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ABSTRACT

Tabular data plays a crucial role in various domains but often suffers from miss-
ing values, thereby curtailing its potential utility. Traditional imputation tech-
niques frequently yield suboptimal results and impose substantial computational
burdens, leading to inaccuracies in subsequent modeling tasks. To address these
challenges, we propose DiffImpute, a novel Denoising Diffusion Probabilis-
tic Model (DDPM). Specifically, DiffImpute is trained on complete tabu-
lar datasets, ensuring that it can produce credible imputations for missing en-
tries without undermining the authenticity of the existing data. Innovatively, it
can be applied to various settings of Missing Completely At Random (MCAR)
and Missing At Random (MAR). To effectively handle the tabular features in
DDPM, we tailor four tabular denoising networks, spanning MLP, ResNet, Trans-
former, and U-Net. We also propose Harmonization to enhance coherence
between observed and imputed data by infusing the data back and denoising them
multiple times during the sampling stage. To enable efficient inference while
maintaining imputation performance, we propose a refined non-Markovian sam-
pling process that works along with Harmonization. Empirical evaluations
on seven diverse datasets underscore the prowess of DiffImpute. Specifi-
cally, when paired with the Transformer as the denoising network, it consis-
tently outperforms its competitors, boasting an average ranking of 1.7 and the
most minimal standard deviation. In contrast, the next best method lags with
a ranking of 2.8 and a standard deviation of 0.9. The code is available at
https://anonymous.4open.science/r/anonymization-C1B5.

1 INTRODUCTION

Tabular data, ubiquitous across domains like healthcare, finance, and customer relationship manage-
ment, is foundational for data management and decision-making. However, the utility of tabular data
is often compromised by missing values because most deep-learning methods can only be applied
to complete datasets. Yet, missing data is common because it can stem from many factors, such as
human errors, privacy issues, and the inherent complexities of data collection (Tan et al., 2013). To
counter this, researchers resort to imputation methods to replace missing entries. Broadly, imputa-
tion methods are bifurcated into single and multiple imputation (Rubin, 1987). Single imputation,
characterized by techniques like mean and median imputation, is simple but can introduce bias by
homogenizing missing entries with singular values. This approach can lead to a misrepresentation of
the genuine data distribution (Roderick J. A. Little, 2002). On the opposite spectrum, multiple impu-
tation suggests a gamut of plausible values for missing entries, leveraging iterative methods (Raghu-
nathan et al., 2000; Buuren et al., 2006; van Buuren & Groothuis-Oudshoorn, 2011) and deep gen-
erative models (Gondara & Wang, 2018; Nazabal et al., 2020; Ivanov et al., 2019; Richardson et al.,
2020). Yet, these methods come with strings attached. Iterative methods might strain computa-
tional resources and demand robust data assumptions. Deep generative models, such as Generative
Adversarial Networks (GANs) and Variation AutoEncoders (VAEs), grapple with challenges like
mode collapse and posterior distribution alignment (Kingma & Welling, 2019; Goodfellow et al.,
2014), which leads to suboptimal imputation performance. In light of these challenges, we propose
DiffImpute, a Denoising Diffusion Probabilistic Model (DDPM) specifically tailored for tabular
data imputation. Unlike GANs and VAEs which are confined to Missing Completely At Random
(MCAR) settings (Jarrett et al., 2022), the diffusion models can be applied to more generous settings
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like Missing At Random (MAR). Drawing inspiration from the principles of image inpainting (Lug-
mayr et al., 2022), our method first involves training the DDPM (Ho et al., 2020) on complete
datasets. During inference, our method effectively replaces the missing entries within an observed
dataset while preserving the integrity of the observed values. DiffImpute addresses mode col-
lapse challenges observed in GAN-based approaches (Salimans et al., 2016; Goodfellow, 2015) by
the stability and simplicity of our training and inference process. Additionally, DiffImpute im-
proves traceability by incorporating Gaussian noise throughout the diffusion process, as opposed to
the prevalent practice of zero-padding in VAE-based approaches (Mattei & Frellsen, 2019). Corre-
spondingly, we propose a novel Time Step Tokenizer to embed temporal order information
into the denoising network. Based on this, we explore four different denoising network architectures,
including MLP, ResNet, U-Net, and Transformer, to demonstrate the improvement of incorporat-
ing time information in the imputation process. Additionally, to produce an intricately continuous
data distribution, we propose Harmonization. Specifically, Harmonization meticulously
aligns the synthetically generated tabular entries in data-deficient regions with the observed datasets
through iterative processes of diffusion and denoising. This can further help model to learn de-
pendencies among variables like MAR. Lastly, addressing efficiency concerns while keeping the
imputation quality, our research introduces the Impute-DDIM. This method, inspired by the non-
Markovian Denoising Diffusion Implicit Models (DDIM) (Song et al., 2022), offers a significant
boost to the imputation speed, where our adaptation is laser-focused on tabular data.

Our major contributions are four-fold:

• We introduce DiffImpute, a method that trains a diffusion model on complete data.
DiffImpute offers a more stable and simplified training and inference process compared
to other generative approaches. Furthermore, it enables imputation for various missing
mechanisms of both MCAR and MAR.

• DDPM, originally developed for image data, is adapted for tabular data by introducing
the Time Step Tokenizer to encode temporal order information. This modification
enables the customization of four tabular denoising network architectures: MLP, ResNet,
Transformer, and U-Net in our experiment.

• We also introduce Harmonization to enhance coherence between imputed and ob-
served data during the sampling stage.

• To accelerate the inference and keep enhanced coherence, we extend the applica-
bility of Harmonization beyond consecutive time step sequences by proposing
Impute-DDIM. This modified approach supports repetitive and condensed time step se-
quences during the non-Markovian sampling process (Song et al., 2022).

Correspondingly, we conduct extensive experiments on seven tabular datasets which suggest Trans-
former as the denoising network demonstrates faster training and inference, along with state-of-the-
art performance.

2 RELATED WORKS

Missing Tabular Data Imputation. Most deep learning solutions often encounter challenges
when dealing with missing data, while ensemble learning approaches tend to experience a decrease
in predictive power due to the presence of missing data. Missing data originates from a myriad of
sources including human error, equipment malfunction, and data loss (Tan et al., 2013) and basic
single imputation methods such as mean and median imputation, while convenient, are notorious
for introducing bias (Roderick J. A. Little, 2002). To tackle this, the field has advanced toward
more complex imputation strategies, broadly categorized into iterative and generative methods. Iter-
ative techniques like Multiple Imputation by Chained Equations (MICE) (van Buuren & Groothuis-
Oudshoorn, 2011) and MissForest (Stekhoven & Bühlmann, 2011) harness the conditional distribu-
tions between features to iteratively estimate missing values. On the other hand, generative models
like GAIN (Yoon et al., 2018) and MIWAE (Mattei & Frellsen, 2019) use deep function approxima-
tors to capture the joint probability distribution of features and impute missing values accordingly.
Despite their sophistication, these approaches have limitations, including complicated optimization
landscapes (Jarrett et al., 2022) and strong assumptions about data missingness patterns (Li et al.,
2019; Yoon & Sull, 2020; Nazabal et al., 2020).
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Figure 1: Schematic representation of DiffImpute. During inference, noisy data is extracted
from known regions and supplemented with data imputed from the unknown region.

Diffusion Models for Tabular Data. Generative models like GANs and VAEs have carved a
niche in realms such as computer vision and natural language processing (Rombach et al., 2022;
Chen et al., 2022), but their foray into tabular data is still in its nascency. The reasons for this
limited penetration are multifaceted, including the constrained sample sizes and the intricate task
of integrating domain knowledge (Liu et al., 2023). Stepping into this milieu are diffusion mod-
els, which uniquely harness Markov chains to emulate the target distribution (Sohl-Dickstein et al.,
2015; Ho et al., 2020). Their distinctive edge is twofold: the capacity to spawn high-caliber sam-
ples (Ho et al., 2020) and the simplicity and robustness of their training paradigm (Goodfellow
et al., 2014; Sohl-Dickstein et al., 2015). In fact, burgeoning literature indicates that DDPMs can
potentially overshadow their generative counterparts (Dhariwal & Nichol, 2021; Nichol & Dhariwal,
2021). Yet, the potential of diffusion models in the tabular data context remains under-leveraged.
A handful of pioneering studies have blazed the trail, Tashiro et al. (2021) charted a course with
a score-based diffusion model targeted at imputing lacunae in time series data, while Zheng &
Charoenphakdee (2022) broadened this scope to envelop general tabular data imputation. Moreover,
previous work (Ouyang et al., 2023) delineated an innovative score-centric approach, grounded on
the gradient of the log-density score function. However, the landscape still lacks a simple but effi-
cient denoising diffusion stratagem crafted explicitly for tabular data imputation.

3 METHODS

In this section, we elaborate on DiffImpute and unpack the four denoising network architectures
correspondingly. Specifically, DiffImpute encompasses two stages: (1) the training of a diffusion
model using complete tabular data; (2) the imputation of missing data from observed values.

3.1 TRAINING STAGE OF DIFFIMPUTE .

The training phase of DiffImpute leverages DDPM on complete tabular data, denoted as
x0 = (x1

0, x
2
0, · · · , xk

0) ∈ Rk, where k signifies the tabular data’s dimensionality i.e., the num-
ber of columns. Within DDPM, Gaussian noise ϵ is introduced to drive the transition from input
x0 to distorted latent feature xt across a span of t time steps (Ho et al., 2020). Then, the objective
during the training of DiffImpute is to adeptly approximate the authentic data distribution of
the complete tabular set. To accomplish this, a denoising network is trained to acutely predict the
noise profile ϵ that has been infused into xt. Specifically, we employ the smooth L1 loss function,
motivated by the function’s proficiency in discerning the discrepancies between the anticipated and
the genuine noise (Gokcesu & Gokcesu, 2021).

3.2 SAMPLING STAGE OF DIFFIMPUTE .

Missing Data Imputation. In the sampling stage, the observed tabular data x is categorized into
two distinct regions (Lugmayr et al., 2022). The “known region” defined by truly observed values
is represented as m⊙ x, where m ∈ {0, 1}k is a Boolean mask pinpointing the known data with ⊙
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denoting element-wise multiplication. Conversely, the “unknown region” harbors the missing val-
ues, denoted by (1 −m) ⊙ x. Imputation is executed by leveraging our trained denoising network
within DiffImpute, symbolized as fθ(xt, t). This network focuses on the unknown region while
retaining the values in the known sector, as illustrated in Fig. 1. Diving deeper, this denoising net-
work embarks on a stepwise refinement of the “unknown region”, commencing with unadulterated
Gaussian noise. By tapping into the Markov Chain property of DDPM, Gaussian noise is injected at
each time step t to aid in sampling from the known region, m⊙ x, depicted as follows:

xknown
t−1 =

√
ᾱt−1 · x0 +

√
1− ᾱt−1 · ϵ, (1)

where ᾱt−1 signifies the aggregate diffusion level or noise imposed on the initial input data x0 until
time step t − 1, and ϵ ∈ Rk is drawn from a Gaussian distribution. However, for the unknown
territories, the denoising network facilitates the sampling of progressively refined data with every
backward step as follows:

xunknown
t−1 =

1
√
αt

·
(
xt −

1− αt√
1− ᾱt

· fθ(xt, t)

)
+ σt · ϵ, (2)

where αt represents the diffusion coefficient at time step t, σt denotes the posterior standard devi-
ation at time step t. To synthesize the imputed data, the segments xknown

t−1 and xunknown
t−1 are amalga-

mated based on their respective masks, yielding xt−1 at the t− 1 time step:

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 . (3)
This procedure is reiterated in every reverse step until the final imputed data, x0, emerges.

To further bolster the quality of our imputation, we propose Harmonization as a means to en-
hance the coherence between xknown

t−1 and xunknown
t−1 , thereby improving the quality of imputation.

While Harmonization promises improved performance, extended time steps might inadvertently
prolong inference runtime. To counterbalance this, we design Impute-DDIM to expedite the sam-
pling process.

Harmonization. During the sampling of xknown
t−1 , we observed notable inconsistencies despite

the model’s active efforts to harmonize data at each interval (Lugmayr et al., 2022), because the cur-
rent methodologies are suboptimal in leveraging the generated components from the entire dataset.
To overcome this challenge and enhance the consistency during the sampling stage, we introduce
Harmonization to retrace the output xt−1 in Eq. (3) back by one or more steps to xt−1+j by cal-
culating

√
ᾱt−1+j ·x0+

√
1− ᾱt−1+j ·ϵ, where j ≥ 1 represents the number of steps retraced. For

instance, j = 1 indicates a single-step retrace. It should be noted that as j increases, the semantic
richness of the data is amplified. However, a trade-off emerges as the run-time during the inference
phase grows since the denoising network having to initiate its operation from the time step t−1+ j.

Impute-DDIM. To accelerate the sampling stage without compromising the benefits of
Harmonization, we introduced Impute-DDIM, inspired by DDIM (Song et al., 2022). Central
to its merit is the capacity to sample data at a substantially condensed time step τ for xunknown

t−1 dur-
ing inference. By honing in on the forward procedure, specifically within the subset xτ1, . . . ,xτS

where S ∈ {1, . . . , T}, the computational weight tied to inference is appreciably reduced. Here, τ
represents a sequentially increasing subset extracted from the range {1, . . . , T}. It’s worth noting
that the derivation of xunknown

t−1 from its preceding time step xunknown
t underwent a slight alteration:

xunknown
t−1 =

√
αt−1 ·

(
xt −

√
1− αtfθ(x

unknown
t , t)

√
αt

)
+

√
1− αt−1 − σ2

t · fθ(xunknown
t , t) + σtϵ,

where fθ(x
unknown
t , t) refers to the predicted noise at time step for the unknown region of x using a

trained denoising model.

Overview. In brief, the overall sampling process of DiffImpute is summarized in Alg. 1. Start-
ing at time step T and backtracking to 1, the initial step involves drawing the noise-laden obser-
vation xknown

t−1 at time step t − 1. This is followed by its multiplication with the mask m to derive
the known section. For the unknown region (1 − m) ⊙ x, xunknown

t−1 is sourced using the reverse
procedure. The denoising network fθ(xt, t) underpins this reverse modeling. Subsequently, the al-
gorithm amalgamates the known and uncertain data facets to compute the imputed value at t − 1.
When the Harmonization setting with j = 1 is active, a diffusion of the output xt−1 back to xt

is executed.
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Algorithm 1 Pseudo code for the sampling stage of DiffImpute with Harmonization.

1: input: Observed tabular data x ⊆ Rk, retraced step J , the Boolean mask for the known region
m, time step T , denoising network fθ(xt, t)

2: for t = T, . . . , 1 do ▷ Loop through every time step t reversely
3: for j = 1, . . . , J do ▷ Harmonization parameter: retraced steps
4: ϵ ∼ N (0, I) if t > 1, else ϵ = 0 ▷ Sampling random noise
5: xknown

t−1 =
√
ᾱt · x0 +

√
1− ᾱt · ϵ ▷ Calculate the noisy observation at time step t− 1

6: xunknown
t−1 = 1√

αt
·
(
xt − 1−αt√

1−ᾱt
· fθ(xt, t)

)
+ αt · ϵ ▷ Sampling denoised data

7: xt−1 = m · xknown
t − 1 + (1−m) · xunknown

t−1 ▷ Combining known and unknown regions
8: if j < J and t > 1 then
9: xt−1+j =

√
ᾱt−1+j · xt−1 +

√
1− ᾱt−1+j · ϵ ▷ Diffuse xt−1 back to xt−1+j

10: end if
11: end for
12: end for
13: return x0

3.3 DENOISING NETWORK ARCHITECTURE.

To obtain a denoising network tailored specifically for tabular data, we introduce the Time Step
Tokenizer to encode temporal information into the denoising procedure. Building upon this
foundational component, we have adapted four prominent denoising network architectures: MLP,
ResNet, Transformer, and U-Net, as illustrated in Fig. 2.

Time Step Tokenizer. Time step tokenizer is designed to encapsulate the information of
time step t ∈ R, written as temb = TimeStepTokenier(t) ∈ R2k. The tokenizer achieves
this by formulating two distinct embeddings for scale and shift respectively, denoted as temb =
Concate[temb scale, temb shift] ∈ R2k, where Concat signifies the concatenation of the two tensors
temb scale and temb shift along the same dimension. These learnable embeddings, temb scale and temb shift,
are inspired by the fixed sine and cosine transformations of t (Vaswani et al., 2017), defined as:

temb = Concat[temb scale, temb shift]

= Linear(SiLU(Linear(GELU(Linear[tscale, tshift])))),

tscale = sin(t · exp (− log(10000)

k
· [0, 1, 2, . . . , k − 1])) ∈ Rk,

tshift = cos(t · exp (− log(10000)

k
· [0, 1, 2, . . . , k − 1])) ∈ Rk,

(4)

where Linear is a learnable linear layer, SiLU refers to the Sigmoid Linear Unit activa-
tion (Elfwing et al., 2017), and GeLU applies the Gaussian Error Linear Units function (Hendrycks
& Gimpel, 2023). Thus, each of the temb scale, temb shift maintain the same dimension with xt ∈ Rk.
To seamlessly integrate these time step embeddings with the feature x, we compute the update as
x · (temb scale + 1) + temb shift, as depicted by “Add & Multiply” in Fig. 2(b).

MLP. By leveraging the time step tokenizer, we can adapt the MLP (Gorishniy et al., 2021)
to serve as a denoising network by incorporating t as an auxiliary input. Specifically, we intro-
duce the time embedding, temb, derived from the time step tokenizer, into a modified block named
TimeStepMLP. This new block is an evolution of the traditional MLP Block. The architecture of
this adaptation is depicted in Fig. 2(b) and can be mathematically represented as

MLP(x, temb) = Linear(TimeStepMLP(. . . (TimeStepMLP(x, temb)))),

TimeStepMLP(x, temb) = Dropout(ReLU(Linear(x) · (temb scale + 1) + temb shift)),
(5)

where Dropout randomly zeroes some of the elements of the input tensor using samples from a
Bernoulli distribution, and ReLU stands for the rectified linear unit function (Agarap, 2019).

ResNet. Building on the foundation of the TimeStepMLP, we then introduce a variant of
ResNet (Gorishniy et al., 2021) tailored for tabular DDPM. In this design, the TimeStepMLP
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Figure 2: Four types of denoising network architecture for tabular data. (a) Time Step Tokenzier,
(b) MLP; (c) ResNet; (d) Transformer; (e) U-Net.

block is seamlessly integrated into each ResNet block, as illustrated in Fig. 2(c). We hypothesize
that due to the depth of its representations, this ResNet variant will outperform the MLP-based
models. Formally, the representation of our ResNet architecture is:

ResNet(x, temb) = Prediction(ResBlock(. . . (ResBlock(Linear(x), temb)))),

ResBlock(x, temb) = x+ Dropout(Linear(TimeStepMLP(BatchNorm(x), temb))),

Prediction(x) = Linear(ReLU(BatchNorm(x))),

(6)

where BatchNorm refers to the 1D batch normalization (Ioffe & Szegedy, 2015).

Transformer. To further enhance our imputation capabilities, we adapt the Transformer archi-
tecture to tailor it explicitly for the tabular domain, as shown in Fig. 2(d). The transformer
processes the feature and time step embeddings through a series of sequential layers, with each
layer focusing on the feature level associated with a specific time stamp, t. To elevate the rep-
resentation of input tabular data, x, we employ a learnable linear layer, aptly named Feature
Tokenizer (Gorishniy et al., 2021). Then, for a given feature x = (x1, · · · , xk) ∈ Rk, its em-
beddings are constructed as xk

emb = bk + xk · Wk ∈ Rd, where bk ∈ Rd is the learnable bias
and Wk ∈ Rd represents the learnable weight. The aggregated embeddings are then represented
as xemb = [x1

emb, . . . ,x
k
emb] ∈ Rk×d, with d being the feature embedding dimension. To capture

global contexts and further enhance the model’s performance on downstream tasks, we introduce
the [CLS] ∈ Rd token (Devlin et al., 2019). This token is concatenated with the embedding ma-
trix xemb, resulting in Concat([CLS],xemb) ∈ R(k+1)×d. The architecture can be mathematically
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described as:
Transformer(x, temb) = Prediction(TransBlock(. . . (TransBlock(

Concat([CLS],FeatureTokenizer(x)), temb))))

TransBlock(x, temb) = ResPreNorm(FFNtemb ,ResPreNorm(MHSA, x)),

ResPreNorm(Operator,x) = x+ Dropout(Operator(LayerNorm(x))),

FFNtemb(x) = Linear(TimeStepMLP(x, temb)),

Prediction(x) = Linear(ReLU(LayerNorm(x))),

(7)

where LayerNorm refers to layer normalization (Ba et al., 2016), while MHSA denotes the Multi-
Head Self-Attention layer (Vaswani et al., 2017) and we set nheads = 8.

U-Net. U-Net (Ronneberger et al., 2015) has garnered significant acclaim in the domain of dif-
fusion models. Historically, its prowess has been predominantly demonstrated in image and text
sequence processing. This has inadvertently led to a dearth of U-Net architectures specifically fine-
tuned for tabular data. Addressing this gap, we introduce a novel U-Net tailored for tabular data,
integrating both an encoder and decoder, as illustrated in Fig. 2(e). This design uniquely amalga-
mates a variant of TimeStepMLP and self-attention mechanisms, ensuring optimal performance
for tabular data. Mathematically, our U-Net is represented as:

UNet(x, temb) = Linear(DecoderBlock(· · · (DecoderBlock((
BottleneckBlock(· · · (EncoderBlock(· · ·EncoderBlock((x, temb))))))))),

DecoderBlock(x, temb) = MHSA(ResBlockUNet(UpsampleBlock(x, temb))),

EncoderBlock(x, temb) = MHSA(ResBlockUNet(DownsampleBlock(x, temb))),

ResBlockUNet(x) = GroupNorm(x) + x,

(8)

where GroupNorm refers to Group Normalization (Wu & He, 2018), while Conv1d signifies
1D convolution (Kiranyaz et al., 2019). The DownSampleBlock, UpSampleBlock, and
BottleneckBlock components, although distinct in their roles, share analogous layers with
variations primarily in input and output channel sizes. Specifically, the DownSampleBlock com-
mences with 64 channels, amplifying to 512, capturing intricate semantic information. In contrast,
the UpSampleBlock initiates with 768 channels, tapering to 1, facilitating the restoration of fea-
ture map dimensions by harnessing the insights from the DownSampleBlock. This restoration is
achieved through a skip connection, merging upsampled feature maps with their counterparts from
the downsampling trajectory. The BottleneckBlock serves as a conduit, preserving consistent
input and output channel dimensions, and distilling pivotal features from the downsampling phase.
A comprehensive formulation is provided in the Appendix.

Denoising Network Formulation. Consequently, the denoising network is formulated as
fθ(x, t) = Network(x,TimeTokenizer(t)). Here, Network can be any of the following
architectures: MLP, ResNet, Transformer, or U-Net.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATIONS.

Dataset. We leverage seven publicly accessible datasets, offering a diverse representation of do-
mains. These datasets are: (1) California Housing (CA), real estate data (R. Kelley Pace, 1997); (2)
Helena (HE) and (3) Jannis (JA) are both anonymized datasets (Guyon et al., 2019); (4) Higgs (HI),
simulated data of physical particles (P. Baldi, 2014), where we adopted the version housing 98K
samples from the OpenML repository (Vanschoren et al., 2013); (5) ALOI (AL), an image-centric
dataset (Geusebroek et al., 2005); (6) Year (YE), dataset capturing audio features (Bertin-Mahieux
et al., 2011); (7) Covertype (CO), it describes forest characteristics (Blackard & Dean, 1999).

Data Preprocessing. To ensure equitable benchmarking, we administer a consistent preprocessing
strategy for all datasets and models. Specifically, we scale each feature to a (0, 1) range by subtract-
ing its minimum and then dividing by its range. This transformation, conveniently integrated within
the Scikit-learn library (Pedregosa et al., 2011), has been applied to both training and test data.

7



Under review as a conference paper at ICLR 2024

Figure 3: Imputation performance rankings of imputation methods in terms of MSE. The lower the
better.

Evaluation Metrics. To gauge the precision of imputed values, we manually induce random
masks on the test set data. The randomness of the mask is characterized by a percentage prandom ∈
{10%, . . . , 90%} for each row (MCAR) and column mask (MAR) number pcol ∈ {1, . . . , 4}. Three
evaluative criteria have been established: (1) Mean Squared Error (MSE); (2) Pearson Correlation
Coefficient; (3) Downstream Tasks Performance. To mitigate potential biases from randomness dur-
ing mask generation, we instantiate five distinct random seeds for each missing percentage. Given
the inherent variability in data masking and diffusion inference, each random setting undergoes 25
inferences, arising from 5 unique data masks and 5 independent inferences per mask. For each mask
generated using a unique random seed, the imputed data is multiplied by one-fifth for each inference,
and the results are accumulated over five inferences. Subsequently, the sum of these accumulated
results is employed to calculate the MSE for the particular generated mask. The final outcome for
each mask setting is determined by averaging the five MSE results obtained from each generated
mask from the corresponding random seed.

4.2 RESULTS.

Comparison on Imputation Performance and Downstream Tasks. We start our evaluation by
contrasting the performance of DiffImpute with a range of established single and iterative tab-
ular imputation methods. As illustrated in Fig. 3 and Tab. 1, when equipped with a Transformer
as the denoising network, DiffImpute consistently surpasses its peers, both in terms of MSE
that measures the imputation performance and downstream tasks on the imputed data. However, an
anomaly is observed with the HI dataset. Its second-place performance can be traced back to the
dataset’s distinct characteristics, notably its dominant normal distributions and scant tail densities.

Table 1: Downstream task performance comparison using the imputed dataset. As different datasets
apply different metrics, we report the performance rankings as the measurement.

Imputation Methods CA HE JA HI AL YE CO Mean Std
Mean Imputation 3.9 4.5 6.5 1.8 6.9 3.9 4.3 4.5 1.7
Median Imputation 5.2 5.6 6.9 2.9 3.7 3.7 2.9 4.4 1.5
Mode Imputation 6.6 7.3 5.8 4.1 5.5 6.9 6.2 6.0 1.1
0 Imputation 10.1 9.2 8.1 7.6 7.9 8.0 9.5 8.7 1.0
1 Imputation 10.7 11.0 10.2 11.5 11.3 9.7 10.6 10.7 0.6
LOCF Imputation 8.2 10.5 10.1 9.7 11.5 10.5 8.5 9.9 1.2
NOCB Imputation 9.2 12.1 12.1 12.0 12.0 12.2 10.0 11.4 1.2
MICE 2.8 2.1 3.0 6.0 2.8 3.9 9.6 4.3 2.6
GAIN 4.9 3.5 4.0 7.3 4.9 5.2 7.7 5.4 1.6
DiffImpute w/ MLP 8.5 8.5 7.7 8.5 10.2 8.9 8.2 8.7 0.8
DiffImpute w/ ResNet 6.2 5.1 5.4 6.6 6.6 6.1 3.3 5.6 1.2
DiffImpute w/ Transformer 1.5 2.2 2.4 2.4 1.4 3.4 1.4 2.1 0.7
DiffImpute w/ U-Net 12.1 9.0 8.2 10.1 5.2 6.1 6.2 8.1 2.5

8



Under review as a conference paper at ICLR 2024

Table 2: Ablation on Time Step
Tokenizer (‘TST‘) and Harmonization
(‘H’) with four denoising networks. We use
the CA dataset and report the imputation
performance in terms of MSE.

TST H MLP ResNet Transformer U-Net
✕ ✕ 0.0212 0.0457 0.0210 0.0497
✓ ✕ 0.0585 0.0498 0.0194 0.6831
✕ ✓ 0.0164 0.0199 0.0174 0.0184
✓ ✓ 0.0268 0.0181 0.0191 4.2497

Table 3: Ablation on Impute-DDIM with
four denoising networks. Note that when
τ = 500, no Impute-DDIM is applied.

τ MLP ResNet Transformer U-Net
10 0.2791 0.2574 0.2576 0.2741
25 0.2396 0.1892 0.1808 0.2274
50 0.1895 0.1164 0.0986 0.1727
100 0.1252 0.0525 0.0353 0.1145
250 0.0556 0.0240 0.0193 0.0795
500 0.0585 0.0498 0.0194 0.6831

This particular outcome accentuates the effectiveness of the mean imputation technique. Interest-
ingly, mean imputation not only holds its own but even outperforms well-regarded methods such
as MICE, GAIN, and DiffImpute with ResNet. While MICE does outshine mean imputation
in specific datasets like HE, AL, and YE, its overall rank suffers due to variable performance on
other datasets. Within the sphere of deep generative models, GAIN’s performance parallels that of
DiffImpute with ResNet, albeit at a slower inference speed.

Effect of Denoising Network Architectures. Among the four denoising networks, the Trans-
former consistently stands out, marking its dominance in the tabular data domain. ResNets, on the
other hand, serve as a robust baseline, delivering both impressive performance and swift inference
speeds, thereby outperforming other models. The MLP and U-Net architectures face challenges in
grasping sequential data, such as time step inputs. However, U-Net exhibits exceptional performance
on the AL dataset, aligning with its foundational design for image data processing. Yet, its extended
training and inference times make it a less optimal choice for tabular imputation. In summary, the
Transformer within DiffImpute emerges as a leading solution.

Ablation Study. To gain deeper insights into the contributions of individual components, we con-
ducted an ablation study on the time embedding layers, Harmonization, and Impute-DDIM on
the CA dataset. We initiated our investigation by excluding the time step tokenizer from
the denoising network. Interestingly, the impact on MSE performance was not uniform across mod-
els. This omission led to a noticeable decline in performance for the Transformer achitecture, with
a 7.96% drop in MSE performance and 6.28% drop in the downstream task efficacy respectively.
The U-Net and MLP architectures experienced significant improvements, recording a 63.81% and
94.76% enhancement in MSE, respectively. Subsequently, we evaluated the impact of incorporating
the Harmonization with j = 5. The results, as detailed in Tab. 2, highlight the performance
boosts achieved by Harmonization across various architectures. To illustrate, when integrated
into the DiffImpute with the MLP model, there was a remarkable 53.81% increase in MSE and
a 22.84% improvement in downstream task performance for the CA dataset. Lastly, we assessed the
efficacy of Impute-DDIM in enhancing the inference speed, experimenting with different τ sam-
pling steps, specifically τ ∈ {10, 25, 50, 100, 250}. We also set j = 5. As shown in Tab. 3, when
τ increases, the quality of imputation improves. Remarkably, with Impute-DDIM and a τ setting
of 250, we managed to double the inference speed without compromising the MSE performance for
both our MLP and Transformer models.

5 CONCLUSION

In this work, we introduce DiffImpute, a novel denoising diffusion model for imputing missing
tabular data. By seamlessly incorporating the Time Step Tokenizer, we have adapted four
distinct denoising network architectures to enhance the capabilities of DiffImpute. Moreover, the
amalgamation of the Harmonization technique and Impute-DDIM ensures that DiffImpute
delivers superior performance without incurring extended sampling time. Our empirical evaluations,
spanning seven diverse datasets, underscore the potential of DiffImpute as a foundational tool,
poised to catalyze future innovations in the realm of tabular data imputation. One future direction
is to further accelerate the sampling stage by distillation (Salimans & Ho, 2022). Additionally, we
envision broadening the scope of DiffImpute to cater to missing multimodal scenarios, given
that latent space features can be intuitively treated as tabular data.
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