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Abstract

Alzheimer’s disease (AD) is a neurodegenera-
tive, incurable condition and a leading cause
of morbidity among individuals over 65 in
the US. The screening and early diagnosis
of AD condition is usually based on the pa-
tient’s electrical health records (HERS), includ-
ing clinical observations, cognitive tests, pa-
tient profiles, and medical-imaging-aided di-
agnoses. However, above information for re-
searchers is highly fragmented. One of the
most critical clinical diagnostic notes is stored
in structured tables using specialized termino-
logical formats. This presents significant chal-
lenges to the accessibility and readability for
non-experts, thereby hindering information pro-
cessing and the development of general med-
ical Al systems. This work proposes a novel
pipeline for processing AD clinical diagnostic
information: (1) we collect clinical data from
the largest AD dataset of Alzheimer’s Disease
Neuroimaging Initiative (ADNI)!, explain ab-
breviations and terminology, and organize the
information in an accessible manner for those
without expert knowledge of AD. (2) Lever-
aging the power of Large Language Models
(LLMs), we present a GPT-based method that
effectively transforms tabular clinical data into
fluent and faithful natural language diagnostic
reports, as demonstrated by our experimental
results. (3) We further explore the inherently
multi-modal nature of medical data, collecting
and processing a total of 10387 volumetric T1-
weighted MRI scans from ADNI. (4) Finally,
we discuss the existing limitations in applying
multimodality EHRs for brain disease analy-
sis and propose forward-looking directions to
meet the demands of the neuroimaging domain.
We expect that this work will provide new in-
sights into the neuroimaging domain and im-
prove Al applications in healthcare. Our code
is available at https://anonymous.4open.
science/r/ADNI-table-to-Text-2EDB

"https://adni.loni.usc.edu/

Participant_ID
Atribute Value Basic Personal Information: Subject 098_S_0896 is a 72.0-
Age 720 year-old Female who has completed 15 years of education,
= = The ethnicity is Not Hisp/Latino and race is White. Marital
status is Married. Initially diagnosed as AD. as of the date
Education 15 2007-10-24, the final diagnosis was Dementia.
Basic Personal 1l
Race ‘White
DX_b1 AD Biomarker Measurements: The subject’s genetic profile
= . includes an ApoE4 status of 0.0....
DX Dementia
Cognitive and Neurofunctional Assessments: The Mini-
APOE4 10 Mental State Examination score stands at 29.0. The Clinical
Biomarker Dementia Rating, sum of boxes, is 1.0. ADAS 11 and 13
TAU 2125 scores are 4.67 and 4.67 respectively, with a score of 1.0 in
- delayed word recall...
MMSE 290
ic Data: Under MRI conditions at a field strength of
EERSH o 1.5 Tesla MRI Tesla, using Cross-Sectional FreeSurfer
(FreeSurfer Version 4.3), the imaging data recorded includes
USRI, I5TesaMRI ventricles volume at 544220, hippocampus volume at 6677.0.
Ventioios Y whole brain volume at 11479800, entorhinal cortex volume at
Volumetric data 5 27820, fusiform gyrus volume at 19432.0, and middle
Hippocampus 5319 temporal area volume at 24951.0. The intracranial volume
measured is 1799580.0....

Figure 1: An example of a clinical notes

1 Introduction

Alzheimer’s disease (AD) is a progressive neurode-
generative disorder characterized by a continuum
that ranges from undetectable brain changes to
significant alterations that impair memory, culmi-
nating in severe physical disabilities(Aramadaka
et al., 2023). Current research suggests that the
clinical stages of AD can be divided into three
stages(Frisoni et al., 2010; Jack et al., 2010). First
is the pre-symptomatic phase, where individuals
are cognitively normal despite having AD patholog-
ical changes. The second phase is the prodromal
phase, often referred to as mild cognitive impair-
ment (MCI), characterized by the onset of early
cognitive symptoms. The third phase is dementia,
marked by severe impairments across multiple do-
mains, leading to loss of function(Yu et al., 2023).
The pathological changes in the pre-symptomatic
phase may begin to develop decades before the
earliest clinical symptoms appear in the prodromal
phase. While there is currently no cure for AD once
established, in the realm of machine learning and
deep learning, differentiating AD from the prodro-
mal stage is a significant issue that interests a large
amount of researchers making efforts on(Miller
et al., 2022; Zhou et al., 2023b; Cai et al., 2023;
Feng et al., 2023; Leng et al., 2023; Liang et al.,
2023; Zhou et al., 2023a; Zhang et al., 2023).
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Previous studies have predominantly focused on
analyzing medical brain images like Magnetic Res-
onance Imaging (MRI) scans and Position Emis-
sion Tomography (PET) solely, extracting various
features and designing algorithms to diagnose AD
and MCI. The recently revised clinical criteria for
detecting AD emphasize the importance of using
multiple modalities such as core biomarkers and
clinical tests for diagnosis(Carrillo and Masliah,
2023). However, much of this information has
not yet been incorporated into brain disease stud-
ies. Thanks to the widespread implementation of
EHRs, a rich array of routine clinical reports about
participants are digitally available in a tabular form
and offered by the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI)(Jack Jr et al., 2008). These
tabular datasets offer rich details including demo-
graphic attributes, biomarker measurements, cog-
nitive and neurofunctional assessments, and image
information, making it an invaluable resource.

Despite their potential, the complexity of medi-
cal terminology often makes EHRs less accessible
to non-professionals, limiting their utility. While
ADNI ERHs provide complementary information
except for medical scans for understanding disease
patterns, for example, early researches report that
age is the single most significant risk factor for AD
and a higher incidence of MCI occurs in females
than in males(Aramadaka et al., 2023; Katz et al.,
2012), there is an urgent need to develop method-
ologies that can simplify and harness this wealth
of information.

As an essential and widely used data format,
tabular data plays a crucial role in structuring in-
formation, significantly advancing the fields of in-
formation retrieval and knowledge extraction for
data mining(Engelmann et al., 2023; 10., 2022; Sui
et al., 2023). Recently, LLM based on the Trans-
former architecture(Vaswani et al., 2017) have be-
come increasingly prominent in addressing a wide
range of natural language-related tasks. Given
their state-of-the-art performance and board ap-
plication potential, researchers are also develop-
ing LLMs for tabular data processing. Notable
examples include TableGPT(Gong et al., 2020) and
TABT5(Andrejczuk et al., 2022), which are trained
for complex table-to-text generation tasks. Ad-
ditionally, MediTabWang(Wang et al., 2023) has
been specially developed for medical table predic-
tion, showcasing the versatility of LLMs in han-
dling structured data formats. Above successful
large language models raise our beliefs that the

application value of tabular structured EHRs can
be extensively mined and analyzed, offering deep
clinical insights into patient care.

Furthermore, medical data is inherently multi-
modal, making vision-and-language pre-training
(VLP) a crucial technique for jointly understanding
medical images and texts. Techniques like the Con-
trastive Language-Image Pre-training (CLIP) (Rad-
ford et al., 2021) treat the text caption as a linguistic
representation of the image, pulling the image-text
pair closer together in a latent space, have proven
effective in aligning these pairs and showing sig-
nificant benefits in various downstream applica-
tions in the medical field, including image gener-
ation, segmentation, detection, and classification.
Although large-scale image-text pair datasets are
essential in medical domain research, however, ex-
isting large-scale datasets such as ROCO(Petersen
et al., 2010), MedICat(Subramanian et al., 2020),
FFA-IR(Li et al., 2021), and MIMIC-CXR(Johnson
et al., 2019) and existing medical VLP(Tiu et al.,
2022; Huang et al., 2021; Seibold et al., 2022; Pel-
legrini et al., 2023) are predominantly focus on 2D
images. While 2D slices can be adequate for learn-
ing, 3D brain scans are crucial for brain disease
diagnosis. Currently, there is no mature image-
text pairing methodology for brain disease analysis.
This paper aims to address this gap by introducing
a novel pipline and establishing a Multimodality
and Longitudinal dataset for neuroimaging studies.
Specifically, our contributions are as follows:

* We collect comprehensive patient tabular data
from ADNI, which includes demographic in-
formation, biomarker measurements, cogni-
tive assessments, and volumetric data. By
analyzing this specialized clinical knowledge,
we developed an annotation method that trans-
forms tabular data into information-rich and
fluent natural language.

* We present an encoder-decoder based model
ADTabGPT(Medical tabular-to-text Genera-
tive pre-trained transformers) that can be ap-
plied to ADNI table-to-text generation. Mean-
while, we collect and process a total of
11107 volumetric T1-weighted MRI scans
from ADNI as the image feature.

* To our best knowledge, this is the first work to
explore the full utilization of multimodal and
longitudinal EHRs for brain disease analysis.
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Figure 2: The overall architecture for constructing a multimodal and longitudinal Alzheimer’s Disease-
related neuroimaging dataset. It encompasses two major parts: Part I transforms tabular clinical notes
into natural language clinical reports; Part IT preprocesses the corresponding MRI scans. Ultimately,

these two modalities are combined.

2 Data Collection and Analysis

We design a four-step annotation process, as de-
picted in figure 2. Initially, we collect tabular
EHRs and analysis the key variables, and then
design ADTabGPT to convert them into natural
language clinical reports, as illustrated in part I of
Figure 2. Next, as shown in part II of Figure 2,
we collect the corresponding MRI scans of patients
from ADNI and undertake a series of preprocessing
steps. Following above steps, we finally construct
a multimodal and longitudinal neuroimaging EHR
especially for Alzheimer’s disease.

2.1 Data Preparation

The ADNI is a consortium of universities and med-
ical centers in the United States and Canada. It
was established to develop standardized imaging
techniques and biomarker procedures in Cognitive
Normal(CN), MCI, and AD subjects. One of the
major goals of ADNI is to create an accessible data
repository that acquires clinical, cognitive, and bio-
chemical data(Petersen et al., 2010). In addition to
MRI imaging information, the ADNI provides an
ocean of tabular data, allowing researchers and clin-
icians to explore the details such as demographic
information(e.g., age, sex, educational level, etc);

biomarker measurements (e.g., allele producing
the apolipoprotein E [APOE-£4]); cognitive assess-
ments (e.g., Mini-Mental State Examination, Clin-
ical Dementia Rating Scale, etc); as well as volu-
metric data (e.g., metrics of the WholeBrain and
Hippocampus).

This paper primarily focuses on the AD-
NIMERGE Table, which merges several key vari-
ables from various case report forms and biomarker
laboratory summaries across the ADNI protocols.
The table encompasses 16,421 diagnostic records
from 2,430 subjects, of which 2,409 have a diag-
nosis. the average age is 73.2 = 7.0 years, and the
average educational attainment is 16.1 + 2.8 years.
The data includes 4,020 diagnoses of CN individu-
als, 4,989 diagnoses of MCI, and 4,989 diagnoses
of AD. The data comprises samples from three ma-
jor racial groups: 2,143 White, 179 Black, and 58
Asian patients. Additionally, 50 samples include
multiple racial backgrounds or are categorized as
Unknown; American Indian/Alaskan Native; or
Hawaiian/Other Pacific Islander. Gender-wise, fe-
males represent 52.4% of the subjects, totaling
1273, with the remainder being males. The ethnic
distribution includes 2,302 non-Hispanic/Latino,
116 Hispanic/Latino, and 12 Unknown. From a



CNgroup MCIgroup AD group

Gender (F/M) 475/354 324/448 345/463
Age(year) 71.4+6.8 73.0£7.5 74.4£7.5
Education(year) 16.6+2.5 15.9+2.8 15.6+£2.8
APOE-¢4q,1 /5  511/202/20 411/226/56  374/274/134

Table 1: Basic demographic and biomarker statis-
tics.

marital status perspective, there are 1,824 married,
269 widowed, 228 divorced, 99 never married, and
9 unspecified. Regarding the APOE-¢4 risk fac-
tor, 1,199 individuals do not carry the allele, 803
carry one copy, and 211 carry two copies. table 1
presents a basic demographic and biomarker statis-
tics based on diagnostic. We also supplement the
details of the distribution in the supplementary ma-
terial. Additionally, ADNI provides a dictionary
that elucidates the meaning of each variable. The
details can also be found in the supplementary ma-
terial table.

We collected 10387 T1-weighted MRI scans
from ADNI, which includes 1510 AD scans (791
males, 719 females; 76.27 4 7.86 years), 3632 CN
scans (1843 males, 1791 females; 77.75 £+ 5.73
years), and 5965 MCI scans (3758 males, 2198 fe-
males; 75.47 £ 7.53 years). Following established
works before(Zhang et al., 2021; Lyu et al., 2022),
we performed a series of pre-processing steps as
including bias field correction and skull stripping.
All T1-weighted images are in NIFTI format and
have been registered to the standard Montreal Neu-
rological Institute (MNI) template using FSL-flirt
linear registration tools and have a uniform view of
197%233*189.

These T1-weighted MRI scans provide criti-
cal imaging perspectives for the analysis of brain
diseases. For example, Post-mortem investiga-
tions have shown that structures in the medial
temporal lobe, particularly the entorhinal cortex
and hippocampus, are the first to change in AD
and can be observed through MRI imaging tech-
niques(Aramadaka et al., 2023). Fig 3 shows how
brain morphology evolves with disease progression,
from which we can observe a significant decrease
in hippocampus volume.

3 ADTabGPT

3.1 Problem Formulation

In this paper, we formulate each training instance
(T, R) represented as a pair of linearized table 7'
and their associated reference text R. The table T’

O Hippocampus

pre- -
processing CN

Figure 3: Brain morphology (hippocampus vol-
ume) contrast vary as a function of Alzheimer’s
disease. The upper row are original MRI images
and the lower are pre-processed(brain extraction
and registration) images.

consists of a set of tabular data elements related to
patients’ clinical notes, denoted as T' = t1, ... ¢y,
where each element ¢; = a;, v; corresponds to an
attribute(e.g., PTID)-value(e.g., 011_S_0002) pair
and can be viewed as a sequence of words. Cor-
respondingly, R = ry,...r, represents the set
of reference texts, with each r; providing a narra-
tive description that correlates with table 7. The
table-to-text model is expected to generate both
fluent and faithful natural language descriptions of
patients’ clinical information based on the given
tables.

3.2 Table Transformation

In contrast to the rich corpus data employed in
Pre-trained Language Models (PLMs), tabular data
present complex topology structures with sparse
narrative descriptions, making them quite distinct
from natural language representations. Fig.1 il-
lustrates an example of tabular clinical notes and
the human language set. To align with the sequen-
tial nature of language model, this paper employs
a key-value pair template “PTID: 011_S_0002”
as “PTID 011_S_0002” to structure the table into
a sequence S. Subsequently, all of the key-value
pairs are concatenated into a single sentence, that
is, “PTID 011_S_0002 Age 74.3 PTGENDER
Male ...”, while the corresponding textual descrip-
tion T is generated by another template: “Subject
011_S_0002 is a 74.3-year-old Male”. It should be
noted that the original table may exhibit missing
patient information, such as absent scan results
or cognitive assessments, which are designated
as "unknown". Following the approach used in
TableGPT(Gong et al., 2020), the structured table



S and the natural language description T are linked
with a special token <table2text> to encode the
overall table information and signal the model to
commence text generation. Another special token
<endoftext> marks the end of the entire sequence.

This methodology enables our model to encode
the structured patients’ clinical notes and to learn
to generate their natural language descriptions. The
training objective of the language model is to max-
imize the likelihood of generating accurate textual
clinical notes, that is, max P(7T | S).

3.3 Annotation Challenges & Quality
Evaluation

We find that one of the major challenges to gener-
ating patients’ clinical diagnostic reports from the
given table is the presence of numerous missing
values, primarily in biomarker measurements (e.g.,
ABETA, TAU, PTAU). To ensure the completeness
and fluency of the generated reports, we set these
missing value as “unknown”. For instance:

"The subject’s genetic profile includes an ApoE4
status of unknown. Neuroimaging with FDG-PET
shows average uptake in the angular, temporal,
and posterior cingulate regions being unknown.
Cerebrospinal fluid analysis reveals AAB 42 levels
at unknown, total tau protein levels at unknown,
and phosphorylated tau levels at unknown."

Furthermore, to evaluate whether the clinical
reports indeed reflect the patient’s potential for de-
mentia, we split the annotated reports corpus (ex-
cluding the diagnosis results) into a training set
(80%) for training the classifier and a test set (20%)
for evaluation. We simply add a linear layer plus
a binary softmax layer on the BERT model as the
AD classifier. The accuracy of the classifier tested
on the binary classification (CN, AD) reached 99%,
and for the ternary classification (CN, MCI, AD)
achieved 90%, shown as table 2. These results not
only confirm the contribution of EHRs to AD diag-
nosis but also highlight the significant potential of
ADNI tabular data for brain disease analysis.

Model precision recall fl-score
BERTcn/AD 0.99 099  0.99
BERTon/mcr/ap  0.90 0.89  0.90

Table 2: Performance of the BERT-based classifier.

4 Experiment

4.1 Baselines

We conduct experiments by fine-tuning following
state-of-art text generation methods:

Pointer Generator(See et al., 2017) A LSTM-
based seq2seq model incorporates a copy mech-
anism and was originally designed for text summa-
rization. It has also been adapted for data-to-text
applications(Gehrmann et al., 2018).
BERT-to-BERT (Rothe et al., 2020) A transformer-
based encoder-decoder model initialized with
BERT(Devlin et al., 2018).

BART(Lewis et al., 2019) A pre-trained denois-
ing autoencoder with standard Transformer-based
architecure model.

TS5(Raffel et al., 2020) A transformer-based model
is pre-trained to convert all textual language prob-
lems into text-to-text format and proves its effec-
tiveness.

4.2 Evaluation Metrics

Automatic Metrics We employ two automatic
metrics, BLEU(Papineni et al., 2002) and PAR-
ENT(Dhingra et al., 2019). BLEU is widely used to
evaluate machine-generated text quality and PAR-
ENT is specifically designed for data-to-text tasks,
which evaluates alignment by comparing n-grams
from both the reference and generated texts to the
source table.

Human Evaluation Since clinical reports require
good readability and need to accurately reflect the
patient’s various indicators, automatic metrics are
not adequate to assess the quality of generated re-
ports. We also perform human evaluation based
on the following three criteria: 1) fluency indi-
cates how well the report is structured; it evaluates
whether the expressions are grammatical and flu-
ent. 2) Consistency indicates whether the report is
consistent with the data provided; it checks for dis-
crepancies between the reported data and the actual
measurements. 3) Relevance evaluates whether
the report includes all necessary information perti-
nent to a clinical diagnosis, focusing on the inclu-
sion of critical data and avoiding extraneous details.
Above criteria ensure that each report is not only
accurate but also practical for medical profession-
als diagnosing and treating patients in real-world
clinical settings. Three experts were instructed to
rate the three criteria on a scale from 1 to 5, where 1
denotes the worst and 5 represents the best possible
score.



Model BLUE-1/2/3 PARENT Fluency Consistency Relevance
Pointer Generator 31.5/29.1/15.8 28.0 1.3 1.7 1.7
BERT-to-BERT 35.8/30.1/25.5 35.7 2.3 1.7 1.7
T5-small 56.6/40.6/30.6  60.3 33 2.0 2.3
T5-base 65.5/50.4/44.3 72.5 4.0 2.0 2.7
BART 76.0/65.0/55.8 88.1 4.7 3.0 3.7
ADTabGPT 98.8/98.9/98.5 97.8 5.0 4.7 5.0

Table 3: Results of automatic metrics and human evaluation.

4.3 Experiment Settings

We randomly split 16421 health records into train
(70%), dev (15%) and test (15%) with no overlap.
We download pre-trained GPT2 models from hug-
gingface to avoid starting training from scratch. For
optimizer, we adopt the OpenAl AdamW optimizer
with 100 warm steps. The batchsize is set to 4 and
we fine-tune the model 10 epochs with learning
rate is set to 2e-4. All experiments are conducted
on a Nivida RTX TITAN GPU.

4.4 Results and Analysis

4.4.1 Automatic Evaluation & Human
Evaluation

As shown in Table 3, first, from an overall perspec-
tive, methods based on Large Language Models (i.e.
T5 and BART) outperform the other approaches,
with our ADTabGPT achieving the best results.
Both metrics for methods based on LLM are scored
highly. Second, we observed that our ADTabGPT-
generated clinical notes almost identical to the ref-
erences, achieving state-of-the-art results in both
automatic and human evaluations. Third, we se-
lected 200 generated clinical reports for human
evaluation, and the results are presented in Table 3.
Our method surpasses five baseline models across
all three human-centric metrics. The most signif-
icant improvements are observed in consistency
and relevance, demonstrating that our method can
generate not only fluent diagnostic reports but also
accurately reflect various patient indicators.

These results indicate that LLM are adept at han-
dling table-to-text tasks, even in the highly special-
ized domain of neuroimaging. This reinforces our
belief in the potential of using such techniques to
mine valuable variables from ADNI tabular EHRs
for Alzheimer’s disease analysis. Further, although
the automatic evaluation shows high scores for the
generated clinical reports, there are still existing
issues, which will be analyzed in detail in the next

case study section.

4.4.2 Case Study

We show in table 4 some clinical note examples
generated by T5,BART, and our ADTabGPT. As
we can see, both methods perform well in the initial
sections of the diagnostic reports, Basic Personal
Information. However, with longer documents, T5
and BART tend to produce various errors. The
portions marked in orange indicate ,
meaning the outputs cannot be verified against the
source table data. The parts marked in red signify
more severe, multiple errors. Beyond hallucina-
tions, these include value errors, such as altering
the patient’s measurements and test results, gram-
matical error, and missing critical details. This is
particularly severe in the Cognitive and Neurofunc-
tional Test Results section of T5’s outputs, where
a significant amount of information is missing, af-
fecting the understanding of patients’ diagnostic
results. The sections marked in green highlight
anomalous symbols in the diagnostic results, al-
though the values are correct. This issue only ap-
pears in the BART-generated outputs. The occur-
rence of these problems may be due to the limited
capacity of large models to handle long documents,
resulting in errors when the patient’s diagnostic
report is lengthy. Our ADTabGPT demonstrates
perfect ability to generate fluent and faithful clini-
cal reports in this example.

4.4.3 EHR case

We provide an example of a patient’s diagnosis
to detail our Multimodal and Longitudinal Neu-
roimaging EHR. As illustrated in Figure 4, we can
observe the progression of this subject’s condition
from both diagnostic reports and MRI imaging per-
spectives. In this case, the patient’s records span
from 2006-01-19 to 2023-04-04, with the condition
progressing from MCI to a confirmed diagnosis of
AD.



Attribute Value

PTID 002_S_4237
Age 80.9
Sex Female

ADTabGPT:(consistent with the reference)

Basic Personal Information: Subject 002_S_4237 is a 80.9-year-old female who has completed 13 years
of education. The ethnicity is Not Hisp/Latino and race is white. Marital status is never married. Initially
diagnosed is early mild cognitive impairment, and on the date of 2007-10-14, the final diagnosis is mild
cognitive impairment.

Biomarker Measurements: The subject’s genetic profile includes an ApoE4 status of 0.0. Neuroimaging
with FDG-PET shows average uptake in the angular, temporal, and posterior cingulate regions being
1.17185. Cerebrospinal fluid analysis reveals A3 42 levels at more than 1700, total tau protein levels at
302.1, and phosphorylated tau levels at 25.66.

Cognitive and Neurofunctional Test Results: The Mini-Mental State Examination score stands at
29.0. The Clinical Dementia Rating, sum of boxes, is 5.0. ADAS 11 and 13 scores are 12.0 and 12.0
respectively, with a score of 5.0 in delayed word recall. The Rey Auditory Verbal Learning Test results are
as follows: immediate recall at 25.0, learning score at 9.0, forgetting score at 9.0, and percent forgetting
at 9.0. Logical Memory test for delayed recall scored 6.0. The Digit Symbol Substitution test resulted
in a score of Unknown. Trails B testing showed a score of 253.0. The modified Preclinical Alzheimer’s
Cognitive Composite scores using Digit Symbol Substitution and Trails B are -4.64725 and -6.38287
respectively. The Functional Activities Questionnaire rated the subject as 0.0.

Imaging Data Points: Under MRI conditions at a field strength of 3 Tesla, using Cross-Sectional
FreeSurfer (5.1), the imaging data recorded includes ventricles volume at 92447.0, hippocampus volume
at 6102.0, whole brain volume at 976304.0, entorhinal cortex volume at 3915.0, fusiform gyrus volume at
16367.0, and middle temporal area volume at 18784.0. The intracranial volume measured is 1516250.0.

TS-base:

Basic Personal Information: Subject 002_S_4237 is a 80.9-year-old Male who has completed 13 years
of education. The ethnicity is Not Hisp/Latino and race is white. Marital status is never married. Initially
diagnosed is early mild cognitive impairment, and on the date of 2007-10-14, the final diagnosis is mild
cognitive impariment.

Biomarker Measurement: The subject’s genetic profile icludes an ApoE4 status of 0.0. Neuroimaging
with FDG-PET shows average uptake in the angular, temporal, and posterior cingulate regions being dang

gyrus.

Cognitive and Neurofunctional Test Results: The The Mini-Mental State Examination score stands at 4
and 13 in delay word recall. The Clinical Dementia Rating, sum of box, is 4. ADAS 11 and 13 scores are
9.0 and 9.0-PATH at 3.0.

Using Cross-Sectional FreeSurfer (5.1), the Imaging Data Point: Under MRI conditions are —4.64725
and 2-6.38287 respectively, with hippocampus volume at 6102.0. Logical Memory test at 6.0. The Digit
Symbol Substitution test result in uncontrolled recall. Trails B testing showed obstructive Learning Test
results are as follows: immediate recall at 225.0, learning score at 59.0 and percent forgetting at 7.0 in
entorhinal cortex volume starting at 976304.0, fusiform gyrus density at 16367.0; the intracranial volume
measured is 1516250.0

BART:

Basic Personal Information: Subject 002_S_4237 is a 80.9-year-old female who has completed 13 years
of education. The ethnicity is Not Hisp/Latino and race is white. Marital status is never married. Initially
diagnosed is early mild cognitive impairment, and on the date of 2007-10-14, the final diagnosis is mild
cognitive impairment.




BART:

Biomarker Measurements: The subject’s genetic profile includes an ApoE4 status of 0.0. Neuroimaging
with FDG-PET shows average uptake in the angular, temporal, and posterior cingulate regions being
1.17185. Cerebrospinal fluid analysis reveals A 42 levels at more than 1700, total tau protein levels at
302.1, and phosphorylated tau levels at 25.66.

Cognitive and Neurofunctional Test Results: The Mini-Mental State Examination score stands at 29.0,
with a score of 5.0 in elay word recall. The Rey Auditory Verbal Learning Test results are as follows:
immediate recall at 25.0, learning score at 9.0%, forgetting score at 9.0, and percent forgetting at 9.0%.
Logical Memory test for delayed recall scored 6.0%. The Digit Symbol Substitution test resulted in a score
of Unknown. Trails B testing showed a score of 253.0 and a score for modified Preclinical Alzheimer’s
Cognitive Composite scores of 253. The Functional Activities Questionnaire rated the subject as -6.38287.
Imaging Data Points: Under MRI conditions at a field strength of 3 Tesla, using Cross-Sectional
FreeSurfer (5.1), the imaging data recorded includes ventricles volume at 92447.1, hippocampus volume
at 6102.0, whole brain volume at 976304.0), entorhinal cortex volume at 3915.0,\" fusiform gyrus
volume at 16367.0\", and middle temporal area volume at 18784.0\", The intracranial volume measured is

1516250.0\ ".

Table 4: A sample tabular clinical diagnostic notes and the textual generated clinical diagnostic reports by

our ADTabGPT and baslines.

, green text signifies errors

involving anomalous symbols, and red text denotes multiple errors, including value errors,grammatical

mistakes, and missing critical details.

¢

Subject 023_S_0126 on
the data of 2006-01-19.
her final diagnosis is MCI.

#

Subject 023_S_0126 on
the data of 2010-03-04,
her final diagnosis is MCI.

P »
gb
-

Subject 023_S_0126 on
the data of 2013-04-04,
her final diagnosis is AD.

Subject 023_S_0126 on
the data of 2008-03-21,
her final diagnosis is MCI.

Subject 023_S_0126 on
the data of 2011-02-23,
her final diagnosis is MCI

Subject 023_S_0126 on
the data of 2012-02-29,
her final diagnosis is MCI.

Figure 4: An example of patient’s multimodal and
longitudinal EHR

5 Conclusion

Given the critical need for multimodal and longitu-
dinal EHRs in brain-focused studies, we introduce
the first vision-language brain dataset including 3D
brain volume and comprehensive patient clinical
notes. By collecting and analyzing ADNI tabular
data, we developed a GPT-based method to trans-
form them into information-rich and fluent natural
language clinical reports. These reports encom-
pass patients’ demographic information, biomarker
measurements, cognitive assessments, and volu-
metric data. Using BERT for disease classification
achieved an accuracy of 98.89%, which not only
confirms the contribution of tabular EHRs to AD
diagnosis but also highlights the significant poten-

tial of ADNI tabular data for brain disease analysis.
Additionally, we collected 10,387 volumetric T1-
weighted MRI scans from ADNI and adopted a
series of preprocessing steps, which provide criti-
cal imaging perspectives for the analysis of brain
diseases. Through the aforementioned annotation
and preprocessing methods, we ultimately estab-
lished a multimodal and longitudinal EHRs dataset
that includes 3D brain image volumes and corre-
sponding clinical notes. While ADNI dataset is
publicly accessible, it requires approved access.
To support future research in this area, we make
our processing methods and code publicly avail-
able at https://anonymous.4open.science/r/
ADNI-table-to-Text-2EDB

Limitations

Data scarcity The ADNI dataset is extensive, and
we have selected ADNIMERGE for our prelimi-
nary work. This table merges several key variables
from various case report forms and biomarker labo-
ratory summaries across the ADNI protocols. How-
ever, there are additional valuable tables, such as
those detailing family history, drug history, and
potential causes of AD (e.g., Frontotemporal De-
mentia, Major Depression, Parkinson’s Disease,
Huntington’s Disease, etc.) Understanding these
notes requires high levels of specialized knowledge.
In our future work, we aim to integrate more of this
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information to form a more comprehensive diag-
nostic report.

Multi-scale features A key distinction between
medical and natural images lies in the significance
of multi-scale features. Captions for natural images
are typically concise, providing an overall descrip-
tion. In contrast, medical reports consist of multi-
ple aspects and contain significantly more detailed
information, as illustrated in 1. These non-image
clinical informations are also pay a crucial role in
the medical domain, especially for AD diagnosis.
For instance, advanced age and specific genes, like
APOE4, are both significant risk factors for AD
but cannot be observed from images alone. Unlike
exsiting radiology reports, the clinical reports in
our dataset not only describe the volumetric aspects
of T1 scans but also include patients’ demographic
information, biomarker measurements, and cogni-
tive assessments. How to effectively integrate these
clinical details into a unified embedding space and
align them effectively is a direction we will explore
in our future research.

Inconsistency between pre-training and applica-
tion A large number of research demonstrates that
CLIP’s image encoder, initially pre-trained on na-
ture images, also achieves impressive performance
in the medical domain. However, most existing
medical VLP models are designed to work with
2D images, which may significantly limit their ef-
fectiveness in the neuroimaging domain, given the
complex and sensitive nature of brain tissue. An
important question arises: How can we effectively
extend a 2D image encoder to extract features from
3D medical? To address this, we will focus on de-
veloping 3D VLP-driven models, specifically for
brain analysis.

Medical VLP fairness As previously reported in
Section 2, there is significant imbalance in the dis-
tribution of fine-grained attributes such as race, eth-
nicity, and marital status within the data. Although
the ADNI dataset is widely used, it was not primar-
ily designed for fairness. Historical instances of
bias in various technologies highlight the critical
need for fairness in machine learning(Wang et al.,
2022a; Dehdashtian et al., 2023). Large Vision-
Language Pre-training models, which influence
diagnostic and treatment decisions, can perpetu-
ate healthcare disparities and result in adverse out-
comes if they exhibit bias. Therefore, improving
dataset quality and ensuring the fairness of model
algorithms are not just ethical and legal imperatives,
but also crucial for achieving healthcare equity(Luo

et al., 2024). While VLP models have significantly
advanced various medical tasks and propelled the
development of Al in healthcare, one of our key
goals, as well as a direction for future efforts is
to ensure these models provide fair and unbiased
diagnostic results across different races, genders,
and socioeconomic statuses.

Beyond image-text alignment The philosophy of
CLIP is centered on aligning different modalities,
specifically images and text, by enabling the model
to understand and establish meaningful connec-
tions between visual and textual content. In the
neuroimaging domain, images often involve vari-
ous modalities such as MRI and PET scans. Specif-
ically, structural MRI (sMRI) is used to depict the
structure of the brain, while functional MRI (fMRI)
reveals metabolic activity in the brain during spe-
cific tasks(e.g., sensory, motor, cognitive functions,
ect.). Each modality provides unique insights into
different aspects of a patient’s condition. Further-
more, one of the most notable features of AD is
hippocampal atrophy, however, in early mild cog-
nitive impairment, structural changes are often not
apparent and are typically inferred through func-
tional assessments. In our future work, we plan
to incorporate more modalities, such as functional
MRI, combined with EHRs for comprehensive lon-
gitudinal analysis of brain diseases.
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appendix
A Related Work

EHRSs Generation EHRs are a longitudinal record
that encompass a patient’s health information.
Early works on generating EHRs were predomi-
nantly ruled-based(Buczak et al., 2010; McLachlan
et al., 2016). However, powered by neural net-
works, recent advancements have seen the adoption
of deep learning models and artificial intelligence
(AI), which have significantly enhanced this pro-
cess. One pioneering innovation was MedGAN
proposed by(Choi et al., 2017), aiming to generat-
ing multi-label discrete patient records using gener-
ative adversarial networks (GANs) models (Good-
fellow et al., 2020). Following this development,
numerous studies have focused on improving med-
ical text generation(Guan et al., 2018; Baowaly
et al., 2019; Zhang et al., 2020). However, most
EHRs only focus on static, single-modal EHRs and
overlook the representations of imaging informa-
tion. To the best of our knowledge, we are the first
to focus on building a multimodal and longitudinal
EHRs dataset for brain disease analysis.

Vision-Language Models The integration of vi-
sion and language in deep learning, exemplified
by models such as CLIP, trained on a large scale
of paired image-text multimodal data, represents



a significant advancement in aligning visual in-
formation with textual descriptions in Al. Boot-
strapping Language-Image Pre-training (BLIP)(Li
et al., 2022) introduces a novel multimodal, unified
encoder-decoder framework to learn from noisy
image-text pairs. Further enhancing this work,
BLIP-2 (Li et al., 2023) proposed a lightweight
querying transformer, achieving state-of-the-art
performance on various vision-language tasks with
considerably fewer trainable parameters.

These success of CLIP-like models have
achieved great success in many downstream com-
puter vision applications. Hence, it is intuitive
to understanding complex medical imaging using
VLP models, which has also led to rapid advance-
ments in various medical domain (e.g., Chest X-
ray, multi-organ CT, Brest Histology). For in-
stance, Xplainer (Pellegrini et al., 2023) leverages
the CLIP to align the of X-Ray scans and clini-
cal radiology reports representations close in latent
space for zero-shot diagnosing pathologies. Med-
CLIP(Wang et al., 2022b) employs inter-report se-
mantical correlation as the soft optimization target
for the alignment between X-Ray medical image
and text. CoOPLVT (Baliah et al., 2023) investi-
gate CLIP’s transfer learning capabilities and its
potential for cross-domain generalization in dia-
betic retinopathy (DR) classification. Wu et al.(Wu
et al., 2023) proposed a zero-shot nuclei detection
framework based on VLP models by directly using
automatic text prompts.

Above research demonstrate that CLIP’s image
encoder, initially pre-trained on nature images, also
achieves impressive performance in the medical do-
main. However, most existing medical VLP mod-
els are designed based on 2D images, for 3D MRI
images, (Anand et al., 2023) taking them into 2D
slices. The brain, with its complex features, espe-
cially for brain disease diagnosis, is sensitive to
even minor tissue changes, and slicing may com-
promise these crucial features. MedBLIP (Chen
et al., 2023) extracts and fuses 3D medical volume
images, aligning them with text features in a com-
mon space using BioMedLLM (Bolton et al., 2022),
and then fine-tunes the alignment using LoRA(Hu
et al., 2021). However, they only utilizes patient
age and a limited number of cognitive test results
as textual descriptions, missing out on a wealth of
valuable information contained in ADNI EHRs.

One major challenge in applying VLP for brain
analysis lies in the scarcity of available image-text
pair datasets. Therefore, this paper aims to develop
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a multimodal and longitudinal EHRs that includes
3D brain image volumes and corresponding clini-
cal notes for brain disease studies. We expect that
this dataset not only enhances the quality but also
broadens the horizon for research in the brain dis-
ease domain.

B Data Descriptions

ADNI provides a dictionary that clarifies the mean-
ing of each variable. To supplement the details,
Table 5 presents information about the variables
along with their descriptions. We also include an
example in this table to illustrate their application.
Table 5

C Data Distribution

To supplement the details for our neuroimaging
EHR in the main paper, we present additional anal-
yses. Figures 5a and 5b illustrate the distribution
of gender and marital status, respectively. Figure
5c depicts the distribution of initial and final diag-
noses, while Figures 5d and 5e show the distribu-
tions of racial and ethnic backgrounds. Figure 5f
presents the distribution of the APOE4 gene allele
carriers.
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Figure 5: (a) distribution of gender, (b) distribution of marital status, (c) distribution of initial and final
diagnoses, (d) distributions of racial, (e) distributions of ethnic, (f) distribution of the APOE4 gene allele

carriers

14

SMC

CN MCI  Dementia LMCI  EMCI AD

m Diagnosis_baseline = Diagnosis

(©)

APOE4-2
APOE4-1
APOE4-0
CN Dementia MCI
= APOE4-0 = APOE4-1 mAPOE4-2
®



Information Information Description Example
PTID Original study protocol 011_S_0002
Age Age 74.3
PTGENDER Sex Male
PTEDUCAT Education 16
PTETHCAT Ethnicity Not Hisp/Latino
PTRACCAT Race White
PTMARRY Marital Married
EXAMDATE Date 09/08/2005
DX bl Baseline DX CN
DX DX CN
APOE4 ApoE4 0
FDG Average FDG-PET of angular, temporal, and 1.33615
posterior cingulate.
ABETA CSF ABETA 741.5
TAU CSF TAU 239.7
PTAU CSF PTAU 22.83
CDRSB CDR 0
ADASI1 ADAS 11 10.67
ADAS13 ADAS 13 18.67
ADASQ4 ADAS Delayed Word Recall 5
MMSE MMSE 28
RAVLT_immediate RAVLT Immediate (sum of 5 trials) 44
RAVLT _learning RAVLT Learning (trial 5 - trial 1) 4
RAVLT_forgetting RAVLT Forgetting (trial 5 - delayed) 6
RAVLT _perc_forgetting RAVLT Percent Forgetting 54.5455
LDELTOTAL Logical Memory - Delayed Recall 10
DIGITSCOR Digit Symbol Substitution 34
TRABSCOR Trails B 112
mPACCdigit ADNI modified Preclinical Alzheimer’s Cog- -4.31028
nitive Composite (PACC) with Digit Symbol
Substitution
mPACCtrailsB ADNI modified Preclinical Alzheimer’s Cog- -4.11443
nitive Composite (PACC) with Trails B
FAQ FAQ 0
FLDSTRENG MRI Field Strength 1.5 Tesla MRI
Cross-Sectional FreeSurfer
EER EER (FreeSurfer Version 4.3)
Ventricles UCSF Ventricles 118233
Hippocampus UCSF Hippocampus 8336
WholeBrain UCSF WholeBrain 1229740
Entorhina UCSF Entorhinal 4117
Fusiform UCSF Fusiform 16559
MidTemp UCSF Med Temo 27936
ICV UCSFICV 1984660

Table 5: This table presents information from the ADNIMERGE table and its corresponding descriptions
from official ADNIMERGE-DICTIONARY, detailing patient data in the ADNI study. Each category of
information is highlighted with a specific color: 7 pieces of basic personal and 3 pieces of diagnosis
information, 5 biomarker measurements, 15 cognitive and neurofunctional test results, 7 imaging data
points, and 2 additional related indicators(MRI Field Strength and FS VERSION). Each entry in the table
includes an example for clearer understanding.
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