
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

OS-CATALYST: ADVANCING COMPUTER-USING
AGENTS EFFICIENCY THROUGH ADAPTIVE ACTION
COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Driven by advances in Vision-Language Models (VLMs), computer-using agents
have recently demonstrated remarkable capabilities in complex reasoning, software
control, and the automation of digital workflows. However, the existing step-by-
step paradigm requires extensive interaction with the model, and the resulting
query latency emerges as a key bottleneck for real-world adoption. To address this
limitation, we propose that agents should be able to output a sequence of actions
after each observation, enabling efficient execution without constant model queries.
In this work, we introduce OS-CATALYST, a method that transforms standard
computer-using models into agents with the capability of action sequence predic-
tion. To enable this, we design a data collection pipeline tailored for compressed
action trajectories in computer-using environments. Building on this pipeline,
we construct a large-scale dataset within the WorkArena benchmark and train
computer-using agents for action sequence prediction. Through extensive experi-
ments, we show that OS-CATALYST enables up to 50% faster task completion on
office-related benchmarks without sacrificing success rate.

1 INTRODUCTION

In recent years, the rapid development of Large Language Models (LLMs) (Anthropic, 2025; OpenAI,
2025a; Bai et al., 2025) has driven the expansion of artificial intelligence from natural language
processing (NLP) to a broader range of application domains. Along with this trend, LLM-based
agents have gradually become a key point of research in both academia and industry (OpenAI, 2025b;
Manus, 2025). These agents not only demonstrate strong capabilities in information processing and
knowledge reasoning but also exhibit growing potential for handling complex tasks and executing
high-level decision-making through direct interactions with operating systems and applications. In
particular, “computer-using agents” (Cheng et al., 2024; Anthropic, 2025; Qin et al., 2025b; Sun
et al., 2024b) are designed to simulate human–computer interactions. In practice, this often manifests
as agents that operate directly on Graphical User Interfaces (GUI), which perceive dynamic layouts,
ground references to interface elements, and plan following actions. In the future, such agents
are expected to lower the operational barriers of both daily affairs and professional tasks, thereby
advancing the evolution of human–computer collaboration.

Currently, GUI agents (OpenAI, 2025a; Liu et al., 2025c) primarily interact through the step-by-step
paradigm shown in figure 1 (a). Given a user’s instruction, the model processes inputs such as
screenshots or accessibility trees, and iteratively produces reasoning and corresponding actions until
the task is complete. Multi-agent frameworks (Agashe et al., 2025b; Jia et al., 2024; Wu et al.,
2024) follow a similar reasoning paradigm, though additional stages may be introduced during
action planning and execution. Such an interaction paradigm requires agents to execute 10–30 steps
to complete a single GUI task. Querying the model repeatedly accounts for most of the time in
GUI tasks. Consequently, completing a single GUI task often takes at least several minutes, which
introduces nontrivial bottlenecks for real-world deployment and commercial adoption.

However, we observe that in many scenarios, especially office-related tasks, this interactive paradigm
leaves significant room for compression. In fact, it is often unnecessary to request a new observation
before every single action. For humans, when completing tasks such as filling out a form, a single

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Generate Action Step by Step (b) Generate Action Sequence (OS-Catalyst)
Action 1: Click(331, 345)
Action 2: Input(“CHG003000”)
Action 3: Click(331, 543)
Action 4: Input(“Train”)
Action 5: Click(923, 245)

CHG003000

CHG003000

⌨

CHG003000

Train

⌨

:Click(331, 345)LLM :Input(“CHG003000”)LLM

:Click(331, 543)LLM :Input(“Train”)
LLM

CHG003000

Train ⌨
⌨Total Time: 15s

Total Time: 5s

INSTRUCTION: Create a new change request and fill the form with [specific information]

OS-Catalyst

Figure 1: Main idea of OS-CATALYST. Traditional GUI agents generate actions step by step (a),
which incurs repeated model–environment interactions and high latency. OS-CATALYST (b) enables
the model to predict multiple valid actions in one step, thus compressing trajectories and improving
execution efficiency.

round of observation is often sufficient to determine the type and location of several subsequent
actions as shown in figure 1 (b). Inspired by this observation, we propose OS-CATALYST, which
introduces a novel interaction paradigm for GUI agents. OS-CATALYST integrates action-sequence
prediction idea, a tailored data compression pipeline, and fine-tuning strategies, enabling models to
acquire the ability to output coherent multi-step action sequences from a single observation.

We conduct measurements on WorkArena (Drouin et al., 2024), a benchmark designed for GUI-based
office tasks. The result reveals that if the model outputs the maximal feasible sequence of actions after
each observation, at least 50% of task execution steps can be eliminated. However, current models
are unable to correctly infer such multi-step action sequences through prompt-based guidance alone.
This indicates that existing GUI agents lack the ability to reason about longer action plans within a
given observation. To address this, we construct a dataset within the WorkArena environment and
train models based on UI-TARS (Qin et al., 2025b). OS-CATALYST achieved up to a 50% reduction
in task execution times compared with step-by-step paradigm.

• We propose a novel direction for improving the efficiency of GUI agents through adaptive
action compression, which reduces unnecessary observations between sequential actions.

• We construct a dataset and develop corresponding models within the WorkArena environ-
ment, enabling multi-step action prediction from a single observation.

• We achieve up to 50% reduction in task execution time on office benchmarks, demonstrating
the effectiveness of OS-CATALYST.

2 RELATED WORK

Computer-using agents. Unlike early LLM-based agents that parse GUIs (Graphical User In-
terface) into structured text (Deng et al., 2023; Zhou et al., 2024) and navigate through provided
tools like programs (Sun et al., 2024a) or API calls (Wu et al., 2024; Zhang et al., 2024a), VLM-
based GUI agents directly perceive raw screenshots and output human-like atomic keyboard/mouse
operations—markedly boosting adaptability while introducing new challenges. First, VLMs are
required to perceive detailed information and localizing elements in high-resolution screenshots.
Beyond supervised pre-training on large-scale grounding datasets (Cheng et al., 2024; Chen et al.,
2024b; Xu et al., 2024; Gou et al., 2024; Wu et al., 2025c), efforts include training high-resolution
processing (Hong et al., 2024; Yang et al., 2024; Li et al., 2024) or token selection (Ge et al., 2024;
Wu et al., 2025b; Zhang et al., 2024b) modules for visual encoders, and designing specific reasoning
strategies for dynamic focusing or test-time scaling (Wu et al., 2025a; Yang et al., 2025; Liu et al.,
2025b). Furthermore, computer-using agents necessitate strong multi-turn planning capabilities (Xie

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2024b; Sun et al., 2025). Two mainstream approaches exist: one involves elaborately designed
agentic workflow frameworks for proprietary VLMs (Zhang et al., 2025b; Jiang et al., 2025; Zheng
et al., 2024a; Wang et al., 2024; Jia et al., 2024; Agashe et al., 2025a), which comprise multiple
external modules such as hierarchical planning, systematic memory organization, and multi-agent
collaboration; the other focuses on conducting supervised fine-tuning and reinforcement learning to
endow open-source VLMs with native long-horizon reasoning and error recovery capabilities (Wang
et al., 2025a; Xia & Luo, 2025; Liu et al., 2025a; Qi et al., 2024).

Efficiency of agent workflows. Agentic workflows rooted in the CoT (Wei et al., 2022) and ReAct-
style (Yao et al., 2023) paradigms unlock LLMs’ capabilities for complex tasks, while simultaneously
significantly increasing tool invocation complexity and context length—ultimately leading to higher
costs and degraded performance. To address the issue of reasoning inefficiency, within the multi-agent
setup, DAAO (Su et al., 2025) leverages the complementary advantages of heterogeneous models and
introduces LLM routing based on query difficulty estimator to implement an adaptive orchestration
system. Optima (Chen et al., 2024a) and Puppeteer (Dang et al., 2025) integrate the balance between
performance and efficiency into reward functions, continuously enhancing the system’s dynamic
orchestration and adaptive evolution capabilities through reinforcement learning.

In the specific context of computer-using tasks, OS-Copilot (Wu et al., 2024), Mobile-Agent-E (Wang
et al., 2025b), and AppAgentX (Jiang et al., 2025) excavate repetitive patterns from historical
actions, organize them into shortcuts or tool scripts, and store these in long-term memory to enable
reuse and improve efficiency. Similarly, UFO2 (Zhang et al., 2025a) incorporates speculative
multi-action output; yet the complexity of GUI environments lies in the fact that target elements
shift unpredictably with interactions, necessitating system API calls to ensure robust execution.
Likewise, Dyna-Think (Yu et al., 2025) demonstrates effective multi-action reasoning refinement
under accessibility-tree–based UI representation, leveraging structured textual information of interface
elements. However, current models that rely purely on visual observations still struggle to achieve
comparable prediction quality, as they lack explicit semantic and hierarchical cues. OSWorld-
Human (Abhyankar et al., 2025) recognizes this limitation and provides manually grouped action
annotations as a benchmark to assess efficiency, while mainly focusing on evaluation. Building on
this insight, we move one step closer by internalizing the prediction of environmental dynamics into
the model through large-scale supervised training.

3 METHOD

Trajectory

: Thought hi-1

Check 2: Region Match

:Match

Similarity
>0.9

 Check 1: Similarity & Rule

Labeled Screenshot
Ii-1 & Ii

Sample Trajectory Trajectory Compress

New Thought Generation

Environment

Click
(331, 345)

Action
ai-1

Generate Thought

Original Trajectory

Merged Actions &
Original Thoughts &

Screenshots

Screenshot Ii-1 & Screenshot Ii

……

🧐

Pairs Prepare

Compressed Trajectory

……

Action 1 Action
2 & 3 & 4

Action
5 & 6

Action Merge

:New Thoughts
OS-CatalystCompressed

Trajectories

Train on

Instruction: Fill the form

 Screenshot 1 , Action 1

=> Screenshot 2 , Action 2

=> Screenshot 3 , Action 3
=> ……

CHG003000
CHG003000

Train

CHG003000

Train

CHG003000

Figure 2: Data construction pipeline of OS-CATALYST. From sampled trajectories, we merge
consecutive actions validated by similarity and region checks, regenerate thoughts, and fine-tune the
model on the compressed trajectories.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We propose OS-CATALYST, a method that enables GUI agents to improve efficiency by adaptively
predicting action sequences. In the following, we detail the components of OS-CATALYST. We first
introduce the formulation of action sequences and describe how they are executed in the environment.
Next, we present the dataset construction pipeline, which produces both step-level and compressed
trajectories. Finally, we present the overall process of training our model.

3.1 ACTION SEQUENCE FORMULATION

Most GUI agents today work step by step: the model outputs one action(or a fixed combination of
two actions, for example, a click followed by a type), the environment executes it, and then the model
is prompted again to predict the next action (Sun et al., 2024b; Gou et al., 2024). This process repeats
until the task is finished. While simple, this approach is often inefficient. For example, imagine a
form that requires filling multiple fields. A human can look at the page once and immediately know
the next several operations, such as clicking field A → typing the name, then clicking field B → typing
the gender, and so on.

Inspired by this, we expect the model to also predict multiple consecutive actions in advance, rather
than only one action at a time. In particular, the model should be able to adaptively decide the
length and content of the sequence according to the task requirement, the current interface, and the
execution progress. We define an action sequence as a short list of consecutive actions predicted by
the model at once. The environment still executes the actions one by one in order, but the model is
only prompted again after the whole sequence has been executed. This design reduces the number of
model-environment interactions to shorten the overall time needed for task execution.

Let st be the environment state at step t. The model first generates a thought ht, which describes its
plan for the next steps, and then outputs an action sequence

At = {at1 , at2 , . . . , atk}, k ≤ K,

where ai is an atomic action and K is the maximum sequence length. The environment executes At

sequentially:
st+1 = T (st, at1 , at2 , . . . , atk),

where T denotes the process that interprets the model’s action output and applies the corresponding
action in the environment. After At is finished, the model receives st+1 and predicts the next pair
(ht+1, At+1).

3.2 DATASET CONSTRUCTION

We attempt to use prompts to let the model output multiple actions at first. However, we found two
major problems. First, the model had no awareness of producing action sequences and would not
attempt multi-step actions within the current interface. Second, even when action sequences were
produced, the accuracy was very low. Therefore, we aim to construct a dataset for post-training,
in order to enhance the model’s ability in multi-step planning and action prediction. The complete
dataset construction process is shown in Figure 2.

Raw Trajectory Collection. WorkArena (Drouin et al., 2024) is an enterprise software environment
built on the ServiceNow1 platform, designed to evaluate GUI agents on realistic knowledge-work
tasks such as form filling, list filtering and sorting, information retrieval from knowledge bases,
service catalog usage, and menu navigation. It provides multimodal observations of the interface
(e.g., HTML, accessibility tree, and screenshots). Each task comes with natural language instructions
and automatic checks for the final task completion.

In this environment, each type of task is defined by a task template. By randomly sampling the
conditions and input values within a template, multiple task instances can be constructed. The authors
of WorkArena also provide a cheat_function, which generates the correct Playwright action
trajectory based on the specific configuration of a task. This function enables us to obtain reliable
ground-truth trajectories for training.

We collect a total of 420 trajectories across 21 tasks. Each trajectory contains the sequence of
environment states (including screenshots) along with the corresponding atomic actions(click, type,

1https://www.servicenow.com/

4

https://www.servicenow.com/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

select, etc.) and their associated bounding boxes, forming the raw data for subsequent action sequence
compression and training.

Formally, let a raw trajectory be τ = {(si, ai)}Ti=1, where si is the environment state (including
screenshot Ii and other structural views) at step i, and ai is the atomic action with its bounding box.

Thought Generation. Previous work has shown that explicitly modeling the reasoning process
can improve the inference ability of GUI agents (Qin et al., 2025b; Zhang et al., 2025c). Following
this idea, we augment raw trajectories with an additional thought before each action. The thought
reflects the agent’s consideration of what to do next, serving as a small plan that guides the subsequent
actions.

To generate a thought hi for action ai, we provide GPT-4o (Hurst et al., 2024) with the screenshot
pair (Ii, Ii+1) together with the executed action ai. In the screenshots, the bounding box of the
element involved in ai is highlighted with a red rectangle, which helps the model identify the relevant
interface element. The model then produces a natural language description that explains the intention
of ai by referring to how it changes the interface from si to si+1. The augmented trajectory is thus
τ̃ = {(si, hi, ai)}Ti=1.

In this way, each action is aligned with both its execution context and a reasoning thought, providing
extra supervision to support task understanding.

Trajectory Compression Pipeline. In GUI tasks, action sequences cannot be arbitrarily com-
pressed, since some actions may trigger page transitions or significant interface changes. Such
changes make it impossible to accurately anticipate the location of the next action without observing
the updated interface. To obtain trajectories with action sequences, we design a compression pipeline
that transforms raw step-by-step trajectories into compressed ones, as shown in the right of Figure 2.
Let a raw trajectory be τ = {(si, hi, ai)}Ti=1 from WorkArena. We sequentially check whether two
adjacent steps can be output within the same sequence. The prerequisite is that the result of the
first action does not affect the element involved in the second one. If the previous action includes
navigating to another page or scrolling to reveal hidden content, the condition is not satisfied.

Pair preparation. From τ we build adjacent candidates consisting of P = (st, at, st+1, at+1).

Check 1: Similarity & Rule. For each pair, we compute the Structural Similarity Index (SSIM) (Wang
et al., 2004) between consecutive screenshots Ii and Ii+1. Only pairs with similarity greater than
a threshold (0.9 in our experiments) are retained, filtering out major interface transitions. We also
add a restriction that if the first action is a scroll or any operation that inevitably changes the page
layout, the pair is automatically filtered out.

Check 2: Region match. For the remaining pairs, we perform local verification. The key criterion
for compression is whether the first action changes the position or state of the element involved in
the second action. To verify this, we use the bounding box bi+1 of the second action and crop the
corresponding regions from screenshots Ii and Ii+1. We then query GPT-4o with these cropped
regions and the action descriptions to decide whether the two actions can be safely merged. This
step ensures that the element required by the second action remains stable and does not depend on
intermediate model feedback.

Action merge. We greedily merge consecutive actions as long as both checks pass, forming a
compressed sequence At = {at1 , at2 , . . . , atk}, k ≤ K, with K = 5 as the maximum sequence
length. The merged sequence is then stored in the compressed trajectory τ̂ .

New thought generation. Since original thoughts hi are tied to atomic actions, we regenerate a new
thought ĥt for each compressed sequence At. To do this, we prompt GPT-4o (Hurst et al., 2024)
with the start and end screenshots (Ii, Ii+k), and the original thoughts. Based on this input, GPT-4o
produces a concise description that explains the reasoning behind executing At. The final compressed
trajectory is represented as τ̂ = {(st, ĥt, At)}Mj=1, At = {at1 , at2 , . . . , atk}, |At| ≤ K, which is
then used for training.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Statistics of our constructed datasets. We report the number of trajectories, the average
number of steps per trajectory, and the average number of actions per step.

Dataset #Trajectories Avg. Steps / Traj. Avg. Actions / Step

Work-Step 420 19.00 1.00
Work-Seq 420 12.58 (-33.8%) 1.51 (+51.0%)

3.3 DATASET STATISTICS

The original WorkArena benchmark contains 25 task types. To clearly separate the training and test
sets, we select 21 task types for training. For each task type, we collect 20 distinct trajectories using
different random seeds, resulting in a total of 420 trajectories. Based on these raw trajectories, we
construct two datasets that differ in how the actions are represented and organized.

Work-Step is built from the raw trajectories by adding a thought to each atomic action, as described
in Section 3.2. The dataset keeps the original step-by-step format with reasoning information.

Work-Seq is built from Work-Step using the compression pipeline described in Section 3.2. In
this process, consecutive actions are merged into a short action sequence when the conditions are
satisfied.

Table 1 summarizes the statistics of our constructed datasets. Compared to Work-Step , Work-Seq
significantly reduces the average step length to 12.6(-33.8%), due to the increase of the average
number of actions per step to 1.51(+51.0%). Further details of the dataset can be found in Appendix D.

3.4 TRAINING STRATEGY

To train models to generate coherent action sequences, we adopt a supervised objective that couples
thoughts with actions. Unlike single-step prediction, sequence generation requires stronger reasoning:
after proposing the first action, the model must decide whether one or more subsequent actions are
still determinable from the current observation and remain unaffected by earlier actions. If so, they
can be merged together as a coherent sequence; otherwise, the model should stop and wait for a new
observation. Therefore, by training thoughts and actions together, we encourage the model to use the
thought component as multi-step planning, enabling it to develop the reasoning ability required for
predicting coherent action sequences.

Context-Aware Formulation. Another design choice is to include recent interaction history. Using
only the current screenshot leaves the model unaware of past actions and task progress, while
conditioning on the full trajectory can exceed the context window and introduce noise from distant
steps. To balance these trade-offs, we use the last L = 5 steps as context, which captures short-term
dependencies (e.g., opening a menu before selecting an option) while remaining within the model’s
effective context length. For each training instance, the model is conditioned on the last L steps of
history,

Ct = {(st−L, ht−L, At−L), . . . , (st−1, ht−1, At−1)},
together with the current state st. The task is to predict both the next thought ht and the next action
sequence At, thus capturing both reasoning and execution.

Thought–Action Training. We model the joint generation of thought ht and action sequence At as

pθ(ht, At | It, Ct) =
|ht|∏
j=1

pθ(ht,j | It, Ct, ht,<j)

|At|∏
m=1

pθ(At,m | It, Ct, ht, At,<m).

Training uses the standard next-token cross-entropy objective:

L(θ) = −
T∑

t=1

(|ht|∑
j=1

log pθ(ht,j | It, Ct, ht,<j) +

|At|∑
m=1

log pθ(At,m | It, Ct, ht, At,<m)
)
.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Evaluation results on WorkArena(Seen). The first three metrics are success rate (SR), partial
success rate (PSR), number of action per step (#A/S). We use UI-TARS(Work-Step) as the baseline
to compute the relative changes of efficiency metrics for UI-TARS(Work-Seq). For SR, PSR, and
efficiency metrics, we highlight the best (bold) and second-best (underline) results.

Model SR PSR #A/S Step Time (s) Task Time (s)

7B Models
UI-TARS-7B-DPO 0.036 0.072 1.00 11.66 580.80
UI-TARS(prompt) 0.024 0.072 1.00 7.95 381.02
UI-TARS(Work-Step) 0.095 0.267 1.00 12.00 291.41
UI-TARS(Work-Seq) 0.083 0.277 1.33 (+33.0%) 9.20 147.90 (-49.2%)

72B Models
UI-TARS(Work-Step) 0.079 0.210 1.00 15.19 389.41
UI-TARS(Work-Seq) 0.060 0.294 1.20 (+20.0%) 13.02 308.50 (-20.8%)

4 EXPERIMENT

4.1 EVALUATION BENCHMARK

Workarena. We evaluate our method on WorkArena (Drouin et al., 2024), a benchmark ideal
for testing action-compression due to its focus on automating real-world, multi-step business tasks.
WorkArena simulates the repetitive, structured workflows of daily office work, such as list operations,
form fillings, and service catalog tasks (item purchasing), where employees naturally execute pre-
dictable action sequences. This characteristic makes it perfectly suited for assessing our method’s
efficiency in generating multiple actions per turn, as successfully completing its tasks requires the
model to plan and compress these logical sequences into a single, cohesive output.

Since the benchmark contains 25 task types and we use 21 types for training, the first test set
(WorkArena(Seen)) contains tasks from the same 21 types but generated with different random
seeds. This results in 84 distinct tasks that occur in the same scenarios as the training set, but differ in
their specific requirements. The second test set (WorkArena(Unseen)) is built from the remaining
4 task types that are completely excluded from training. This set includes 16 tasks and serves to
evaluate the generalization ability of the models to novel task types.

OSWorld. OSWorld (Xie et al., 2024a) is a GUI-based benchmark that evaluates computer-use
agents across heterogeneous software environments, including office tools, operating systems, web
browsers, and developer applications. It is particularly suited for assessing cross-domain gener-
alization under out-of-distribution settings. In our experiments, we use OSWorld to test whether
OS-CATALYST transfers effectively beyond the WorkArena setting.

4.2 MODEL SETTINGS

UI-TARS. We use UI-TARS (Qin et al., 2025a) as our model. UI-TARS is a GUI agent model. It
takes screenshots as input and produces human-like interactions (mouse clicks, keyboard typing, etc.).
Unlike many previous systems that rely heavily on prompt engineering or wrapped workflows around
large models, UI-TARS is an end-to-end model that unifies perception, grounding, reasoning, and
action directly.

4.3 BASELINE CONSTRUCTION

We consider four groups of models in our experiments.

1. The original UI-TARS-7B-DPO and UI-TARS-72B-DPO models with their default
prompting setup, which predict the next action step by step.

2. The same UI-TARS models prompted to output an action sequence on each page, without
any additional training, denoted as UI-TARS(prompt).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3. A fine-tuned version of UI-TARS trained on the Work-Step dataset, which provides step-by-
step trajectories augmented with thoughts, denoted as UI-TARS(Work-Step).

4. A fine-tuned version of UI-TARS trained on the Work-Seq dataset, which contains com-
pressed action sequences with thoughts, i.e., UI-TARS(Work-Seq).

4.4 METRICS

Task Success. We evaluate success rate using the rule-based outcome validator built in WorkArena.
However, the task set in WorkArena are long-tailed, often requiring over 30 steps on average and
making it overly difficult for current GUI models. To better capture the reasoning capability of models
under such challenging settings, we further implement a Partial Success Rate (PSR) validator for each
task, as PSR can more fairly reflect partial progress and provide a more informative measure of model
performance. For tasks on lists, we average the total 1.0 point on each input box of the filter panel.
For tasks on forms, we reserve 0.2 point for submitting the form with all items filled correctly and
the rest 0.8 point is averaged on all items that need to be filled. For tasks on service catalogs, since
the general procedure is firstly navigating to the web page of the requested item, then filling some
requested configurations and finally submitting, we reserve 0.3 point for successful navigation and
0.1 point for successful submission, and the rest 0.6 point is averaged on the requested configurations.

Efficiency Metrics We also report three metrics that measure execution efficiency. A/S (actions
per step) denotes the average number of valid actions contained in each model output. To ensure
fairness, steps where no executable action is produced are excluded from this calculation. Step Time
(s) measures the average latency of generating one model output, while Task Time (s) reflects the
average time to finish a task, which accumulates both step-level latencies and the number of steps.

5 MAIN RESULT AND ANALYSIS

5.1 HOW DOES OS-CATALYST IMPROVE EFFICIENCY?

WorkArena(Seen) Result. For both 7B and 72B settings, models trained with our Work-Seq
dataset achieve notable improvements in execution efficiency compared to those trained on Work-
Step. Specifically, UI-TARS(Work-Seq) reduces the average task time from 291.4s to 147.9s in the
7B case (nearly a 50% reduction), and from 389.4s to 308.5s in the 72B case, while maintaining
comparable success rates. Compared to the base model (UI-TARS-7B-DPO) and the prompt-
only variant (UI-TARS(prompt)), our method delivers efficiency gains through action sequence
compression.

Both baselines almost never output multiple actions in a single step (average actions per step = 1.0),
while UI-TARS(Work-Seq) improves its efficiency by performing multiple actions within each step.
By increasing the average actions per step to 1.33 (7B) and 1.20 (72B), our model effectively reduces
unnecessary model–environment interactions, leading to substantial savings in overall task duration.

WorkArena(Unseen) Result. In addition, we report results on the Unseen set containing four task
types that were not used for training. On this set, UI-TARS(Work-Seq) also maintains efficiency
advantages to other baselines. For 7B models, UI-TARS(Work-Seq) reduces the average task time
to 135.1s, compared to 157.4s for UI-TARS(Work-Step) and over 300s for the base model. A
similar trend is observed in the 72B models, where task time decreases from 405.9s to 360.3s.
UI-TARS(Work-Seq) also achieves higher average actions per step (1.28 for 7B and 1.25 for 72B) in
unseen set, indicating that the ability to predict action sequence generalizes beyond the training tasks
and leads to consistent efficiency gains on unseen tasks.

Action Sequence Type. We further analyze the distribution of action sequence types produced
by UI-TARS(Work-Seq). As shown in Figure 3, most of the generated sequences have two actions,
though we also observe successful cases with three or even four actions. The most frequent patterns
are [click, type] and [click, click], which closely correspond to common GUI inter-
action routines, such as selecting a field followed by text input or navigating option menus through
consecutive clicks. Other action sequence types also carry concrete meaning, such as [click,
type, click] for filling in a field followed by confirmation, and [click, type, click,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Evaluation results on WorkArena(Unseen). We use UI-TARS(Work-Step) as the baseline
to compute the relative changes of efficiency metrics for UI-TARS(Work-Seq). For SR, PSR, and
efficiency metrics, we highlight the best (bold) and second-best (underline) results. Step Time values
are reported without relative changes.

Model SR PSR A/S (non-empty) Step Time (s) Task Time (s)

7B Models

UI-TARS-7B-DPO 0.063 0.125 1.00 6.35 309.80
UI-TARS(prompt) 0.063 0.100 1.00 10.84 500.48
UI-TARS(Work-Step) 0.000 0.157 1.00 9.12 157.38
UI-TARS(Work-Seq) 0.063 0.129 1.28 (+28.0%) 7.41 135.15 (-14.1%)

72B Models

UI-TARS(Work-Step) 0.063 0.205 1.00 20.2 405.9
UI-TARS(Work-Seq) 0.063 0.180 1.25 (+25.0%) 14.7 360.3 (-11.2%)

[cl
ick

,ty
pe

]

[cl
ick

,cli
ck]

[cl
ick

,cli
ck,

typ
e]

[cl
ick

,cli
ck,

clic
k]

[sc
rol

l,cl
ick

]

[cl
ick

,sc
rol

l]

[cl
ick

,ty
pe

,cli
ck]

[cl
ick

,ty
pe

,cli
ck,

typ
e]

[ty
pe

,cli
ck]

[ot
he

rs]

Action Sequence

0
10
20
30
40
50
60

Pe
rc

en
ta

ge
 (%

) 48.9%

32.7%

5.5% 3.0% 2.1% 1.9% 1.8% 0.9% 0.9% 2.3%

Action sequence distribution in UI-TARS(Work-Seq) output

Figure 3: Action-sequence distribution in model
output

libr
eo

ffic
e_c

alc

libr
eo

ffic
e_i

mpre
ss

libr
eo

ffic
e_w

rite
r

chr
om

e
gim

p

mult
i_a

pp
s os

thu
nd

erb
ird vlc

vs_
cod

e

Domain

1.0

1.1

1.2

1.3

1.4

A/
S

1.367 1.362

1.274
1.219

1.282

1.359 1.361

1.266 1.288 1.273

Evaluation Results on OSWorld

Figure 4: Evaluation Results on OSWorld

type] for completing two consecutive fields in a form. Overall, this distribution suggests that
OS-CATALYST enables the model to generate multi-action sequences in a way that reflects common
interaction patterns observed in real GUI tasks. We provide several examples of action sequences in
Appendix C.1.

5.2 HOW DOES OS-CATALYST PERFORM ON TASK SUCCESS RATE?

On the Seen set, UI-TARS(Work-Seq) achieves success rates that are close to those of UI-TARS(Work-
Step), with 0.083 vs. 0.095 for the 7B models and 0.060 vs. 0.079 for the 72B models. This shows that
UI-TARS(Work-Seq) method does not compromise the ability to complete tasks. At the same time,
UI-TARS(Work-Seq) consistently yields the highest partial success rates, reaching 0.277 (7B) and
0.294 (72B). Compared with the base UI-TARS models without additional training, both fine-tuned
variants achieve higher SR and PSR, suggesting that training improves the model’s understanding of
the WorkArena environment. On the Unseen set, UI-TARS(Work-Seq) achieves comparable success
rates to the baselines, with 0.063 SR for both 7B and 72B models. It also sustains strong partial
success rates (0.129 and 0.180), showing that OS-CATALYST method generalizes to new task types.

Overall, these results show that OS-CATALYST improves efficiency without reducing task success,
and its ability to predict action sequences transfers to tasks outside the training set.

5.3 HOW DOES OS-CATALYST PERFORM ON CROSS-DOMAIN SETTINGS?

To assess whether our method generalizes beyond the WorkArena environment, we further evaluate
OS-CATALYST on OSWorld. Figure 4 reports the average actions per step (A/S) across different
task domains. We observe that OS-CATALYST consistently maintains non-trivial action-sequence
prediction ability across unseen environments, achieving A/S values ranging from 1.219 (Chrome) to
1.367 (LibreOffice_Calc). We observe that task domains with more frequent page transitions
tend to yield lower A/S values (e.g., chrome, thunderbird), as such interaction patterns limit

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

opportunities for executing multiple actions within a single interface state. This observation is
consistent with human annotation statistics reported in Table 3 of OSWorld-Human (Abhyankar
et al., 2025), where grouped steps in several LibreOffice-related tasks show substantially greater
reduction compared to single-step interactions, suggesting higher inherent compression potential in
such office-style environments.

These results suggest that OS-CATALYST can transfer its adaptive compression capability to hetero-
geneous GUI environments without retraining, showing potential robustness to domain shifts.

6 CONCLUSION

We propose OS-CATALYST, a method that improves the efficiency of computer-using agents through
adaptive action compression. By allowing models to predict multiple consecutive actions from a single
observation, OS-CATALYST reduces redundant model–environment interactions and shortens overall
task duration. To enable this capability, we construct two datasets in the WorkArena environment,
supporting both step-level interaction and compressed action sequences. Experiments show that
OS-CATALYST achieves up to 50% reduction in task execution time while maintaining comparable
task success rates, highlighting the potential of sequence-level action prediction as a new paradigm for
GUI agents. Looking ahead, we hope this approach can generalize to broader application scenarios,
further advancing the development of efficient and practical GUI agents.

REPRODUCIBILITY STATEMENT

We provide training and evaluation scripts, together with representative data samples in Work-Seq, in
the supplementary materials. Detailed training settings are provided in Appendix B.3. Due to file
size constraints, model checkpoints and the complete datasets will be made public to the research
community in the camera-ready version.

ETHICS STATEMENT

Computer-using agents operating on live operating systems could potentially pose risks if not properly
constrained. For example, uncontrolled GUI agents may execute unintended operations, misconfigure
software, or corrupt sensitive data. Such risks are especially concerning in scientific or enterprise
workflows where errors could cause irreversible losses.

In this work, however, all experiments are conducted in isolated benchmark environments (e.g.,
WorkArena) that contain no sensitive or personal data. Our datasets are constructed from synthetic
trajectories generated within these environments, and thus do not involve privacy-related concerns.

REFERENCES

Reyna Abhyankar, Qi Qi, and Yiying Zhang. Osworld-human: Benchmarking the efficiency of
computer-use agents. arXiv preprint arXiv:2506.16042, 2025.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A
compositional generalist-specialist framework for computer use agents, 2025a. URL https:
//arxiv.org/abs/2504.00906.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025b.

Anthropic. Claude 3.7 sonnet. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025. Accessed: 2025-04-25.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,

10

https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Optima: Optimiz-
ing effectiveness and efficiency for llm-based multi-agent system. arXiv preprint arXiv:2410.08115,
2024a.

Xuetian Chen, Hangcheng Li, Jiaqing Liang, Sihang Jiang, and Deqing Yang. Edge: Enhanced
grounded gui understanding with enriched multi-granularity synthetic data. arXiv preprint
arXiv:2410.19461, 2024b.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong Wu.
SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9313–9332, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.505.

Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng Yang,
Xiaoyin Che, Ye Tian, et al. Multi-agent collaboration via evolving orchestration. arXiv preprint
arXiv:2505.19591, 2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun,
and Yu Su. Mind2web: Towards a generalist agent for the web. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 28091–28114. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.
pdf.

Alexandre Drouin, Jorge Gonzalez, Jonathan Krause, Besmira Nushi, Mitchell Wortsman, Ce Zhang,
Xiaohua Zhou, Ingrid Zukerman, and Zhiwei Steven Chen. Workarena: How capable are web
agents at solving common knowledge work tasks? In Proceedings of the 41st International
Conference on Machine Learning (ICML), Proceedings of Machine Learning Research. PMLR,
2024. URL https://proceedings.mlr.press/v235/drouin24a.html.

Zhiqi Ge, Juncheng Li, Xinglei Pang, Minghe Gao, Kaihang Pan, Wang Lin, Hao Fei, Wenqiao
Zhang, Siliang Tang, and Yueting Zhuang. Iris: Breaking gui complexity with adaptive focus and
self-refining. arXiv preprint arXiv:2412.10342, 2024.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Chengyou Jia, Minnan Luo, Zhuohang Dang, Qiushi Sun, Fangzhi Xu, Junlin Hu, Tianbao Xie, and
Zhiyong Wu. Agentstore: Scalable integration of heterogeneous agents as specialized generalist
computer assistant. arXiv preprint arXiv:2410.18603, 2024.

Wenjia Jiang, Yangyang Zhuang, Chenxi Song, Xu Yang, Joey Tianyi Zhou, and Chi Zhang. Ap-
pagentx: Evolving gui agents as proficient smartphone users. arXiv preprint arXiv:2503.02268,
2025.

Zhangheng Li, Keen You, Haotian Zhang, Di Feng, Harsh Agrawal, Xiujun Li, Mohana Prasad Sathya
Moorthy, Jeff Nichols, Yinfei Yang, and Zhe Gan. Ferret-ui 2: Mastering universal user interface
understanding across platforms. arXiv preprint arXiv:2410.18967, 2024.

11

https://arxiv.org/abs/2502.13923
https://aclanthology.org/2024.acl-long.505
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.mlr.press/v235/drouin24a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025a.

Yuhang Liu, Zeyu Liu, Shuanghe Zhu, Pengxiang Li, Congkai Xie, Jiasheng Wang, Xueyu Hu,
Xiaotian Han, Jianbo Yuan, Xinyao Wang, et al. Infigui-g1: Advancing gui grounding with
adaptive exploration policy optimization. arXiv preprint arXiv:2508.05731, 2025b.

Zhaoyang Liu, Jingjing Xie, Zichen Ding, Zehao Li, Bowen Yang, Zhenyu Wu, Xuehui Wang,
Qiushi Sun, Shi Liu, Weiyun Wang, Shenglong Ye, Qingyun Li, Xuan Dong, Yue Yu, Chenyu
Lu, YunXiang Mo, Yao Yan, Zeyue Tian, Xiao Zhang, Yuan Huang, Yiqian Liu, Weijie Su, Gen
Luo, Xiangyu Yue, Biqing Qi, Kai Chen, Bowen Zhou, Yu Qiao, Qifeng Chen, and Wenhai
Wang. Scalecua: Scaling open-source computer use agents with cross-platform data. arXiv
preprint arXiv:2509.15221, 2025c. URL https://github.com/OpenGVLab/ScaleCUA.
Preprint.

Manus. Manus. https://manus.im/, 2025. Accessed: 2025-04-25.

OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world, 2025a. URL https://openai.com/index/computer-using-agent.

OpenAI. Introducing operator. https://openai.com/index/
introducing-operator/, 2025b. Accessed: 2025-04-25.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang,
Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curriculum
reinforcement learning. arXiv preprint arXiv:2411.02337, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025a.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025b.

Jinwei Su, Yinghui Xia, Qizhen Lan, Xinyuan Song, Yang Jingsong, Lewei He, and Tianyu Shi.
Difficulty-aware agent orchestration in llm-powered workflows. arXiv preprint arXiv:2509.11079,
2025.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024a.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024b.

Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, et al. Scienceboard: Evaluating multimodal autonomous
agents in realistic scientific workflows. arXiv preprint arXiv:2505.19897, 2025.

Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
agent with multi-turn reinforcement learning. arXiv preprint arXiv:2509.02544, 2025a.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. Advances in Neural Information Processing Systems, 37:2686–2710,
2024.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint
arXiv:2501.11733, 2025b.

12

https://github.com/OpenGVLab/ScaleCUA
https://manus.im/
https://openai.com/index/computer-using-agent
https://openai.com/index/introducing-operator/
https://openai.com/index/introducing-operator/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):
600–612, 2004.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_VjQlMeSB_J.

Hang Wu, Hongkai Chen, Yujun Cai, Chang Liu, Qingwen Ye, Ming-Hsuan Yang, and Yiwei Wang.
Dimo-gui: Advancing test-time scaling in gui grounding via modality-aware visual reasoning.
arXiv preprint arXiv:2507.00008, 2025a.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
agents. arXiv preprint arXiv:2506.03143, 2025b.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement,
2024. URL https://arxiv.org/abs/2402.07456.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. OS-ATLAS: Foundation action model for
generalist GUI agents. In The Thirteenth International Conference on Learning Representations,
2025c. URL https://openreview.net/forum?id=n9PDaFNi8t.

Xiaobo Xia and Run Luo. Gui-r1: A generalist r1-style vision-language action model for gui agents.
arXiv preprint arXiv:2504.10458, 2025.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024a.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. In The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2024b. URL https:
//openreview.net/forum?id=tN61DTr4Ed.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2024.

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. arXiv preprint
arXiv:2507.05791, 2025.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Xiao Yu, Baolin Peng, Ruize Xu, Michel Galley, Hao Cheng, Suman Nath, Jianfeng Gao, and Zhou
Yu. Dyna-think: Synergizing reasoning, acting, and world model simulation in ai agents, 2025.
URL https://arxiv.org/abs/2506.00320.

Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang, Qingwei
Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Ufo: A ui-focused agent for windows os
interaction, 2024a.

13

https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2402.07456
https://openreview.net/forum?id=n9PDaFNi8t
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=tN61DTr4Ed
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://arxiv.org/abs/2506.00320

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang,
Pu Zhao, Chao Du, et al. Ufo2: The desktop agentos. arXiv preprint arXiv:2504.14603, 2025a.

Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and
Gang Yu. Appagent: Multimodal agents as smartphone users. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems, pp. 1–20, 2025b.

Jiwen Zhang, Yaqi Yu, Minghui Liao, Wentao Li, Jihao Wu, and Zhongyu Wei. Ui-hawk: Unleashing
the screen stream understanding for gui agents. 2024b.

Junlei Zhang, Zichen Ding, Chang Ma, Zijie Chen, Qiushi Sun, Zhenzhong Lan, and Junxian
He. Breaking the data barrier–building gui agents through task generalization. arXiv preprint
arXiv:2504.10127, 2025c.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight
infrastructure for fine-tuning, 2024. URL https://arxiv.org/abs/2408.05517.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded. In Forty-first International Conference on Machine Learning, 2024a. URL
https://openreview.net/forum?id=piecKJ2DlB.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024b. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web
environment for building autonomous agents. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=oKn9c6ytLx.

14

https://arxiv.org/abs/2408.05517
https://openreview.net/forum?id=piecKJ2DlB
http://arxiv.org/abs/2403.13372
https://openreview.net/forum?id=oKn9c6ytLx

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A LARGE LANGUAGE MODEL USAGE

In this submission, we leverage LLMs to support and refine the writing process, including grammar
and typo correction, and the identification of related work.

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENT SELECTION

Among the available GUI benchmarks with diverse features, we selected WorkArena for our exper-
iments. This choice was motivated by the fact that WorkArena tasks generally require a relatively
higher number of steps too complete. Moreover, the office scenario naturally lends itself to sequen-
tial action execution, making it well-suited for observing how models learn to perform multi-step
operations. Following WorkArena, the same team introduced WorkArena++, which incorporates
complementary tasks along with more fundamental interactions. However, we found WorkArena++
to be excessively challenging—tasks often exceed 100 steps in length, and preliminary tests showed
that both GPT-4o and GPT-4o-v achieved near-zero success rates. Consequently, we decided not to
adopt WorkArena++ for this study.

Action Definition Parameter

click Clicks at given coordinates. start_box
left_double Double-clicks at given coordinates. start_box
right_single Right-clicks at given coordinates. start_box
drag Drags from start to end position. start_box, end_box
hotkey Presses a keyboard shortcut. key
type Types specified content. content
scroll Scrolls in the given direction. start_box, direction
wait Pauses for 5s. /
finished Marks the task as complete. /
call_user Requests user intervention. /

Table 4: Action space with definitions and parameters.

B.2 ACTION SPACE

We follow the action space design of UI-TARS, while adapting it to our model and dataset. In
particular, the action space of the model includes click, left_double, right_single, drag,
hotkey, type, scroll, wait, finished, and call_user. The definition and parameter are
shown in Table 4.

B.3 FINE-TUNING SETUP.

We apply the training strategy in Section 3.4 to fine-tune the base models. For the
UI-TARS-7B-DPO model, we adopt full SFT for 4 epochs using the ms-swift (Zhao et al., 2024)
framework, with a learning rate of 1 × 10−4. For the UI-TARS-72B-DPO model, we adopt
LoRA-based SFT with rank 8 and train for 4 epochs with the learning rate of 1× 10−5, as full SFT
is infeasible under our resource constraints. Here we use LLaMA-Factory (Zheng et al., 2024b)
framework for lora fine-tuning.

C CASE STUDY

In this section, we present representative cases to illustrate the behavior of UI-TARS(Work-Seq).
We include both success and failure examples to show how the model generates action sequences in
practice.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.1 SUCCESS CASE EXAMPLES

Figure 5 and Figure 6 are two success case that demonstrate our model’s ability to output consecutive
actions. In both examples, the model correctly follows the task instructions and current page state to
generate coherent sequences of 3–4 actions.

Figure 5: The task is filling up a form. The model output a succession of four actions, filling up two
items in a row

C.2 FAILURE CASE EXAMPLES

We further examine representative failure cases of our model. As shown in Figure 7–9, they can
be grouped into three categories: (1) over-compression, where the model outputs an excessively
long action sequence beyond what is feasible for the current state; (2) under-compression, where
the model fails to merge actions even though multiple steps could safely be combined; (3) incorrect
element localization, where the target referenced in the thought is inconsistent with the executed
coordinates; These cases illustrate the challenges that remain for robust multi-action planning in GUI
environments, and addressing them constitutes an important direction for future work.

While these limitations remain, OS-CATALYST has already led to substantial efficiency improvements
over previous methods, reducing overall task time by approximately 50% and decreasing the average
number of interaction steps by 33%.

D DATASET DETAILS

In this section, we provide additional details of the datasets used for training in OS-CATALYST. As
described in Table 1, our data consists of two subsets: Work-Step and Work-Seq, both constructed
within the WorkArena benchmark environment. Each dataset is designed to support the development
of GUI agents from both step-level interaction and action-sequence perspectives.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: The task is to order a loaner laptop. The model output a succession of three actions, filling
up the last item and clicked the submit button

Figure 7: In this form filling task, the model clicks to navigate to the Financial subpage. After
this transition, it should stop and wait for the environment to return the new page before predicting
subsequent actions. However, the model continues to output additional actions prematurely.

Data Structure. Each trajectory includes:

• Screenshots of the interface at each interaction step.
• Ground-truth thoughts that describe the agent’s intention and intermediate reasoning.
• Actions (e.g., click, type, scroll) along with their coordinates and content.
• Bounding boxes specifying the UI elements involved in each action.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: In this form filling example, the model fills in the two form fields across two separate steps,
whereas the task can actually be completed in a single step with four consecutive actions.

Figure 9: In this example, the correct plan for the model is to click on the closure information field.
However, the predicted coordinates (marked with a red circle) are far from the correct location.

Data Format. The dataset is provided as images and JSON records:

• *.png: High-resolution GUI screenshots (1920× 1080).
• *.json: Structured metadata containing thoughts, action definitions, coordinates, and

bounding boxes.

Licensing and Usage. The dataset will be released under the MIT License and can be used for non-
commercial academic research, including model training, benchmarking, and GUI agent automation
studies. It permits redistribution and modification with proper attribution.

E PROMPTS

E.1 MODEL PROMPTS

Original prompt that does not require model to output multiple actions.

You are a GUI agent. You are given a task and your action
history, with screenshots. You need to perform the next action
to complete the task.

Output Format
```
Thought: ...
Action: ...

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

```

Action Space
{action_space}

Note
- Use {language} in `Thought` part.
- Summarize your next action (with its target element) in one
sentence in `Thought` part.

User Instruction
{instruction}

Updated prompt that requires model to output multiple actions.

You are a GUI agent. You are given a task and your action
history, with screenshots. You need to perform the next action(s)
to complete the task.

If multiple actions can be performed independently--meaning one
action does not interfere with another in terms of position or
elements--you should output them together in a single `Action`
block, separated by two newlines (`\n\n`).

Output Format
```
Thought: ...
Action: ...
```

Action Space
{action_space}

Note
- Use {language} in `Thought` part.
- Summarize all upcoming actions (with their target elements) in
`Thought` part.
- In the `Action` section, include one or more actions, each on
its own line, separated by two newlines.
- Only include multiple actions if they are **logically and
spatially independent**.

User Instruction
{instruction}

E.2 DATA CURATION PROMPTS

Prompt for generating thought.

You are a GUI agent that specializes in reverse-engineering the
intent behind GUI actions.

You will be given a step from an interaction trajectory. Each
step includes:
- the global instruction to complete,
- the previous actions taken,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

- the current action to analyze. (If the current action involves
a coordinate, the coordinates are normalized values: absolute
coordinates divided by the original image width or height, then
multiplied by 1000),
- the UI screenshot with the red bounding box indicating the
position of the action to help you identify the element involved
in the action,
- the UI screenshot after the action is executed,

Your job is to identify the element in the action and infer the
thought (i.e., a small plan or rationale) behind the current
action, and then output it in the following format:

Thought: {{<thought>}}

The thought should be a small plan and summarize this action in
future tense (with its target element).
The thought must be consistent with the global instruction and
current action.
The thought should be a plan in a single sentence in
first-person perspective, and it should not include any code or
action.
If the current action is none, and the relevant element is
already set to the correct default that satisfies the instruction
, the thought should state that the default option already meets
the instruction and no further action is needed.

--- INPUT ---

Instruction: {instruction}

Previous actions: {previous_actions if previous_actions else
"None"}

Current action: {current_action}

Current screenshot:

Prompt for judging whether two action can be done in one step

You are given two cropped images of GUI elements. Each image
corresponds to the same position in two consecutive screenshots
from a GUI task execution.

Your task is to determine whether the two images represent the
same GUI element -- that is, the same underlying component such
as a button, icon, text label, or menu item -- even if there are
slight visual differences caused by rendering, state changes
(e.g. hover or focus), or animations.

Minor differences in appearance should not affect your decision,
as long as the core identity of the element remains the same.

Write your reasoning step by step. Then give your final answer
as “yes” or “no” on the last line. (“yes” means both images show
the same GUI element.)
The first element:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

{image1}
The second element:
{image2}

Prompt for merging thoughts of multiple actions

In the original GUI task setup, the model performs step-by-step
inference: it generates a thought and action, receives an
updated screenshot, and then proceeds with the next thought and
action. The following is a sequence of several consecutive
thought-action steps from that setting and corresponding
screenshots.

Now, we want the model to output all actions in a single step.
Your task is to merge the multiple thoughts into one coherent
and concise thought, as if the model planned the entire sequence
of actions without receiving any updated screenshots in between.

While doing this, remove any reasoning or statements that only
exist due to intermediate screenshots. The final thought should
reflect a continuous reasoning process that naturally leads to
the full sequence of actions without any interruptions.

Output Format
You should output the merged thought directly in your response,
without any additional text or formatting. The output should be
a single string that combines all individual thoughts into one
coherent and unified thought.

Previous Thoughts

21

	Introduction
	Related Work
	Method
	Action Sequence Formulation
	Dataset Construction
	Dataset Statistics
	Training Strategy

	Experiment
	Evaluation Benchmark
	Model Settings
	Baseline Construction
	Metrics

	Main Result and Analysis
	How Does OS-Catalyst Improve Efficiency?
	How Does OS-Catalyst Perform on Task Success Rate?
	How Does OS-Catalyst Perform on Cross-Domain Settings?

	Conclusion
	Large Language Model Usage
	Experimental Details
	Environment Selection
	Action Space
	Fine-Tuning Setup.

	Case Study
	Success Case Examples
	Failure Case Examples

	Dataset Details
	Prompts
	Model Prompts
	Data Curation Prompts

