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Abstract

Enhancing exploration in reinforcement learning (RL) through the incorporation
of intrinsic rewards, specifically by leveraging state discrepancy measures within
various metric spaces as exploration bonuses, has emerged as a prevalent strategy to
encourage agents to visit novel states. The critical factor lies in how to quantify the
difference between adjacent states as novelty for promoting effective exploration.
Nonetheless, existing methods that evaluate state discrepancy in the latent space
under L1 or L2 norm often depend on count-based episodic terms as scaling
factors for exploration bonuses, significantly limiting their scalability. Additionally,
methods that utilize the bisimulation metric for evaluating state discrepancies face a
theory-practice gap due to improper approximations in metric learning, particularly
struggling with hard exploration tasks. To overcome these challenges, we introduce
the Effective Metric-based Exploration-bonus (EME). EME critically examines
and addresses the inherent limitations and approximation inaccuracies of current
metric-based state discrepancy methods for exploration, proposing a robust metric
for state discrepancy evaluation backed by comprehensive theoretical analysis.
Furthermore, we propose the diversity-enhanced scaling factor integrated into the
exploration bonus to be dynamically adjusted by the variance of prediction from
an ensemble of reward models, thereby enhancing exploration effectiveness in
particularly challenging scenarios. Extensive experiments are conducted on hard
exploration tasks within Atari games, Minigrid, Robosuite, and Habitat, which
illustrate our method’s scalability to various scenarios. The project website can be
found at https://sites.google.com/view/effective-metric-exploration.

1 Introduction

Reinforcement learning (RL) has made significant strides, yielding breakthroughs across various
domains, including video gaming [43], autonomous driving [65], and robotic control [1, 37]. However,
for many real-world tasks, defining a dense reward function is non-trivial, yet a sparse reward function
based on success or failure is directly available, which makes learning effective policies difficult,
as they demand efficient exploration of the state space, highlighting exploration in sparse-reward
environments as a core challenge in RL [59].

Methods that quantify the state discrepancy between adjacent steps using specific measures within
different metric spaces have shown remarkable success in tasks characterized by sparse rewards.
These methods, by leveraging a measure of state discrepancy as an exploration bonus, facilitate agents
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in discovering novel states. For instance, RIDE [51] employs the difference between two consecutive
state embeddings, measured under L2 norm, as an exploration bonus. Similarly, NovelD [69]
introduces a bonus based on the state discrepancy, as represented by the RND [11] bonus, but
under the L1 norm. However, the effectiveness of these Lp norms-based methods is contingent
on the scaling factor expressed as the episodic count term Nep(s), which is the number of times
state s has been visited during the current episode. The episodic term becomes ineffective when
each state is unique and cannot be counted, posting a significant limitation when it comes to more
complex, dynamic, and noisy environments [32]. LIBERTY [63] aims to surmount this hurdle by
evaluating state discrepancy through the bisimulation metric [25], which links state differences to
value differences within the bisimulation metric space, thus incentivizing exploration of novel states
with greater value differences and substantially enhancing learning efficiency. Nevertheless, due
to the high computational cost or infeasibility of accurately computing bisimulation metrics, the
approximation, and relaxations over the metric [13, 68, 63] have been used to optimize efficiency.
Our analysis reveals that approximation gap in LIBERTY might break the theoretical guarantees
of the bisimulation metric, potentially undermining exploration performance. Furthermore, the
efficacy of bonuses based on state discrepancies declines in hard exploration tasks or scenarios where
state differences are minimal, such as in the “Noisy-TV” [11] problem and vision-based real indoor
environments [60], posing a significant constraint on the scalability of these methods.

(a) (b) (c)
Figure 1: Trajectories of policies trained with different exploration algorithms in the real-life indoor environment.
(a) episodic count-based method under Lp norm (b) bisimulation metric-based method (c) our method.

To address this aforementioned limitations, we introduce the Effective Metric-based Exploration-
bonus (EME) for exploration. Our method features a more resilient metric for evaluating state
differences, simultaneously eliminating approximation gap with a theoretical guarantee. EME
significantly boosts learning efficiency by forging a closer connection to the value differences between
states, while maintaining fidelity to its theoretical framework. Furthermore, we have developed a
diversity-enhanced scaling factor to augment exploration efficacy in hard exploration tasks, where
state differences are notably subtle. Our scaling factor dynamically adjusts the exploration bonus
based on the variance of predictions from an ensemble of reward models, which is higher when
agents encounter novel state space, thereby encouraging more effective exploration. As illustrated in
Figure 1, we present the trajectories of policies trained using count-based state discrepancy bonus,
bisimulation-based exploration bonus, and our method within a real-life indoor environment [15]
(Full results in Figure 10 of Appendix C.3). Our method successfully explores a significantly larger
portion of the space compared to the others, demonstrating the superior effectiveness of EME.

The main contributions of this paper are as follows. Firstly, we conduct a comprehensive analysis of
the limitations inherent in current metric-based state discrepancy methods for exploration. Based
on the analysis, we introduce an effective metric for evaluating the behavioral similarity between
states supported by theoretical assurances. Secondly, we propose a diversity-enhanced scaling factor
for exploration bonuses based on the variance of predictions from an ensemble of reward models,
which is scalable and effective in hard exploration tasks. Lastly, extensive experiments are conducted
in Robosuite, Atari games, MiniGrid, and Habitat. The results demonstrate that our algorithm can
effectively enhance exploration and accelerate training across various environments.

2 Background

We focus on exploration bonuses to incentivize exploration in reinforcement learning (RL). To foster
the reader’s understanding, we first introduce standard notation and common practices.

Markov Decision Processes. We assume the underlying environment is a Markov decision process
(MDP), defined by the tupleM = (S,A, P,R, γ), where S is the state space, A is the action space,
P (s′ | s, a) is state transition function from state s ∈ S to state s′ ∈ S, R is the reward function
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and γ ∈ [0, 1) is the discount factor. Generally, the policy of an agent in an MDP is a mapping
π : S ×A → [0, 1]. An agent chooses actions a ∈ A according to a policy function a ∼ π(s), which
updates the system state s′ ∼ P (s, a) yielding a reward r = R(s, a). In this paper, we denote a
policy by πθ, where θ is the parameter of the policy function. The goal of the agent is to optimize the
parameter θ for maximizing the expected accumulative rewards, J(πθ) = Eπθ

[
∑∞

t=0 γ
tR (st, at)].

State Discrepancy as Exploration Bonuses. Addressing the sparse reward challenge prevalent in
many environments necessitates augmenting the external reward function, re, with an intrinsic reward
bonus, b, resulting in a combined reward: r = re + b. A number of intrinsic bonuses2 that encourage
exploration have been proposed. More recent methodologies employ an exploration bonus that varies
based on the novelty of the current state relative to previously visited states, evaluated within different
metric spaces, which can be generally defined as:

b = SD ∗ SF = d(Φ(s),Φ(s′)) ∗ λSF (1)

where SD denotes the state discrepancy, SF denotes the scaling factor, d : S × S → R represents the
evaluation metric that quantifies the degree of difference or distance between two projected states,
and Φ : S → Z is the projection function which maps the state to a representation space Z .

Algorithm Objective = State Discrepancy∗Scaling Factor Episodic Approximation Gap Scalability
RIDE [51] ∥ϕ(s′)− ϕ(s)∥2 ∗

√
Nep(s′)

−1
" % %

NovelD [69] ∥rRND(s′)− α · rRND(s)∥+ ∗ I[Nep(s
′) = 1] " % %

LIBERTY [63] [γdinv(s
′, s0)− dinv(s, s0)] ∗ λ % " %

EME (ours) dE(s
′, s) ∗min{max{ζ(rs), 1},M} % % "

Table 1: Comparison of exploration methods using different measures (marked in blue) of state discrepancy as
exploration bonus. ϕ = f(s) : features encoder; Nep(s) : episodic (pseudo) count of visits to state s; rRND(s):
the RND [11] bonus; α: normalized coefficient; dinv: inverse dynamic bisimulation metric used in [63]; s0:
initial state; λ: the scaling hyper-parameter; dE : our proposed effective metric for state discrepancy evaluation;
ζ(rs): variance of predictions from an ensemble of reward models: M : maximum reward scaling.

The comparison of recent metric-based exploration methods is summarized in Table 1 These bonuses
reward high dissimilarity between adjacent states, encouraging exploration by leveraging measures
such as the L2 distance for state embeddings (as used by RIDE [51]) and the L1 distance for the
disparity in RND bonuses between adjacent states (as utilized by NovelD [69]). However, these
approaches, grounded in Lp norms and dependent on episodic state visit counts, face significant
scalability challenges when exploring various environments. On the other hand, LIBERTY [63]
proposes the inverse dynamic bisimulation metric to evaluate the state difference, which links state
and value differences to enhance learning efficiency. Yet, the approximation inaccuracies inherent
in bisimulation metric learning compromise theoretical assurances, breaking theoretical integrity of
bisimulation metric. In the following sections, we detail the shortcomings of these methods.

3 Limitations of Existing Metric-based Exploration Bonus

3.1 Latent Vector Space under Lp Norms

Lp norms such as L1 and L2 norms are widely used in measuring the "distance" between states or
embeddings. For example, considering a continuous map between the states of an MDP and a latent
vector space: Φ : S → Z ⊆ Rn. We can equip this vector space with a Euclidean norm to obtain a
Euclidean metric space (Z, ∥ · ∥2), and the state discrepancy is measured as SD = ∥Φ(s)− Φ(s′)∥2.

Reliance on Count-based Scaling Factor. The state-difference based exploration bonus employed by

Table 2: Mean success rate comparison (values
below 0.5 are marked in red)

Environment Robosuite MiniGrid Habitat
RIDE 0.52 0.93 0.19
RIDE w/o EP 0.05 ↓ 0.00 ↓ 0.00 ↓
NovelD 0.55 0.93 0.17
NovelD w/o EP 0.11 ↓ 0.00 ↓ 0.00 ↓
LIBERTY 0.73 0.00 0.13

RIDE [51] and Noveld [69] can be regarded as the dif-
ference between adjacent states in the Lp norm space.
The efficacy of the exploration bonus heavily lies in the
episodic scaling factor (SF) measured by the count of
visited states Nep(s) presented in Table 1. However, the
count-based episodic bonus suffers from a fundamental
limitation, which is similar to that faced by count-based
approaches [5] in general: if each state is unique, then

2The detailed discussion of related work can be found in Appendix F
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Nep(st) will always be 1 and the episodic bonus is no longer meaningful, which is the case for many
real-world applications. For example, a household robot’s state as recorded by its camera might
include moving trees outside the window, clocks showing the time, or images on a television screen
which are not relevant to its tasks, but nevertheless make each state unique. As shown in Table 2,
without the episodic count term (denoted as "w/o EP"), the performance of RIDE and Noveld exhibits
a significant decline in all different types of environments.

Limited Expressiveness of Novelty. As indicated in Table 2, the performance of RIDE and NovelD
significantly degrades in environments with high-dimensional visual observations or continuous
control tasks, where the success rate falls below 0.5. The significant decline highlights the inadequa-
cies of utilizing state differences within vector spaces, computed using the Lp norm, to effectively
express novelty. Therefore, a more robust and effective metric is essential to accurately assess and
characterize the novelty among visited states.

3.2 State Discrepancy within the Bisimulation Metric Space

The bisimulation metric [25, 26] defines a pseudometric d : S × S → R to measure the similarity
between two states. The recently proposed variant, π-bisimulation metric [13], focuses on behaviors
relative to a particular policy π, which consists of a reward difference term and a Wasserstein distance
in dynamics models between states.
Definition 1 (π-bisimulation metric). Given a fixed policy π, the following π-bisimulation metric
exists and is unique:

d(si, sj) = |Eai∼πr
ai
si − Eaj∼πr

aj
sj |+ γW1(d)(P

π(· | si), Pπ(· | sj)) (2)

where Eai∼πr
ai
si = Eai∼π(·|si)r(si, ai), P

π(· | si) = Ea∼π(·|si)P (· | si, a) and W1 is the 1-
Wasserstein distance.

Approximation Gap. LIBERTY [63] proposes exploration bonuses based on state discrepancy
within the inverse dynamic bisimulation metric space, which adds the difference between action
output by the inverse dynamic model based on the bisimulation metric. The difference between states
evaluated under the bisimulation metric is directly associated with the value difference (see Theorem
3.3 in [26] and Theorem 2 in [63] for detailed proof). The loss function of LIBERTY metric learning
is:

L(ϕ) = E
[(

dinv(si, sj ;ϕ)− |rai
si − raj

sj | − γW2(P
π
s̄i(η), P

π
s̄j (η))− γ|Isi+1

s̄i (θ)− I
sj+1

s̄j (θ)|
)2]

(3)
where s̄ denotes state with stop gradients, Pπ

s̄i(η) indicates probabilistic dynamics model parameter-
ized with η and I

si+1

s̄i (θ) is the inverse dynamic model parameterized with θ. As the 1-Wasserstein
distance is usually difficult to estimate, LIBERTY and prior methods [68] propose to use 2-Wasserstein
distance W2 to replace W1, as W2 has a convenient closed-form of a Gaussian distribution with
respect to the L2 distance.
Proposition 1 (Relaxation Divergence). Relaxing the W1 metric to W2 breaks the theoretical integrity
of the inverse dynamic bisimulation metric [63] in scenarios where the transition dynamic model
P (s, a) or the policy π is stochastic.

Proof in Appendix B. Based on Proposition 1, we can see that the relaxation divergence of 1-
Wasserstein distance between dynamic models can only be ignored when both the transition dynamics
model and policy π are deterministic. However, this assumption may be too strong to hold in practice.

Besides, the metric learning process encounters a theory-practice gap due to the relaxation of reward
expectations. Specifically, computing the expected reward differences (first term of Equation (2)),
|Eai∼πr

ai
si − Eaj∼πr

aj
sj |, proves to be computationally daunting and challenging to accurately esti-

mate, even with sampling techniques. Following other bisimulation metric-based methods [13, 68],
LIBERTY [63] shifts the expectation operator outside the absolute value of reward differences
(second term of Equation (3)) and differences between action outputs predicted by inverse dynamic
models, as in Eai∼π,aj∼π[|rai

si − r
aj
sj |+ |I

si+1

s̄i − I
sj+1

s̄j |], which facilitates more efficient sampling
by avoiding the direct estimation of reward and action expectations.
Proposition 2 (Shifted LIBERTY Distance). The relaxation of expectation during learning process
shifts the original LIBERTY distance and introduces a looser value difference bound.
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We extend the concept of the shifted MICo distance [14] introduced in [35, 16]. The proof is in
appendix B. Based on Proposition 2, as the shifted LIBERTY distance has a looser value difference
bound, it may be less relevant to the value function. As a result, the learned metric may not be able to
capture the state similarity within bisimulation metric space accurately. , as the shifted LIBERTY
distance has a looser value difference bound, it may be less relevant to the value function. As a result,
the learned metric may not be able to capture the state similarity within bisimulation metric space
accurately.

Scalability Constraints. As shown in Table 2, LIBERTY’s performance significantly drops in hard
exploration tasks within MiniGrid and in the realistic scenarios of the Habitat environment [60].
Specifically, in Habitat, agents must navigate through photorealistic simulations of actual indoor
spaces. In these settings, the subtle variations between states diminish the impact of the exploration
bonus, significantly lowering the efficiency of exploration. This limitation becomes even more
apparent in the procedurally-generated MiniGrid environment, where the inherent stochasticity
further impedes LIBERTY’s performance. Those findings highlight the scalability challenges that
bisimulation metric-based methods encounter in complex environments.

4 Effective Metric-based Exploration Bonus

In this section, we introduce the Effective Metric-based Exploration-bonus (EME), conceived to
overcome the limitations identified in existing methods that use metric-based state discrepancy as
exploration bonuses. Our development is driven by two primary objectives. Firstly, we aim to
refine the metric learning process to achieve a more effective exploration without incurring the
approximation gap, thereby upholding the theoretical integrity of value function bound. Secondly, we
seek to obviate the reliance on scaling factor of episodic counts, ensuring effective exploration across
different environments. To this end, we propose a novel metric that more precisely evaluates the
behavioral similarity between states, establishing a more effective exploration strategy compared with
previous approaches. Furthermore, we introduce an innovative approach that utilizes the variance
between outputs of an ensemble of reward models in metric learning as a dynamically-adjusted
scaling factor, which significantly enhances exploration efficiency, especially in hard exploration
tasks, thereby improving scalability. The next two sections describe our method in detail.

4.1 The EME Metric

In order to avoid the approximation gap introduced by relaxation of Wasserstein distance and reward
expectations mentioned in Proposition 1 and 2, along with the reliance on the episodic count, we
eliminate the calculation of the Wasserstein distance, and propose the EME metric:
Definition 2 (EME Distance Function). Let met be the space of bounded pseudo-metrics on state
space S, the EME metric dE : S × S → R, the EME distance function F(dE , π) : met → met is
defined as:

F(dE , π)(si, sj) = |Eai∼πr
ai
si − Eaj∼πr

aj
sj |+ γEai∼π

aj∼π
dE(s

′
i, s

′
j) + γDKL(π(·|si)∥π(·|sj)) (4)

where DKL(·∥·) represents the Kullback–Leibler (KL) divergence.

Behavioral Similarity Between States. We strictly calculate the expectation of reward difference
without relaxation. The EME metric measures the distribution distance between dynamics models
by computing the distance between sampled subsequent states following representation learning
method [14] to avoid the computation of the Wasserstein distance. Additionally, we integrate the Kull-
back–Leibler (KL) divergence between policy distributions to more robustly model the “behavioral
similarity” between states, which is more effective and scalable across diverse environments with
different observations, especially in addressing the critical “Noisy-TV” problem [11] during explo-
ration. The “Noisy-TV” problem started as a thought experiment in [11] and is commonly discussed
in exploration literature [51, 52, 42]. Imagine that an RL agent is rewarded with seeking the novel ex-
perience, a TV with unpredictable random noise outputs would be able to attract the agent’s attention
forever. The agent obtains new rewards from state discrepancy caused by noisy TV consistently, but
it fails to make any meaningful action. To counter this, we utilize differences in policy distributions
across states, promoting the exploration of diverse actions rather than repetitive behavior.
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Theorem 1. The EME distance function F(dE , π) : met→ met has a unique fixed-point d̂E .

Proof in Appendix B. Theorem 1 provides a convergence guarantee for the EME distance that by
iterating F(dE , π), distance will converge to the fixed-point d̂E .

Theorem 2. (Guaranteed Value difference bound) Given the EME metric dE , states si and sj , and a
policy π, we have

|V π (si)− V π (sj)| ≤ dE (si, sj) . (5)

Improved Exploration Efficiency. The proof can be found in Appendix B. Theorem 2 demonstrates
that the EME distance between states provides an upper bound on the difference in their state values.
Let’s recap the definition of one-step TD error: δt = rt+1 + γV (st+1)− V (st). Intuitively, if there
is a large value difference between states st and st+1, the corresponding exploration bonus b which
is calculated using dE(st, st+1) will also be large. Consequently, the total reward for the next step,
rt+1 = re + b (where re represents the external environment reward), increases accordingly. The
increase of reward leads to a larger TD error when there is a significant value difference between
adjacent states, incentivizing the agent to prioritize transitions with large TD errors, which not only
enhances the agent’s exploration capabilities but also significantly boosts training efficiency.

4.2 Tractable Optimization of EME

Based on Equation (4), between any pair of states si and sj , we can define the loss function of the
EME metric learning as:

L(ϕ) = E

(dϕE(si, sj)− |Eai∼πr
ai
si − Eaj∼πr

aj
sj | − γEai∼π

aj∼π
dE(s

′
i, s

′
j)− γDKL(π(·|si)∥π(·|sj))

)2


(6)

where dϕE is the EME metric encoder parameterized by ϕ. The last three terms in the loss function (6)
can be regarded as the regression of target metric, which approximates the difference between
rewards, distances of next states and distances of policy distributions, respectively. However, the
reward expectations Eai∼πr

ai
si and Eaj∼πr

aj
sj are computationally intractable and also difficult to

estimate even based on sampling [13]. And the relaxation of reward expectations Eai∼π
aj∼π

|rai
si − r

aj
sj |

used by previous methods [63, 68, 13] will lead to the learned metric having a looser value difference
bound than the original bisimulation metric as proved in Proposition 2. Inspired by metric-based
representation learning methods [35, 16], we propose to use an ensemble of reward models to
approximate the reward difference more accurately.

Proposition 3. Let rs be a random variable over the action distribution defined by p(rs = ras ) =
π(a|s), var(rsi) denote the variance of variable rsi , we can have:

|Eai∼πr
ai
si − Eaj∼πr

aj
sj | =

√
Eai∼π
aj∼π

[∣∣rai
si − r

aj
sj

∣∣2]− var(rsi)− var(rsj ) (7)

Proof. (Sketch) The proof is based on [14, 16] by expanding Eai∼π
aj∼π

[|rai
si − r

aj
sj |2] − |Eai∼πr

ai
si −

Eaj∼πr
aj
sj |2. See detailed proof in Appendix B.

Ensemble of Reward Models. We train an ensemble of reward models {g(η1), . . . , g(ηk)} to predict
the reward from the state-action pairs sampling from the buffer Dτ : g(s, a; η) : S × A → R by
minimizing the prediction error ∥g(st, at; η)− rt+1∥2. Consequently, the variance of reward across
the output of different models in the ensemble is defined as follows:

var(rsi) ≈ ζ(rai
si ) = Eai∼π(si)

(si,ai)∼Dτ

{
Eη

[
∥g(si, ai, η)− Eη[g(si, ai, η]∥22

]}
(8)
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Based on Equation (6), Equation (7) and Equation (8), the tractable EME loss without approximation
gap can be defined as:

L(ϕ) = EDτ
[(dϕE(si, sj)−

√
|rai

si − r
aj
sj |2 − ζ(rai

si )− ζ(r
aj
sj )− γEai∼π

aj∼π
dϕE(s

′
i, s

′
j)

− γEπ(·|si)[log π(·|si)− log π(·|sj)])2]
(9)

Diversity-Enhanced Scaling Factor. The scaling factor of previous methods is either not scalable [51,
69, 2] or hand-crafted hyper-parameter [63], in light of this, we propose a scalable diversity-enhanced
scaling factor for the intrinsic reward to further improve the efficacy of exploration. Let’s recap the
ensemble of reward models {g(η1), . . . , g(ηk)} used in metric training (9). To maintain the diversity
across the individual models g(η), we initialize each model’s parameters differently and train each of
them on a subset of data randomly sampled with replacement. Each model in our ensemble is trained
to predict the ground truth reward. Hence, the parts of reward obtained within the state space that
have been well explored by the agent will have gathered enough data to train all models, resulting
in a low variance of reward predictions from the models, when generalizing to unseen but similar
parts of the reward from unvisited state-space, the areas which are novel and unexplored would still
have high prediction error for all models as none of them are yet trained on such examples, resulting
in higher variance of the reward prediction. Therefore, we use the variance of reward predictions
as the scaling factor of intrinsic reward to encourage exploration on unvisited state space. With the
maximum reward scaling M , the exploration bonus is defined as:

bt+1 = dE(st, st+1) ∗min{max{ζ(rst), 1},M} (10)
As a result, the agent receives greater rewards when encountering novel states during training,
which facilitates more effective exploration, the ablation study on scaling factor and visualization of
exploration bonus is in Appendix C.5. See Algorithm 1 of Appendix D.2 for detailed description.

5 Experiments

The overall objective of our experiment is to evaluate the performance of EME in comparison to other
baselines, we conduct comprehensive experiments on various settings of continuous control tasks,
discrete-action hard exploration games, and real indoor environments3 to assess the effectiveness and
scalability of our algorithm. The implementation details can be found in Appendix D.

Baselines. We compare it against following competitive baseline methods. ICM [47]: a famous
curiosity-driven method. RND [11]: intrinsic rewards are the prediction errors of the distillation net-
work. E3B [32]: proposing count-based episodic bonuses under continuous state spaces. RIDE [51]:
using state difference under latent space as exploration bonuses. NovelD [69]: using the state dif-
ference measured by RND bonus as intrinsic rewards. LIBERTY [63]: using the state discrepancy
evaluated under the bisimulation metric space as shaping reward.

Figure 2: Results for various hard exploration tasks from Robosuite. The x-axis represents the number of steps
(1e7) in training. The y-axis represents the mean success rate(standard deviations in shade).

5.1 Continuous Control

In our continuous control experiments conducted on the Robosuite platform [70], we assess the
exploration capabilities of agents across various challenging tasks, which include Door Opening,

3Details of the environments are provided in Appendix D.1, and additional experiments are described in
Appendix C.
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Table 3: Average testing results of different Minigrid environments for EME and other baselines.
MRN7S8 MRN12S10 MRN12S10-NT KCS4R3 KCS5R3 KCS5R3-NT

ICM 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.20± 0.003 0.00± 0.0 0.00± 0.0
RND 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.62± 0.011 0.00± 0.0 0.00± 0.0
RIDE 0.67± 0.001 0.65± 0.003 0.60± 0.005 0.93± 0.002 0.00± 0.0 0.00± 0.0

NovelD 0.67± 0.001 0.65± 0.001 0.35± 0.003 0.93± 0.003 0.93± 0.001 0.00± 0.0
E3B 0.61± 0.003 0.50± 0.003 0.12± 0.010 0.81± 0.007 0.35± 0.002 0.00± 0.0

LIBERTY 0.58± 0.012 0.00± 0.0 0.00± 0.00 0.80± 0.005 0.0± 0.0 0.00± 0.0
EME 0.69± 0.001 0.65± 0.003 0.66± 0.001 0.93± 0.001 0.94± 0.005 0.94± 0.001

OM2Dlh OM2Dlhb OM2Dlhb-NT OM1Q OM2Q OM2Q-NT
ICM 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0
RND 0.95± 0.007 0.65± 0.003 0.00± 0.0 0.00± 0.0 0.00± 0.0 0.00± 0.0
RIDE 0.95± 0.015 0.87± 0.016 0.35± 0.008 0.00± 0.0 0.00± 0.0 0.00± 0.0

NovelD 0.96± 0.005 0.89± 0.060 0.19± 0.058 0.93± 0.009 0.96± 0.060 0.12± 0.082
E3B 0.97± 0.009 0.89± 0.005 0.00± 0.0 0.88± 0.010 0.80± 0.025 0.00± 0.0

LIBERTY 0.91± 0.001 0.80± 0.001 0.00± 0.0 0.75± 0.015 0.55± 0.030 0.00± 0.0
EME 0.95± 0.025 0.91± 0.007 0.90± 0.016 0.95± 0.012 0.97± 0.003 0.56± 0.015

Table Wiping, and Pick-and-Place. The detailed description of environments can be found in
Appendix D.1.1. Each task represents a demanding context for robotic control, characterized by sparse
rewards and significant exploratory challenges. The overall results are depicted in Figure 2, where our
method consistently outperforms others, demonstrating its superiority in handling continuous control
tasks. LIBERTY achieves the second-best performance in the Door Opening and Table Wiping
tasks, underscoring the advantages of state discrepancy-based novelty within the bisimulation metric
space. Conversely, episodic count-based methods such as RIDE, NovelD, and E3B lag behind, as
episodic counts become less effective in environments with high-dimensional states. Furthermore,
curiosity-driven approaches like ICM and RND struggle due to insufficient exploration. We also
provide additional ablation studies on the ensemble size and max reward scaling in Appendix C.

EME Combined with Feature Encoder. The EME metric can be integrated with any state repre-
sentation derived from various encoders Φ(·), expressed as dE(Φ(st),Φ(st+1)). The encoder may
include the inverse dynamic model [47, 51, 63] which isolates environmental factors that do not affect
the agent’s behavior, the bisimulation-based encoder [68, 35, 14, 13], and random embeddings. The
results can be found in Figure 8 and 9 in Appendix C.2, the performance of EME under the inverse
dynamic encoder and bisimulation-based encoder exhibits a decline, because the exploration bonus
under these encoders get close to zero quickly since their representations are very compact and every
state looks more similar with the convergence of the encoder, which harms the efficacy of exploration.
With respect to random embedding, the variance is larger, resulting in more unstable performance.

Figure 3: Comparison results for different hard exploration Atari games.

5.2 Discrete-action Games

Atari Games. To assess EME in scenarios involving pixel-based observations and discrete actions,
we evaluate our method on the hard exploration games identified by [6, 69, 63] within the common
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Atari benchmark [8], including Asterix, Alien, Breakout, BeamRider, Mspacman, PrivateEye, Pong,
SpaceInvaders, Qbert, and UpNDown. The results are presented in Figure 3. Our method consistently
achieves similar or higher average returns compared to other baselines across all tested tasks. Notably,
EME demonstrates the fastest convergence, particularly in Asterix and UpNDown, highlighting our
method’s superior learning efficiency. While LIBERTY and NovelD exhibit competitive performance
in 6 games, their effectiveness significantly diminishes in the challenging games, PrivateEye and
UpNDown. As for other methods like RIDE, E3B, ICM, and RND struggle across all tasks, primarily
due to inadequate exploration capabilities. To isolate the impact of our proposed EME metric, we also
include the performance of RIDE and LIBERTY with Diversity-enhanced Scaling Factor, denoted
as RIDE and LIBERTY with DSF. EME still achieves the best performance which demostrate the
superiority of EME metric.

MiniGrid Environments. MiniGrid [17] presents a series of procedurally-generated, challenging
environments. We focus on three settings from MiniGrid: Multi-Room (MR), Key Corridor (KC),
and Obstructed Maze (OM). For example, MRN12S10-NT stands for MultiRoom-N12-S10-NoisyTV.
Details on the specific environmental settings are available in Appendix D.1.2. Table 3 presents the
testing performance of EME and all baseline methods across five different seeds. EME successfully
solves all hard-level exploration environments within MiniGrid, achieving the best performance in 10
out of 12 settings. While Multi-Room environments are relatively easy, all baselines except for ICM
and RND, demonstrate competency. However, as room size and number increase, the complexity of
the tasks also rises, with EME consistently outperforming other baselines, a trend that extends to the
Key-Corridor environments. In the particularly challenging Obstructed Maze environments, where
obstructions block doors, our agent also excels by learning to remove these obstructions, further
demonstrating the effectiveness and scalability of our approach.

Noisy TV Problem. In addition to standard MiniGrid tasks, we also tested the model’s ability to
deal with stochasticity in the environment by adding a manually-made Noisy TV setting introduced
in [51], where some blocks change color at every time step. As illustrated in Table 3, EME maintains
strong performance even under these conditions. Notably, EME is the only method that successfully
completes the KCS5R3-NT task, underscoring the robustness of our method.

Figure 4: Results of exploration tasks on Habitat. Error bars represent std, deviations over 5 seeds.

5.3 Real-life Habitat Environment

To test our model’s applicability to real-world environments, we investigate hard exploration tasks
in Habitat [60]. Habitat is a platform for embodied AI research which provides an interface

Figure 5: Habitat

for agents to navigate and act in photorealistic (Figure 5) simulations of real
indoor environments. Full details on the environmental setting can be found
in Appendix D.1.3. We evaluate our methods on three embodied AI tasks of
Habitat benchmark. As shown in Figure 4, EME consistently outperforms all
baselines, demonstrating its superior scalability to high-dimensional visual-
based observations and confirming its broad applicability. The performances
of count-based methods like E3B, NovelD and RIDE are comparable, whereas
curiosity-driven methods such as ICM and RND lag behind. The underperfor-
mance is primarily due to their inadequate exploration capabilities, which are
particularly challenged by the complex and rich visual observations inherent in real-world settings.

Reward-free Exploration. we investigate reward-free exploration by evaluating the performance of
all baselines using exploration bonus-only. Figure 10 displays the trajectories for all baselines on one
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of the test maps, clearly demonstrating that EME explores a significantly larger portion of the space
compared to other methods. The full experiment results can be found in Appendix C.3.

6 Conclusion

In this work, we identify the limitations of existing state discrepancy-based exploration methods:
the reliance on episodic count-based scaling factor and theory-practice approximation gap, which
leads to limited scalability especially for hard exploration tasks within realistic environments. To
address the issues, we propose the Effective Metric-based Exploration-bonus (EME), which addresses
the inherent limitations by proposing a robust metric for state discrepancy evaluation backed by
comprehensive theoretical analysis. Furthermore, we propose the diversity-enhanced scaling factor
integrated into the exploration bonus to enhance exploration effectiveness in particularly challenging
scenarios. Extensive experiments on hard exploration tasks from continuous control, discrete-action
games and realistic environments have demonstrated the effectiveness and scalability of our method.
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A Broader Impact Statement

This work introduces a reinforcement learning (RL) exploration method by introducing an effective
metric-based exploration bonus, a versatile framework applicable to a wide array of decision-making
problems, which can be applicable to diverse scenarios, including autonomous driving, household
robotics, video gaming, online recommendation or advertisement optimization and etc. Similar
to other RL exploration algorithms, our method is designed to facilitate the learning of a policy
that maximizes a reward function defined by the designer. The implementation of such a policy,
depending on the objectives set by the reward function designer, could lead to either positive or
negative outcomes. Additionally, our approach significantly reduces the burden of reward tuning for
researchers and algorithm engineers, and concurrently offers insights into the quality of the designed
rewards through the shaping weights derived from our methods.

B Proofs

Proposition 1 (Relaxation Divergence). Relaxing the W1 metric to W2 breaks the theoretical integrity
of the inverse dynamic bisimulation metric [63] in scenarios where the transition dynamic model
P (s, a) or the policy π is stochastic.

Proof. First, let’s recall the proof of the existence of a unique fixed-point in the inverse dynamic
bisimulation metric:

Lemma 1 ([63]). Given a fixed policy π̂. DefineHπ̂ : met 7→ met byH(d, π̂)(si, sj) = |rπ̂si − rπ̂sj |+
γW (d)(P π̂

si ,P
π̂
sj ) + ∥I

π̂(· | si, si+1)− I π̂(· | sj , sj+1)∥1, thenHπ̂ has a least fixed point dπ̂ .

Proof. This proof mimics the proof of Theorem 4.5 from [24]. We make use of the same pointwise
ordering on met: d ≤ d′ iff d(s, t) ≤ d′(s, t) for all s, t ∈ S, which gives us an ω-cpo with bottom
⊥, which is the everywhere-zero metric. Since Lemma 4.4 from [24] (Wasserstein metric W is
continuous) also applies in our definition, it only remains to show thatH(d, π̂) is continuous:

Hπ̂

(⊔
n∈N
{xn}

)
(si, sj) = |rπ̂si − rπ̂sj |+ γW

(⊔
n∈N
{xn}

)
(P π̂

si ,P
π̂
sj )

+ ∥I π̂(· | si, si+1)− I π̂(· | sj , sj+1)∥1
= |rπ̂si − rπ̂sj |+ γ sup

n∈N
W (xn) (P π̂

si ,P
π̂
sj )

+ ∥I π̂(· | si, si+1)− I π̂(· | sj , sj+1)∥1
by continuity of W

= sup
n∈N

(|rπ̂si − rπ̂sj |+ γW (xn) (P π̂
si ,P

π̂
sj )

+ ∥I π̂(· | si, si+1)− I π̂(· | sj , sj+1)∥1)
= sup

n∈N

{
Hπ̂ (xn) (si, sj)

}
=

(⊔
n∈N

{
Hπ̂ (xn)

})
(si, sj)

(11)

The rest of the proof follows in the same way as in [24].

In equation (11), the existence of a unique fixed-point in the bisimulation metric requires the continuity
and monotonicity of W1 with respect to d. The properties of continuity and monotonicity do not
hold with W2. Therefore there is no more guarantee about the fixed-point existence in LIBERTY and
other approximation-based methods [68] except that both the dynamics model and the policy π are
deterministic, in which case W2(d) degenerates to d [24] and Banach’s fixed-point exists [35]. As for
scenarios when the transition model and policy are stochastic, the theoretical guarantee of LIBERTY
is broken.
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Proposition 2 (Shifted LIBERTY Distance). The relaxation of expectation during learning process
shifts the original LIBERTY distance and introduces a looser value difference bound.

Proof. The proof is based on top of [14, 16].

Lemma 2.

Eai∼π,aj∼π[|rai
si − raj

sj |+ |I
si+1

s̄i − I
sj+1

s̄j |] ≥ |Eai∼πr
ai
si −Eaj∼πr

aj
sj |+ |Eai∼πI

si+1

s̄i −Eaj∼πI
sj+1

s̄j |
(12)

Proof. Since rai
si and r

aj
sj are rewards which are scalars, we have |rai

si − r
aj
sj | ≥ rai

si − r
aj
sj and

|raj
sj − rai

si | ≥ r
aj
sj − rai

si . By taking the expectation over ai and aj , we can have

Eai∼π,aj∼π|rai
si − raj

sj | ≥ Eai∼π,aj∼π[r
ai
si − raj

sj ] (13)

and
Eai∼π,aj∼π|raj

sj − rai
si | ≥ Eai∼π,aj∼π[r

aj
sj − rai

si ] (14)

By combining Equation (13) and Equation (14), we can have:

Eai∼π,aj∼π|rai
si − raj

sj | ≥ Eai∼π,aj∼π[r
ai
si − raj

sj ] = |Eai∼πr
ai
si − Eaj∼πr

aj
sj | (15)

Similarly, we can have:

Eai∼π,aj∼π|Isi+1

s̄i − I
si+j

s̄j | ≥ Eai∼π,aj∼π[I
si+1

s̄i − I
si+j

s̄j ] = |Eai∼πI
si+1

s̄i − Eaj∼πI
sj+1

s̄j | (16)

So we can get

Eai∼π,aj∼π[|rai
si − raj

sj |+ |I
si+1

s̄i − I
sj+1

s̄j |] ≥ |Eai∼πr
ai
si −Eaj∼πr

aj
sj |+ |Eai∼πI

si+1

s̄i −Eaj∼πI
sj+1

s̄j |
(17)

Definition 3 (Shifted LIBERTY Distance). The shifted LIBERTY distance function Ĥπ is defined as

Ĥπ(d)(si, sj) = Eai∼π
aj∼π

|rai
si − raj

sj | − γW1(P
π
s̄i , P

π
s̄j )− γ|Isi+1

s̄i − I
sj+1

s̄j | (18)

Define the MDP for RL by a tuple ⟨S,A,R,P, γ⟩. We consider a lifted MDP constructed by a tuple
⟨Ŝ, Â, R̂, P̂, γ⟩, where state space Ŝ = S × S, action space Â = A × A, transition distribution
P̂(ai,aj)

(si,sj)
= P ai

si P
aj
sj , and reward function R̂((si, sj)) = |Eai∼πr

ai
si − Eaj∼πr

aj
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(19)

So we can construct the lifted MDP of shift LIBERTY by a tuple ⟨Ŝ, Â, R̃, P̂, γ⟩ which is the same
as the lifted MDP in Definition 3 except for the reward function R̃((si, sj), (ai, aj)) = |rai

si − r
aj
sj |

and shifted metric d̃. The Bellman operator T̃ π̂ under policy π̂ is:

T̃ π̂(d̃π̂)((si, sj)) =
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(ai,aj)
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= Hπ̂(d̃π̂)((si, sj))
(20)

As proven in LIBERTY [63], for the inverse dynamic bisimulation metric d, we can get

|V π(si)− V π(sj)| ≤ dπ(si, sj) (21)
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As proved in [63, 24, 27], dπ is the value function of lifted MDP ⟨Ŝ, Â, R̂, P̂, γ⟩. dπ can be expanded
as the sum of discounted future rewards,

dπ(si, sj) = Eπ̂

[∑
t
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a
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a
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]
. (22)

d̃π can be expanded as,

d̃π(si, sj) = Eπ̂

[∑
t

γt

(∣∣∣∣Ea
(t)
i ∼π

r
a
(t)
i

s
(t)
i

− E
a
(t)
j ∼π

r
a
(t)
j

s
(t)
j

∣∣∣∣)
∣∣∣∣∣s(0)i = si, s

(0)
j = sj

]
. (23)

with s
(0)
i = si, s

(0)
j = sj , The difference between d and d̃ can be regarded as

d̃π(si, sj)− dπ(si, sj) = Eπ̂
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(24)

As proved in Lemma 2, we can get:

d̃π(si, sj)− dπ(si, sj) ≥ 0 (25)

Combined with Equation (21), we can have:

|V π(si)− V π(sj)| ≤ dπ(si, sj) ≤ d̃π(si, sj) (26)

So the shifted LIBERTY distance introduces a looser value bound.

Proposition 3. Let rs be a random variable over the action distribution defined by p(rs = ras ) =
π(a|s), var(rsi) denote the variance of variable rsi , we can have:
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Proof. The proof is based on [14, 16] by expanding the difference between
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rsi and rsj are independent variables, we can get cov(rsi , rsj ) = 0, so we can have
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Theorem 1. The EME distance function F(dE , π) : met→ met has a unique fixed-point d̂E .

Proof. Let dE , d′E ∈M. We have

|F(dE) (si, sj)−F (d′E) (si, sj)| =

∣∣∣∣∣∣γ
∑
ai,aj

π (ai | si)π (aj | sj) (dE − d′E)
(
s′i, s

′
j

)∣∣∣∣∣∣
≤ γ ∥dE − d′E∥∞

(30)

Therefore, F is a contraction mapping w.r.t. the L∞ norm and there exists a unique fixed-point for F
due to Banach’s fixed-point theorem. This completes the proof.

Theorem 2. (Guaranteed Value difference bound) Given the EME metric dE , states si and sj , and a
policy π, we have

|V π (si)− V π (sj)| ≤ dE (si, sj) . (31)

Proof. The proof mimics [14]. We follow the assumption that
∑

s′ P
a
s (s

′)V π(s′) = V π(Es′∼Pa
s
[s′]).

We will first show that if ∀si, sj ∈ S, |V π(si)− V π(sj)| ≤ d(si, sj), then |V π(si)− V π(sj)| ≤
F(dE , π)(si, sj). Suppose |V π(si)− V π(sj)| ≤ d(si, sj) holds, we can have:
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(32)

Similarly, V π(sj)− V π(si) ≤ F(d, π(sj , si)), so we can have

|V π(si)− V π(sj)| ≤ F(d, π)(si, sj)) (33)

Assuming that we have an initial distance d0 which |V π(si) − V π(sj)| ≤ d0(si, sj), and base on
Theorem 1, F(d, π) is contraction mapping on d. By repeatedly applying F(d, π) on d, d will
eventually converge to the fixed-point dE , the fixed point dE satisfies:

|V π(si)− V π(sj)| ≤ dE(si, sj)) (34)

C Additional Experiments

C.1 Additional Ablation Experiments

To isolate the impact of different hyper-parameters, we carry additional experiments on the ensemble
size of reward models and the max reward scaling M . First, M sets an upper limit on the bonus. We
set M = 10as the default setting. As we can see from Figure 6, if M = 1, the scaling factor is fixed
to 1, resulting in a significant performance decline. Higher M encourages more extensive exploration.
The performance with M = 5 slightly lags behind the default setting. The performance with M = 20
and M = 40 is comparable and almost the same, indicating that the performance stabilizes as M
increases. Practically, the value of M can be adjusted depending on the specific task and environment
to determine the intensity of exploration.
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Figure 6: Ablation study on the max reward scaling M (M = 1, 5, 10, 20, 40).

Figure 7: Ablation study on the ensemble size (ES = 3, 6, 9, 12) and the other baseline with best performance.

Figure 8: Results for EME and its variants combined with different feature encoders. The x-axis represents the
number of steps (1e7) in training. The y-axis represents the mean success rate(standard deviations in shade).

Figure 9: Results for EME and its variants combined with different feature encoders on more Atari games.

As shown in Figure 7, we observe that as the ensemble size (ES) increases, the performance of ES
= 6 and ES = 9 surpasses that of ES = 3. The performance of ES = 6 and ES = 9 is comparable,
with no significant difference. However, when the size is further increased to ES = 12, there is a
decline in performance, particularly in the Table Wiping and Pick and Place tasks. The performance
change can be analyzed from two perspectives. First, the number of reward models is related to the
accuracy of the reward variance prediction used to calculate the loss function. As the ensemble size
increases, the overall prediction error decreases because the models can average out individual errors
more effectively. This leads to a more accurate approximation of the variance ζ(st). Second, with a
larger ensemble size, the variance of reward predictions decreases, resulting in a lower scale of the
exploration bonus. Thus, there is a balance or trade-off between estimation accuracy and exploration,
explaining why the performance of ES = 12 lags behind ES = 9. The optimal number of ensemble
models may vary depending on the specific tasks and environments. Regarding computational
cost, it increases with the ensemble size. Therefore, we set ES = 6 as our default setting, where
the performance is nearly the same as ES = 9 but with lower computational overhead. It is also
noteworthy that even with an ensemble size of 3, EME still outperforms the best baseline methods,
further demonstrating the robustness of EME.
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C.2 EME Combined with Feature Encoder

Our method EME can be integrated with any state representation derived from different state encoders
Φ(·), expressed as dE(Φ(st),Φ(st+1)). The encoder may include the inverse dynamic model [47, 51,
63] which isolates environmental factors that do not affect the agent’s behavior, the bisimulation-based
encoder [68, 35, 14, 13] which learns a compact state representation grouped by the bisimulation
metric, and random embeddings captured by random embedded states. We denote the EME variants
as follows: EME with an inverse dynamic model-based encoder is referred to as EME-IDM; with a
bisimulation metric-based encoder as EME-BM; and with a random embedding as EME-Random.
The results of continuous control tasks and hard exploration atari games can be found in Figure 8
and Figure 9, respectively. EME’s performance declines due to the rapid reduction of the exploration
bonus. The performance of EME under the inverse dynamic encoder and bisimulation-based encoder
exhibits a decline, because the exploration bonus under these encoders gets close to zero quickly
since their representations are very compact and every state looks more similar with the convergence
of the encoder, which harms the efficacy of exploration. With respect to random embedding, the
variance is larger, resulting in more unstable performance.

(a) EME (b) EME-Static (c) EME-EP

(d) ICM (e) RND (f) RIDE

(g) NovelD (h) E3B (i) LIBERTY

Figure 10: Trajectories of policies trained with different exploration algorithms on the Habitat environment. Our
method EME reveals the largest portion of the map than other methods.

Figure 11: Results of reward-free exploration tasks on Habitat. Error bars represent std, deviations over 5 seeds.
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C.3 Reward-free Exploration

We examine reward-free exploration by assessing the performance of all baselines within Habitat
using only exploration bonuses. During training, agents are initialized in varied environments for
each episode and are subsequently tested on a set of environments not encountered during training.
Figure 10 displays the trajectories of all baselines on one of the test maps, highlighting that EME
explores a substantial portion of the space, unlike other methods. Specifically, ICM and RND agents
remain confined to a single room, while RIDE, LIBERTY, and NovelD agents explore two rooms
before becoming stuck, distant from the goal. E3B exhibits the second-best exploration coverage
of the map. Quantitative results from other reward-free tasks are shown in Figure 11, where EME
consistently demonstrates robust performance and achieves the best outcomes. In contrast, other
methods experience significant declines, underscoring the efficacy of our approach in a reward-free
setting.

Table 4: Table of quantitative results comparison between EME and other baseline methods in different
environments of Mujoco with the delayed reward setting. The best and the runner-up results are (bold) and
(underline)

Methods Delay = 10
HalfCheetah Hopper Walker2d Ant Humanoid Swimmer

ICM 1374± 368 1258± 325 1127± 225 −105± 43 462± 54 27± 11
RND 1694± 495 1976± 458 1405± 262 143± 17 532± 29 32± 15
RIDE 2467± 456 1876± 431 1651± 325 92± 31 570± 45 65± 16
NovelD 1785± 423 649± 145 975± 360 −134± 27 258± 49 13± 11
E3B 1025± 347 1474± 129 1997± 115 66± 27 518± 23 43± 17
LIBERTY 2973 ± 437 2479 ± 315 2766± 487 292± 68 681 ± 73 73 ± 21
EME 2779± 412 2369± 314 2785 ± 399 539 ± 62 599± 65 77 ± 18
Methods Delay = 20

HalfCheetah Hopper Walker2d Ant Humanoid Swimmer
ICM 1185± 287 1097± 275 995± 201 −175± 23 434± 48 23± 10
RND 1595± 415 1925± 401 1379± 193 127 + 12 519± 25 29± 12
RIDE 2285± 402 1621± 382 1724± 307 105± 27 509± 21 59± 13
NovelD 945± 355 513± 86 794± 320 −107± 29 315± 55 17± 11
E3B 887± 242 1015± 185 743± 95 381± 45 321± 36 20± 11
LIBERTY 2619 ± 354 2112± 208 2345 ± 414 263± 55 617 ± 53 67 ± 18
EME 2607± 276 2467 ± 298 1718± 163 352 ± 35 499± 62 59± 15
Methods Delay = 30

HalfCheetah Hopper Walker2d Ant Humanoid Swimmer
ICM 1017± 276 965± 213 798± 199 −198± 25 417± 45 19± 11
RND 1483± 393 1773± 391 1038± 191 99 + 13 501± 27 24± 11
RIDE 1973± 369 1405± 315 1345± 305 87± 21 487± 25 41± 15
NovelD 885± 217 505± 148 664± 129 −205± 43 279± 65 18± 10
E3B 997± 159 1246± 101 1007± 142 221± 25 366± 26 19± 12
LIBERTY 273± 317 1873± 228 2077 ± 398 215± 48 587 ± 63 52± 15
EME 2448 ± 263 1999 ± 288 1685± 158 315 ± 29 495± 36 58 ± 13

C.4 Delayed Reward Setting of Mujoco

We present results from the delayed reward setting in the MuJoCo environment [21], following the
methodology outlined in [63], where accumulated rewards are delayed every 10, 20, and 30 steps.
The experiments assess six tasks: HalfCheetah, Hopper, Walker2d, Ant, Swimmer, and Humanoid.
As shown in Table 4, our method achieves the best or second-best performance in 15 out of 18
delayed reward tasks. This indicates that EME can facilitate effective exploration and maintain high
performance even under sparse reward conditions. Notably, as rewards become sparser, EME’s
performance improves and becomes more robust. In contrast, other metric-based exploration bonus
methods such as RIDE and NovelD struggle due to their less expressive metrics. Curiosity-driven
methods like ICM and RND also become less effective as rewards grow sparser. These results provide
further evidence of EME’s ability to promote efficient exploration effectively, even in environments
characterized by delayed rewards.
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Figure 12: The scale of exploration bonus across all MiniGrid environments

Figure 13: Results of EME, EME with a static scaling factor, and EME with an episodic count from Robosuite.
The x-axis represents the number of steps (1e7) in training. The y-axis represents the mean success rate(standard
deviations in shade).

Table 5: Average testing results of different Minigrid environments for EME and its variants.
MRN7S8 MRN12S10 MRN12S10-NT KCS4R3 KCS5R3 KCS5R3-NT

EME 0.69± 0.001 0.65± 0.003 0.66± 0.001 0.93± 0.001 0.94± 0.005 0.94± 0.001
EME-EP 0.66± 0.003 0.55± 0.011 0.20± 0.003 0.91± 0.001 0.90± 0.011 0.50± 0.009

EME-Static 0.66± 0.001 0.41± 0.005 0.00± 0.0 0.88± 0.012 0.71± 0.016 0.11± 0.003

OM2Dlh OM2Dlhb OM2Dlhb-NT OM1Q OM2Q OM2Q-NT
EME 0.95± 0.025 0.91± 0.007 0.90± 0.016 0.95± 0.012 0.97± 0.003 0.56± 0.015

EME-EP 0.95± 0.016 0.89± 0.013 0.89± 0.007 0.93± 0.015 0.91± 0.023 0.20± 0.005
EME-Static 0.91± 0.008 0.80± 0.009 0.90± 0.016 0.87± 0.043 0.50± 0.033 0.00± 0.0

C.5 Ablation Study on Scaling Factor

To demonstrate the effectiveness of our proposed scaling factor, we conducted an ablation study
focusing on this component. We compared EME with two variants: ’EME-EP,’ which incorporates
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episodic counts, and ’EME-Static,’ which uses a static scaling factor. The results from continuous
tasks in the Robosuite and MiniGrid environments are illustrated in Figure 13, Figure 10 and
summarized in Table 5, respectively. Without the diversity-enhanced scaling factor, EME shows a
noticeable decline in performance. ’EME-EP’ performs better in MiniGrid environments compared
to continuous tasks in Robosuite, highlighting the efficacy of episodic state visitation counts in
grid-based games but demonstrating limited effectiveness in environments with high-dimensional
states. Additionally, we visualize the exploration bonus of all MiniGrid environments in Figure 12.

D Implementation Details

D.1 Environments Settings

(a) Table Wiping (b) Door Opening (c) Pick and Place

D.1.1 Robosuite Manipulation Tasks

We choose the three manipulation tasks in the Robosuite platform [70].

Table Wiping. The environment consists of a table with a whiteboard surface and some markings
is placed in front of a single robot arm, which has a whiteboard eraser mounted on its hand. The
shape of the dirty region is correlated to the position of the cube. When the dirty region is diagonal,
the cube is on the right-hand side of the robot arm. The goal of the agent is to learn to wipe the
whiteboard surface and clean all of the markings. The whiteboard markings are randomized at the
beginning of each episode.

Door Opening. The environment consists of a door with a handle mounted in free space in front of a
single robot arm. The height of the handle and the position of the door are correlated. When the door
is closed to the robot arm, the handle is in a low position. When the door is far from the robot arm,
the handle is in a high position. The goal of the agent is to learn to turn the handle and open the door.
The initial state distribution of the door location is randomized at the beginning of each episode.

Pick and Place. The environment consists of four objects placed in a bin in front of a single robot
arm. There are four containers next to the bin. The goal of the agent is to place each object into its
corresponding container. This task also has easier single-object variants. The initial state distribution
of object locations is randomized at the beginning of each episode.

D.1.2 MiniGrid Environments

MiniGrid [17] is a set of procedurally-generated grid-worlds. In MiniGrid, the world is a par-
tially observable grid of size N × N . Each tile in the grid contains exactly zero or one ob-
ject. The possible object types are wall, door, key, ball, box, and goal. Each object in Mini-
Grid has an associated discrete color, which can be one of red, green, blue, purple, yellow, or
grey. By default, walls are always grey and goal squares are always green. Rewards are sparse
for all MiniGrid environments. There are seven actions in MiniGrid: turn left, turn right, move
forward, pick up an object, drop an object, toggle and done. The agent can use the turn left
and turn right action to rotate and face one of 4 possible directions (north, south, east, west).
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Figure 14: Rendering of the Mul-
tiRoomN12S10 in MiniGrid.

The move forward action makes the agent move from its current tile
onto the tile in the direction it is currently facing, provided there
is nothing on that tile, or that the tile contains an open door. The
agent can open doors if they are right in front of it by using the
toggle action. Observations in MiniGrid are partial and egocentric.
By default, the agent sees a square of 7 × 7 tiles in the direction
it is facing. These include the tile the agent is standing on. The
agent cannot see through walls or closed doors. The observations are
provided as a tensor of shape 7× 7× 3. However, note that these are
not RGB images. Each tile is encoded using 3 integer values: one
describing the type of object contained in the cell, one describing its
color, and a flag indicating whether doors are open or closed. This
compact encoding was chosen for space efficiency and to enable faster training. For all tasks, the
agent gets an egocentric view of its surroundings, consisting of 3 × 3 pixels. A neural network
parameterized as a CNN is used to process the visual observation.

MultiRoom. The MultiRoomNXSY environment consists of X rooms, with a size at most Y,
connected in random orientations. The agent is placed in the first room and must navigate to a green
goal square in the most distant room from the agent. The agent receives an egocentric view of its
surroundings, consisting of 3 × 3 pixels. The task increases in difficulty with X and Y. Episodes
finish with a positive reward when the agent reaches the green goal square. Otherwise, episodes are
terminated with zero reward after a maximum of 20×N steps.

KeyCorridor. the agent has to pick up an object which is behind a locked door. The key is hidden in
another room, and the agent has to explore the environment to find it. Episodes finish with a positive
reward when the agent picks up the ball behind the locked door or after a maximum of 270 steps.

ObstructedMaze. The agent has to pick up a box which is placed in a corner of a maze. The doors
are locked, the keys are hidden in boxes and the doors are obstructed by balls. Episodes finish with a
positive reward when the agent picks up the ball behind the door or after a maximum of 576 steps.

Figure 15: Visual observations in Habitat (RGB, semantic, and depth)

D.1.3 Habitat

The Habitat platform relies on several key abstractions that model the domain of embodied
agents and the tasks they can perform in three-dimensional indoor simulation environments.

Figure 16: Explored area in Habitat

This platform consists of a virtually embodied
agent, such as a robot, equipped with a suite of
sensors that can observe the environment and take
actions to alter the agent’s state or the environ-
ment’s state. Each sensor is associated with a spe-
cific agent and can return observation data from the
environment at a specified frequency. The 3D en-
vironment includes a scene mesh, objects, agents,
and sensors, organized into regions and objects
through a hierarchical representation called the
Scene, which can be programmatically manipu-
lated. All components of the Scene are present on
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the SceneGraph. Additionally, a simulator backend instance can update the state of agents and
SceneGraphs based on given actions for a set of configured agents and SceneGraphs, and it provides
observations for all active sensors possessed by the agents. We use the Matterport3D (MP3D)
dataset [15], which consists of high-quality renderings of indoor scenes. To measure exploration
coverage, we compute the area revealed by the agent’s line of sight using the function provided by
the Habitat codebase [32]. As depicted in Figure 16, exploration is measured as the proportion of the
environment revealed by the agent’s line of sight over the course of the episode.

D.2 Algorithm Details

Algorithm 1 Effective Metric-based Exploration-bonus (EME)

1: Initialize parameters of policy π(θ), metric dϕE , and reward models {g(η1), . . . , g(ηk)}
2: while not converged do
3: for t = 1 to MAX_STEP_PER_EPISODE do
4: Sample action at ∼ πθ (at | st)
5: Step environment st+1 ∼ p (st+1 | st, at)
6: Record transition in the buffer: Dτ ← Dτ ∪ {st, at, st+1, rt+1}
7: Sample a mini batch with size B ∼ D from the buffer
8: Compute the variance ζ(rst) as scale factor from the ensemble of reward models
9: Compute bonus bt+1 = dE(st, st+1) ∗min{max{ζ(rst), 1},M}

10: Reshape reward with the bonus r′t+1 = rt+1 + b
11: Train policy π(θ) via policy gradient
12: Update the metric dϕE : EB [J(ϕ)] ▷Equation (9)
13: Update reward models by minimizing the prediction error: EDτ ∥g(st, at; η)− rt+1∥2
14: end for
15: end while

D.3 Computation Details

All of our experiments are conducted on 4 GPUs with 16 CPU threads, which include AMD Ryzen 9
CPU@1.20GHz (16 core) CPU, NVIDIA GeForce GTX 3080Ti GPUs, and 64GB memory.

D.4 RL Hyperparameters
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Table 6: Hyper-parameters in Robosuite experiments

Parameters Environment
Pick and Place Door Opening Table Wiping

Horizon steps 300 300 500
Control frequency (Hz) 20 20 20
State dimension 110 22 30
Action dimension 4 8 7
Controller type OSC position Joint velocity Joint velocity
Maximum reward scaling 10 10 20

Max training steps 1× 107 - -
Actor learning rate 3× 10−4 - -
Critic learning rate 1× 10−3 - -
Batch size 128 - -
Discount factor 0.99 - -
Soft update weight 0.005 - -
Alpha learning rate 3× 10−4 - -
Hidden layers [256, 256, 256] - -
Returns estimation step 4 - -
Buffer size 1× 106 - -
Steps per update 10 - -

Table 7: Common Hyperparameters for MiniGrid

Parameter Value

Learning Rate 0.0001
RMSProp momentum 0
RMSProp ϵ 10−3

Unroll Length 100
Number of buffers 80
Number of learner threads 4
Number of actor threads 256
Max gradient norm 40
Entropy Cost 0.0005
Baseline Cost 0.5
Discounting Factor 0.99
Maximum reward scaling 5

Table 8: Common Hyperparameters for Habitat

Parameter Value

Clipping 0.2
PPO epochs 2
Number of minibatches 16
Value loss coefficient 0.5
Entropy coefficient 5e-5
Learning rate 7e-5
ϵ 10−5

Max gradient norm 0.8
Rollout steps 128
Use GAE True
γ 0.99
τ 0.95
Use linear clip decay True
Maximum reward scaling 30
Hidden size 512
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Algorithm Hyperparameters
Maximum reward scaling: 10

threshold of probability ratio clipping (ϵ) : 0.5
update timesteps: 2e10

number of epoches per update: 50
number of minibatches: 16

Base Learner (PPO) batch size: 2048
GAE parameter (λ) : 0.95

optimizer: Adam
learning rate: 5× 10−3

policy gradient clip norm: 0.9
discount rate (γ) : 0.99
ridge regularizer λ: 0.1

tanh activation
E3B entropy cost: 0.005

intrinsic reward coefficient: 1.0
gradient clip norm: 1.0

forward model loss coefficient: 0.2
inverse model loss coefficient: 0.08

ICM entropy cost: 10−4

intrinsic reward coefficient β: 0.005
proportion of experience used for training predictor: 0.25

predictor Model updates per PPO epoch: 6
RND entropy cost: 0.005

intrinsic reward coefficient β: 0.1
forward model loss coefficient: 0.5
inverse model loss coefficient: 0.8

RIDE entropy cost: 0.0005
intrinsic reward coefficient β: 0.1
episodic memory capacity: 5000

action prediction network filter sizes: (3,3)
NovelD entropy cost: 0.005

RND clipping factor L: 5
intrinsic reward coefficient β: 1.0
intrinsic reward coefficient β: 0.05

LIBERTY entropy cost: 0.005
inverse model loss coefficient: 0.5
forward model loss coefficient: 0.5

Table 9: The hyperparameters of the tested benchmark algorithms in the Atari experiment
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D.5 Codebases Used

Our codebase was built atop the following codebases:

• The official NovelD codebase: https://github.com/tianjunz/NovelD (Creative Commons
Attribution-NonCommercial 4.0 license) for NovelID, RND, RIDE and count-based base-
lines (this codebase is built atop the official RIDE codebase below)

• The official RIDE codebase: https://github.com/facebookresearch/impact-driven-exploration
(Creative Commons Attribution-NonCommercial 4.0 license)

• The official LIBERTY codebase: https://github.com/Mingle0228/liberty (MIT License)
• The official E3B codebase: https://github.com/facebookresearch/e3b(Creative Commons

Attribution-NonCommercial 4.0 license)

E Limitation

While our method has shown success in several challenging exploration tasks, it does not consistently
achieve top performance in environments with less sparse rewards, as observed in the MuJoCo
continuous control benchmarks. Additionally, our method has not been tested in reinforcement
learning domains characterized by large action spaces. Addressing these limitations and developing a
more generalized solution for diverse RL environments remains a goal for future work.

F Related Work

Exploration in RL. Exploration remains a long-standing problem in RL. Common approaches include
ϵ-greedy [59], count-based exploration [7, 46, 61, 41, 40, 57], ensemble-based exploration [45, 39, 48]
and curiosity-based exploration [53, 55, 56, 10]. Several exploration strategies use a dynamics
model to provide intrinsic rewards [47, 11, 33, 48, 36, 2]. Latent variable dynamics have also
been studied for exploration [4, 9, 62]. Maximum entropy in the state representation has also been
used for exploration [54, 66]. Other intrinsic motivation methods have recently been developed
for exploration in context MDPs [67, 28, 51, 69, 32], which automatically generate curricula over
variations of the MDP to encourage efficient learning, effectively performing a form of curiosity-
driven exploration in the context space, including goal-conditioned [23, 50, 12, 18, 22] and goal-free
variants [58, 49, 34, 19]. Reward shaping refers to modifying the original reward function with
a shaping reward function which incorporates domain knowledge. Considering the most general
form, namely the additive form, of reward shaping. The first approach to guarantee policy invariance
is potential-based reward shaping (PBRS) [44], which defines the shaping reward function as the
difference between values assessed through the potential function based on prior knowledge. There
are lots of variants of PBRS [20, 38, 31, 3, 64, 30, 29, 63] which have shifted their focus to different
areas within the field of reinforcement learning.

Metric-based Exploration Bonus. Metric space is widely used in encoding state representations [68,
14, 13, 16, 35]. Metric-based exploration bonus is based on the evaluation metric that quantifies the
degree of difference or distance between two projected states for the measure of novelty. RIDE [51]
evaluates the novelty as between two successive state representations under the L2 norm. NovelD [69]
uses the disparity in RND bonuses between adjacent states under the L1 distance as the exploration
bonus. LIBERTY [63] uses the difference between potential functions of adjacent states under the
bisimulation metric space. Note that we propose an effective metric that measures the distribution
distance between dynamics models by computing the distance between sampled subsequent states.
Additionally, we integrate the Kullback–Leibler (KL) divergence between policy distributions to more
robustly model the “behavioral similarity” between states, which is more effective and scalable
across diverse environments with different observations, especially in addressing the critical Noisy-TV
problem during exploration.
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1. Claims Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?[Yes] In the introduction section (page 1).

2. Limitations Question: Does the paper discuss the limitations of the work performed by the
authors?[Yes] In Appendix E.

3. Theory Assumptions and Proofs Question: For each theoretical result, does the paper pro-
vide the full set of assumptions and a complete (and correct) proof?[Yes] In the Appendix B.

4. Experimental Result Reproducibility Question: Does the paper fully disclose all the
information needed to reproduce the main experimental results of the paper to the extent
that it affects the main claims and/or conclusions of the paper (regardless of whether the
code and data are provided or not)?[Yes] In Appendix D.

5. Open access to data and code Question: Does the paper provide open access to
the data and code, with sufficient instructions to faithfully reproduce the main exper-
imental results, as described in supplemental material?[Yes] In the anonymous link
https://anonymous.4open.science/r/EME-4F8B/README.md.

6. Experimental Setting/Details Question: Does the paper specify all the training and test
details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.)
necessary to understand the results?[Yes] In Appendix D.4.

7. Experiment Statistical Significance Question: Does the paper report error bars suitably
and correctly defined or other appropriate information about the statistical significance of
the experiments?[Yes] In experiment section (page 5) and Appendix C.

8. Experiments Compute Resources Question: For each experiment, does the paper provide
sufficient information on the computer resources (type of computing workers, memory, time
of execution) needed to reproduce the experiments?[Yes] In Appendix D.3.

9. Code Of Ethics Question: Does the research conducted in the paper conform, in
every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/
EthicsGuidelines?[Yes]

10. Broader Impacts Question: Does the paper discuss both potential positive societal impacts
and negative societal impacts of the work performed?[Yes] In Appendix A.

11. Safeguards Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pre-trained
language models, image generators, or scraped datasets)?[NA]

12. Licenses for existing assets Question: Are the creators or original owners of assets (e.g.,
code, data, models), used in the paper, properly credited, and are the license and terms of
use explicitly mentioned and properly respected? [Yes] In Appendix D.5.

13. New Assets Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?[NA]

14. Crowdsourcing and Research with Human Subjects Question: For crowdsourcing exper-
iments and research with human subjects, does the paper include the full text of instructions
given to participants and screenshots, if applicable, as well as details about compensation (if
any)? [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review Board
(IRB) approvals (or an equivalent approval/review based on the requirements of your country
or institution) were obtained?[NA]
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