diagnostic 447

results. The sections marked in green highlight 448

anomalous symbols in the diagnostic results, al- 449

though the values are correct. This issue only ap- 450

pears in the BART-generated outputs. The occur- 451

rence of these problems may be due to the limited 452

capacity of large models to handle long documents, 453

resulting in errors when the patient’s diagnostic 454

report is lengthy. Our ADTabGPT demonstrates 455

perfect ability to generate fluent and faithful clini- 456

cal reports in this example. 457

4.4.3 EHR case 458

We provide an example of a patient’s diagnosis 459

to detail our Multimodal and Longitudinal Neu- 460

roimaging EHR. As illustrated in Figure 4, we can 461

observe the progression of this subject’s condition 462

from both diagnostic reports and MRI imaging per- 463

spectives. In this case, the patient’s records span 464

from 2006-01-19 to 2023-04-04, with the condition 465

progressing from MCI to a confirmed diagnosis of 466

AD. 467
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Attribute Value
PTID 002_S_4237
Age 80.9
Sex Female
... ...
ADTabGPT:(consistent with the reference)
Basic Personal Information: Subject 002_S_4237 is a 80.9-year-old female who has completed 13 years
of education. The ethnicity is Not Hisp/Latino and race is white. Marital status is never married. Initially
diagnosed is early mild cognitive impairment, and on the date of 2007-10-14, the final diagnosis is mild
cognitive impairment.
Biomarker Measurements: The subject’s genetic profile includes an ApoE4 status of 0.0. Neuroimaging
with FDG-PET shows average uptake in the angular, temporal, and posterior cingulate regions being
1.17185. Cerebrospinal fluid analysis reveals Aβ 42 levels at more than 1700, total tau protein levels at
302.1, and phosphorylated tau levels at 25.66.
Cognitive and Neurofunctional Test Results: The Mini-Mental State Examination score stands at
29.0. The Clinical Dementia Rating, sum of boxes, is 5.0. ADAS 11 and 13 scores are 12.0 and 12.0
respectively, with a score of 5.0 in delayed word recall. The Rey Auditory Verbal Learning Test results are
as follows: immediate recall at 25.0, learning score at 9.0, forgetting score at 9.0, and percent forgetting
at 9.0. Logical Memory test for delayed recall scored 6.0. The Digit Symbol Substitution test resulted
in a score of Unknown. Trails B testing showed a score of 253.0. The modified Preclinical Alzheimer’s
Cognitive Composite scores using Digit Symbol Substitution and Trails B are -4.64725 and -6.38287
respectively. The Functional Activities Questionnaire rated the subject as 0.0.
Imaging Data Points: Under MRI conditions at a field strength of 3 Tesla, using Cross-Sectional
FreeSurfer (5.1), the imaging data recorded includes ventricles volume at 92447.0, hippocampus volume
at 6102.0, whole brain volume at 976304.0, entorhinal cortex volume at 3915.0, fusiform gyrus volume at
16367.0, and middle temporal area volume at 18784.0. The intracranial volume measured is 1516250.0.
T5-base:
Basic Personal Information: Subject 002_S_4237 is a 80.9-year-old Male who has completed 13 years
of education. The ethnicity is Not Hisp/Latino and race is white. Marital status is never married. Initially
diagnosed is early mild cognitive impairment, and on the date of 2007-10-14, the final diagnosis is mild
cognitive impariment.
Biomarker Measurement: The subject’s genetic profile icludes an ApoE4 status of 0.0. Neuroimaging
with FDG-PET shows average uptake in the angular, temporal, and posterior cingulate regions being dang
gyrus. Cerebrospinal fluid analysis reveals Aβ 42 levels at spital to help wiyh the process of choosing he
prefers the most.
Cognitive and Neurofunctional Test Results: The The Mini-Mental State Examination score stands at 4
and 13 in delay word recall. The Clinical Dementia Rating, sum of box, is 4. ADAS 11 and 13 scores are
9.0 and 9.0-PATH at 3.0.
Using Cross-Sectional FreeSurfer (5.1), the Imaging Data Point: Under MRI conditions are –4.64725
and 2-6.38287 respectively, with hippocampus volume at 6102.0. Logical Memory test at 6.0. The Digit
Symbol Substitution test result in uncontrolled recall. Trails B testing showed obstructive Learning Test
results are as follows: immediate recall at 225.0, learning score at 59.0 and percent forgetting at 7.0 in
entorhinal cortex volume starting at 976304.0, fusiform gyrus density at 16367.0; the intracranial volume
measured is 1516250.0
BART:
Basic Personal Information: Subject 002_S_4237 is a 80.9-year-old female who has completed 13 years
of education. The ethnicity is Not Hisp/Latino and race is white. Marital status is never married. Initially
diagnosed is early mild cognitive impairment, and on the date of 2007-10-14, the final diagnosis is mild
cognitive impairment.
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BART:
Biomarker Measurements: The subject’s genetic profile includes an ApoE4 status of 0.0. Neuroimaging
with FDG-PET shows average uptake in the angular, temporal, and posterior cingulate regions being
1.17185. Cerebrospinal fluid analysis reveals Aβ 42 levels at more than 1700, total tau protein levels at
302.1, and phosphorylated tau levels at 25.66.
Cognitive and Neurofunctional Test Results: The Mini-Mental State Examination score stands at 29.0,
with a score of 5.0 in elay word recall. The Rey Auditory Verbal Learning Test results are as follows:
immediate recall at 25.0, learning score at 9.0%, forgetting score at 9.0, and percent forgetting at 9.0%.
Logical Memory test for delayed recall scored 6.0%. The Digit Symbol Substitution test resulted in a score
of Unknown. Trails B testing showed a score of 253.0 and a score for modified Preclinical Alzheimer’s
Cognitive Composite scores of 253. The Functional Activities Questionnaire rated the subject as -6.38287.
Imaging Data Points: Under MRI conditions at a field strength of 3 Tesla, using Cross-Sectional
FreeSurfer (5.1), the imaging data recorded includes ventricles volume at 92447.1, hippocampus volume
at 6102.0, whole brain volume at 976304.0), entorhinal cortex volume at 3915.0,\" fusiform gyrus
volume at 16367.0\", and middle temporal area volume at 18784.0\", The intracranial volume measured is
1516250.0\ ".

Table 4: A sample tabular clinical diagnostic notes and the textual generated clinical diagnostic reports by
our ADTabGPT and baslines. Text highlighted in orange indicates hallucinations, green text signifies errors
involving anomalous symbols, and red text denotes multiple errors, including value errors,grammatical
mistakes, and missing critical details.

Subject 023_S_0126 on 
the data of 2011-02-23, 
her final diagnosis is MCI.

Subject 023_S_0126 on 
the data of 2012-02-29, 
her final diagnosis is MCI.

Subject 023_S_0126 on 
the data of 2013-04-04, 
her final diagnosis is AD.

Subject 023_S_0126 on 
the data of 2006-01-19, 
her final diagnosis is MCI.

Subject 023_S_0126 on 
the data of 2008-03-21, 
her final diagnosis is MCI.

Subject 023_S_0126 on 
the data of 2010-03-04, 
her final diagnosis is MCI.

Figure 4: An example of patient’s multimodal and
longitudinal EHR

5 Conclusion468

Given the critical need for multimodal and longitu-469

dinal EHRs in brain-focused studies, we introduce470

the first vision-language brain dataset including 3D471

brain volume and comprehensive patient clinical472

notes. By collecting and analyzing ADNI tabular473

data, we developed a GPT-based method to trans-474

form them into information-rich and fluent natural475

language clinical reports. These reports encom-476

pass patients’ demographic information, biomarker477

measurements, cognitive assessments, and volu-478

metric data. Using BERT for disease classification479

achieved an accuracy of 98.89%, which not only480

confirms the contribution of tabular EHRs to AD481

diagnosis but also highlights the significant poten-482

tial of ADNI tabular data for brain disease analysis. 483

Additionally, we collected 10,387 volumetric T1- 484

weighted MRI scans from ADNI and adopted a 485

series of preprocessing steps, which provide criti- 486

cal imaging perspectives for the analysis of brain 487

diseases. Through the aforementioned annotation 488

and preprocessing methods, we ultimately estab- 489

lished a multimodal and longitudinal EHRs dataset 490

that includes 3D brain image volumes and corre- 491

sponding clinical notes. While ADNI dataset is 492

publicly accessible, it requires approved access. 493

To support future research in this area, we make 494

our processing methods and code publicly avail- 495

able at https://anonymous.4open.science/r/ 496

ADNI-table-to-Text-2EDB 497

Limitations 498

Data scarcity The ADNI dataset is extensive, and 499

we have selected ADNIMERGE for our prelimi- 500

nary work. This table merges several key variables 501

from various case report forms and biomarker labo- 502

ratory summaries across the ADNI protocols. How- 503

ever, there are additional valuable tables, such as 504

those detailing family history, drug history, and 505

potential causes of AD (e.g., Frontotemporal De- 506

mentia, Major Depression, Parkinson’s Disease, 507

Huntington’s Disease, etc.) Understanding these 508

notes requires high levels of specialized knowledge. 509

In our future work, we aim to integrate more of this 510
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information to form a more comprehensive diag-511

nostic report.512

Multi-scale features A key distinction between513

medical and natural images lies in the significance514

of multi-scale features. Captions for natural images515

are typically concise, providing an overall descrip-516

tion. In contrast, medical reports consist of multi-517

ple aspects and contain significantly more detailed518

information, as illustrated in 1. These non-image519

clinical informations are also pay a crucial role in520

the medical domain, especially for AD diagnosis.521

For instance, advanced age and specific genes, like522

APOE4, are both significant risk factors for AD523

but cannot be observed from images alone. Unlike524

exsiting radiology reports, the clinical reports in525

our dataset not only describe the volumetric aspects526

of T1 scans but also include patients’ demographic527

information, biomarker measurements, and cogni-528

tive assessments. How to effectively integrate these529

clinical details into a unified embedding space and530

align them effectively is a direction we will explore531

in our future research.532

Inconsistency between pre-training and applica-533

tion A large number of research demonstrates that534

CLIP’s image encoder, initially pre-trained on na-535

ture images, also achieves impressive performance536

in the medical domain. However, most existing537

medical VLP models are designed to work with538

2D images, which may significantly limit their ef-539

fectiveness in the neuroimaging domain, given the540

complex and sensitive nature of brain tissue. An541

important question arises: How can we effectively542

extend a 2D image encoder to extract features from543

3D medical? To address this, we will focus on de-544

veloping 3D VLP-driven models, specifically for545

brain analysis.546

Medical VLP fairness As previously reported in547

Section 2, there is significant imbalance in the dis-548

tribution of fine-grained attributes such as race, eth-549

nicity, and marital status within the data. Although550

the ADNI dataset is widely used, it was not primar-551

ily designed for fairness. Historical instances of552

bias in various technologies highlight the critical553

need for fairness in machine learning(Wang et al.,554

2022a; Dehdashtian et al., 2023). Large Vision-555

Language Pre-training models, which influence556

diagnostic and treatment decisions, can perpetu-557

ate healthcare disparities and result in adverse out-558

comes if they exhibit bias. Therefore, improving559

dataset quality and ensuring the fairness of model560

algorithms are not just ethical and legal imperatives,561

but also crucial for achieving healthcare equity(Luo562

et al., 2024). While VLP models have significantly 563

advanced various medical tasks and propelled the 564

development of AI in healthcare, one of our key 565

goals, as well as a direction for future efforts is 566

to ensure these models provide fair and unbiased 567

diagnostic results across different races, genders, 568

and socioeconomic statuses. 569

Beyond image-text alignment The philosophy of 570

CLIP is centered on aligning different modalities, 571

specifically images and text, by enabling the model 572

to understand and establish meaningful connec- 573

tions between visual and textual content. In the 574

neuroimaging domain, images often involve vari- 575

ous modalities such as MRI and PET scans. Specif- 576

ically, structural MRI (sMRI) is used to depict the 577

structure of the brain, while functional MRI (fMRI) 578

reveals metabolic activity in the brain during spe- 579

cific tasks(e.g., sensory, motor, cognitive functions, 580

ect.). Each modality provides unique insights into 581

different aspects of a patient’s condition. Further- 582

more, one of the most notable features of AD is 583

hippocampal atrophy, however, in early mild cog- 584

nitive impairment, structural changes are often not 585

apparent and are typically inferred through func- 586

tional assessments. In our future work, we plan 587

to incorporate more modalities, such as functional 588

MRI, combined with EHRs for comprehensive lon- 589

gitudinal analysis of brain diseases. 590
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appendix 915

A Related Work 916

EHRs Generation EHRs are a longitudinal record 917

that encompass a patient’s health information. 918

Early works on generating EHRs were predomi- 919

nantly ruled-based(Buczak et al., 2010; McLachlan 920

et al., 2016). However, powered by neural net- 921

works, recent advancements have seen the adoption 922

of deep learning models and artificial intelligence 923

(AI), which have significantly enhanced this pro- 924

cess. One pioneering innovation was MedGAN 925

proposed by(Choi et al., 2017), aiming to generat- 926

ing multi-label discrete patient records using gener- 927

ative adversarial networks (GANs) models (Good- 928

fellow et al., 2020). Following this development, 929

numerous studies have focused on improving med- 930

ical text generation(Guan et al., 2018; Baowaly 931

et al., 2019; Zhang et al., 2020). However, most 932

EHRs only focus on static, single-modal EHRs and 933

overlook the representations of imaging informa- 934

tion. To the best of our knowledge, we are the first 935

to focus on building a multimodal and longitudinal 936

EHRs dataset for brain disease analysis. 937

Vision-Language Models The integration of vi- 938

sion and language in deep learning, exemplified 939

by models such as CLIP, trained on a large scale 940

of paired image-text multimodal data, represents 941
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a significant advancement in aligning visual in-942

formation with textual descriptions in AI. Boot-943

strapping Language-Image Pre-training (BLIP)(Li944

et al., 2022) introduces a novel multimodal, unified945

encoder-decoder framework to learn from noisy946

image-text pairs. Further enhancing this work,947

BLIP-2 (Li et al., 2023) proposed a lightweight948

querying transformer, achieving state-of-the-art949

performance on various vision-language tasks with950

considerably fewer trainable parameters.951

These success of CLIP-like models have952

achieved great success in many downstream com-953

puter vision applications. Hence, it is intuitive954

to understanding complex medical imaging using955

VLP models, which has also led to rapid advance-956

ments in various medical domain (e.g., Chest X-957

ray, multi-organ CT, Brest Histology). For in-958

stance, Xplainer (Pellegrini et al., 2023) leverages959

the CLIP to align the of X-Ray scans and clini-960

cal radiology reports representations close in latent961

space for zero-shot diagnosing pathologies. Med-962

CLIP(Wang et al., 2022b) employs inter-report se-963

mantical correlation as the soft optimization target964

for the alignment between X-Ray medical image965

and text. CoOPLVT (Baliah et al., 2023) investi-966

gate CLIP’s transfer learning capabilities and its967

potential for cross-domain generalization in dia-968

betic retinopathy (DR) classification. Wu et al.(Wu969

et al., 2023) proposed a zero-shot nuclei detection970

framework based on VLP models by directly using971

automatic text prompts.972

Above research demonstrate that CLIP’s image973

encoder, initially pre-trained on nature images, also974

achieves impressive performance in the medical do-975

main. However, most existing medical VLP mod-976

els are designed based on 2D images, for 3D MRI977

images, (Anand et al., 2023) taking them into 2D978

slices. The brain, with its complex features, espe-979

cially for brain disease diagnosis, is sensitive to980

even minor tissue changes, and slicing may com-981

promise these crucial features. MedBLIP (Chen982

et al., 2023) extracts and fuses 3D medical volume983

images, aligning them with text features in a com-984

mon space using BioMedLM (Bolton et al., 2022),985

and then fine-tunes the alignment using LoRA(Hu986

et al., 2021). However, they only utilizes patient987

age and a limited number of cognitive test results988

as textual descriptions, missing out on a wealth of989

valuable information contained in ADNI EHRs.990

One major challenge in applying VLP for brain991

analysis lies in the scarcity of available image-text992

pair datasets. Therefore, this paper aims to develop993

a multimodal and longitudinal EHRs that includes 994

3D brain image volumes and corresponding clini- 995

cal notes for brain disease studies. We expect that 996

this dataset not only enhances the quality but also 997

broadens the horizon for research in the brain dis- 998

ease domain. 999

B Data Descriptions 1000

ADNI provides a dictionary that clarifies the mean- 1001

ing of each variable. To supplement the details, 1002

Table 5 presents information about the variables 1003

along with their descriptions. We also include an 1004

example in this table to illustrate their application. 1005

Table 5 1006

C Data Distribution 1007

To supplement the details for our neuroimaging 1008

EHR in the main paper, we present additional anal- 1009

yses. Figures 5a and 5b illustrate the distribution 1010

of gender and marital status, respectively. Figure 1011

5c depicts the distribution of initial and final diag- 1012

noses, while Figures 5d and 5e show the distribu- 1013

tions of racial and ethnic backgrounds. Figure 5f 1014

presents the distribution of the APOE4 gene allele 1015

carriers. 1016
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Figure 5: (a) distribution of gender, (b) distribution of marital status, (c) distribution of initial and final
diagnoses, (d) distributions of racial, (e) distributions of ethnic, (f) distribution of the APOE4 gene allele
carriers
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Information Information Description Example
PTID Original study protocol 011_S_0002
Age Age 74.3
PTGENDER Sex Male
PTEDUCAT Education 16
PTETHCAT Ethnicity Not Hisp/Latino
PTRACCAT Race White
PTMARRY Marital Married
EXAMDATE Date 09/08/2005
DX_bl Baseline DX CN
DX DX CN
APOE4 ApoE4 0
FDG Average FDG-PET of angular, temporal, and

posterior cingulate.
1.33615

ABETA CSF ABETA 741.5
TAU CSF TAU 239.7
PTAU CSF PTAU 22.83
CDRSB CDR 0
ADAS11 ADAS 11 10.67
ADAS13 ADAS 13 18.67
ADASQ4 ADAS Delayed Word Recall 5
MMSE MMSE 28
RAVLT_immediate RAVLT Immediate (sum of 5 trials) 44
RAVLT_learning RAVLT Learning (trial 5 - trial 1) 4
RAVLT_forgetting RAVLT Forgetting (trial 5 - delayed) 6
RAVLT_perc_forgetting RAVLT Percent Forgetting 54.5455
LDELTOTAL Logical Memory - Delayed Recall 10
DIGITSCOR Digit Symbol Substitution 34
TRABSCOR Trails B 112
mPACCdigit ADNI modified Preclinical Alzheimer’s Cog-

nitive Composite (PACC) with Digit Symbol
Substitution

-4.31028

mPACCtrailsB ADNI modified Preclinical Alzheimer’s Cog-
nitive Composite (PACC) with Trails B

-4.11443

FAQ FAQ 0
FLDSTRENG MRI Field Strength 1.5 Tesla MRI

FSVERSION FSVERSION
Cross-Sectional FreeSurfer
(FreeSurfer Version 4.3)

Ventricles UCSF Ventricles 118233
Hippocampus UCSF Hippocampus 8336
WholeBrain UCSF WholeBrain 1229740
Entorhina UCSF Entorhinal 4117
Fusiform UCSF Fusiform 16559
MidTemp UCSF Med Temo 27936
ICV UCSF ICV 1984660

Table 5: This table presents information from the ADNIMERGE table and its corresponding descriptions
from official ADNIMERGE-DICTIONARY, detailing patient data in the ADNI study. Each category of
information is highlighted with a specific color: 7 pieces of basic personal and 3 pieces of diagnosis
information, 5 biomarker measurements, 15 cognitive and neurofunctional test results, 7 imaging data
points, and 2 additional related indicators(MRI Field Strength and FS VERSION). Each entry in the table
includes an example for clearer understanding.
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