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ABSTRACT

Driven by advances in Vision-Language Models (VLMs), computer-using agents
have recently demonstrated remarkable capabilities in complex reasoning, software
control, and the automation of digital workflows. However, the existing step-by-
step paradigm requires extensive interaction with the model, and the resulting
query latency emerges as a key bottleneck for real-world adoption. To address this
limitation, we propose that agents should be able to output a sequence of actions
after each observation, enabling efficient execution without constant model queries.
In this work, we introduce OS-CATALYST, a method that transforms standard
computer-using models into agents with the capability of action sequence predic-
tion. To enable this, we design a data collection pipeline tailored for compressed
action trajectories in computer-using environments. Building on this pipeline,
we construct a large-scale dataset within the WorkArena benchmark and train
computer-using agents for action sequence prediction. Through extensive experi-
ments, we show that OS-CATALYST enables up to 50% faster task completion on
office-related benchmarks without sacrificing success rate.

1 INTRODUCTION

In recent years, the rapid development of Large Language Models (LLMs) (Anthropic, 2025; OpenAI,
2025a; Bai et al., 2025) has driven the expansion of artificial intelligence from natural language
processing (NLP) to a broader range of application domains. Along with this trend, LLM-based
agents have gradually become a key point of research in both academia and industry (OpenAI, 2025b;
Manus, 2025). These agents not only demonstrate strong capabilities in information processing and
knowledge reasoning but also exhibit growing potential for handling complex tasks and executing
high-level decision-making through direct interactions with operating systems and applications. In
particular, “computer-using agents” (Cheng et al., 2024; Anthropic, 2025; Qin et al., 2025b; Sun
et al., 2024b) are designed to simulate human–computer interactions. In practice, this often manifests
as agents that operate directly on Graphical User Interfaces (GUI), which perceive dynamic layouts,
ground references to interface elements, and plan following actions. In the future, such agents
are expected to lower the operational barriers of both daily affairs and professional tasks, thereby
advancing the evolution of human–computer collaboration.

Currently, GUI agents (OpenAI, 2025a; Liu et al., 2025c) primarily interact through the step-by-step
paradigm shown in figure 1 (a). Given a user’s instruction, the model processes inputs such as
screenshots or accessibility trees, and iteratively produces reasoning and corresponding actions until
the task is complete. Multi-agent frameworks (Agashe et al., 2025b; Jia et al., 2024; Wu et al.,
2024) follow a similar reasoning paradigm, though additional stages may be introduced during
action planning and execution. Such an interaction paradigm requires agents to execute 10–30 steps
to complete a single GUI task. Querying the model repeatedly accounts for most of the time in
GUI tasks. Consequently, completing a single GUI task often takes at least several minutes, which
introduces nontrivial bottlenecks for real-world deployment and commercial adoption.

However, we observe that in many scenarios, especially office-related tasks, this interactive paradigm
leaves significant room for compression. In fact, it is often unnecessary to request a new observation
before every single action. For humans, when completing tasks such as filling out a form, a single
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(a) Generate Action Step by Step (b) Generate Action Sequence (OS-Catalyst)
Action 1: Click(331, 345) 
Action 2: Input(“CHG003000”) 
Action 3: Click(331, 543) 
Action 4: Input(“Train”)
Action 5: Click(923, 245)

CHG003000

CHG003000

⌨

CHG003000

Train

⌨

:Click(331, 345)LLM :Input(“CHG003000”)LLM

:Click(331, 543)LLM :Input(“Train”)
LLM

CHG003000

Train ⌨
⌨Total Time: 15s

Total Time: 5s

INSTRUCTION: Create a new change request and fill the form with [specific information]

OS-Catalyst

Figure 1: Main idea of OS-CATALYST. Traditional GUI agents generate actions step by step (a),
which incurs repeated model–environment interactions and high latency. OS-CATALYST (b) enables
the model to predict multiple valid actions in one step, thus compressing trajectories and improving
execution efficiency.

round of observation is often sufficient to determine the type and location of several subsequent
actions as shown in figure 1 (b). Inspired by this observation, we propose OS-CATALYST, which
introduces a novel interaction paradigm for GUI agents. OS-CATALYST integrates action-sequence
prediction idea, a tailored data compression pipeline, and fine-tuning strategies, enabling models to
acquire the ability to output coherent multi-step action sequences from a single observation.

We conduct measurements on WorkArena (Drouin et al., 2024), a benchmark designed for GUI-based
office tasks. The result reveals that if the model outputs the maximal feasible sequence of actions after
each observation, at least 50% of task execution steps can be eliminated. However, current models
are unable to correctly infer such multi-step action sequences through prompt-based guidance alone.
This indicates that existing GUI agents lack the ability to reason about longer action plans within a
given observation. To address this, we construct a dataset within the WorkArena environment and
train models based on UI-TARS (Qin et al., 2025b). OS-CATALYST achieved up to a 50% reduction
in task execution times compared with step-by-step paradigm.

• We propose a novel direction for improving the efficiency of GUI agents through adaptive
action compression, which reduces unnecessary observations between sequential actions.

• We construct a dataset and develop corresponding models within the WorkArena environ-
ment, enabling multi-step action prediction from a single observation.

• We achieve up to 50% reduction in task execution time on office benchmarks, demonstrating
the effectiveness of OS-CATALYST.

2 RELATED WORK

Computer-using agents. Unlike early LLM-based agents that parse GUIs (Graphical User In-
terface) into structured text (Deng et al., 2023; Zhou et al., 2024) and navigate through provided
tools like programs (Sun et al., 2024a) or API calls (Wu et al., 2024; Zhang et al., 2024a), VLM-
based GUI agents directly perceive raw screenshots and output human-like atomic keyboard/mouse
operations—markedly boosting adaptability while introducing new challenges. First, VLMs are
required to perceive detailed information and localizing elements in high-resolution screenshots.
Beyond supervised pre-training on large-scale grounding datasets (Cheng et al., 2024; Chen et al.,
2024b; Xu et al., 2024; Gou et al., 2024; Wu et al., 2025c), efforts include training high-resolution
processing (Hong et al., 2024; Yang et al., 2024; Li et al., 2024) or token selection (Ge et al., 2024;
Wu et al., 2025b; Zhang et al., 2024b) modules for visual encoders, and designing specific reasoning
strategies for dynamic focusing or test-time scaling (Wu et al., 2025a; Yang et al., 2025; Liu et al.,
2025b). Furthermore, computer-using agents necessitate strong multi-turn planning capabilities (Xie
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et al., 2024b; Sun et al., 2025). Two mainstream approaches exist: one involves elaborately designed
agentic workflow frameworks for proprietary VLMs (Zhang et al., 2025b; Jiang et al., 2025; Zheng
et al., 2024a; Wang et al., 2024; Jia et al., 2024; Agashe et al., 2025a), which comprise multiple
external modules such as hierarchical planning, systematic memory organization, and multi-agent
collaboration; the other focuses on conducting supervised fine-tuning and reinforcement learning to
endow open-source VLMs with native long-horizon reasoning and error recovery capabilities (Wang
et al., 2025a; Xia & Luo, 2025; Liu et al., 2025a; Qi et al., 2024).

Efficiency of agent workflows. Agentic workflows rooted in the CoT (Wei et al., 2022) and ReAct-
style (Yao et al., 2023) paradigms unlock LLMs’ capabilities for complex tasks, while simultaneously
significantly increasing tool invocation complexity and context length—ultimately leading to higher
costs and degraded performance. To address the issue of reasoning inefficiency, within the multi-agent
setup, DAAO (Su et al., 2025) leverages the complementary advantages of heterogeneous models and
introduces LLM routing based on query difficulty estimator to implement an adaptive orchestration
system. Optima (Chen et al., 2024a) and Puppeteer (Dang et al., 2025) integrate the balance between
performance and efficiency into reward functions, continuously enhancing the system’s dynamic
orchestration and adaptive evolution capabilities through reinforcement learning.

In the specific context of computer-using tasks, OS-Copilot (Wu et al., 2024), Mobile-Agent-E (Wang
et al., 2025b), and AppAgentX (Jiang et al., 2025) excavate repetitive patterns from historical
actions, organize them into shortcuts or tool scripts, and store these in long-term memory to enable
reuse and improve efficiency. Similarly, UFO2 (Zhang et al., 2025a) incorporates speculative
multi-action output; yet the complexity of GUI environments lies in the fact that target elements
shift unpredictably with interactions, necessitating system API calls to ensure robust execution.
Likewise, Dyna-Think (Yu et al., 2025) demonstrates effective multi-action reasoning refinement
under accessibility-tree–based UI representation, leveraging structured textual information of interface
elements. However, current models that rely purely on visual observations still struggle to achieve
comparable prediction quality, as they lack explicit semantic and hierarchical cues. OSWorld-
Human (Abhyankar et al., 2025) recognizes this limitation and provides manually grouped action
annotations as a benchmark to assess efficiency, while mainly focusing on evaluation. Building on
this insight, we move one step closer by internalizing the prediction of environmental dynamics into
the model through large-scale supervised training.
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Figure 2: Data construction pipeline of OS-CATALYST. From sampled trajectories, we merge
consecutive actions validated by similarity and region checks, regenerate thoughts, and fine-tune the
model on the compressed trajectories.
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We propose OS-CATALYST, a method that enables GUI agents to improve efficiency by adaptively
predicting action sequences. In the following, we detail the components of OS-CATALYST. We first
introduce the formulation of action sequences and describe how they are executed in the environment.
Next, we present the dataset construction pipeline, which produces both step-level and compressed
trajectories. Finally, we present the overall process of training our model.

3.1 ACTION SEQUENCE FORMULATION

Most GUI agents today work step by step: the model outputs one action(or a fixed combination of
two actions, for example, a click followed by a type), the environment executes it, and then the model
is prompted again to predict the next action (Sun et al., 2024b; Gou et al., 2024). This process repeats
until the task is finished. While simple, this approach is often inefficient. For example, imagine a
form that requires filling multiple fields. A human can look at the page once and immediately know
the next several operations, such as clicking field A → typing the name, then clicking field B → typing
the gender, and so on.

Inspired by this, we expect the model to also predict multiple consecutive actions in advance, rather
than only one action at a time. In particular, the model should be able to adaptively decide the
length and content of the sequence according to the task requirement, the current interface, and the
execution progress. We define an action sequence as a short list of consecutive actions predicted by
the model at once. The environment still executes the actions one by one in order, but the model is
only prompted again after the whole sequence has been executed. This design reduces the number of
model-environment interactions to shorten the overall time needed for task execution.

Let st be the environment state at step t. The model first generates a thought ht, which describes its
plan for the next steps, and then outputs an action sequence

At = {at1 , at2 , . . . , atk}, k ≤ K,

where ai is an atomic action and K is the maximum sequence length. The environment executes At

sequentially:
st+1 = T (st, at1 , at2 , . . . , atk),

where T denotes the process that interprets the model’s action output and applies the corresponding
action in the environment. After At is finished, the model receives st+1 and predicts the next pair
(ht+1, At+1).

3.2 DATASET CONSTRUCTION

We attempt to use prompts to let the model output multiple actions at first. However, we found two
major problems. First, the model had no awareness of producing action sequences and would not
attempt multi-step actions within the current interface. Second, even when action sequences were
produced, the accuracy was very low. Therefore, we aim to construct a dataset for post-training,
in order to enhance the model’s ability in multi-step planning and action prediction. The complete
dataset construction process is shown in Figure 2.

Raw Trajectory Collection. WorkArena (Drouin et al., 2024) is an enterprise software environment
built on the ServiceNow1 platform, designed to evaluate GUI agents on realistic knowledge-work
tasks such as form filling, list filtering and sorting, information retrieval from knowledge bases,
service catalog usage, and menu navigation. It provides multimodal observations of the interface
(e.g., HTML, accessibility tree, and screenshots). Each task comes with natural language instructions
and automatic checks for the final task completion.

In this environment, each type of task is defined by a task template. By randomly sampling the
conditions and input values within a template, multiple task instances can be constructed. The authors
of WorkArena also provide a cheat_function, which generates the correct Playwright action
trajectory based on the specific configuration of a task. This function enables us to obtain reliable
ground-truth trajectories for training.

We collect a total of 420 trajectories across 21 tasks. Each trajectory contains the sequence of
environment states (including screenshots) along with the corresponding atomic actions(click, type,

1https://www.servicenow.com/
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select, etc.) and their associated bounding boxes, forming the raw data for subsequent action sequence
compression and training.

Formally, let a raw trajectory be τ = {(si, ai)}Ti=1, where si is the environment state (including
screenshot Ii and other structural views) at step i, and ai is the atomic action with its bounding box.

Thought Generation. Previous work has shown that explicitly modeling the reasoning process
can improve the inference ability of GUI agents (Qin et al., 2025b; Zhang et al., 2025c). Following
this idea, we augment raw trajectories with an additional thought before each action. The thought
reflects the agent’s consideration of what to do next, serving as a small plan that guides the subsequent
actions.

To generate a thought hi for action ai, we provide GPT-4o (Hurst et al., 2024) with the screenshot
pair (Ii, Ii+1) together with the executed action ai. In the screenshots, the bounding box of the
element involved in ai is highlighted with a red rectangle, which helps the model identify the relevant
interface element. The model then produces a natural language description that explains the intention
of ai by referring to how it changes the interface from si to si+1. The augmented trajectory is thus
τ̃ = {(si, hi, ai)}Ti=1.

In this way, each action is aligned with both its execution context and a reasoning thought, providing
extra supervision to support task understanding.

Trajectory Compression Pipeline. In GUI tasks, action sequences cannot be arbitrarily com-
pressed, since some actions may trigger page transitions or significant interface changes. Such
changes make it impossible to accurately anticipate the location of the next action without observing
the updated interface. To obtain trajectories with action sequences, we design a compression pipeline
that transforms raw step-by-step trajectories into compressed ones, as shown in the right of Figure 2.
Let a raw trajectory be τ = {(si, hi, ai)}Ti=1 from WorkArena. We sequentially check whether two
adjacent steps can be output within the same sequence. The prerequisite is that the result of the
first action does not affect the element involved in the second one. If the previous action includes
navigating to another page or scrolling to reveal hidden content, the condition is not satisfied.

Pair preparation. From τ we build adjacent candidates consisting of P = (st, at, st+1, at+1).

Check 1: Similarity & Rule. For each pair, we compute the Structural Similarity Index (SSIM) (Wang
et al., 2004) between consecutive screenshots Ii and Ii+1. Only pairs with similarity greater than
a threshold (0.9 in our experiments) are retained, filtering out major interface transitions. We also
add a restriction that if the first action is a scroll or any operation that inevitably changes the page
layout, the pair is automatically filtered out.

Check 2: Region match. For the remaining pairs, we perform local verification. The key criterion
for compression is whether the first action changes the position or state of the element involved in
the second action. To verify this, we use the bounding box bi+1 of the second action and crop the
corresponding regions from screenshots Ii and Ii+1. We then query GPT-4o with these cropped
regions and the action descriptions to decide whether the two actions can be safely merged. This
step ensures that the element required by the second action remains stable and does not depend on
intermediate model feedback.

Action merge. We greedily merge consecutive actions as long as both checks pass, forming a
compressed sequence At = {at1 , at2 , . . . , atk}, k ≤ K, with K = 5 as the maximum sequence
length. The merged sequence is then stored in the compressed trajectory τ̂ .

New thought generation. Since original thoughts hi are tied to atomic actions, we regenerate a new
thought ĥt for each compressed sequence At. To do this, we prompt GPT-4o (Hurst et al., 2024)
with the start and end screenshots (Ii, Ii+k), and the original thoughts. Based on this input, GPT-4o
produces a concise description that explains the reasoning behind executing At. The final compressed
trajectory is represented as τ̂ = {(st, ĥt, At)}Mj=1, At = {at1 , at2 , . . . , atk}, |At| ≤ K, which is
then used for training.
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Table 1: Statistics of our constructed datasets. We report the number of trajectories, the average
number of steps per trajectory, and the average number of actions per step.

Dataset #Trajectories Avg. Steps / Traj. Avg. Actions / Step

Work-Step 420 19.00 1.00
Work-Seq 420 12.58 (-33.8%) 1.51 (+51.0%)

3.3 DATASET STATISTICS

The original WorkArena benchmark contains 25 task types. To clearly separate the training and test
sets, we select 21 task types for training. For each task type, we collect 20 distinct trajectories using
different random seeds, resulting in a total of 420 trajectories. Based on these raw trajectories, we
construct two datasets that differ in how the actions are represented and organized.

Work-Step is built from the raw trajectories by adding a thought to each atomic action, as described
in Section 3.2. The dataset keeps the original step-by-step format with reasoning information.

Work-Seq is built from Work-Step using the compression pipeline described in Section 3.2. In
this process, consecutive actions are merged into a short action sequence when the conditions are
satisfied.

Table 1 summarizes the statistics of our constructed datasets. Compared to Work-Step , Work-Seq
significantly reduces the average step length to 12.6(-33.8%), due to the increase of the average
number of actions per step to 1.51(+51.0%). Further details of the dataset can be found in Appendix D.

3.4 TRAINING STRATEGY

To train models to generate coherent action sequences, we adopt a supervised objective that couples
thoughts with actions. Unlike single-step prediction, sequence generation requires stronger reasoning:
after proposing the first action, the model must decide whether one or more subsequent actions are
still determinable from the current observation and remain unaffected by earlier actions. If so, they
can be merged together as a coherent sequence; otherwise, the model should stop and wait for a new
observation. Therefore, by training thoughts and actions together, we encourage the model to use the
thought component as multi-step planning, enabling it to develop the reasoning ability required for
predicting coherent action sequences.

Context-Aware Formulation. Another design choice is to include recent interaction history. Using
only the current screenshot leaves the model unaware of past actions and task progress, while
conditioning on the full trajectory can exceed the context window and introduce noise from distant
steps. To balance these trade-offs, we use the last L = 5 steps as context, which captures short-term
dependencies (e.g., opening a menu before selecting an option) while remaining within the model’s
effective context length. For each training instance, the model is conditioned on the last L steps of
history,

Ct = {(st−L, ht−L, At−L), . . . , (st−1, ht−1, At−1)},
together with the current state st. The task is to predict both the next thought ht and the next action
sequence At, thus capturing both reasoning and execution.

Thought–Action Training. We model the joint generation of thought ht and action sequence At as

pθ(ht, At | It, Ct) =
|ht|∏
j=1

pθ(ht,j | It, Ct, ht,<j)

|At|∏
m=1

pθ(At,m | It, Ct, ht, At,<m).

Training uses the standard next-token cross-entropy objective:

L(θ) = −
T∑

t=1

( |ht|∑
j=1

log pθ(ht,j | It, Ct, ht,<j) +

|At|∑
m=1

log pθ(At,m | It, Ct, ht, At,<m)
)
.
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Table 2: Evaluation results on WorkArena(Seen). The first three metrics are success rate (SR), partial
success rate (PSR), number of action per step (#A/S). We use UI-TARS(Work-Step) as the baseline
to compute the relative changes of efficiency metrics for UI-TARS(Work-Seq). For SR, PSR, and
efficiency metrics, we highlight the best (bold) and second-best (underline) results.

Model SR PSR #A/S Step Time (s) Task Time (s)

7B Models
UI-TARS-7B-DPO 0.036 0.072 1.00 11.66 580.80
UI-TARS(prompt) 0.024 0.072 1.00 7.95 381.02
UI-TARS(Work-Step) 0.095 0.267 1.00 12.00 291.41
UI-TARS(Work-Seq) 0.083 0.277 1.33 (+33.0%) 9.20 147.90 (-49.2%)

72B Models
UI-TARS(Work-Step) 0.079 0.210 1.00 15.19 389.41
UI-TARS(Work-Seq) 0.060 0.294 1.20 (+20.0%) 13.02 308.50 (-20.8%)

4 EXPERIMENT

4.1 EVALUATION BENCHMARK

Workarena. We evaluate our method on WorkArena (Drouin et al., 2024), a benchmark ideal
for testing action-compression due to its focus on automating real-world, multi-step business tasks.
WorkArena simulates the repetitive, structured workflows of daily office work, such as list operations,
form fillings, and service catalog tasks (item purchasing), where employees naturally execute pre-
dictable action sequences. This characteristic makes it perfectly suited for assessing our method’s
efficiency in generating multiple actions per turn, as successfully completing its tasks requires the
model to plan and compress these logical sequences into a single, cohesive output.

Since the benchmark contains 25 task types and we use 21 types for training, the first test set
(WorkArena(Seen)) contains tasks from the same 21 types but generated with different random
seeds. This results in 84 distinct tasks that occur in the same scenarios as the training set, but differ in
their specific requirements. The second test set (WorkArena(Unseen)) is built from the remaining
4 task types that are completely excluded from training. This set includes 16 tasks and serves to
evaluate the generalization ability of the models to novel task types.

OSWorld. OSWorld (Xie et al., 2024a) is a GUI-based benchmark that evaluates computer-use
agents across heterogeneous software environments, including office tools, operating systems, web
browsers, and developer applications. It is particularly suited for assessing cross-domain gener-
alization under out-of-distribution settings. In our experiments, we use OSWorld to test whether
OS-CATALYST transfers effectively beyond the WorkArena setting.

4.2 MODEL SETTINGS

UI-TARS. We use UI-TARS (Qin et al., 2025a) as our model. UI-TARS is a GUI agent model. It
takes screenshots as input and produces human-like interactions (mouse clicks, keyboard typing, etc.).
Unlike many previous systems that rely heavily on prompt engineering or wrapped workflows around
large models, UI-TARS is an end-to-end model that unifies perception, grounding, reasoning, and
action directly.

4.3 BASELINE CONSTRUCTION

We consider four groups of models in our experiments.

1. The original UI-TARS-7B-DPO and UI-TARS-72B-DPO models with their default
prompting setup, which predict the next action step by step.

2. The same UI-TARS models prompted to output an action sequence on each page, without
any additional training, denoted as UI-TARS(prompt).

7
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3. A fine-tuned version of UI-TARS trained on the Work-Step dataset, which provides step-by-
step trajectories augmented with thoughts, denoted as UI-TARS(Work-Step).

4. A fine-tuned version of UI-TARS trained on the Work-Seq dataset, which contains com-
pressed action sequences with thoughts, i.e., UI-TARS(Work-Seq).

4.4 METRICS

Task Success. We evaluate success rate using the rule-based outcome validator built in WorkArena.
However, the task set in WorkArena are long-tailed, often requiring over 30 steps on average and
making it overly difficult for current GUI models. To better capture the reasoning capability of models
under such challenging settings, we further implement a Partial Success Rate (PSR) validator for each
task, as PSR can more fairly reflect partial progress and provide a more informative measure of model
performance. For tasks on lists, we average the total 1.0 point on each input box of the filter panel.
For tasks on forms, we reserve 0.2 point for submitting the form with all items filled correctly and
the rest 0.8 point is averaged on all items that need to be filled. For tasks on service catalogs, since
the general procedure is firstly navigating to the web page of the requested item, then filling some
requested configurations and finally submitting, we reserve 0.3 point for successful navigation and
0.1 point for successful submission, and the rest 0.6 point is averaged on the requested configurations.

Efficiency Metrics We also report three metrics that measure execution efficiency. A/S (actions
per step) denotes the average number of valid actions contained in each model output. To ensure
fairness, steps where no executable action is produced are excluded from this calculation. Step Time
(s) measures the average latency of generating one model output, while Task Time (s) reflects the
average time to finish a task, which accumulates both step-level latencies and the number of steps.

5 MAIN RESULT AND ANALYSIS

5.1 HOW DOES OS-CATALYST IMPROVE EFFICIENCY?

WorkArena(Seen) Result. For both 7B and 72B settings, models trained with our Work-Seq
dataset achieve notable improvements in execution efficiency compared to those trained on Work-
Step. Specifically, UI-TARS(Work-Seq) reduces the average task time from 291.4s to 147.9s in the
7B case (nearly a 50% reduction), and from 389.4s to 308.5s in the 72B case, while maintaining
comparable success rates. Compared to the base model (UI-TARS-7B-DPO) and the prompt-
only variant (UI-TARS(prompt)), our method delivers efficiency gains through action sequence
compression.

Both baselines almost never output multiple actions in a single step (average actions per step = 1.0),
while UI-TARS(Work-Seq) improves its efficiency by performing multiple actions within each step.
By increasing the average actions per step to 1.33 (7B) and 1.20 (72B), our model effectively reduces
unnecessary model–environment interactions, leading to substantial savings in overall task duration.

WorkArena(Unseen) Result. In addition, we report results on the Unseen set containing four task
types that were not used for training. On this set, UI-TARS(Work-Seq) also maintains efficiency
advantages to other baselines. For 7B models, UI-TARS(Work-Seq) reduces the average task time
to 135.1s, compared to 157.4s for UI-TARS(Work-Step) and over 300s for the base model. A
similar trend is observed in the 72B models, where task time decreases from 405.9s to 360.3s.
UI-TARS(Work-Seq) also achieves higher average actions per step (1.28 for 7B and 1.25 for 72B) in
unseen set, indicating that the ability to predict action sequence generalizes beyond the training tasks
and leads to consistent efficiency gains on unseen tasks.

Action Sequence Type. We further analyze the distribution of action sequence types produced
by UI-TARS(Work-Seq). As shown in Figure 3, most of the generated sequences have two actions,
though we also observe successful cases with three or even four actions. The most frequent patterns
are [click, type] and [click, click], which closely correspond to common GUI inter-
action routines, such as selecting a field followed by text input or navigating option menus through
consecutive clicks. Other action sequence types also carry concrete meaning, such as [click,
type, click] for filling in a field followed by confirmation, and [click, type, click,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Evaluation results on WorkArena(Unseen). We use UI-TARS(Work-Step) as the baseline
to compute the relative changes of efficiency metrics for UI-TARS(Work-Seq). For SR, PSR, and
efficiency metrics, we highlight the best (bold) and second-best (underline) results. Step Time values
are reported without relative changes.

Model SR PSR A/S (non-empty) Step Time (s) Task Time (s)

7B Models

UI-TARS-7B-DPO 0.063 0.125 1.00 6.35 309.80
UI-TARS(prompt) 0.063 0.100 1.00 10.84 500.48
UI-TARS(Work-Step) 0.000 0.157 1.00 9.12 157.38
UI-TARS(Work-Seq) 0.063 0.129 1.28 (+28.0%) 7.41 135.15 (-14.1%)

72B Models

UI-TARS(Work-Step) 0.063 0.205 1.00 20.2 405.9
UI-TARS(Work-Seq) 0.063 0.180 1.25 (+25.0%) 14.7 360.3 (-11.2%)
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type] for completing two consecutive fields in a form. Overall, this distribution suggests that
OS-CATALYST enables the model to generate multi-action sequences in a way that reflects common
interaction patterns observed in real GUI tasks. We provide several examples of action sequences in
Appendix C.1.

5.2 HOW DOES OS-CATALYST PERFORM ON TASK SUCCESS RATE?

On the Seen set, UI-TARS(Work-Seq) achieves success rates that are close to those of UI-TARS(Work-
Step), with 0.083 vs. 0.095 for the 7B models and 0.060 vs. 0.079 for the 72B models. This shows that
UI-TARS(Work-Seq) method does not compromise the ability to complete tasks. At the same time,
UI-TARS(Work-Seq) consistently yields the highest partial success rates, reaching 0.277 (7B) and
0.294 (72B). Compared with the base UI-TARS models without additional training, both fine-tuned
variants achieve higher SR and PSR, suggesting that training improves the model’s understanding of
the WorkArena environment. On the Unseen set, UI-TARS(Work-Seq) achieves comparable success
rates to the baselines, with 0.063 SR for both 7B and 72B models. It also sustains strong partial
success rates (0.129 and 0.180), showing that OS-CATALYST method generalizes to new task types.

Overall, these results show that OS-CATALYST improves efficiency without reducing task success,
and its ability to predict action sequences transfers to tasks outside the training set.

5.3 HOW DOES OS-CATALYST PERFORM ON CROSS-DOMAIN SETTINGS?

To assess whether our method generalizes beyond the WorkArena environment, we further evaluate
OS-CATALYST on OSWorld. Figure 4 reports the average actions per step (A/S) across different
task domains. We observe that OS-CATALYST consistently maintains non-trivial action-sequence
prediction ability across unseen environments, achieving A/S values ranging from 1.219 (Chrome) to
1.367 (LibreOffice_Calc). We observe that task domains with more frequent page transitions
tend to yield lower A/S values (e.g., chrome, thunderbird), as such interaction patterns limit
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opportunities for executing multiple actions within a single interface state. This observation is
consistent with human annotation statistics reported in Table 3 of OSWorld-Human (Abhyankar
et al., 2025), where grouped steps in several LibreOffice-related tasks show substantially greater
reduction compared to single-step interactions, suggesting higher inherent compression potential in
such office-style environments.

These results suggest that OS-CATALYST can transfer its adaptive compression capability to hetero-
geneous GUI environments without retraining, showing potential robustness to domain shifts.

6 CONCLUSION

We propose OS-CATALYST, a method that improves the efficiency of computer-using agents through
adaptive action compression. By allowing models to predict multiple consecutive actions from a single
observation, OS-CATALYST reduces redundant model–environment interactions and shortens overall
task duration. To enable this capability, we construct two datasets in the WorkArena environment,
supporting both step-level interaction and compressed action sequences. Experiments show that
OS-CATALYST achieves up to 50% reduction in task execution time while maintaining comparable
task success rates, highlighting the potential of sequence-level action prediction as a new paradigm for
GUI agents. Looking ahead, we hope this approach can generalize to broader application scenarios,
further advancing the development of efficient and practical GUI agents.

REPRODUCIBILITY STATEMENT

We provide training and evaluation scripts, together with representative data samples in Work-Seq, in
the supplementary materials. Detailed training settings are provided in Appendix B.3. Due to file
size constraints, model checkpoints and the complete datasets will be made public to the research
community in the camera-ready version.

ETHICS STATEMENT

Computer-using agents operating on live operating systems could potentially pose risks if not properly
constrained. For example, uncontrolled GUI agents may execute unintended operations, misconfigure
software, or corrupt sensitive data. Such risks are especially concerning in scientific or enterprise
workflows where errors could cause irreversible losses.

In this work, however, all experiments are conducted in isolated benchmark environments (e.g.,
WorkArena) that contain no sensitive or personal data. Our datasets are constructed from synthetic
trajectories generated within these environments, and thus do not involve privacy-related concerns.
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A LARGE LANGUAGE MODEL USAGE

In this submission, we leverage LLMs to support and refine the writing process, including grammar
and typo correction, and the identification of related work.

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENT SELECTION

Among the available GUI benchmarks with diverse features, we selected WorkArena for our exper-
iments. This choice was motivated by the fact that WorkArena tasks generally require a relatively
higher number of steps too complete. Moreover, the office scenario naturally lends itself to sequen-
tial action execution, making it well-suited for observing how models learn to perform multi-step
operations. Following WorkArena, the same team introduced WorkArena++, which incorporates
complementary tasks along with more fundamental interactions. However, we found WorkArena++
to be excessively challenging—tasks often exceed 100 steps in length, and preliminary tests showed
that both GPT-4o and GPT-4o-v achieved near-zero success rates. Consequently, we decided not to
adopt WorkArena++ for this study.

Action Definition Parameter

click Clicks at given coordinates. start_box
left_double Double-clicks at given coordinates. start_box
right_single Right-clicks at given coordinates. start_box
drag Drags from start to end position. start_box, end_box
hotkey Presses a keyboard shortcut. key
type Types specified content. content
scroll Scrolls in the given direction. start_box, direction
wait Pauses for 5s. /
finished Marks the task as complete. /
call_user Requests user intervention. /

Table 4: Action space with definitions and parameters.

B.2 ACTION SPACE

We follow the action space design of UI-TARS, while adapting it to our model and dataset. In
particular, the action space of the model includes click, left_double, right_single, drag,
hotkey, type, scroll, wait, finished, and call_user. The definition and parameter are
shown in Table 4.

B.3 FINE-TUNING SETUP.

We apply the training strategy in Section 3.4 to fine-tune the base models. For the
UI-TARS-7B-DPO model, we adopt full SFT for 4 epochs using the ms-swift (Zhao et al., 2024)
framework, with a learning rate of 1 × 10−4. For the UI-TARS-72B-DPO model, we adopt
LoRA-based SFT with rank 8 and train for 4 epochs with the learning rate of 1× 10−5, as full SFT
is infeasible under our resource constraints. Here we use LLaMA-Factory (Zheng et al., 2024b)
framework for lora fine-tuning.

C CASE STUDY

In this section, we present representative cases to illustrate the behavior of UI-TARS(Work-Seq).
We include both success and failure examples to show how the model generates action sequences in
practice.
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C.1 SUCCESS CASE EXAMPLES

Figure 5 and Figure 6 are two success case that demonstrate our model’s ability to output consecutive
actions. In both examples, the model correctly follows the task instructions and current page state to
generate coherent sequences of 3–4 actions.

Figure 5: The task is filling up a form. The model output a succession of four actions, filling up two
items in a row

C.2 FAILURE CASE EXAMPLES

We further examine representative failure cases of our model. As shown in Figure 7–9, they can
be grouped into three categories: (1) over-compression, where the model outputs an excessively
long action sequence beyond what is feasible for the current state; (2) under-compression, where
the model fails to merge actions even though multiple steps could safely be combined; (3) incorrect
element localization, where the target referenced in the thought is inconsistent with the executed
coordinates; These cases illustrate the challenges that remain for robust multi-action planning in GUI
environments, and addressing them constitutes an important direction for future work.

While these limitations remain, OS-CATALYST has already led to substantial efficiency improvements
over previous methods, reducing overall task time by approximately 50% and decreasing the average
number of interaction steps by 33%.

D DATASET DETAILS

In this section, we provide additional details of the datasets used for training in OS-CATALYST. As
described in Table 1, our data consists of two subsets: Work-Step and Work-Seq, both constructed
within the WorkArena benchmark environment. Each dataset is designed to support the development
of GUI agents from both step-level interaction and action-sequence perspectives.
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Figure 6: The task is to order a loaner laptop. The model output a succession of three actions, filling
up the last item and clicked the submit button

Figure 7: In this form filling task, the model clicks to navigate to the Financial subpage. After
this transition, it should stop and wait for the environment to return the new page before predicting
subsequent actions. However, the model continues to output additional actions prematurely.

Data Structure. Each trajectory includes:

• Screenshots of the interface at each interaction step.
• Ground-truth thoughts that describe the agent’s intention and intermediate reasoning.
• Actions (e.g., click, type, scroll) along with their coordinates and content.
• Bounding boxes specifying the UI elements involved in each action.
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Figure 8: In this form filling example, the model fills in the two form fields across two separate steps,
whereas the task can actually be completed in a single step with four consecutive actions.

Figure 9: In this example, the correct plan for the model is to click on the closure information field.
However, the predicted coordinates (marked with a red circle) are far from the correct location.

Data Format. The dataset is provided as images and JSON records:

• *.png: High-resolution GUI screenshots (1920× 1080).
• *.json: Structured metadata containing thoughts, action definitions, coordinates, and

bounding boxes.

Licensing and Usage. The dataset will be released under the MIT License and can be used for non-
commercial academic research, including model training, benchmarking, and GUI agent automation
studies. It permits redistribution and modification with proper attribution.

E PROMPTS

E.1 MODEL PROMPTS

Original prompt that does not require model to output multiple actions.

You are a GUI agent. You are given a task and your action
history, with screenshots. You need to perform the next action
to complete the task.

## Output Format
```
Thought: ...
Action: ...
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```

## Action Space
{action_space}

## Note
- Use {language} in `Thought` part.
- Summarize your next action (with its target element) in one
sentence in `Thought` part.

## User Instruction
{instruction}

Updated prompt that requires model to output multiple actions.

You are a GUI agent. You are given a task and your action
history, with screenshots. You need to perform the next action(s)
to complete the task.

If multiple actions can be performed independently--meaning one
action does not interfere with another in terms of position or
elements--you should output them together in a single `Action`
block, separated by two newlines (`\n\n`).

## Output Format
```
Thought: ...
Action: ...
```

## Action Space
{action_space}

## Note
- Use {language} in `Thought` part.
- Summarize all upcoming actions (with their target elements) in
`Thought` part.
- In the `Action` section, include one or more actions, each on
its own line, separated by two newlines.
- Only include multiple actions if they are **logically and
spatially independent**.

## User Instruction
{instruction}

E.2 DATA CURATION PROMPTS

Prompt for generating thought.

You are a GUI agent that specializes in reverse-engineering the
intent behind GUI actions.

You will be given a step from an interaction trajectory. Each
step includes:
- the global instruction to complete,
- the previous actions taken,
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- the current action to analyze. (If the current action involves
a coordinate, the coordinates are normalized values: absolute
coordinates divided by the original image width or height, then
multiplied by 1000),
- the UI screenshot with the red bounding box indicating the
position of the action to help you identify the element involved
in the action,
- the UI screenshot after the action is executed,

Your job is to identify the element in the action and infer the
*thought* (i.e., a small plan or rationale) behind the current
action, and then output it in the following format:

Thought: {{<thought>}}

The thought should be a small plan and summarize this action in
future tense (with its target element).
The thought must be consistent with the global instruction and
current action.
The thought should be a plan in a single sentence in
first-person perspective, and it should not include any code or
action.
If the current action is none, and the relevant element is
already set to the correct default that satisfies the instruction
, the thought should state that the default option already meets
the instruction and no further action is needed.

--- INPUT ---

Instruction: {instruction}

Previous actions: {previous_actions if previous_actions else
"None"}

Current action: {current_action}

Current screenshot:

Prompt for judging whether two action can be done in one step

You are given two cropped images of GUI elements. Each image
corresponds to the same position in two consecutive screenshots
from a GUI task execution.

Your task is to determine whether the two images represent the
same GUI element -- that is, the same underlying component such
as a button, icon, text label, or menu item -- even if there are
slight visual differences caused by rendering, state changes
(e.g. hover or focus), or animations.

Minor differences in appearance should not affect your decision,
as long as the core identity of the element remains the same.

Write your reasoning step by step. Then give your final answer
as “yes” or “no” on the last line. (“yes” means both images show
the same GUI element.)
The first element:
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{image1}
The second element:
{image2}

Prompt for merging thoughts of multiple actions

In the original GUI task setup, the model performs step-by-step
inference: it generates a thought and action, receives an
updated screenshot, and then proceeds with the next thought and
action. The following is a sequence of several consecutive
thought-action steps from that setting and corresponding
screenshots.

Now, we want the model to output all actions in a single step.
Your task is to merge the multiple thoughts into one coherent
and concise thought, as if the model planned the entire sequence
of actions without receiving any updated screenshots in between.

While doing this, remove any reasoning or statements that only
exist due to intermediate screenshots. The final thought should
reflect a continuous reasoning process that naturally leads to
the full sequence of actions without any interruptions.

## Output Format
You should output the merged thought directly in your response,
without any additional text or formatting. The output should be
a single string that combines all individual thoughts into one
coherent and unified thought.

## Previous Thoughts
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