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Abstract— Recently, multi-robot systems have gained sig-
nificant attention for their promise of scalable efficiency,
reliability, and cost savings. A crucial capability is collaborative
transportation, where a team of robots works together to
transport a payload. However, key challenges remain, such as
potential conflicts between team-level decisions and individual-
level robot controls, team kinematic constraints imposed by the
robot-payload coupling, and diverse obstacles encountered in 3D
terrain. We present Collaborative Quadruped Transportation
with Constrained Diffusion (CQTD), enabling a team of
closely coupled quadruped robots to collaboratively transport
a payload across 3D terrain. A diffusion-based upper level
learns terrain-aware team-level trajectories satisfying team
kinematic constraints due to the payload coupling, while a lower
level optimizes velocity controls of individual robots satisfying
collision and anisotropic velocity constraints. Experiments in
high-fidelity simulations and on real-world quadruped robot
teams demonstrate that CQTD outperforms baseline methods
in challenging 3D terrain scenarios requiring closely-coupled
collaboration between the quadruped robots.

I. INTRODUCTION

Multi-robot systems are becoming an increasingly promi-
nent area of robotics, with diverse real-world applications such
as search and rescue [1], construction [2], manufacturing [3],
and space exploration [4]. Using multiple smaller, cheaper
robots instead of a single large, expensive robot results in
improved operational efficiency, greater redundancy and reli-
ability, and reduced deployment costs [5], [6]. Collaboration
is a cornerstone of multi-robot systems, which is defined as
a group of robots working closely and interdependently to
achieve tasks that would be impossible for an individual robot
to accomplish alone. Specifically, collaborative transportation
is an essential capability within multi-robot collaboration,
with the objective of enabling robots to work as a team to
transport payloads to a designated goal position (Fig. [I)).

Recent advancements in learning-based methods have
significantly enhanced multi-robot collaboration capabilities.
For example, deep neural networks (DNNs) have been
implemented for multi-robot collision avoidance [7], [8],
graph neural networks (GNNs) have demonstrated promise
in decentralized multi-robot path planning [9]-[11], and
deep reinforcement learning (DRL) has also been developed
to perform collaborative multi-robot transportation, which
generates motion plans for teams of quadrotors [12], [13]
and quadrupeds [14]-[16]. However, several key challenges
remain inadequately addressed. When multiple robots work to-
gether, conflicts can emerge between team-level decisions and
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A motivating scenario involves two quadruped robots collaborating
closely to transport a payload across 3D terrain while avoiding obstacles
that can be overcome between them.

Fig. 1.

individual robot controls. Previous methods have primarily
focused on team-level motion planning and treat individual
robot control as a separate task [17], [18]. Collaborative
transportation can impose kinematic constraints when robots
are coupled to a payload. Existing methods typically account
only for the footprint of the payload when addressing
collisions and represent the robots as point masses [8],
[12], [19], which generally cannot address space-constrained
scenarios.

To address these challenges, we introduce Collaborative
Quadruped Transportation with Constrained Diffusion
(CQTD) that enables a team of two quadruped robots to
collaboratively transport a payload to a goal position. CQTD
simultaneously learns team-level collaboration decisions and
individual-level robot controls under the unified mathemat-
ical framework of constrained bilevel optimization. At the
upper level, a diffusion model learns to denoise robot team
navigation trajectories to collaboratively move the payload to
a designated goal position across 3D terrain with obstacles.
At the lower level, CQTD optimizes the velocity controls of
individual robots, enabling each robot to closely execute
the team-level policy for collaboration, while satisfying
kinematic and environment collision constraints and the
robot’s anisotropic velocity constraints.

Our contributions are listed below:

o This work enables a new multi-robot capability for a
team of quadruped robots to collaboratively transport a
payload across unstructured 3D outdoor terrain, while
allowing the payload to overcome lower obstacles and
pass through narrow alleys.

o We introduce the CQTD approach which simultaneously
learns a team collaboration policy at the upper level and
optimizes individual robot controls at the lower level,



while satisfying a set of constraints imposed by the team,
individual robots, and the environment.

II. RELATED WORK

Multi-Robot Collaborative Transportation. A team of
two or more robots can work together to collaboratively
transport payloads that are either too large or too heavy for
a single robot [20]—-[22]. Previous approaches have studied
collaborative transportation employing teams of unmanned
ground vehicles (UGVs) [17], [18]. Traditional techniques
used for multi-robot collaborative transportation are often
based on model predictive control (MPC) or optimization [23]—
[25], designed in order to enhance locomotion stability by
treating the team as a single larger unit. However, these
methods generally assume predefined trajectories for the team
to transport the payload, which are generated by separate
motion-planning techniques. Other tracks of research have
implemented motion planning methods to plan navigational
trajectories for the team to perform collaborative transporta-
tion, for example, using search-based planners [19], sampling-
based planners [26], [27], and potential field planners [18].
More recent advancements have employed reinforcement
learning-based planners that directly generate navigational
trajectories for individual robots [12]. However, these previous
approaches focus solely on collisions caused by the payload,
neglecting individual robot collisions and their differing
ground clearances. Additionally, when applied to quadruped
robots, they fail to account for the anisotropic velocity limits
specific to each robot in the team.

Diffusion Models for Robot Policy Learning. Diffusion
models are a category of latent variable generative models
that iteratively sample data from an underlying distribution
through a denoising process. Recently, diffusion-based meth-
ods have attracted significant attention in robotics, where
they have been applied to policy learning across a wide
range of tasks in robotics, ranging from representing robot
policies that denoise manipulator trajectories online [28],
optimizing data-driven trajectories for motion planning [29],
[30], and learning diverse robot behaviors [31], [32], but are
limited to single robots or treat them as point masses during
planning. Several approaches have explored diffusion-based
policy learning for multi-agent systems such as human-robot
collaboration [33], [34] and multi-robot motion planning [35],
[36], but they do not adequately address the kinematic
constraints imposed on the entire team and primarily focus
on relatively controlled environments, failing to account for
unstructured 3D environments.

III. APPROACH

We propose a novel approach, Collaborative Quadruped
Transportation with Constrained Diffusion (CQTD), to enable
the multi-robot capability of closely-coupled collaborative
transportation, which allows a team of quadruped robots to
navigate complex 3D outdoor environments together and
collaboratively transport a payload to a designated goal
position with minimal time and distance traveled. CQTD
develops a unified mathematical framework of constrained

bilevel optimization to jointly learn team-level collaboration
strategies and individual robot control policies. The upper
level of CQTD uses a diffusion probabilistic model to
generate navigational trajectories that guide the two quadruped
robots in collaboratively transporting the payload. As the
constraints of the upper level, CQTD’s lower level optimizes
the velocity controls of each quadruped robot, ensuring that
the robots precisely follow the team-level collaboration policy.
Constraints arising from the team kinematics, individual robot
configurations, and interactions with the environment are
also integrated into CQTD’s mathematical formulation. We
illustrate the CQTD approach in Figure [2]

Problem Definition. We represent the i-th robot using
a floating 3D bounding box, parameterized by b,, =
(%,,,R,,,d;.), where x,.. = (2.,y.,2-,) € R3 is the
robot’s position in 3D space, R,, € SO(3) represents its
orientation as a 3D rotation matrix, and d,, € R3 represents
the size (i.e., length, width, and height) of the bounding
box. The quadruped robots are independently controlled with
velocity commands in a decentralized fashion, represented for
the i-th robot as u,, = (v,,,wy,), Where v,, = (Vg r,, Uy r;)
and w,, denote the linear and angular velocities of the robot,
respectively.

Similarly, we model the payload as a floating 3D rect-
angular box, denoted by b, = (x,,R,,d,), where x, =
(Tp,Yp, 2p) € R denotes its 3D position, R, € SO(3)
defines its 3D orientation, and d, € R? represents its
dimensions. Furthermore, we use X;¢qrt € R3 and x40, € R?
to represent the start and goal positions of the payload in
3D space, respectively. The two ends of the payload are
mounted on the backs of the two quadruped robots using
ball joints, which constrain the relative position between
the robots and the payload while allowing rotations. We
model this kinematic constraint in 3D space using a function
f : b, = (x,%,,), and also imposes a closed-chain
constraint for the team, which requires both quadrupeds
to remain in contact with the ground surface. The constraint
can be represented as T)'x,, = T;?x,, = x,, where
T € SE(3) and T)? € SE(3) are the transformation
matrices from robots #1 and #2 to the payload’s center of
mass.

Outdoor field environments typically feature uneven terrain
and irregular obstacles preventing the robot team from
passing through, which we define as the collision constraints.
To ensure safety while navigating, the quadrupeds must
satisfy the collision constraints to avoid collisions with the
terrain and obstacles. Mathematically, we represent the terrain
using an elevation map H : (x,y) — 2z, where z is the
height of the uneven terrain at position (z,y). Obstacles
are represented in the elevation map as an increase in
terrain height at their respective locations. We define the
i-th robot as free from collision with the environment when
its bounding box remains above the terrain and obstacles,
ie., by > H(bs,by),V (by,by,b;) € b,,, where (by,by,b.)
is any point from the robot’s bounding box b,,. We similarly
define collision constraints with respect to b, for the payload.

Our objective is to determine a sequence of robot velocity
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Overview of CQTD. Collaborative transportation is formulated as constrained bilevel optimization: the upper level employs diffusion to learn a

team-level trajectory to transport the payload, while the lower level computes individual robot velocity controls satisfying closed-chain kinematic constraints,

collision avoidance constraints, and anisotropic robot velocity constraints.

commands that minimize the time and distance required for
the robots to transport the payload from a start position
Xstart 10 @ goal position Xg0q; While respecting kinematic
and collision constraints.

Upper-Level Optimization for Teamwork Policy Learn-
ing. We introduce a diffusion probabilistic model at the
upper level of CQTD to learn the collaboration between
the quadrupeds, which enables them to transport the payload
to the goal position. Formally, we define the team state as
a set of bounding boxes that denote both the robots and
payload, i.e., s = (b,,,b,,,b,), where each b consists of
the position x, orientation R, and dimensionality d of the
bounding box in 3D space. We further represent a trajectory
of team states as S = [s',s?,...,s”] that includes L team
states on the trajectory. Then, we model the team trajectory
probabilistically as a conditional distribution p(S|c), where
¢ = (H, Xs1art, Xg0a1) encodes the height map representation
H, start position Xg¢qr¢, and goal position Xg4,4;. The condi-
tional distribution p(S|c) resides in a high-dimensional space,
which makes direct modeling and sampling intractable. To
explicitly address this challenge, we propose to leverage the
expressive power of diffusion models to learn this distribution
as a parameterized model.

The diffusion model is based upon the probabilistic diffu-
sion process [37], with Gaussian noise progressively added
to the team state trajectory Sy during the forward diffusion
process to obtain noisy trajectories Si,...,Sk_1, Sk using
a Gaussian function ¢, while maintaining features of the
original trajectory Sp. This forward diffusion process can be
expressed by ¢(Sk|Sk_1,k) = N(Sk,v1— BrSk_1, Bel),
where [ is determined by the diffusion noise variance
schedule, and k € {1,..., K}. The reverse diffusion model
then reverses the forward process via predicting the Gaussian
noise at each step k utilizing a deep neural network €y (Sk, k)
parameterized by 6. Starting with a standard Gaussian
prior p(Sk) = N(0,I), the denoising process iteratively
transforms the noisy trajectory Sy into a noise-free trajectory
Sp. Since the navigational trajectories of the team are
influenced by the environment, as well as the team’s start
and goal positions, we design the denoised trajectories to
be conditioned on the height map, start position, and goal
position. The conditional denoising process is defined as
Skp_1 = oy (Sk — "Yk;EQ(Sk, k|C)) + oy, where ag, Vi, and oy,
are parameters in this reverse process. To learn this diffusion

model, we minimize the mean squared error between the
predicted noise €y(Sk, k|c) and the actual noise added up to
the k-th step, expressed by £ = Ec s, ||ex —€o(So+e€x, k|c)|3,
where €, is a randomly sampled noise with variance oy.

Then, the upper-level optimization of CQTD can be
mathematically expressed by:

minEe s, [lex — €0(So + ex klc)]13 (1
st (x m,xt ) = f(b}) ()
Tm _ Trz f — X;) (3)
bt > H(bt:me) v (bzwbgﬁbi) € b;v] S {pa T17T2} (4)

The objective function in Eq. (I)) aims to learn the parameters
0 of the diffusion model used to sample the maximum likeli-
hood of p(S|c) in order to generate navigational trajectories
for the team of robots to collaboratively transport the payload
to the goal position, while satisfying the team kinematic and
closed-chain constraints in Eqs. () and (3), respectively, and
the environment constraints for the team and payload to avoid
collisions in Eq. (@).

Lower-Level Optimization for Individual Robot Control.
The goal of our CQTD’s lower-level optimization is to gener-
ate a sequence of L velocity controls U,, = [u; ,u? ,...uk]
for each individual robot, enabling them to closely follow
the upper level team state trajectory and reach their goal
positions as fast as possible, while satisfying collision and
velocity constraints.

Given the I-th team state s' € S from the trajectory of team
states S = [s!,s?,...,s”] planned by our CQTD’s upper-
level optlmlzatlon, we extract and define the bounding box
poses of the i-th robot as its state s!. = (x. ,R.L) € &'
When the robot takes an action denoted by a velocity
command ul for a time period 7. ,» this robot transitions
from its current state sl to the next robot state sl+1 through

sttt = sl + [l dt. The objective function of the lower
level denoted by a squared ¢5-loss, is designed to ensure
that the actual states (s. )*“* of the i-th quadruped robot
closely follow its planned states (sl”)pl“" = s! generated
at the upper level. Furthermore, the lower level of CQTD
aims to minimize the total travel time to encourage each
robot to move faster, which can be accomplished through
minimizing Zle 7... Non-holonomic ground robots, includ-
ing quadrupedal robots, are subject to anisotropic velocity
constraints, where the robot’s maximum allowable velocities



differ for movements along the z-axis and y-axis. To explicitly
model such constraints in CQTD’s lower level, we define the
maximum anisotropic velocities of each quadrupedal robot as
Vazr = ('Um,mamv vy,mam), where Uz, max > Vy,mazx > 07
and require linear velocities to satisfy these anisotropic
velocity constraints (|v% |, [0} .|) < Viae. Incorporating the
minimization objective and constraints, we mathematically
formulate the lower level of CQTD as:

mmZ L Al (sh )t — (8L )P 3) Vi€ {1,2) (5)

("U ‘ ‘,U D < Vmam,VZ € {1,2} (6)
bl > H(b;,b;) V(bE, b, bE) € bhLj € {ri,me} (D)

where ) is a hyperparameter to balance the two loss functions.
Besides the anisotropic velocity constraints, each individual
robot must satisfy the collision constraints for obstacle
avoidance as modeled in Eq. (7).

Constrained Bilevel Optimization for Diffusion Learn-
ing. We integrate the upper-level and lower-level objectives
into the unified mathematical framework of constrained bilevel
optimization, which results in our CQTD approach, defined
as:

minEe s, [[ex — €0(So + ex, klc) |13 ®)
L

s.t. argminz (T,l,i+/\||(slm)‘wt—(slri)pl“"H%) Vi e {1,2}
T =1

l &)

(xmx ) = f(b},) (10)

Thxt =Trxt, =x! (11)

(Ivz nl 05 1.]) < Vimaz, Vi € {1,2} (12)

bt > H(btw,bf}) v (b;,bf/,bi) € bz,j € {p,r1,7m2}
(13)

The upper level in Eq. learns a trajectory of team
states S as the collaboration policy for the quadrupeds to
transport the payload together, while CQTD’s lower level
in Eq. (9), as a constraint of the upper-level optimization,
optimizes velocity controls for individual robots to precisely
execute the team policy in a decentralized manner. Within the
optimization formulation, CQTD simultaneously integrates
four constraints. The constraint at the upper level on team
kinematics is modeled by Eq. (I0), which arises from physical
connections between the payload and the robots. The closed-
chain constraint at the upper level, modeled by Eq. (TT),
ensures that the robots remain on the ground surface. The
constraints on anisotropic velocities at the lower level in
Eq. (I2) reflect the different capabilities of the quadruped
robots when moving in different directions. The collision
constraints in Eq. (I3) must be satisfied both by each
individual robot at the lower level and the payload carried
by the team at the upper level of CQTD.

In order to solve the formulated constrained bilevel
optimization problem, we simultaneously train the diffusion
probabilistic model to generate trajectories of the robot team

TABLE I
QUANTITATIVE RESULTS OF CQTD IN SIMULATION.
[ Method [ Success Rate [ Planning Time (s) | Path Length (m) |
A* [40] 76.40% 431 14.92
RRT* [41] 67.40% 0.21 18.66
DQN [12] 13.40% 0.06 15.86
CQTD (ours) 86.20% 0.76 17.00

S at the upper level in Eq. (8) and optimize individual
robot velocities U, at the lower level in Eq. @) Given a
dataset of collaborative transportation D = {c, S*}¥,, which
contains N samples that are collected using our new multi-
robot simulation (presented in Sec. across varying height
maps H of different terrain, as well as the robot team’s start
positions Xzqr¢, goal positions X041, and trajectories S*, we
perform imitation learning to generate a trajectory of team
states. The upper level Eq. optimizes the diffusion model
parameters 6 to minimize the diffusion loss with respect
to §* and c in the dataset and is solved by training the
diffusion model using gradient descent based upon the Adam
optimizer [38], [39]. The lower-level objective is optimized
during the training phase by minimizing the error between the
learned individual robot velocities and the velocities from the
imitation samples within the dataset. During execution, this
is implemented using a PID-based local planner that tracks
the robot team states from S, and individual robot velocities
are scaled down to within velocity limits to prevent robot
and payload collisions.

IV. EXPERIMENTS

Experimental Setups. We utilize two Unitree Gol
quadruped robots using the Champ locomotion controller [42],
[43] running on Robot Operating System (ROS) 1. We create
a synthetically generated dataset to train our CQTD approach
across 100,000 different height maps with 10 varying start
and goal positions each. Specifically, the height maps H
are generated using Perlin noise [44] for realistic terrain
and are encoded into a height map representation using a
ResNet-18 network [45]. The upper-level optimal robot team
trajectories S* are solved by a search-based motion planner
considering lower-level collision constraints and anisotropic
velocity limits of the quadrupeds.

We compare CQTD against three baseline approaches: (1)
A* [40], a graph-based pathfinding algorithm based on a
weighted graph of the configuration space, (2) RRT* [41], a
sampling-based method that explores the robot’s configuration
space by constructing a space-filling tree, and (3) DQN [12],
a learning-based method using deep Q-network (DQN) for
cooperative object transportation.

Our CQTD is quantitatively evaluated and compared against
the baseline methods under three metrics: (1) success rate,
the ratio of completed collaborative tasks to total evaluations,
(2) planning time, which is the total time cost for robot
team’s actions inference, and (3) total path length, which is
the total distance traveled by the payload during collaborative
transportation. Both planning time and total path length are
measured only for successful cases.



Fig. 3.
(b) through a narrow alley between block walls.

Two quadruped robots collaboratively transport brick payloads as a closely-coupled team in an indoor environment (a) over a block obstacle and

Fig. 4. A closely-coupled team of two quadruped robots collaboratively transports brick payloads across an outdoor environment with unstructured 3D
terrain (a) over tree branches, and (b) between a pile of rocks and a cart.

Quantitative and Qualitative Results on Simulation.
We evaluate our CQTD approach on the test split of the
synthetically generated terrain dataset. We collect metrics on
500 unique terrain environments with varying start and goal
positions. Our quantitative results can be seen in Table [I]
CQTD has the highest success rate among the baseline
methods, outperforming them by at least ten percentage points.
Although RRT#* has the fastest planning time (due to its
probabilistically complete formulation), the path length it
produces is the longest and its success rate is not very high.
A* has the shortest path length because its solutions (should it
find some) are guaranteed shortest; however, its search-based
nature significantly slows down its planning time due to the
exponential time complexity. Also, A* can also suffer from
discretization errors when optimizing search speed. DQN, the
only comparable learning-based baseline available in recent
work, performs poorly due to the difficulty in learning a
generalized policy across varying environments.

Qualitative Results on Real-World Robots. Additionally,
two Unitree Gol quadruped robots are deployed in both
indoor and outdoor real-world scenarios, where CQTD fully
autonomously controls the robots. In the indoor environment,
CQTD successfully finishes the overcome obstacle scenario,
where the payload passes over the obstacle while the robots

walk side-by-side, illustrated in Fig. [B(a). CQTD also executes
the pass narrow alley scenario in Fig. [3[b), where the robots
switch from side-by-side to instead form a line to enter the
narrow area. In the outdoor environment, we illustrate the
same overcome obstacle and pass narrow alley scenarios in

Fig. @[a) and Fig. f{b).
V. CONCLUSION

In this work, we introduced CQTD as a novel constrained
bilevel optimization approach designed to enable collaborative
payload transportation across complex 3D terrain. CQTD uses
a diffusion-based learning method to generate robot team
trajectories at the upper level, while simultaneously generating
individual robot velocity commands at the lower level. At the
upper level, it considers closed-chain and team kinematic con-
straints, as well as collision avoidance constraints for both the
robots and the payload, while CQTD’s lower level accounts
for collision avoidance constraints and anisotropic velocity
limitations for each individual quadruped. In order to validate
its performance, we conducted comprehensive experiments
to evaluate CQTD through Gazebo simulations and physical
quadruped robot teams collaboratively transporting a payload
in indoor and outdoor environments. Experimental results
demonstrate that our CQTD approach enables new multi-
robot capabilities for collaborative transportation through



robot learning, and it outperforms baseline methods across
multiple metrics.

[1]

[3]

[4

=

[5]
[6]

[7

—

[8

[t}

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

REFERENCES

J. P. Queralta, J. Taipalmaa, B. Can Pullinen, V. K. Sarker,
T. Nguyen Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and
T. Westerlund, “Collaborative multi-robot search and rescue: Planning,
coordination, perception, and active vision,” IEEE Access, vol. 8, pp.
191617-191 643, 2020.

M. Krizmancic, B. Arbanas, T. Petrovic, F. Petric, and S. Bogdan,
“Cooperative aerial-ground multi-robot system for automated construc-
tion tasks,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
798-805, 2020.

Z. Nie and K.-C. Chen, “Predictive path coordination of collaborative
transportation multirobot system in a smart factory,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, pp. 1-14, 2024.

H. Farivarnejad, A. S. Lafmejani, and S. Berman, “Fully decentralized
controller for multi-robot collective transport in space applications,” in
IEEE Aerospace Conference, 2021.

L. V. Nguyen, “Swarm intelligence-based multi-robotics: A compre-
hensive review,” AppliedMath, vol. 4, no. 4, pp. 1192-1210, 2024.
C. Ju, J. Kim, J. Seol, and H. I. Son, “A review on multirobot systems
in agriculture,” Computers and Electronics in Agriculture, vol. 202, p.
107336, 2022.

G. Shi, W. Honig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decen-
tralized close-proximity multirotor control using learned interactions,”
in IEEE International Conference on Robotics and Automation, 2020.
B. Riviere, W. Honig, Y. Yue, and S.-J. Chung, “Glas: Global-to-local
safe autonomy synthesis for multi-robot motion planning with end-to-
end learning,” IEEE Robotics and Automation Letters, vol. 5, no. 3,
pp. 4249-4256, 2020.

Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2020.

Y. Jo and H. I. Son, “A gnn-based decentralized path planning for
agricultural robot team: Work in progress,” in IEEE International
Conference on Control, Automation and Systems, 2024.

V. D. Sharma, L. Zhou, and P. Tokekar, “D2coplan: A differentiable
decentralized planner for multi-robot coverage,” in IEEE International
Conference on Robotics and Automation, 2023.

L. Zhang, Y. Sun, A. Barth, and O. Ma, “Decentralized control of
multi-robot system in cooperative object transportation using deep
reinforcement learning,” IEEE Access, vol. 8, pp. 184109-184 119,
2020.

H. Zhu, F. M. Claramunt, B. Brito, and J. Alonso-Mora, “Learning
interaction-aware trajectory predictions for decentralized multi-robot
motion planning in dynamic environments,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 2256-2263, 2021.

H. Zhu, S. Yang, W. Wang, X. He, and N. Ding, “Cooperative
transportation of tether-suspended payload via quadruped robots based
on deep reinforcement learning,” in IEEE International Conference on
Robotics and Biomimetics, 2023.

Y. Ji, B. Zhang, and K. Sreenath, “Reinforcement learning for
collaborative quadrupedal manipulation of a payload over challenging
terrain,” in IEEE International Conference on Automation Science and
Engineering, 2021.

Y. Feng, C. Hong, Y. Niu, S. Liu, Y. Yang, W. Yu, T. Zhang, J. Tan,
and D. Zhao, “Learning multi-agent loco-manipulation for long-horizon
quadrupedal pushing,” arXiv preprint arXiv:2411.07104, 2024.

Q. Liu, Z. Nie, Z. Gong, and X.-J. Liu, “An omnidirectional transporta-
tion system with high terrain adaptability and flexible configurations
using multiple nonholonomic mobile robots,” IEEE Robotics and
Automation Letters, vol. 8, no. 9, pp. 6060-6067, 2023.

H. Cohen, S. Hacohen, N. Shvalb, and O. Medina, “Decentralized
motion planning for load carrying and manipulating by a robotic pack,”
IEEE Access, vol. 11, pp. 16 557-16 566, 2023.

C. Yang, G. N. Sue, Z. Li, L. Yang, H. Shen, Y. Chi, A. Rai, J. Zeng,
and K. Sreenath, “Collaborative navigation and manipulation of a
cable-towed load by multiple quadrupedal robots,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 10041-10 048, 2022.

Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, no. 12, p. 399, 2013.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

[36]

(371
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

E. Tuci, M. H. Alkilabi, and O. Akanyeti, “Cooperative object transport
in multi-robot systems: A review of the state-of-the-art,” Frontiers in
Robotics and Al vol. 5, p. 59, 2018.

H. Farivarnejad and S. Berman, “Multirobot control strategies for col-
lective transport,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 5, no. 1, pp. 205-219, 2022.

A. Tagliabue, M. Kamel, R. Siegwart, and J. Nieto, “Robust collab-
orative object transportation using multiple mavs,” The International
Journal of Robotics Research, vol. 38, no. 9, pp. 1020-1044, 2019.
J. Wehbeh, S. Rahman, and I. Sharf, “Distributed model predictive con-
trol for uavs collaborative payload transport,” in JEEE/RSJ International
Conference on Intelligent Robots and Systems, 2020.

Z. Wang, S. Singh, M. Pavone, and M. Schwager, “Cooperative object
transport in 3d with multiple quadrotors using no peer communication,”
in IEEE International Conference on Robotics and Automation, 2018.
P. Yu and D. V. Dimarogonas, “Distributed motion coordination for
multirobot systems under Itl specifications,” IEEE Transactions on
Robotics, vol. 38, no. 2, pp. 1047-1062, 2022.

H. Zhang, H. Song, W. Liu, X. Sheng, Z. Xiong, and X. Zhu,
“Hierarchical motion planning framework for cooperative transportation
of multiple mobile manipulators,” arXiv preprint arXiv:2208.08054,
2022.

C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake,
and S. Song, “Diffusion policy: Visuomotor policy learning via
action diffusion,” The International Journal of Robotics Research,
p. 02783649241273668, 2023.

J. Carvalho, A. T. Le, M. Baierl, D. Koert, and J. Peters, “Motion
planning diffusion: Learning and planning of robot motions with
diffusion models,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2023.

J. Liu, M. Stamatopoulou, and D. Kanoulas, “Dipper: Diffusion-based
2d path planner applied on legged robots,” in [EEE International
Conference on Robotics and Automation, 2024.

Z. Li, R. Krohn, T. Chen, A. Ajay, P. Agrawal, and G. Chalvatzaki,
“Learning multimodal behaviors from scratch with diffusion policy
gradient,” arXiv preprint arXiv:2406.00681, 2024.

G. Yan, Y.-H. Wu, and X. Wang, “Dnact: Diffusion guided multi-task
3d policy learning,” arXiv preprint arXiv:2403.04115, 2024.

T. Yoneda, L. Sun, G. Yang, B. C. Stadie, and M. R. Walter, “To the
noise and back: Diffusion for shared autonomy,” in Robotics: Science
and Systems, 2023.

E. Ng, Z. Liu, and M. Kennedy, “Diffusion co-policy for synergistic
human-robot collaborative tasks,” IEEE Robotics and Automation
Letters, vol. 9, no. 1, pp. 215-222, 2024.

Y. Shaoul, I. Mishani, S. Vats, J. Li, and M. Likhachev, “Multi-robot mo-
tion planning with diffusion models,” arXiv preprint arXiv:2410.03072,
2024.

Z. Wu, S. Ye, M. Natarajan, and M. C. Gombolay, “Diffusion-
reinforcement learning hierarchical motion planning in adversarial
multi-agent games,” arXiv preprint arXiv:2403.10794, 2024.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in Advances in Neural Information Processing Systems, 2020.

D. Kinga, J. B. Adam er al., “A method for stochastic optimization,”
in International conference on learning representations, 2015.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.
S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Robotics: Science and Systems, 2010.
“chvmp/champ,” 2020.

J. Lee, “Hierarchical controller for highly dynamic locomotion utilizing
pattern modulation and implementation on the MIT Cheetah robot,”
Master’s thesis, Massachusetts Institute of Technology, 2013.

K. Perlin, “Improving noise,” in Conference on computer graphics and
interactive techniques, 2002.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE/CVF Conference on computer vision and
pattern recognition, 2016.



	INTRODUCTION
	RELATED WORK
	APPROACH
	EXPERIMENTS
	CONCLUSION
	References

