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ABSTRACT

Autoregressive language models trained with next-token prediction generate text
by sampling one discrete token at a time. This forces the model to commit early,
preventing exploration of multiple plausible continuations. Furthermore, each to-
ken is predicted in a single forward pass, which might limit the model’s expres-
siveness in cases where difficult tokens require inherently more compute. Towards
this end, we introduce latent lookahead, a training strategy that enables models to
think before answering: at selected positions in the sequence, before commit-
ting to the next token, the model performs a multi-step lookahead in latent space.
Instead of sampling future tokens, we leverage the network’s latent space by re-
cursively feeding its hidden states back into the context for τ steps, investing more
compute on predicting that token. This produces τ latent predictions that are su-
pervised against the next τ ground-truth tokens, encouraging the model to “look
ahead”. We show that latent lookahead substantially outperforms autoregressive
baselines on planning tasks such as maze solving, Sudoku, and ProsQA, where
foresight is essential. Finally, we demonstrate how to endow pretrained models
with this ability during supervised fine-tuning and evaluate the resulting models
on standard reasoning benchmarks.

1 INTRODUCTION

At the core of modern Large Language Models (LLMs) lies an autoregressive training paradigm
based on two core ingredients: next-token prediction (NTP) Shannon (1948) and teacher forcing.
In NTP, the model maximizes the log-likelihood of for the next token xt, learning to predict each
token given the preceding ground-truth context. Teacher forcing supplies that ground-truth prefix
x<t at every step during training rather than the model’s own sampled outputs. During inference,
the model samples from its hidden states the next token based on the context that has generated so
far. This paradigm is simple, scalable, and largely self-supervised, but it introduces two problems.
First, it provides only a one-step training signal, thus biasing the model towards a narrow future
horizon. As a result, models may behave myopically, predicting the next token without explicitly
reasoning about the downstream consequences several steps ahead. Second, the model is forced to
decode (through sampling) the token from its hidden states at every generation step. While this is
flawless when the model is certain about its predictions, it may introduce errors when faced with
uncertainty. Ideally, it would be ideal to consider all the possible viable options, rather being forced
to commit immediately. These two problems compound together, where the next token prediction
training together with forced sampling may introduce sources of errors, such as reaching dead-ends
and wrong chain of thought (Bachmann & Nagarajan, 2024).

However, many tasks in reasoning and decision-making require planning: evaluating alternative fu-
tures, and selecting actions that pay off over multiple steps. Humans routinely imagine possible
continuations before committing to the next move. As we enter agentic AI, where systems must
execute structured sequences of actions, LLMs likewise need the ability to speculate about the con-
sequences of their actions by looking ahead rather than reacting one token at a time. As a motivating
example, consider the 4 × 4 Sudoku in Figure 2. In this simplified version of the game, the player
needs to fill the “ ” blanks such that every row, column, and 2×2 grid contain the numbers 1, 2, 3, 4.
In the example, the first blank cell admits two candidates {1, 3} under local row/column constraints;
committing immediately is unjustified. However, looking a few steps ahead propagates the implica-
tions of each choice and quickly disambiguates which branch leads to a consistent continuation.
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Figure 1: Standard autoregressive inference vs latent lookahead. Left: in standard next token predic-
tion, the model samples from the hidden state of the latest generated token after applying the final
unembedding head, and appends the generated token to the context. Right: in our approach, the
model enters the latent lookahead thinking, where the hidden states are fed directly into the context
instead of sampled visible tokens. This procedure is repeated τ times, and then the visible token is
sampled from the first latent position. In the figure above, the tokens x2 and x4 are selected, τ = 3,
and zi,j indicates the j-th latent token relative to the i-th visible token. See also Fig. 3

Motivated by this, we propose latent lookahead, a framework to expand the computation and miti-
gates the two sources of errors. The model is illustrated in Fig. 1. Before emitting the next token,
the model unrolls its hidden state τ steps into the future, by iteratively feeding predicted latent states
back into the context. This avoids sampling, allowing more computation for the model before emit-
ting the token. After τ steps, the model predicts the next token. The mechanism can be invoked
repeatedly at generation time, and augments standard NTP objectives without requiring token-level
search. To encourage the lookahead, the τ latent predictions are supervised against the next τ
ground-truth tokens, with an attention mask that allows for attention between all latent tokens, as
illustrated in Fig. 3. This training procedure explicitly trains the model for lookahead capability.

Our work is inspired by the observation that increasing the computation that is performed by the
model is beneficial during training and inference (a.k.a test-time scaling): this can be done in var-
ious ways. Crucial for our model, either in the form of Chain-of-Thought (CoT), or with extra
dummy tokens appended to the context, or latently, by looping multiple times over the transformer’s
layers. We review these methods in Sec. 4. A key design principle of our approach is interpretabil-
ity: compared to existing proposed models in the realm of latent computation Hao et al. (2024);
Deng et al. (2024), each latent token is explicitly supervised, and the model produces explicit CoTs,
ensuring that the latent computation remains transparent. This is crucial, since fully latent models
risk worsening the difficulty of interpreting LLM chain-of-thoughts, which are already known to be
frequently unfaithful (Lanham et al., 2023; Chen et al., 2025).

Concretely, we make the following contributions:

• We introduce the latent-lookahead framework to a guided latent thought τ steps ahead, and
detail its training and inference procedure. See Figures 1 and 3.

• We introduce a method to perform latent lookahead across multiple steps (denoted by n).
A naive sequential rollout would require O(τn) forward passes during training for each
gradient step, which quickly becomes impractical even for small models. To address this,
we design an attention mask that enables parallel generation of latent thoughts while pre-
serving consistency between training and inference, reducing the cost to O(τ) forward
passes.

• We demonstrate that latent lookahead is particularly effective on planning-oriented tasks,
achieving substantial gains across four benchmarks: 4× 4 Sudoku, 9× 9 Sudoku, ProsQA,
and Maze. Notably, our method reaches 35% accuracy on 9× 9 Sudoku, which is over 20
points higher than standard autoregressive baselines.

• We evaluate the applicability of our framework by equipping existing base language models
with latent lookahead during supervised fine-tuning (SFT). On math and logical reasoning
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?

Figure 2: Lookahead behaviour when solving a Sudoku. In the first slot, both 1 and 3 are viable
options. However, when thinking ahead to the second empty slot, where 3 is the only plausible entry,
it is easy to realize that 1 is the right choice for the first slot.

benchmarks (GSM8K, AQuA, and BBH), latent lookahead yields modest but consistent
improvements over autoregressive baselines. We report results with Olmo 2 (1B) and Qwen
2.5 (0.5B) models.

• We provide interpretation of the latent tokens that are generated, showing how they encap-
sulate the notion of superpositions of states, put forward in recent theoretical work on latent
CoT (Zhu et al., 2025).

2 METHODOLOGY

In autoregressive language models we are given a sequence of one-hot encoded tokens x =
(x1, . . . xT ), with xi ∈ RV , where V is the vocabulary size. The aim is to learn the joint distri-
bution over tokens with the following factorization:

p(x1, . . . , xT ) =
∏
i

p(xi+1|x≤i) . (1)

We stress that this is only one of the possible factorizations for the joint distribution. The factoriza-
tion in Eq. 1 translates to the so-called next token prediction objective for the sequence x:

LNTP = −
∑
i

log pθ(xi+1 | x≤i), (2)

where θ represents the collections of all the parameters in the model. In a language model, the se-
quence is first embedded in a lower dimensional continuous space through a learnable linear transfor-
mation, giving the embedded sequence e = (e1, . . . , eT ). Then a transformer architecture (Vaswani
et al., 2017) takes as input e and produces the hidden states z = (z1, . . . , zT ), of the dimension as e:

zi = transformer(e≤i). (3)

Finally, an un-embedding layer with weights Wu maps each token from the hidden dimension to the
vocabulary size, and the softmax constructs a distribution over the vocabulary:

pθ(xi+1|x≤i) = softmax(Wuzi). (4)

Teacher forcing is typically adopted, where the model learns p(xi+1|x≤i) conditioned ground-truth
tokens x≤i, for all i ∈ [T ]. During inference, the model samples autoregressively from the learned
distribution, i.e. xi+1 ∼ pθ(xi+1|x≤i), i.e. each token is produced by the model and appended
into context. This creates a discrepancy between inference and training, where the ground-truth is
provided. We illustrate inference in autoregressive models in Fig. 1.

2.1 LATENT LOOKAHEAD

To describe the proposed method, it is convenient to distinguish between visible tokens xi, which
correspond to the standard tokens in the training corpus, and latent tokens zi,j , which represent
the j-th latent prediction relative to a given visible token xi. Visible tokens are part of the sequence
observed in the data, while latent tokens are auxiliary predictions in latent space that allow the model
to anticipate multiple steps ahead without committing to explicit token choices. The latent tokens
are generated as follows: in the context of the notation introduced earlier, we set zi,1 := zi, i.e. the
first latent token is equal to final hidden states relative to the token xi. Then, for the latent token zi,j ,
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let ez≤i be the expanded embedded sequence obtained by concatenating the latent tokens generated
so far to the visible embeddings, i.e. ez≤i = (e1, . . . ei, zi,1, . . . , zi,j−1). Then we set zi,j as:

zi,j = transformer(ez≤i). (5)

The number of such autoregressive steps is set to τ , the final number of latent tokens. A full group
of τ latent tokens {zi,1, . . . , zi,τ} constitutes a latent thought. We allow for latent lookahead at
multiple positions in the sequence, as we detail later.

Training. Figure 3(a) illustrates the training procedure. Latent tokens are explicitly supervised
against the ground-truth visible tokens τ steps ahead. Specifically, let S be the set of indexes of the
visible tokens that are selected for the latent lookahead, with n := |S| the number of positions with
latent lookahead. Then for any i ∈ S, the j-th latent token zi,j is trained to predict xi+j given the
full latent thought:

Llatent = −
∑
i∈S

τ∑
j=1

log pθ(zi,j → xi+j | x≤i, {zi,k}τk=1), (6)

where the zi,j → xi+j indicates that the xi+j token is the label for the hidden state of zi,j .

Visible tokens xi are supervised with the standard next-token objective LNTP in Eq. 2, but in addition
we allow the visible to attend to the latent thoughts generated so far:

LNTP = −
∑
i

log pθ(xi+1 | x≤i, {zi′,j}i′≤i,1≤j≤τ ). (7)

The full training objective combines the two terms:

L = LNTP + Llatent. (8)

We remark that as we avoid sampling, our procedure is fully differentiable through the latents. Thus,
backpropagation works through time (Mozer, 2013; Werbos, 2002), as in a recurrent neural network,
but with an expanded context.

Inference. Figure 1 contrasts our latent lookahead approach with standard next-token prediction
(NTP). In the standard autoregressive setting (left), the model samples a new visible token from the
hidden state of the most recent token and appends it to the context: xi+1 ∼ pθ(xi+1|x≤i). In our
approach (right), at selected positions the model instead enters the latent lookahead mode, generating
τ latent tokens zi,1, . . . , zi,τ before committing to the next visible token. The visible token is then
sampled from the first latent hidden state, effectively conditioning on an internal simulation of future
steps: xi+1 ∼ pθ(xi+1|x≤i, {zi′,j}i′≤i,1≤j≤τ ) . In principle, this our method can be used as a
multi-token predictor, decoding τ tokens after each latent thought. However, our objective here is
to increase the computation spent on sequence modeling by expanding the context with the latents.
Our procedure add O(nτ) extra tokens to the We perform an ablation comparing out method to
multi-token prediction in the experiment section.

Attention mask. We design a non-fully causal attention mask to handle attention between latents
and visible tokens and to improve over fully sequential training. We visualize it in Figure 3(b).

Visible-visible, latent-visible and visible-latent. As alluded by the objective in Eq. 7, visible tokens
follow standard causal masking: each xi can attend to all preceding visibles and latents. The same
applies between latent and visible tokens, as well as between visible and latents. The latter is espe-
cially useful as the latents might encode important information about the model’s own assessment
of the future that could facilitate the decoding of future visible tokens.

Latent-Latent (within). Within a latent thought, we perform full attention between the latent tokens.
This is necessary to allow the model to refine the representation of early tokens based on its own
assessment of the future ones.

Latent-Latent (across). A key challenge in training is to allow all latent thoughts to be generated in
parallel rather than fully sequentially. Our procedure is fully sequential within the latent thought,
requiring O(τ) forward passes during training. With n := |S| number of positions with latent
lookahead, it would require O(τn) forward passes to compute one gradient step, which is prohibitive
even for relatively small models. We overcome this limitation by designing an attention mask that
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(a) Training procedure
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(b) Attention mask

Figure 3: Left: the visible tokens (in blue) are supervised with standard next token prediction ob-
jective. The latent tokens are supervised explicitly with equivalent number of steps ahead, i.e. the
zi,j latent token is supervised with the xi+j visible token. Right: to ensure that the model is able
to refine the next token prediction based on its own assessment of the future steps, we allow for
full (non-causal) masking between the latent tokens. The visible tokens follow the standard causal
masking. Finally, the latent thoughts causally attend to previous visible, but not to the previous la-
tent. This allows for parallel generation of the latent thoughts during training.

Table 1: Accuracy (%) for each dataset. The number of tokens used are the same as the answer
length: 19, 70, 5 for mini-Sudoku, Sudoku and ProsQA, respectively.

Model Mini 4×4 Sudoku Full 9×9 Sudoku ProsQA Maze
Ours 93.5 35.5 91.8 21.5
Pause 86.0 12.5 82.5 19.5
Standard NTP 78.0 12.5 80.5 18.5

allows for parallel generation of the n latent thoughts, reducing the complexity back to O(τ) forward
passes per gradient step. Specifically we achieve this by not allowing different latent thoughts to
attend to each other. During training we generate the first token for all the latent thoughts {zi,1}i∈S

in parallel. Then all of them are concatenated to the corresponding visible tokens. At the next latent
step, we generate {zi,2}i∈S , and repeat this τ times. The it ensures that the resulting computation
would be the same if the procedure was performed fully sequentially. Thus, the attention mask
ensures that there is no discrepancy in the computation between training and inference.

Selecting the position of thinking tokens. Given a fixed budget of latent thinking positions, we
adopt a hybrid allocation strategy. Specifically, we always reserve one latent thought at the very
beginning of the sequence (e.g., immediately after the question in reasoning tasks), ensuring that the
model can initiate planning from the start. The remaining positions in the budget are distributed as
follows: (1) sequentially, at each visible position. (2) uniformly at random across the sequence. In
this case, at inference time, a latent thought is always inserted at the beginning, while subsequent
thoughts are triggered with a fixed probability until the budget is saturated.

3 EXPERIMENTS

The aim of our experiments is twofold. First, we aim to validate the proposed latent lookahead
framework in cases where the lookahead skill is intuitive helpful, such as in solving a Sudoku. In
this part, we use a smaller model trained from scratch. Second, we test whether we can incorporate
the lookahead skill during the supervised fine-tuning (SFT) phase of the LLM training pipeline.
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(b) Full 9x9 Sudoku

0 1 2 3 4 5
Number of latent tokens ( )

0.80

0.82

0.84

0.86

0.88

0.90

0.92 Ours
Pause
Standard NTP

(c) ProsQA

Figure 4: Effect of increasing the number of latent tokens.

3.1 LATENT LOOKAHEAD IN PLANNING TASKS

We consider a two-layer GPT-2 like Transformer with hidden size 768, trained with Adam (Kingma
& Ba, 2014) and constant learning of 1e− 4. We have dropout on the residual branches, embedding
and attention weights to avoid overfitting. All the training details can be found in the Appendix.

Baselines. On top of the standard training and inference pipeline of next token prediction, we
compare with replacing the lookahead pause tokens (Goyal et al., 2023), i.e. we insert a number
of special <pause> tokens before the model’s response. All but the last pause tokens are not
supervised, and serve as a compute buffer that the model can exploit, while the last one is supervised
to decode to the next token in the sequence. Notice that, in contrast to out approach, the pause tokens
can be processed in parallel. We use this baseline as it processes a context of the same length.

Datasets. We consider the following datasets:

• Mini-Sudoku: We generate 2000 instances of 4x4 mini and 9x9 standard Sudoku using
reasoning gym (Stojanovski et al., 2025) with between 8 and 12 empty cells. We use 1800
for training and 200 samples for the test set.

• Full Sudoku: Similarly, we generate 9x9 standard Sudoku instances with a number be-
tween 32 and 50 of empty cells. More difficult puzzles tend to involve a larger number
of empty cells. We produce 4,000 puzzles in total and split them into training (90%) and
validation (10%) sets.

• ProsQA(Hao et al., 2024): a datasets of directed acyclic graphs (DAGs) where given a root
node and two candidate nodes, the model needs to predict to which candidate the root is
connected to. The dataset also provides Chain-of-Thoughts in the form of sequences of
nodes from root to the correct candidate. In total, we have 4-5 steps in the CoTs. Here, the
model needs to plan by performing a breadth first search to scan the various branches in the
graph. We use the version of the dataset from Zhu et al. (2025)

• Maze: we generate mazes using the library from Ivanitskiy et al. (2023). This dataset
is automatically generated by constructing synthetic lattice mazes using a depth-first
search (DFS)–based generator. Each maze is serialized into a tokenized string represen-
tation, where the valid solution path is enclosed between special <PATH START> and
<PATH END> markers. From this serialization, the code extracts question–answer pairs:
the full maze string serves as the question, and the path segment between the markers serves
as the answer. A total of 4,000 mazes are generated on a 7 × 7 grid, then shuffled with a
fixed seed and split into training (90%), validation (5%), and test (5%) sets.

For each dataset, we build a tokenizer with only the symbols that are needed for the tasks (i.e. integer
numbers and some special characters such as delimiters).

Results. We use latent lookahead with n = 1 latent positions and a number of latent tokens τ that
covers either the whole solutions (in the case of Sudoku) or the whole reasoning chain, as in the case
of ProsQA. For the baseline with <pause> tokens, we use the same number τ of dummy tokens.

The results are shown in Table 1. We observe that the model improves upon the both the NTP and
the <pause> baseline, with the largest increase on the more challenging 9x9 Sudoku, where latent
lookahead improves from from 12.5% to 35%. This is also the only case where the <pause> tokens
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Table 2: Accuracy (%) OLMo-2-1B on math
and logical reasoning datasets.

Model GSM8K AQuA BBH
Standard NTP 38.0 24.0 18.2
Ours (τ = 4) 39.0±0.3 23.0±0.3 18.7±0.4

Ours (τ = 6) 37.9±0.4 26.8±0.2 18.3±0.5

Table 3: Accuracy (%) of Qwen 2.5 0.5B
on two reasoning datasets.

Sudoku GSM8K
Model Acc. τ Acc. τ

Standard NTP 0.11 – 46.3 –
Ours 0.105 10 46.0 4
Ours 0.105 20 46.6 8
Ours 0.11 30 47.0 16

do not provide a benefit. These results suggest that explicitly guiding the latent tokens with the
lookahead procedure provides benefit beyond the extra computation provided by the extra context.
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Figure 5: Eval curves ablating over the fol-
lowing design choices: (1) use a causal mask
within the latent thoughts, and (2) use the
model as a multi-token predictor (dashed).

Scaling the Latent Computation. Next, we ana-
lyze the role of scaling the latent computation. In
our latent lookahead model, this can be done in two
ways: either by increasing the number of latent to-
kens τ or the number of positions n. Given the na-
ture of the given problems, where the very first to-
ken might require to look ahead all the way to the
final part of the answer, we first analyze the former.
Thus, we train our models by fixing n = 1 (at the
first position before the answer) and all other hy-
perparameters and increase τ . For different datasets
(Sudoku and ProsQA), we use a different set of τ ,
ranging from 2 to 70. In Fig. 4, we plot the test ac-
curacy of the model as a function of τ . Our results
convincingly show that scaling τ monotonically in-
creases the performance across the three datasets,
beating both the NTP and the <pause> baseline,
which either saturates or exhibits a worse grow rate.
We report scaling n in Fig. 8.

Ablations: On the roles of Attention Mask and Multi-Token Prediction (MTP). We now test
two key assumptions in our design. First, whether the model needs to refine the early latent tokens,
achieved with an attention mask that allows for full attention within the latent thought. To this
end, we compare with the corresponding model with full causal mask across all the tokens. In
principle, via backpropagation through the latents, the look ahead is still learnable by this causal
model. However, this refinement cannot be made as later latents are generated. Second, we test how
the proposed model performs as a multi-token predictor, where τ visible tokens are generated from
the corresponding latents. This option is available as a valid inference procedure for our model, and
also tests to what extent our design of latent look ahead needs an expanded context for computation
to produce the solution. The results are shown in Fig. 5, where we train our model with τ = 19
and plot the evaluation accuracy over training time. The experiment (1) confirms that full attention
indeed induces a better latent representation that facilitates the decoding steps, and (2) shows that
the model used for MTP underperforms compared to the proposed latent lookahead framework, both
in the causal and full attention cases.

3.2 SUPERVISED FINETUNING WITH LATENT LOOKAHEAD

Few Shot Evals on Olmo. To assess whether latent lookahead can be incorporated into the super-
vised fine-tuning (SFT) phase of existing large language models, we conduct experiments starting
from a pretrained OLMo-2-1B Base1 model (OLMo et al., 2024). We finetune the model on the
Tulu 3 SFT Mixture 0225 dataset, a diverse instruction-tuning corpus, while augmenting the training
sequences with latent tokens. Specifically, we insert latent thought at n = 32 randomly chosen po-

1https://huggingface.co/allenai/OLMo-2-0425-1B
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sitions in the input sequence, and set the length of each latent thought to τ = 4 latent tokens. Unlike
the planning-style datasets considered in Section 3.1, here the objective is to evaluate whether latent
lookahead provides benefits in more general reasoning and arithmetic tasks that are commonly used
in evaluating instruction-tuned models. We evaluate the finetuned models on GSM8K, AQuA, and
BBH, three benchmarks that probe multi-step reasoning and arithmetic problem solving. As shown
in Table 2, latent lookahead yields consistent improvements over the standard next-token prediction
baseline: +1% on GSM8K, +2.8% on AQuA, and +0.6% on BBH. While the gains are more modest
compared to the planning tasks in Section 3.1, these results suggest that latent lookahead is a gen-
erally applicable mechanism, not limited to tasks with an explicit planning structure. Overall, this
experiment highlights that the latent lookahead framework can be readily applied during SFT and
suggests a practical path for retrofitting existing base models with the ability to allocate adaptive
computation during decoding.

SFT results on Qwen. We further evaluate latent lookahead during supervised fine-tuning (SFT)
of a smaller base model, Qwen-2.5 0.5B (Qwen et al., 2025). Here we fine-tune directly on CoTs
responses for GSM8K, which we generate with a larger Qwen-2.5 7B model and filter for correct
responses. For our latent lookahead, we insert latent thoughts just before the response (n = 1) and
run a τ -step latent roll-out for each. Table 3 summarizes performance on Sudoku and GSM8K as we
vary the latent horizon τ . We do not observe substantial improvements on Sudoku over the standard
next-token-prediction (NTP) baseline. On GSM8K, latent lookahead yields gains over NTP (best
+0.7% absolute), and performance improves with larger τ as well. Overall, these findings indicate
that the latent lookahead mechanism transfers to SFT models, with the largest benefits appearing on
tasks that demand multi-step reasoning and planning, and incremental gains on math word problems.

3.3 INTERPRETING THE LATENT TOKENS

To better understand what the latent lookahead tokens represent, we visualize their distributions in
a 2D simplex projection (see Fig. 6). We map the probability mass over the four relevant symbols
{1, 2, 3, 4} to points inside a square, where each vertex corresponds to one symbol (i.e. one visi-
ble token) and the latent predictions are represented as convex combinations of these vertices. To
achieve this, we process the hidden states of the latent tokens with the unembedding layer and apply
the softmax to get the distribution over the visibles.

In the left panel, we track the evolution of the first latent token as additional latent steps are gener-
ated. This experiment uses the non-causal attention mask so that later latent tokens can refine earlier
ones. The trajectory shows that the distribution sharpens towards one of the vertexes, indicating
that the latent lookahead mechanism is indeed performing iterative refinement of the prediction. (b)
Representation of all latent tokens at the end of the thought process. In the center panel, we plot
the final distributions of all latent tokens after the lookahead procedure has completed. Each point
corresponds to one latent token in the sequence. The visualization reveals that many tokens collapse
near vertices, signaling confident symbol predictions, while others remain in-between, reflecting
uncertainty across multiple candidates. Due to our latent thinking, the information encoded in this
superposition of states is not discarded by sampling, but kept throughout the generation process

Overall, these visualizations support our interpretation of latent lookahead as a mechanism for itera-
tive refinement: the model explores multiple candidate continuations, gradually sharpens its beliefs,
and ultimately produces latent representations that correlate with correct outputs.

4 RELATED WORK

Our work is inspired by and lies at the intersection of several foundational works in the fields of
latent reasoning, multi-token prediction, and expanding the model’s computation.

Latent Computation. Several works propose re-using hidden states to enhance reasoning. Hao
et al. (2024) incorporate CoT traces into continuous “thinking tokens”, autoregressively generated
and appended to the context. The key idea is that the model can “think” in latent space without
producing visible tokens, thus exploring multiple options. Zhu et al. (2025) formalize this through
learning by superposition, showing gains in tasks like graph reachability. Another direction employs
looped transformers (Giannou et al., 2023; Fan et al., 2024), which recursively update hidden states
à la recurrent networks. These show promising reasoning results (Saunshi et al., 2025) and enable
test-time scaling via arbitrary recursive steps in related models (Geiping et al., 2025), but at the cost

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1

2

3

4

0

2

4

6

8

10

12

14

lo
ok

ah
ea

d 
st

ep

(a) Refinement of the first token

1

2

3

4

0

2

4

6

8

10

12

14

La
te

nt
 To

ke
n 

Po
sit

io
n

(b) Representation of the latent thought

Figure 6: Visualization of latent lookahead distributions in the probability simplex over {1, 2, 3, 4}.
Each point corresponds to one latent token, projected as a convex combination of the four vertices.
(a) Refinement of the first token over successive lookahead steps (color = step index). The distri-
bution progressively sharpens towards the correct vertex, illustrating iterative refinement under the
non-causal mask. (b) Representation of all latent tokens at the final step of the thought process
(color = latent token position). Tokens cluster near vertices when predictions are confident, while
intermediate points reflect uncertainty between candidate symbols.

of FLOPs equivalent to much deeper models. In contrast, our approach applies recursion only at
selected positions.

Multi-Token Prediction. The fact that the latent lookahead supervises the latent tokens with fu-
ture tokens is reminiscent of multi-token prediction (MTP) (Gloeckle et al., 2024). In this line of
research, the closest work to ours is Deepseek’s MTP (Liu et al., 2024), where the model’s final hid-
den state are re-used sequentially in the next steps. However, auxiliary modules for each next token
are used, and their approach is fully causal. In latent lookahead the aim to invest the extra com-
pute to predict the next token also during inference. Also, our model is non-causal, so the model
can refine the prediction of the next token while “thinking” about the future tokens. Other works
have looked into MTP for faster inference (Stern et al., 2018; Cai et al., 2024), and in particular
speculative decoding (Li et al., 2024; Samragh et al., 2025)

Expanding the context with extra tokens. Wang et al. (2023) uses “planning tokens” to augment
the CoT traces, prepending a number of tokens before each reasoning step. The planning tokens are
generated with different variants from the hidden states of a base LLM. Goyal et al. (2023), Herel &
Mikolov (2024) (for recurrent networks) and Darcet et al. (2023) (for vision transformers) insert a
number of special <pause> or “register tokens” before the model’s response. We use this class of
methods as baseline in Sec. 3. Finally, Gerontopoulos et al. (2025) combines the idea of multi-token
prediction and pause tokens by supervising the pause tokens with multiple future tokens. Compared
to their work, we do not use our model as a multi-token predictor, use a different attention mask, and
perform latent computation by feeding the hidden states back into the context. Finally, this idea of
expanding the context is similarly explored in other works (Burtsev et al., 2020; Pfau et al., 2024).

5 CONCLUSIONS

We introduced latent lookahead, a training strategy that enables language models to “think before
talking” by unrolling hidden states into the future without committing to visible tokens. This allows
models to explicitly anticipate multiple steps ahead, mitigating the limitations of standard next-token
prediction. Due to page limitation, we defer further discussion and limitations of our work in Sec A.
Overall, our experiments demonstrate that latent lookahead improves reasoning performance on
structured planning tasks (e.g., Sudoku) and arithmetic benchmarks (e.g., GSM8K), showing clear
benefits over standard NTP and pause-token methods. Furthermore, we showed that the approach
can be integrated into the supervised fine-tuning stage of large pretrained models, making it broadly
applicable and architecture-agnostic. Overall, latent lookahead provides a simple and effective way
to endow LLMs with foresight, opening new directions for reasoning-oriented training strategies.
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Rager, Lucia Quirke, Chris Mathwin, Guillaume Corlouer, Cecilia Diniz Behn, and Samy Wu
Fung. A configurable library for generating and manipulating maze datasets, 2023. URL http:
//arxiv.org/abs/2309.10498.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness
in chain-of-thought reasoning. arXiv preprint arXiv:2307.13702, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

10

http://arxiv.org/abs/2309.10498
http://arxiv.org/abs/2309.10498


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Michael C Mozer. A focused backpropagation algorithm for temporal pattern recognition. In Back-
propagation, pp. 137–169. Psychology Press, 2013.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Mohammad Samragh, Arnav Kundu, David Harrison, Kumari Nishu, Devang Naik, Minsik Cho, and
Mehrdad Farajtabar. Your llm knows the future: Uncovering its multi-token prediction potential.
arXiv preprint arXiv:2507.11851, 2025.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Claude E Shannon. A mathematical theory of communication. The Bell system technical journal,
27(3):379–423, 1948.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Zafir Stojanovski, Oliver Stanley, Joe Sharratt, Richard Jones, Abdulhakeem Adefioye, Jean Kad-
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A DISCUSSION AND LIMITATIONS

Discussion Smaller gains in the SFT models suggest that the pretrained model has either learned
implicitly to lookahead, making the explicit supervision of latent lookahaed less useful compared
to models trained from scratch. These smaller gains are observed in standard benchmarks in all the
related works that increase the computational capabilities of the model with either latent computation
or with extra dummy tokens Goyal et al. (2023); Gerontopoulos et al. (2025). With this respect, our
models show significant potential in models that are trained from scratch, and future work might
investigate why diminishing return happen during SFT, and how this might be overcome.

Limitations Our experiments are subject to the following limitations. First, due to computational
constraints, all the SFT models are trained and evaluated with a single random seed. As a result, our
reported numbers may be sensitive to initialization or data ordering effects. Second, our results on
GSM8K with OLMo are slightly lower than those reported in OLMo et al. (2024). We hypothesize
that this discrepancy may stem from differences in the fine-tuning setup: we use a smaller context
length during training and evaluate with one-shot prompting rather than the eight-shot setting used in
the original report. Finally, while our experiments demonstrate the effectiveness of latent lookahead
across multiple tasks, they are conducted on relatively small- to mid-scale models. Future work
is needed to validate whether the observed gains persist at larger model scales and under more
extensive evaluation protocols.

Future Directions. Latent lookahead introduces an inference-time compute–quality trade-off that
depends on (n, τ) and task difficulty; learned scheduling of thoughts (e.g., via uncertainty, entropy,
or value estimates) is a natural next step. Methodologically, two directions appear especially promis-
ing: (1) Adaptive triggering and depth, where the model decides when and how far to look ahead
and (2) Scaling laws for latent compute, quantifying returns of (n, τ) as a function of model size and
data regime. Finally, because latent lookahead makes the internal computation more legible (each
latent is explicitly supervised), it may serve as a useful substrate for attribution and debugging of
reasoning traces.

B EXPERIMENT DETAILS

Latent Lookahead in Planning Tasks, Sec. 3.1 We set the dropout for the residuals, the embed-
ding and the attention to 0.3 for ProsQA, 0.1 for Sudokus and Maze. The rest of the architecural
and optimization hyperparameter are the same across the datasets. In particular, we do not use a
learning rate schedule (i.e. constant learning rate) or weight decay. The full list of hyperparameters
is in Table. 4.

SFT experiments, Sec. 3.2 Supervised Fine-Tuning (SFT) on Olmo. We fine-tuned OLMO-2
models under a standard supervised fine-tuning setup. We used the official Tulu 3 SFT Mixture 0225
dataset, which consists of a diverse set of instruction–response pairs collected from multiple high-
quality sources. All examples were wrapped using the OLMO chat template, i.e., user and assistant
turns were formatted following the official convention. Since we trained with a context length of 512
tokens, we filtered out samples that exceeded this limit once tokenized, thereby avoiding excessive
truncation. The details are shown in Table 5. For evaluation, we use the few-shot configurations and
prompt prefixes specified in Table 7.

SFT experiments on Qwen . We fine-tuned Qwen2.5-0.5B models under a standard super-
vised fine-tuning setup. We used the Sudoku and GSM8k datasets. We use constant learning rate
and no warmup. The details of the hyperparameters and training setup are shown in Table 6.

C EXTRA EXPERIMENTS

Sequential vs. Random Positioning of Latent Thoughts. We investigate the effect of different
strategies for placing latent thinking tokens within the sequence. Following the setup in Figure 8, we
consider two allocation schemes given a fixed budget of latent positions τ = 5: Sequential: After
reserving one latent token immediately after the input question, the remaining latent thoughts are
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Parameter Value
Model

Architecture 2-layer GPT-2 style Transformer
Hidden size 768
Attention heads 8
Layers 2
Vocabulary size varies across datasets
Max sequence length 512

Latent Lookahead

Latent tokens (τ ) varied between 2 and 70
Latent positions (n) n = 1 before answer + varied number
Attention mask causal for NTP and Pause baseline, Non-causal for latent lookahead

Training

Batch size (per device) 128
Learning rate 0.0001
Warmup steps 0
Scheduler constant
Optimizer Adam (default hyperparameters)
Weight decay 0.0
Training steps 10000
Precision bfloat16

Table 4: Main hyperparameters and settings used for the scratch experiments (Sudoku, ProsQA,
Maze) with latent lookahead.

inserted deterministically at subsequent visible positions. Random: After reserving the first latent to-
ken, the remaining slots are distributed uniformly at random across the sequence. At inference time,
the same procedure is followed, with the initial latent token always placed after the question and the
rest sampled with fixed probability p = 0.1 until the budget is filled. We train both strategies on the
Mini Sudoku dataset, using a fixed budget of τ = 5 latent tokens per latent thought. Training was
conducted for 10k steps with identical optimization and model hyperparameters across conditions.
The results are shown in Figure 8. Both strategies substantially outperform the standard next-token
prediction (NTP) baseline, with sequential placement providing a consistent improvement over ran-
dom placement when τ ≥ 3. This suggests that structured allocation of latent thoughts yields a more
efficient use of the latent budget, leading to stronger planning and reasoning capabilities.

Extra visualizations In Fig. 7, we perform the same experiment as in Fig 6 but label each latent
token according to whether greedy decoding matches the ground-truth target symbol, i.e. we are
using the model in the MTP setting. Correct predictions are shown in green and incorrect ones in
red. This highlights that the majority of latent tokens concentrate near the correct vertices, validating
the utility of latent lookahead as a multi-token predictor. At the same time, the scattered red points
emphasize where the refinement process fails, pointing to potential avenues for improving training
signals.

D COMPUTE

All experiments are conducted on a single machine equipped with 8 × NVIDIA A100-SXM4-40GB
GPUs.
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Parameter Value
Base model allenai/OLMo-2-0425-1B
Dataset Tulu 3 SFT (0225)
Hidden size 2048
Intermediate size 8192
Attention heads 16
Layers 16
Vocabulary size 100,352
Max sequence length 512

Latent tokens 4
Latent positions (max) 32
Latent embedding mode hidden
Causal vis → lat true
Causal lat → lat false

Batch size (per device) 2 (train), 8 (eval)
Gradient accumulation 4
Effective batch size 64 tokens/device step (2×4×8 GPUs)
Learning rate 1× 10−5

Warmup steps 1000
Scheduler linear
Optimizer AdamW (β1=0.9, β2=0.999, ϵ=10−8)
Weight decay 0
Max steps 40,000

Precision bfloat16 (training)
Gradient checkpointing enabled
Hardware 8× NVIDIA A100-SXM4-40GB

Table 5: Main hyperparameters and settings used for the OLMo-2-0425-1B finetuning run with
latent tokens.

1

2

3

4

correct
wrong

Figure 7: Visualization of Sudoku predictions. Each point corresponds to a decoded token, with
green indicating a correct prediction and red a wrong one. The vertices (1–4) denote the possible
output classes.
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0 1 2 3 4 5
Number of latent positions (n)

0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86

Sequential
Random
Standard NTP

Figure 8: Comparison between sequential and random latent position strategies on mini Sudoku.
Accuracy is reported as a function of the number of latent positions n. The sequential strategy
consistently outperforms random placement, while both improve over the standard next-token pre-
diction (dashed line).

Table 6: Main hyperparameters and settings used for the Qwen2.5-0.5B finetuning run

Parameter Value
Base model Qwen/Qwen2.5-0.5B
Dataset Sudoku and GSM8k
Hidden size 896
Intermediate size 4864
Attention heads 14
Layers 24
Max sequence length 512

Latent tokens varies
Latent positions 1

Batch size (per device) 8 (train), 8 (eval)
Gradient accumulation 2
Effective batch size 16 tokens/device step × 4 GPUs
Learning rate 1× 10−5

Warmup steps 0
Scheduler constant
Optimizer AdamW (β1=0.9, β2=0.999, ϵ=10−8)
Weight decay 0
Max steps 6000

Precision float32 (training)
Gradient checkpointing enabled
Hardware 4 × NVIDIA A100-SXM4-40GB
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Dataset # shots Shots (in order) Prompt prefix

GSM8K 1 Shot 1 — Question: There are 15 trees
in the grove. Grove workers will plant
trees in the grove today. After they are
done, there will be 21 trees. How many
trees did the grove workers plant today?
Answer: There are 15 trees originally.
Then there were 21 trees after some
more were planted. So there must have
been 21 - 15 = 6. So the answer is 6.

Answer the following math question and
explain step by step.

Aqua 2 Shot 1 — Question: Two friends plan
to walk along a 43-km trail, starting at
opposite ends of the trail at the same
time. If Friend P’s rate is 15% faster
than Friend Q’s, how many kilometers
will Friend P have walked when they
pass each other? Options: A) 21; B)
21.5; C) 22; D) 22.5; E) 23.
Answer: If Q complete x kilometers,
then P completes 1.15x kilometers. x +
1.15x = 43; 2.15x = 43; x = 43/2.15 =
20. Then P will have walked 1.15*20 =
23 km. The answer is E.

Shot 2 — Question: In the coordinate
plane, points (x, 1) and (5, y) are on line
k. If line k passes through the origin and
has slope 1/5, then what are the values
of x and y respectively? Options: A) 4
and 1; B) 1 and 5; C) 5 and 1; D) 3 and
5; E) 5 and 3.
Answer: Line k passes through the
origin and has slope 1/5, so its equation
is y = (1/5)x. Thus (x,1) = (5,1) and
(5,y) = (5,1) ⇒ x = 5, y = 1. The
answer is C.

Answer the following math questions by
choosing one of the options A,B,C,D,E.
Explain step by step.

BBH 0 — Answer the following question by indi-
cating the correct option.

Table 7: Few-shot configurations and prompt prefixes used per dataset. Shots are taken in order
from the provided pools.

16


	Introduction
	Methodology
	Latent Lookahead

	Experiments
	Latent Lookahead in Planning Tasks
	Supervised Finetuning with Latent Lookahead
	Interpreting the Latent Tokens

	Related Work
	Conclusions
	Discussion and Limitations
	Experiment Details
	Extra Experiments
	Compute

