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ABSTRACT

Large language models’ significant advances in capabilities are accompanied by
significant increases in inference costs. Model routing is a simple technique for
reducing inference cost, wherein one maintains a pool of candidate LLMs, and
learns to route each prompt to the smallest feasible LLM. Existing works focus on
learning a router for a fixed pool of LLMs. In this paper, we consider the problem
of dynamic routing, where new, previously unobserved LLMs are available at test
time. We propose a new approach to this problem that relies on representing each
LLM as a feature vector, derived based on predictions on a set of representative
prompts. Based on this, we detail an effective strategy relying on cluster-based
routing. We prove that the strategy is an estimate of a theoretically optimal routing
rule. Experiments on a range of public benchmarks show the effectiveness of the
proposal in routing amongst more than 30 unseen LLMs.

1 INTRODUCTION

Advances in capabilities of large language models (LLMs) come with an increasing inference cost.
Our interest is in model routing for efficient inference. Here, one maintains a pool of candidate LLMs
of various sizes and capabilities. Given a query, one learns to predict the lowest-cost LLM which can
reasonably address the query. In doing so, one can learn to use high-cost LLMs sparingly, only on
the (relatively) few “hard” inputs. This is a conceptually simple, but highly effective technique which
has seen a surge of recent interest (Hendy et al., 2023; Hari & Thomson, 2023; Ding et al., 2024;
Šakota et al., 2024; Chen et al., 2024b; Hu et al., 2024; Shnitzer et al., 2023; Stripelis et al., 2024;
Ong et al., 2024; Zhuang et al., 2024; Feng et al., 2024; Lu et al., 2024; Zhao et al., 2024).

Existing works largely focus on routing over a fixed pool of LLMs, typically two. In practice, however,
the pool of candidate LLMs can constantly change; e.g., older LLMs may be deprecated in favor of
new, performant LLMs. Ideally, a router ought to leverage these new LLMs. To achieve this, perhaps
the simplest approach is to retrain the router as the candidate pool varies. However, with frequent
changes to the LLM pool, such retraining may be impractical owing to the non-trivial costs of both
model retraining, as well as obtaining suitable training labels for each new LLM.

In this paper, we formalise this dynamic routing problem, wherein unobserved LLMs are available at
test time. We propose an approach to this problem that relies on representing each LLM as a feature
vector, derived based on prediction correctness on a set of representative prompts. Based on this, we
detail an effective strategy that relies on cluster-based routing. Our solution allows an existing router
to employ these test-time LLMs without retraining.

2 BACKGROUND

Language models (LMs). Given a finite vocabulary V of tokens, a language model (LM) is a distri-
bution p ∈ ∆(V∗), where V∗

.
=
⋃∞

n=0 V
n and ∆(·) denotes the set of distributions over a set. Often,
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an LM is specified via next-token probabilities {pNT(· | x) ∈ ∆(V ∪ {⊥}) : x ∈ V∗}, for special
terminal symbol ⊥/∈ V. Concretely, for any y = (y1, . . . , yn) ∈ Vn, one constructs p(y1, . . . , yn) =
pNT(⊥| y) ·

∏n
i=1 pNT(yi | y<i) (Cotterell et al., 2024). Here, y<i

.
= (y1, . . . , yi−1).

LLMs for predictive tasks. Let X ⊂ V∗ be a set of input prompts, and Y be a set of targets. We
assume there is some underlying (unknown) distribution P over X × Y. Let ` : X × Y × Y → R+

denote a loss function, where `(x,y, ŷ) measures the loss (or disutility) of a predicted response ŷ on
a given (prompt, target) pair (x,y). Our goal is to construct a predictor h : X→ Y with low expected
loss or risk R(h)

.
= E(x,y)∼P [`(x,y, h(x))].

An LLM natively provides a distribution over V∗. To convert this to a predicted target, we assume
there is some prediction function predict : ∆(V∗)→ Y; e.g., if Y ⊂ V∗, we may employ a standard
decoding algorithm (Ficler & Goldberg, 2017; Fan et al., 2018; Holtzman et al., 2020). Given such a
function, we may construct h(x)

.
= predict(p(· | x)), and seek to minimise R(h).

Model routing. Model routing is a means for achieving efficiency at inference time by selecting an
appropriate LLM for each input prompt. Inference efficiency is gained by sparingly calling a large
model only on complex input prompts. Suppose we have a collection of M ≥ 2 LLMs {h(m)}m∈[M ],
with corresponding inference costs {c(m)}m∈[M ] denoting, e.g., the average latency of invoking each
LLM. We assume c(1) ≤ c(2) ≤ . . . ≤ c(M). Let r : X → [M ] be a router that, given a prompt,
predicts the most suitable LLM. We seek a router which achieves

min
r : X→[M ]

∑
m∈[M ]

E(x,y)

[
1(r(x) = m) · `(x,y, h(m))

]
:

subject to
∑

m∈[M ]

E(x,y)

[
1(r(x) = m) · c(m)

]
≤ B. (1)

Here, B ∈ R+ is some fixed budget on the cost of the routed solution.

Evaluation: deferral curve. We generally measure performance via a deferral curve (Jitkrittum
et al., 2023; Wang et al., 2024a; Hu et al., 2024). This is a curve C = {(B,R(hRM(·, rB)) : B ∈
[c(1), c(M)]} tracing the tradeoff between the cost budget B and loss of the resulting routed model.
Specifically, one varies the cost budget B ∈ [c(1), c(M)]; computes a router rB(·) for this budget; and
plots the resulting expected loss R(hRM(·, rB)). We may also use a quality metric (e.g., accuracy) in
place of the loss to capture quality-cost trade-offs.

Model routing strategies. Narasimhan et al. (2022); Hu et al. (2024) proposed a post-hoc approach
to model routing. Here, one constructs an estimator of the expected loss incurred by each LLM in
a fixed pool, and route by picking the LLM with the lowest estimated loss, after appropriate cost
adjustment. Different estimators have been proposed including a K-NN estimator (Hu et al., 2024),
and a matrix factorisation approach (Ong et al., 2024).

3 MODEL ROUTING WITH A DYNAMIC LLM POOL

We now introduce the dynamic model routing problem. Suppose Hall denotes the set of all possible
feasible LLM predictors, where we assume |Hall| < +∞. Let H .

= 2Hall denote the set of all
subsets of H. Let Htr = {h(1), . . . , h(M)} ∈ H denote the set of M LLM predictors observed
during training. During evaluation, we seek to route amongst the LLM predictors in some set
Hte = {h(1)te , . . . , h

(N)
te } ∈ HN . If Htr = Hte, we obtain the original model routing problem in (1).

However, we aim to support settings where Htr 6= Hte.

To accommodate the dynamic nature of evaluation LLMs, we first modify our router to accept both
an input and a set of candidate LLMs, with the goal to pick the best option from this set; i.e., we
consider dynamic routers R

.
= {r(·,H) : X → [|H|] | H ∈ H}. Next, we assume that the set of

LLMs observed during training is itself drawn from some meta-distribution H over H. Rather than
perform well on the specific set of training LLMs, we would like to generalise to any set of LLMs
drawn from H. (This formulation is inspired by Tailor et al. (2024), developed in a related context.)
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We now summarise the dynamic LLM routing problem as:

min
r∈R

E(x,y,H)

 ∑
m∈[|H|]

1(r(x,H) = m) · `(x,y, h(m))

 :

E(x,y,H)

 ∑
m∈[|H|]

1(r(x,H) = m) · c(h(m))

 ≤ B, (2)

where as before B ∈ R+ denotes a cost budget, H .
= {h(1), . . . , h(M)} ∼ H denotes a sample of M

LLMs, and c : Hall → R+ denotes the cost of a given LLM.

3.1 OPTIMAL ROUTING WITH A DYNAMIC POOL

To guide the design of a suitable dynamic router, we begin by studying the nature of the Bayes-optimal
rule for (2). Note that the result closely mirrors Tailor et al. (2024, Eq. 6), and may be seen as a
generalization of Lemma F.1 of Jitkrittum et al. (2023) to an arbitrary loss.
Proposition 1 (Optimal dynamic routing). Under a mild regularity condition on P, for any input
x ∈ X, LLM candidate set H ∈ H, and budget B > 0, the optimal dynamic router r∗ for the
constrained optimization in (2) is

r∗(x,H) = argmin
m∈[|H|]

[
Ey|x

[
`(x,y, h(m))

]
+ λH · c(h(m))

]
, (3)

where λH ≥ 0 is a Lagrange multiplier.

Intuitively, it is optimal to route to the model that has the lowest expected loss on the given input x,
after applying a cost adjustment of λH · c(h(m)) to the loss. The hyperparameter λH ≥ 0 allows one
to trade off the expected quality and the average cost.

3.2 PARAMETERISING A DYNAMIC ROUTER

A plug-in estimator to the optimal routing rule in (3) is constructed by substituting the per-example loss
γ(x, h)

.
= Ey|x[`(x,y, h)] with an estimator γ̂(x, h). To accommodate unseen LLMs, we construct a

generic LLM feature map Ψ : Hall → RD′
. We may then compute γ̂(x, h

(n)
te ) = F (Φ(x),Ψ(h

(n)
te )),

for suitable F : RD ×RD′ → R, where Φ : V∗ → RD maps a query to a dense vector representation.
Concretely, for any set of test LLMs Hte = {h(n)te }n∈[N ], we may estimate (3) via

r̂(x,Hte) = argmin
n∈[N ]

[
γ̂(x, h

(n)
te ) + λ · c(h(n)te )

]
. (4)

Input prompt representation Φ. Following prior work (Hu et al., 2024), a natural choice for
Φ(x) is a frozen general-purpose text embedding, such as text-embedding-3 (OpenAI, 2025), NV-
Embed (Lee et al., 2025), E5-Mistral-7B (Wang et al., 2024b), and Gecko (Lee et al., 2024). An
alternate approach is to construct a binary vector of query attributes, denoting whether a query
possesses certain characteristics (Li et al., 2024a;b), e.g., whether it requires multi-step reasoning,
seeks a single correct answer, and so on.

3.3 CORRECTNESS-BASED LLM REPRESENTATION

To construct our LLM representation Ψ, it is useful to consider the properties a “good” representation
ought to satisfy. One intuitive requirement is that Ψ(h)>Ψ(h′) should be large for a pair (h, h′) of
“similar” LLMs, and small for a pair of “dissimilar” LLMs. We posit that two LLMs are similar if
they have comparable performance on a set of representative prompts, following similar proposals
in Thrush et al. (2024); Zhuang et al. (2024).

Concretely, suppose that we have access to a small validation set Sval = {(x(i),y(i))}Nval
i=1 of labelled

prompts. Further, suppose that any new LLM h
(n)
te ∈ Hte can be evaluated on these prompts.
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We propose to represent any new LLM h
(n)
te through its average errors Ψ̂(h

(n)
te ) ∈ [0, 1]K on K

pre-defined clusters. We then approximate (3) via

γ̂clust(x, h
(n)
te )

.
= z(x)>Ψ̂(h

(n)
te ).

where z(x) ∈ {0, 1}K is a one-hot vector indicating the cluster membership of x ∈ V∗.

One challenge with the above is that clustering Sval itself is prone to overfitting, since (by assumption)
the set is of modest size. To overcome this, we assume we have access to a large unlabeled training
set consisting of input prompts Str = {x(i)}Ntr

i=1. We now use the training set to group the prompts
into K disjoint clusters using the K-means algorithm (MacQueen, 1967) (i.e., find K means in the
embedding space provided by Φ), and compute per-cluster errors for a new LM using the validation
set Sval.

Intuitively, γ̂clust(x, h
(n)
te ) estimates the performance of a given LLM on x by examining the per-

formance of the LLM on similar prompts, i.e., those prompts belonging to the same cluster. Note
that to add a new LM to the serving pool, we simply need to compute per-cluster errors Ψ̂(h

(n)
te ) by

generating responses from the LM on a small set of validation prompts. Importantly, this operation
does not require any expensive gradient updates. Note that Li (2025) also considered learning model
identity vectors to represent and accommodate new LLMs for model routing. In contrast to the
approach of Li (2025) which is based on Item Response Theory and variational inference, we opt for
a simple approach of correctness-based representation which does not require representation learning.

4 EXPERIMENTS

We demonstrate the effectiveness of our proposed method on four benchmark datasets: for evaluating
routing algorithms: EmbedLLM (Zhuang et al., 2024), MixInstruct (Jiang et al., 2023), RouterBench
(Hu et al., 2024), and Chatbot Arena (Zheng et al., 2023).

Data pre-processing. With EmbedLLM, MixInstruct, and RouterBench, we partition the set of
LLMs available into two disjoint sets: training models (Htr in §3.3) and testing models (Hte). For
EmbedLLM which contains responses from as many as 112 LLMs, we use a random subset of 2/3
for training and 1/3 for testing. For MixInstruct (11 LLMs in total) and RouterBench (11 LLMs in
total), we use a random 50% for training and the rest for testing. We randomly split examples into
60%/10%/30% for training, validation, and testing, respectively. All baselines are evaluated on the
test portion and only on the test LLMs.

Per-example metrics. All the baselines we consider seek to estimate γ(m)(x) =
P
[
y 6= h(m)(x) | x

]
and rely on the same deferral rule described in (3). For MixInstruct, we

use (exponentiated) BARTScore (Yuan et al., 2021) as the evaluation metric, per Jiang et al. (2023).

Routing methods. For all the baselines that require a query embedder, we use the Gecko 1B model
(Lee et al., 2024) to produce a 768-dimensional embedding. The Gecko checkpoint is used as is
without further fine-tuning. The following are the routing methods we evaluate:

(1) Clairvoyant fixed-pool router (Hu et al., 2024; Ong et al., 2024; Ding et al., 2024). This is a
representative baseline for the multi-model routing strategies described in §2 for a fixed (non-
dynamic) pool of LLMs. Since these methods cannot route to unseen LLMs, we provide access
to both the training and testing models during training (hence clairvoyant) to train a separate
output head for each LLM to predict correctness labels. We use the sigmoid cross entropy loss on
EmbedLLM and RouterBench, and the squared loss on MixInstruct. This baseline provides an
estimate of the performance achievable when all LLMs are observed.

(2) Pareto-random router. For each prompt, the router routers to the LLM that achieves the highest
cost-adjusted accuracy estimated in the validation set.

(3) K-NN (Hu et al., 2024). For each test prompt, this method looks up the K nearest prompts in the
validation set in the space of Gecko embeddings and computes γ̂ of each test LLM.

(4) K-means (Gecko). This is our proposed cluster-based routing rule in §3.
(5) K-means (Attributes). Same as the above proposed cluster-based routing, except that the query

representation is based on the query attributes described in §3.2. We use the seven binary difficulty
attributes proposed in Li et al. (2024a), and prompt Gemini 1.5 Pro 002 to annotate each attribute
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Method
Dataset EmbedLLM MixInstruct RouterBench

Area ↑ QNC ↓ Peak Acc.↑ Area ↑ QNC ↓ Peak Acc.↑ Area ↑ QNC ↓ Peak Acc.↑
Pareto-random router .611 1.0 65.7% .0477 1.0 .0510 .692 1.0 78.2%
K-NN .634 .51 68.3% .0488 .94 .0528 .717 .962 78.3%
K-means (Gecko) .650 .35 69.3% .0489 .96 .0524 .720 .961 78.2%
K-means (Attributes) .637 .50 67.6% .0491 .90 .0529 .716 .970 78.2%

Clairvoyant fixed-pool router .657 .32 69.9% .0497 .85 .0534 .723 .989 78.2%

Figure 1: Top: Accuracy-cost trade-off curves (deferral curves) of the five methods (§4) on on unseen,
testing LLMs. Our proposed routing approaches K-means are able to generalize to new LLMs, and
deliver a good quality-cost trade-off. Bottom: Summary of each deferral curve. On all datasets, our
proposal yields the highest area under the curve, and lowest Quality-Neutral Cost (QNC) i.e., the
minimum relative cost to achieve the same performance as the most accurate LLM. Pareto-random
router and K-NN are the main baselines. The Clairvoyant fixed-pool router represents an upper bound
on the performance achievable had all LLMs been observed during training.

for each training prompt. We then construct a query embedder Φ(x) = σ(V>Gecko(x)) ∈
[0, 1]7, where V ∈ R768×7 is distilled using the training set to predict the 7-category attributes
for any new prompt x. This compact query representation can be robust to shifts in the query
distribution at test time (see §C.3 for additional experiments).

Deferral curve. We evaluate each method with a deferral curve as described in §2, which plots the
average quality against the overall cost. The trade-off is realized by varying the λH parameter in the
routing rule in (3). For EmbedLLM and MixInstruct, we use the number of parameters of the LLM
as the cost of processing one prompt. This cost definition is a convenient proxy for the amount of
computation required to call each LLM. For RouterBench, we plot LLMs’ API calling costs (USD)
as available in the dataset.

Hyper-parameter tuning. For each K (number of neighbors in K-NN and the number of clusters
in our proposal), we represent the training LLM using correctness labels in the training set, evaluate
the routing rule for the training LLMs on the validation set, and measure the area under the deferral
curve. The parameter K with the maximum area is then chosen. See §C.1 for details.

Results. We present deferral curves for different methods in Figure 1. Each isolated point x represents
the cost and average test accuracy of one testing LLM. In the table, we report three evaluation metrics
for each method: (i) the area under the deferral curve (Area); (ii) the quality-neutral cost (QNC) or
the minimum relative cost needed to achieve the same performance as the most accurate testing LLM;
and (iii) the peak accuracy (Peak Acc.) achievable across the entire cost range.

Our proposed method K-means (Gecko) yields the best quality-cost trade-off in most cases. Interest-
ingly, the K-means (Attributes), which relies on only a 7-dimensional input representation, performs
remarkably well on MixInstruct. Notably, on EmbedLLM, our K-means (Gecko) almost matches the
performance of Clairvoyant fixed-pool router, despite not observing testing models during training.
An important comparison point is the Pareto-random router, which was noted as a strong baseline
in Hu et al. (2024) (referred to as the Zero Router). On both EmbedLLM and RouterBench, our
methods are able to exceed the performance of this baseline on a large range of costs.

The surprising underperformance of K-NN is due, in large part, to the requirement that only the
retrieved neighbors from the validation set can be used to estimate test models’ performance. It is
hence unable to exploit the training set in any way. In contrast, our methods are able to fully exploit
the training data either in an unsupervised manner (K-means).
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5 CONCLUSION

We present principled strategies for routing amongst multiple unseen test-time LLMs, without having
to retrain the router. Central to our approach is a prediction correctness LLM representation, with
accompanying cluster-based routing strategies. Our proposal is computationally efficient, and able
to deliver a good quality-cost trade-off as shown in experiments involving > 30 unseen LLMs on
EmbedLLM. An interesting future direction is to enhance routing robustness to query distribution
shifts. Such a routing system will further reduce the need for frequent router retraining.

REFERENCES

Peter L. Bartlett and Marten H. Wegkamp. Classification with a reject option using a hinge loss.
Journal of Machine Learning Research, 9(59):1823–1840, 2008. URL http://jmlr.org/papers/
v9/bartlett08a.html.

Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks for
fast test-time prediction. In International Conference on Machine Learning, 2017.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and Pavlo
Molchanov. Flextron: Many-in-one flexible large language model. In International Conference on
Machine Learning (ICML), July 2024a.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. In
Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024b.

Boyuan Chen, Mingzhi Zhu, Brendan Dolan-Gavitt, Muhammad Shafique, and Siddharth Garg.
Model cascading for code: Reducing inference costs with model cascading for llm based code
generation, 2024a. URL https://arxiv.org/abs/2405.15842.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023b.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. RouterDC: Query-based
router by dual contrastive learning for assembling large language models. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024b. URL https://openreview.
net/forum?id=7RQvjayHrM.

C Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on information theory,
16(1):41–46, 1970.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In ALT, 2016. URL
https://cs.nyu.edu/˜mohri/pub/rej.pdf.

Ryan Cotterell, Anej Svete, Clara Meister, Tianyu Liu, and Li Du. Formal aspects of language
modeling, 2024. URL https://arxiv.org/abs/2311.04329.

Fnu Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit S Dhillon,
Yulia Tsvetkov, Hannaneh Hajishirzi, Sham M. Kakade, Ali Farhadi, and Prateek Jain. Matformer:
Nested transformer for elastic inference. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=fYa6ezMxD5.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware
query routing. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=02f3mUtqnM.

6

http://jmlr.org/papers/v9/bartlett08a.html
http://jmlr.org/papers/v9/bartlett08a.html
https://arxiv.org/abs/2405.15842
https://openreview.net/forum?id=7RQvjayHrM
https://openreview.net/forum?id=7RQvjayHrM
https://cs.nyu.edu/~mohri/pub/rej.pdf
https://arxiv.org/abs/2311.04329
https://openreview.net/forum?id=fYa6ezMxD5
https://openreview.net/forum?id=02f3mUtqnM


Published as a workshop paper at SCOPE - ICLR 2025

Arthur Douillard, Qixuan Feng, Andrei A. Rusu, Adhiguna Kuncoro, Yani Donchev, Rachita Chha-
paria, Ionel Gog, Marc’Aurelio Ranzato, Jiajun Shen, and Arthur Szlam. Dipaco: Distributed path
composition, 2024. URL https://arxiv.org/abs/2403.10616.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen,
and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 12622–12642. Association for Computational Linguistics, 2024. doi:
10.18653/v1/2024.acl-long.681. URL http://dx.doi.org/10.18653/v1/2024.acl-long.681.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, Melbourne, Australia, July 2018. Association for Computational Linguistics.
doi: 10.18653/v1/P18-1082. URL https://aclanthology.org/P18-1082.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.03961.

Tao Feng, Yanzhen Shen, and Jiaxuan You. GraphRouter: A graph-based router for llm selections,
2024. URL https://arxiv.org/abs/2410.03834.

Jessica Ficler and Yoav Goldberg. Controlling linguistic style aspects in neural language generation. In
Proceedings of the Workshop on Stylistic Variation, pp. 94–104, Copenhagen, Denmark, September
2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-4912. URL https:
//aclanthology.org/W17-4912.

Yonatan Geifman and Ran El-Yaniv. SelectiveNet: A deep neural network with an integrated
reject option. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2151–2159. PMLR, 09–15 Jun 2019.

Neel Guha, Mayee F Chen, Trevor Chow, Ishan S. Khare, and Christopher Re. Smoothie: Label
free language model routing. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024a. URL https://openreview.net/forum?id=pPSWHsgqRp.

Neel Guha, Mayee F Chen, Trevor Chow, Ishan S. Khare, and Christopher Re. Smoothie: Label
free language model routing. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024b. URL https://openreview.net/forum?id=pPSWHsgqRp.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna
Menon, and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In The
Twelfth International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=KgaBScZ4VI.

Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to
large language models, 2023. URL https://arxiv.org/abs/2308.11601.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
sushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. How good are GPT models
at machine translation? a comprehensive evaluation, 2023. URL https://arxiv.org/abs/2302.
09210.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. RouterBench: A benchmark for multi-LLM routing
system. In Agentic Markets Workshop at ICML 2024, 2024. URL https://openreview.net/
forum?id=IVXmV8Uxwh.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

7

https://arxiv.org/abs/2403.10616
http://dx.doi.org/10.18653/v1/2024.acl-long.681
https://aclanthology.org/P18-1082
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2410.03834
https://aclanthology.org/W17-4912
https://aclanthology.org/W17-4912
https://openreview.net/forum?id=pPSWHsgqRp
https://openreview.net/forum?id=pPSWHsgqRp
https://openreview.net/forum?id=KgaBScZ4VI
https://openreview.net/forum?id=KgaBScZ4VI
https://arxiv.org/abs/2308.11601
https://arxiv.org/abs/2302.09210
https://arxiv.org/abs/2302.09210
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=IVXmV8Uxwh
https://openreview.net/forum?id=IVXmV8Uxwh


Published as a workshop paper at SCOPE - ICLR 2025

Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung Kim, Lajanugen Logeswaran, Moontae Lee,
Kyungjae Lee, and Minjoon Seo. Exploring the benefits of training expert language models over
instruction tuning. In Proceedings of the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 14165–14178, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.792. URL https://aclanthology.
org/2023.acl-long.792/.

Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh
Rawat, and Sanjiv Kumar. When does confidence-based cascade deferral suffice? In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=4KZhZJSPYU.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the em algorithm. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pp.
1339–1344 vol.2, 1993. doi: 10.1109/IJCNN.1993.716791.

Anil Kag, Igor Fedorov, Aditya Gangrade, Paul Whatmough, and Venkatesh Saligrama. Efficient
edge inference by selective query. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=jpR98ZdIm2q.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models,
2025. URL https://arxiv.org/abs/2405.17428.

Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R. Cole, Kai Hui, Michael
Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai Meher Karthik Duddu, Gustavo Hernandez
Abrego, Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Prateek Jain, Siddhartha Reddy Jonnalagadda,
Ming-Wei Chang, and Iftekhar Naim. Gecko: Versatile text embeddings distilled from large
language models, 2024. URL https://arxiv.org/abs/2403.20327.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Tianle Li, Wei-Lin Chiang, and Lisa Dunlap. Introducing hard prompts category in chatbot arena.
https://lmsys.org/blog/2024-05-17-category-hard, 2024a.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez,
and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
pipeline, 2024b. URL https://arxiv.org/abs/2406.11939.

Yang Li. Llm bandit: Cost-efficient llm generation via preference-conditioned dynamic routing, 2025.
URL https://arxiv.org/abs/2502.02743.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024c.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. EAGLE-2: Faster inference of language
models with dynamic draft trees. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
7421–7432, Miami, Florida, USA, November 2024d. Association for Computational Linguistics.
doi: 10.18653/v1/2024.emnlp-main.422. URL https://aclanthology.org/2024.emnlp-main.
422/.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren
Zhou. Routing to the expert: Efficient reward-guided ensemble of large language models.
In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human

8

https://aclanthology.org/2023.acl-long.792/
https://aclanthology.org/2023.acl-long.792/
https://openreview.net/forum?id=4KZhZJSPYU
https://openreview.net/forum?id=4KZhZJSPYU
https://openreview.net/forum?id=jpR98ZdIm2q
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2403.20327
https://lmsys.org/blog/2024-05-17-category-hard
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2502.02743
https://aclanthology.org/2024.emnlp-main.422/
https://aclanthology.org/2024.emnlp-main.422/


Published as a workshop paper at SCOPE - ICLR 2025

Language Technologies (Volume 1: Long Papers), pp. 1964–1974, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.109. URL
https://aclanthology.org/2024.naacl-long.109/.

J. MacQueen. Some methods for classification and analysis of multivariate observations. Proc. 5th
Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, 1, 281-297 (1967)., 1967.

David Madras, Toniann Pitassi, and Richard Zemel. Predict responsibly: Improving fairness and
accuracy by learning to defer. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NeurIPS’18, pp. 6150–6160, Red Hook, NY, USA, 2018. Curran
Associates Inc.

Anqi Mao, Christopher Mohri, Mehryar Mohri, and Yutao Zhong. Two-stage learning to defer with
multiple experts. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024a. Curran Associates Inc.

Anqi Mao, Mehryar Mohri, and Yutao Zhong. Realizable h-consistent and Bayes-consistent loss
functions for learning to defer. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024b. URL https://openreview.net/forum?id=OcO2XakUUK.

Anqi Mao, Mehryar Mohri, and Yutao Zhong. Regression with multi-expert deferral. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and
Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Research, pp. 34738–34759. PMLR, 21–27 Jul
2024c. URL https://proceedings.mlr.press/v235/mao24d.html.

Hussein Mozannar and David Sontag. Consistent estimators for learning to defer to an expert.
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Universal LLM Routing with Correctness-Based
Representation

Supplementary Material

A PROOF OF PROPOSITION 1

In what follows, we use rH(x) and r(x,H) interchangeably.

Proof. The constrained problem in (2) is equivalent to minimizing the following Lagrangian objective
for some Lagrange multiplier λH ≥ 0:

L = E(x,y,H)

 ∑
m∈[|H|]

1(r(x,H) = m) · `(x,y, h(m))

+ λH · E(x,y,H)

 ∑
m∈[|H|]

1(r(x,H) = m) · c(m)


(a)
= EHExEy|x

 ∑
m∈[|H|]

1(r(x,H) = m) ·
{
`(x,y, h(m)) + λH · c(m)

}
= EHEx

[ ∑
m∈[|H|]

1(r(x,H) = m) ·
{
Ey|x

[
`(x,y, h(m))

]
+ λH · c(m)

}
︸ ︷︷ ︸

LH,x

]
,

where (a) uses the fact that the draw of H is independent of the draw of (x,y). The last line makes it
clear that for any fixed H and any fixed x, to minimize the overall loss, the router ought to route to
the model that has the lowest cost-adjusted loss LH,x. Thus,

r∗(x,H) = argminm∈[|H|] Ey|x

[
`(x,y, h(m))

]
+ λH · c(m).

B EXPERIMENTAL SETUP

We provide more details on the experiments discussed in Section 4.

B.1 SPLITTING DATA AND LLMS

In the experiment on each of the three datasets (EmbedLLM (Zhuang et al., 2024), MixInstruct (Jiang
et al., 2023), and RouterBench (Hu et al., 2024)), we split the data into three disjoint portions: train
(60%), validation (10%), and test (30%). The set of all LLMs available in each dataset is also split
into two disjoint sets: training models and testing models. The relationship of data splits and model
splits is summarized in the following table.

Train (60%) Validation
(10%)

Test (30%)

Training models 3 3 7
Testing models 7 3 3

• Training set. The training examples are meant for router training. Only information of the
training models (not testing models) is available in this data portion. The only exception is
the clairvoyant fixed-pool router baseline which is allowed access to correctness labels of
testing models on training examples. In other words, unlike other baselines, the clairvoyant
fixed-pool router observes all models during training, and is trained on both training and
validation portions. This baseline is meant to establish performance achievable if a router
has access to all models.
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• Validation set. The validation examples are meant to be used to represent new LLMs. For
instance, for our proposed K-means (Gecko) approach, the validation set is used to compute
per-cluster performance metrics of each testing LLM observed at test time, to represent it as
a feature vector.

• Test set. The test examples are only used for evaluating routing methods by evaluating their
deferral curves.

Testing models represent new models that arrive at deployment time, and are not available for training
(except to the clairvoyant fixed-pool router baseline). Training models are meant for router training.
For instance, our proposed K-means (Gecko) approach learns to route among the training models,
and is tested on the test set to route among the testing models.

C ADDITIONAL EXPERIMENTAL RESULTS

We present additional experimental results we omitted in the main text.

C.1 SELECTING K

There are four baselines that we consider in the experiments in Section 4 that depend on a hyperpa-
rameter K. Specifically, K in K-NN refers to the number of nearest neighbors, and K in K-means
(Gecko), and K-means (Attributes) refers to the number of clusters. In Figure 1, we report the
performance of these methods with the best K found on each dataset separately for each method. We
now describe the validation procedure we used to select the best K.

K-NN For each candidate K, and each query in the validation set, find the K nearest queries in
the training set (in the Gecko embedding space). Route each query in the validation set to the most
appropriate training LLM according to the routing rule (4). Produce a deferral curve on the validation
set, and compute the normalized area under such curve. Select K that maximizes the area.

K-means (Gecko) For each candidate K, perform K-means on the training set using Gecko
embeddings (Lee et al., 2024). Compute the feature vector representation of each training LLM on
the training set as described in §3.3. For each query in the validation set, find the nearest cluster, and
route the query to the most appropriate training LLM according to the routing rule (4). Produce a
deferral curve on the validation set, and compute the normalized area under such curve. Select K
that maximizes the area.

K-means (Attributes) Parameterize the query embedding model to be Φ(x) = σ(V>Gecko(x))
where V ∈ R768×7, and σ denotes the sigmoid function. Train each head vj ∈ R768 (with Gecko
frozen) by minimizing the sigmoid cross entropy to predict whether the j-th semantic attribute is
active on each input query. We use the seven prompt difficulty attributes as described in Li et al.
(2024a), and prompt Gemini 1.5 Pro 002 to annotate each binary attribute on each training example.
Once the query embedding model Φ is trained, we freeze it, and perform the same hyperparameter
selection procedure as used for K-means (Gecko) by replacing the Gecko embedding function with
Φ.

Figure 2 shows the area under the deferral curve (on the validation set) vs candidate parameter K.
Importantly, the testing models and the test set are never used in the above hyperparameter selection
process.
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Figure 2: Validation performance of the three methods considered in Figure 1: K-NN, K-means
(Gecko), and K-means (Attributes). See Appendix C.1 for more details.
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C.2 RESULTS ON INDIVIDUAL DATASETS IN EMBEDLLM

To supplement results on EmbedLLM in Figure 1a, we further evaluate the same router models
separately on the 10 datasets contained in EmbedLLM. The results are shown in Figure 3.
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Figure 3: Evaluation of the router models used in Figure 1a on the 10 datasets contained in Em-
bedLLM.
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C.3 TRAIN ON CHATBOT ARENA AND TEST ON EMBEDLLM
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Pareto-random router .507 ∞ 51.9%
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Figure 4: Deferral curves of routers trained on Chatbot Arena with pairwise comparison labels, and
tested on EmbedLLM with per-query correctness labels.

Representing each prompt with a small number of attributes that capture its inherent hardness shines
when there is a query distribution shift at test time. To illustrate this, we compare Gecko-based query
representation and attribute-based representation by training on Chatbot Arena conversation data
(Zheng et al., 2023), and testing on EmbedLLM, which contains mostly Q&A prompts. To reduce
confounding factors, we train on all LLMs that are present in both datasets (26 LLMs), and test on
the same set of LLMs (i.e., no unseen LLMs at test time). After appropriate filtering, the Chatbot
Arena dataset has 8447 records left. The filtering step ensures that we only deal with LLMs that are
present in both datasets. These examples are split further into 90% training and 10% validation splits.

The Chatbot Arena dataset contains pairwise comparison labels: each user query is responded to by
two random LLMs, to which the user selects the better response. To evaluate per-cluster performance
for representing each LLM, we fit the Bradley-Terry-Luce model (Bradley & Terry, 1952) to the
pairwise comparison labels within a cluster and estimate the pointwise quality scores for each LLM
for that cluster. We use the full EmbedLLM dataset for testing.

The results are shown in Figure 4. We observe that K-means (Attributes) in this case performs better
than K-means (Gecko), suggesting that using prompt hardness attributes helps improve robustness
to query distribution shifts. In fact, this routing approach is the only method that can reach the
performance of the most accurate model in the pool, thus attaining a finite quality-neutral cost (QNC).
The reason the Pareto-random router has a decreasing trend is because the Pareto-optimal LLMs are
chosen using the validation set, and turn out to be not optimal for the test set.

D RELATED WORK

Model routing. Model routing has emerged as a simple yet effective strategy to lower LLMs’ infer-
ence cost (Hendy et al., 2023; Hari & Thomson, 2023). Recent works have studied various strategies
to learn a router, including training an explicit “meta-model” based on a neuronal network (Ding et al.,
2024; Šakota et al., 2024; Chen et al., 2024b), k-nearest neighbours (Hu et al., 2024; Shnitzer et al.,
2023; Stripelis et al., 2024), matrix factorisation (Ong et al., 2024; Zhuang et al., 2024), and graph
neural networks (Feng et al., 2024). Works have also explored the role of supervision in training
a router (Lu et al., 2024; Zhao et al., 2024). Typically, the router orchestrates amongst multiple
independent LLMs, although it is also possible to route amongst implicit sub-models in a larger
model, such as those defined by a MatFormer (Devvrit et al., 2024; Cai et al., 2024a).

Model fusion Model routing may be contrast to model fusion, where the primary goal is to leverage
multiple models to improve quality, potentially at the expense of efficiency. This can involve invoking
multiple models prior to generating an output (Ravaut et al., 2022; Jiang et al., 2023; Guha et al.,
2024b; Wang et al., 2024b), or producing a single fused model (Singh & Jaggi, 2020).

Mixture of experts (MoE). Classically, MoE models focused on learning parameters for independent
models, along with a suitable routing rule (Jacobs et al., 1991; Jordan & Jacobs, 1993). These have
proven an plausible alternative to model specialisation (Jang et al., 2023; Douillard et al., 2024).
Such models are typically of the same size; thus, cost considerations do not factor into the router
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design. More recently, MoEs have focussed on sub-models within a single larger model, e.g., a
Transformer (Fedus et al., 2022; Zhou et al., 2022).

Model cascading. Cascading is a closely related technique for orchestrating amongst multiple
models, wherein one sequentially invokes each model in order of cost. One then uses statistics from
the resulting model output (e.g., the confidence) to decide whether or not to proceed to the next
costlier model. Cascading has a long history in computer vision applications (Viola & Jones, 2001;
Wang et al., 2018; Swayamdipta et al., 2018; Rawat et al., 2021b; Wang et al., 2022; Kag et al.,
2023; Jitkrittum et al., 2023). Recently, cascades have also been successfully proven in the case of
LLMs (Chen et al., 2023b; Gupta et al., 2024; Yue et al., 2024; Chen et al., 2024a).

Selective classification and learning to defer. The formal underpinnings of routing and cascading
can be traced to three closely related literatures: learning to reject (Chow, 1970; Bartlett & Wegkamp,
2008; Cortes et al., 2016), selective classification (Geifman & El-Yaniv, 2019; Narasimhan et al.,
2024b;c), and learning to defer to an expert (Madras et al., 2018; Sangalli et al., 2023). Follow-
ing pioneering studies of Trapeznikov & Saligrama (2013); Bolukbasi et al. (2017); Mozannar &
Sontag (2020), a series of works have studied the routing and cascading problem through these
lenses (Narasimhan et al., 2022; Mao et al., 2024b;a;c).

Early-exiting. Early-exiting enables adaptive computation within a single neural model, by allowing
computation to terminate at some intermediate layer (Teerapittayanon et al., 2016; Scardapane et al.,
2020). Often, the termination decision is based on a simple model confidence (akin to simple model
cascading), but learning approaches have also been considered (Xin et al., 2020; Schuster et al.,
2022).

Speculative decoding. Speculative decoding is another technique that leverages two models to
speed up inference, by using the smaller model to draft tokens and having the larger model verify
them (Stern et al., 2018; Chen et al., 2023a; Leviathan et al., 2023; Tran-Thien, 2023; Sun et al.,
2024; Zhou et al., 2024; Cai et al., 2024b; Li et al., 2024c;d). Recent works have studied approaches
to combine speculative decoding with early-exits (Elhoushi et al., 2024) and cascades (Narasimhan
et al., 2024a).

Routing approach Candidate
LLMs Training signals

Works
without

task labels

Adaptive
computation

Unseen
models at
test time

Reference

Smoothie Any Query embeddings. No label
required. XXX 8 8 Guha et al. (2024a)

Cascading with
token-level features

2 Pointwise evaluation. XXX XXX 8 Gupta et al. (2024)

Summon the titans 2 Annotations from a teacher
model. XXX XXX 8 Rawat et al. (2021a)

RouteLLM 2 Pairwise comparison
metrics. XXX XXX 8 Ong et al. (2024)

K-NN router Any Pointwise evaluation, query
embeddings. XXX XXX 8 Hu et al. (2024)

GraphRouter Any Task information 8 XXX XXX Feng et al. (2024)

Our proposal Any Pointwise evaluation, query
clusters XXX XXX XXX This work

Table 1: A qualitative comparison of recently proposed query routing approaches. Adaptive computa-
tion refers to the ability to trade quality for a reduced inference cost.
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