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Abstract

Stochastic gradient descent (SGD) is a cornerstone of machine learning. When the
number N of data items is large, SGD relies on constructing an unbiased estimator
of the gradient of the empirical risk using a small subset of the original dataset,
called a minibatch. Default minibatch construction involves uniformly sampling a
subset of the desired size, but alternatives have been explored for variance reduction.
In particular, experimental evidence suggests drawing minibatches from determi-
nantal point processes (DPPs), tractable distributions over minibatches that favour
diversity among selected items. However, like in recent work on DPPs for coresets,
providing a systematic and principled understanding of how and why DPPs help
has been difficult. In this work, we contribute an orthogonal polynomial-based
determinantal point process paradigm for performing minibatch sampling in SGD.
Our approach leverages the specific data distribution at hand, which endows it with
greater sensitivity and power over existing data-agnostic methods. We substantiate
our method via a detailed theoretical analysis of its convergence properties, inter-
weaving between the discrete data set and the underlying continuous domain. In
particular, we show how specific DPPs and a string of controlled approximations
can lead to gradient estimators with a variance that decays faster with the batchsize
than under uniform sampling. Coupled with existing finite-time guarantees for
SGD on convex objectives, this entails that, for a large enough batchsize and a fixed
budget of item-level gradients to evaluate, DPP minibatches lead to a smaller bound
on the mean square approximation error than uniform minibatches. Moreover, our
estimators are amenable to a recent algorithm that directly samples linear statistics
of DPPs (i.e., the gradient estimator) without sampling the underlying DPP (i.e.,
the minibatch), thereby reducing computational overhead. We provide detailed
synthetic as well as real data experiments to substantiate our theoretical claims.
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1 Introduction

Consider minimizing an empirical loss

min
θ∈Θ

1

N
·
N∑
i=1

L(zi, θ) + λ(θ), (1)

with some penalty λ : Θ 7→ R+. Many learning tasks, such as regression and classification,
are usually framed that way [1]. When N � 1, computing the gradient of the objective in (1)
becomes a bottleneck, even if individual gradients ∇θL(zi, θ) are cheap to evaluate. For a fixed
computational budget, it is thus tempting to replace vanilla gradient descent by more iterations but
using an approximate gradient, obtained using only a few data points. Stochastic gradient descent
(SGD; [2]) follows this template. In its simplest form, SGD builds an unbiased estimator at each
iteration of gradient descent, independently from past iterations, using a minibatch of random samples
from the data set. Theory [3] and practice suggest that the variance of the gradient estimators in SGD
should be kept as small as possible. It is thus natural that variance reduction for SGD has been a rich
area of research; see for instance the detailed references in [4, Section 2].

In a related vein, determinantal point processes (DPPs) are probability distributions over subsets
of a (typically large or infinite) ground set that are known to yield samples made of collectively
diverse items, while being tractable both in terms of sampling and inference. Originally introduced in
electronic optics [5], they have been turned into generic statistical models for repulsion in spatial
statistics [6] and machine learning [7, 8]. In ML, DPPs have also been shown to be efficient sampling
tools; see Section 2. Importantly for us, there is experimental evidence that minibatches in (1) drawn
from DPPs and other repulsive point processes can yield gradient estimators with low variance
for advanced learning tasks [4, 9], though a conclusive theoretical result has remained elusive. In
particular, it is hard to see the right candidate DPP when, unlike linear regression, the objective
function does not necessarily have a geometric interpretation.

Our contributions are as follows. We combine continuous DPPs based on orthogonal polynomials [10]
and kernel density estimators built on the data to obtain two gradient estimators; see Section 3. We
prove that their variance isOP (p−(1+1/d)), where p is the size of the minibatch, d is the dimension of
data; see Section 4. This provides theoretical backing to the claim that DPPs yield variance reduction
[4] over, say, uniformly sampling without replacement. In passing, the combination of analytic tools
–orthogonal polynomials–, and an essentially discrete subsampling task –minibatch sampling– sheds
light on new ways to build discrete DPPs for subsampling. Finally, we demonstrate our theoretical
results on simulated data in Section 5.

A cornerstone of our approach is to utilise orthogonal polynomials to construct our sampling paradigm,
interweaving between the discrete set of data points and the continuum in which the orthogonal
polynomials reside. A few words are in order regarding the motivation for our choice of techniques.
Roughly speaking, we would like to use a DPP that is tailored to the data distribution at hand.
Orthogonal Polynomial Ensembles (OPEs) provide a natural way of associating a DPP to a given
measure (in this case, the probability distribution of the data points), along with a substantive body
of mathematical literature and tools that can be summoned as per necessity. This makes it a natural
choice for our purposes.

Notation. Let data be denoted by D := {z1, . . . ,zN}, and assume that the zi’s are drawn i.i.d.
from a distribution γ on Rd. Assume γ is compactly supported, with support D ⊂ [−1, 1]d bounded
away from the border of [−1, 1]d. Assume also that γ is continuous with respect to the Lebesgue
measure, and that its density is bounded away from zero on its support. While our assumptions
exclude learning problems with discrete labels, such as classification, we later give experimental
support that our estimators yield variance reduction in that case too. We define the empirical measure
γ̂N := N−1 ·

∑N
i=1 δzi , where δzi is the delta measure at the point zi ∈ Rd. Clearly, γ̂N → γ in

P(Rd); under our operating assumption of compact support, this amounts to convergence in P(D).

For simplicity, we assume that no penalty is used in (1), but our results will extend straightforwardly.
We denote the gradient of the empirical loss by ΞN = ΞN (θ) := N−1 ·

∑N
i=1∇θL(zi, θ). A

minibatch is a (random) subset A ⊂ [N ] of size |A| = p� N such that the random variable

ΞA = ΞA(θ) :=
∑
i∈A

wi∇θL(zi, θ), (2)
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for suitable weights (wi), provides a good approximation for ΞN .

2 Background and relevant literature

Stochastic gradient descent. Going back to [2], SGD has been a major workhorse for machine
learning; see e.g. [1, Chapter 14]. The basic version of the algorithm, applied to the empirical risk
minimization (1), is to repeatedly update

θt+1 ← θt − ηtΞA(θt), t ∈ N, (3)

where ηt is a (typically decreasing) stepsize, and ΞA is a minibatch-based estimator (2) of the gradient
of the empirical risk function (1), possibly depending on past iterations. Most theoretical analyses
assume that for any θ, ΞA(θ) in the t-th update (3) is unbiased, conditionally on the history of the
Markov chain (θt) so far. For simplicity, we henceforth make the assumption that ΞA does not depend
on the past of the chain. In particular, using such unbiased gradients, one can derive a nonasymptotic
bound [3] on the mean square distance of θt to the minimizer of (1), for strongly convex and smooth
loss functions like linear regression and logistic regression with `2 penalization. More precisely, for
ηt ∝ t−α and 0 < α < 1, [3, Theorem 1] yields

E‖θt − θ?‖2 ≤ f(t)

(
E‖θ0 − θ?‖2 +

σ2

L

)
+ C

σ2

tα
, (4)

where C,L > 0 are problem-dependent constants, f(t) = O(e−t
α

), and σ2 = E[‖ΞA(θ?)‖2|D] is
the trace of the covariance matrix of the gradient estimator, evaluated at the optimizer θ? of (1). The
initialization bias is thus forgotten subexponentially fast, while the asymptotically leading term is
proportional to σ2/tα. Combined with practical insight that variance reduction for gradients is key,
theoretical results like (4) have motivated methodological research on efficient gradient estimators
[4, Section 2], i.e., constructing minibatches so as to minimize σ2. In particular, repulsive point
processes such as determinantal point processes have been empirically demonstrated to yield variance
reduction and overall better performance on ML tasks [4, 9]. Our paper is a stab at a theoretical
analysis to support these experimental claims.

The Poissonian benchmark. The default approach to sample a minibatch A ⊂ [N ] is to sample p
data points from D uniformly, with or without replacement, and take wi = 1/p constant in (2). Both
sampling with or without replacement lead to unbiased gradient estimators. A similar third approach
is Poissonian random sampling. This simply consists in starting from A = ∅, and independently
adding each element of D to the minibatch A with probability p/N . The Poisson estimator ΞA,Poi

is then (2), with constant weights again equal to 1/p. When p � N , which is the regime of
SGD, the cardinality of A is tightly concentrated around p, and ΞA,Poi has the same fluctuations
as the two default estimators, while being easier to analyze. In particular, E[ΞA,Poi|D] = ΞN and
Var[ΞA,Poi|D] = OP (p−1); see Appendix S1 for details.

DPPs as (sub)sampling algorithms. As distributions over subsets of a large ground set that favour
diversity, DPPs are intuitively good candidates at subsampling tasks, and one of their primary
applications in ML has been as summary extractors [7]. Since then, DPPs or mixtures thereof have
been used, e.g., to generate experimental designs for linear regression, leading to strong theoretical
guarantees [11, 12, 13]; see also [14] for a survey of DPPs in randomized numerical algebra, or [15]
for feature selection in linear regression with DPPs.

When the objective function of the task has less structure than linear regression, it has been more
difficult to prove that finite DPPs significantly improve over i.i.d. sampling. For coreset construction,
for instance, [16] manages to prove that a projection DPP necessarily improves over i.i.d. sampling
with the same marginals [16, Corollary 3.7], but the authors stress the disappointing fact that current
concentration results for strongly Rayleigh measures (such as DPPs) do not allow yet to prove
that DPP coresets need significantly fewer points than their i.i.d. counterparts [16, Section 3.2].
Even closer to our motivation, DPPs for minibatch sampling have shown promising experimental
performance [4], but reading between the lines of the proof of [4, Theorem 1], a bad choice of DPP
can even yield a larger variance than i.i.d. sampling!

For such unstructured problems (compared to, say, linear regression) as coreset extraction or loss-
agnostic minibatch sampling, we propose to draw inspiration from work on continuous DPPs,
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where faster-than-i.i.d. error decays have been proven in similar contexts. For instance, orthogonal
polynomial theory motivated [10] to introduce a particular DPP, called a multivariate orthogonal
polynomial ensemble, and prove a faster-than-i.i.d. central limit theorem for Monte Carlo integration
of smooth functions. While resorting to continuous tools to study a discrete problem such as minibatch
sampling may be unexpected, we shall see that the assumption that the size of the dataset is large
compared to the ambient dimension crucially allows to transfer variance reduction arguments.

3 DPPs, and two gradient estimators

Since we shall need both discrete and continuous DPPs, we assume that X is either Rd or D, and
follow [17] in introducing DPPs in an abstract way that encompasses both cases. After that, we
propose two gradient estimators for SGD that build on a particular family of continuous DPPs
introduced in [10] for Monte Carlo integration, called multivariate orthogonal polynomial ensembles.

3.1 DPPs: The kernel machine of point processes

A point process on X is a distribution on finite subsets S of X ; see [18] for a general reference.
Given a reference measure µ on X , a point process is said to be determinantal (DPP) if there exists a
function K : X × X → R, the kernel of the DPP, such that, for every n ≥ 1,

E
[∑
6=

f(xi1 , . . . , xin)

]
=

∫
(X )n

f(x1, . . . , xn) ·Det
[
K(xi, x`)

]n
i,`=1

dµ⊗n(x1, . . . , xn) (5)

for every bounded Borel function f : Xn → R, where the sum in the LHS of (5) ranges over all
pairwise distinct n-uplets of the random finite subset S. A few remarks are in order. First, satisfying
(5) for every n is a strong constraint on K, so that not every kernel yields a DPP. A set of sufficient
conditions on K is given by the Macchi-Soshnikov theorem [5, 19]. In words, if K(x, y) = K(y, x),
and if K further corresponds to an integral operator

f 7→
∫
K(x, y)f(y)dµ(y), f ∈ L2(X , µ),

that is trace-class with spectrum in [0, 1], then the corresponding DPP exists. Second, note in (5) that
the kernel of a DPP encodes how the points in the random configurations interact. A strong point in
favour of DPPs is that, unlike most interacting point processes, sampling and inference are tractable
[17, 6]. Third, (5) yields simple formulas for the mean and variance of linear statistics of a DPP.
Proposition 1 (See e.g. [20, 21]). Let S ∼ DPP(K,µ) and Φ : X → R be a bounded Borel function,

E

[∑
x∈S

Φ(x)

]
=

∫
Φ(x)K(x, x)dµ(x), (6)

Var

[∑
x∈S

Φ(x)

]
=

∫∫
‖Φ(x)− Φ(y)‖22 |K(x, y)|2dµ(x)dµ(y)

+

∫
‖Φ(x)‖22

(
K(x, x)−

∫
|K(x, y)|2dµ(y)

)
dµ(x). (7)

Since the seminal paper [7], the case X = D has been the most common in machine learning.
Taking µ to be γ̂N , any kernel is given by its restriction to D, usually given as an N × N matrix
K = K|D. Equation (6) with n = p, A a subset of size p of D, and Φ the indicator of A yields
P(A ⊂ S) = N−pDetKA. This is the usual way finite DPPs are introduced [7], except maybe
for the factor N−p, which comes from using γ̂N as the reference measure instead of Nγ̂N . In this
finite setting, a careful implementation of the general DPP sampler of [17] yields m DPP samples of
average cardinality Tr(K) in O(Nω +mNTr(K)2) operations [22].

We now go back to a general X and fix p ∈ N. A canonical way to construct DPPs generating
configurations of p points almost surely, i.e. S = {x1, . . . , xp}, is the following. Consider p
orthonormal functions φ0, . . . , φp−1 in L2(µ), and take for kernel

K(x, y) =

p−1∑
k=0

φk(x)φk(y). (8)
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In this setting, the (permutation invariant) random variables x1, . . . , xp with joint distribution

1

p!
Det

[
K(xi, x`)

]p
i,`=1

p∏
i=1

dµ(xi) (9)

generate a DPP {x1, . . . , xp} with kernel K(x, y), called a projection DPP. For further information
on determinantal point processes, we refer the reader to [17, 7].

3.2 Multivariate orthogonal polynomial ensembles

This section paraphrases [10] in their definition of a particular projection DPP on X = Rd, called a
multivariate orthogonal polynomial ensemble (OPE). Fix some reference measure q(x)dx on [−1, 1]d,
and assume that it puts positive mass on some open subset of [−1, 1]d. Now choose an ordering of
the monomial functions (x1, . . . , xd) 7→ xα1

1 · · ·x
αd
d ; in this work we use the graded lexical order.

Then apply the Gram-Schmidt algorithm in L2(q(x)dx) to these ordered monomials. This yields a
sequence of orthonormal polynomial functions (φk)k∈N, the multivariate orthonormal polynomials
w.r.t. q. Finally, plugging the first p multivariate orthonormal polynomials φ0, . . . , φp−1 into the
projection kernel (8), we obtain a projection DPP with kernel denoted as K(p)

q , referred to as the
multivariate OPE associated with the measure q(x)dx.

3.3 Our first estimator: reweight, restrict, and saturate an OPE kernel

Let h > 0 and

γ̃(z) =
1

Nhd

N∑
i=1

k

(
z − zi
h

)
(10)

be a single-bandwidth kernel density estimator of the pdf of the data-generating distribution γ; see
[23, Section 4.2], In particular, k is chosen so that

∫
k(x)dx = 1. Note that the approximation kernel

k is unrelated to any DPP kernel in this paper. Let now q(x) = q1(x1) . . . qd(xd) be a separable
pdf on [−1, 1]d, where each qi is Nevai-class3. Let K(p)

q be the multivariate OPE kernel defined in
Section 3.2, and form a new kernel

K
(p)
q,γ̃(x, y) :=

√
q(x)

γ̃(x)
K(p)
q (x, y)

√
q(y)

γ̃(y)
.

The form of K(p)
q,γ̃ is reminiscent of importance sampling [24], which is no accident. Indeed, while

the positive semidefinite matrix

K
(p)
q,γ̃ |D :=

(
K

(p)
q,γ̃(zi, zj)

)
1≤i,j≤N

(11)

is not necessarily the kernel matrix of a DPP on ({1, . . . , N}, γ̂N ), see Section 3.1, we built it to be
close to a projection of rank p. More precisely,∫
K

(p)
q,γ̃(zk, y)K

(p)
q,γ̃(y,z`)dγ̂N (y) =

√
q(zk)

γ̃(zk)

[
1

N

N∑
n=1

K(p)
q (zk, zn)K(p)

q (zn, z`)
q(zn)

γ̃(zn)

]√
q(z`)

γ̃(z`)
.

IfN is large compared to p and d, so that in particular γ̃ ≈ γ, the term within brackets will be close to∫
K

(p)
q (zk, z)K

(p)
q (z, z`)q(z)dz = K

(p)
q (zk, z`), so that K(p)

q,γ̃ |D is almost a projection in L2(γ̂N ).

Let us actually consider the orthogonal projection matrix K̃ with the same eigenvectors as K(p)
q,γ̃ |D,

but with the p largest eigenvalues replaced by 1, and the rest of the spectrum set to 0. By the
Macchi-Soshnikov theorem, K̃ is the kernel matrix of a DPP; see Section 3.1. We thus consider a
minibatch A ∼ DPP(K̃). Coming from a projection DPP, |A| = p almost surely, and we define the
gradient estimator

ΞA,DPP :=
∑
i∈A

∇θL(zi, θ)

K̃ii

. (12)

3See [10, Section 4] for details. It suffices that each qi is positive on [−1, 1]d.
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In Section 4, we shall prove that ΞA,DPP is unbiased, and examine under what assumptions its variance
decreases faster than 1/p.

On the computational cost of ΞA,DPP. The bottleneck is computing the p largest eigenvalues of
matrix (11), along with the corresponding eigenvectors. This can be done once before running SGD,
as a preprocessing step. Note that storing the kernel in diagonalized form only requires O(Np)
storage. Each iteration of SGD then only requires sampling a rank-p projection DPP with diagonalized
kernel, which takes O(Np2) elementary operations [22]. In practice, as the complexity of the model
underlying z, θ 7→ ∇L(z, θ) increases, the cost of computing p individual gradients shall outweigh
this O(Np2) overhead. For instance, learning the parameters of a structured model like a conditional
random field leads to arbitrarily costly individual gradients, as the underlying graph gets more dense
[25]. Alternately, (12) can be sampled directly, without sampling the underlying DPP. Indeed the
Laplace transform of (12) is a Fredholm determinant, and it is shown in [26] that Nyström-type
approximations of that determinant, followed by Laplace inversion, yield an accurate inverse CDF
sampler.

Finally, we stress the unusual way in which our finite DPP kernel K̃ is constructed, through a
reweighted continuous OPE kernel, restricted to the actual dataset. This construction is interesting
per se, as it is key to leveraging analytic techniques from the continuous case in Section 4.

3.4 Our second estimator: sample the OPE, but smooth the gradient

In Section 3.3, we smoothed the empirical distribution of the data and restricted a continuous kernel to
the dataset D, to make sure that the drawn minibatch would be a subset of D. But one could actually
define another gradient estimator, directly from an OPE sample A = {w1, . . . ,wp} ∼ DPP(K

(p)
q , q).

Note that in that case, the “generalized minibatch" A ⊂ [−1, 1]d is not necessarily a subset of the
dataset D. Defining a kernel density estimator of the gradient,

∇̂θL(z, θ) :=
1

Nhd

N∑
i=1

∇θL(zi, θ) · k
(
z − zi
h

)
,

we consider the estimator

ΞA,s =
∑
wj∈A

∇̂θL(wj , θ)

q(wj)K
(p)
q (wj ,wj)

.

On the computational cost of ΞA,s. Since each evaluation of this estimator is at least as costly as
evaluating the actual gradient ΞN (θ), its use is mostly theoretical: the analysis of the fluctuations of
ΞA,s is easier than that of ΞA,DPP, while requiring the same key steps. Moreover, the computation of
all pairwise distances in ΞA,s could be efficiently approximated, possibly using random projection
arguments [27], so that the limited scope of ΞA,s might be overcome in future work. Note also that,
like ΞA,DPP, inverse Laplace sampling [26] applies to ΞA,s.

4 Analysis of determinantal sampling of SGD gradients

We first analyze the bias, and then the fluctuations, of the gradient estimators introduced in Section 3.
By Proposition 1 with Φ = ∇θL(·, θ), it comes

E[ΞA,DPP|D] =

∫
D

∇θL(z, θ)���
���K

(p)
q,γ̃(z, z)−1 ·���

��K
(p)
q,γ̃(z, z)dγ̂N (z) =

1

N

N∑
i=1

∇θL(zi, θ),

so that we immediatly get the following result.
Proposition 2. E[ΞA,DPP|D] = ΞN .

Thus, ΞA,DPP is unbiased, like the classical Poissonian benchmark in Section 2. However, the
smoothed estimator ΞA,s from Section 3.4 is slightly biased. Note that while the results of [3], like
(4), do not apply to biased estimators, SGD can be analyzed in the small-bias setting [28].
Proposition 3. Assume that k in (10) has compact support and q is bounded onD. Then E[ΞA,s|D] =
ΞN +OP (ph/N).
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Proof. Using the first part of Proposition 1 again, it comes

E[ΞA,s|D] = E
A∼DPP(K

(p)
q ,q)

 ∑
wj∈A

∇̂θL(wj , θ)

q(wj)K
(p)
q (wj ,wj)


=

∫
D

∇̂θL(w, θ)

((((
((((q(w)K

(p)
q (w,w)

·(((((
(((

K(p)
q (w,w)q(w)dw =

∫
D

(
1

Nhd

N∑
i=1

∇θL(zi, θ)k

(
z − zi
h

))
dw

=
1

N

N∑
i=1

(∫
D

1

hd
· k
(
w − zi
h

)
dw

)
· ∇θL(zi, θ) =

1

N

N∑
i=1

∇θL(zi, θ) +OP (ph/N), (13)

where, in the last step, we have used the fact that h−d · k
(
h−1(w − zi)

)
is a probability density. The

OP (ph/N) error term arises because we integrate that pdf on D rather than Supp(k). But since k
is a compactly supported kernel, for points zi that are within a distance O(h) from the boundary
of D, we incur an error of OP (1). By Proposition 1, the expected number of such points zi is∫
Dh

K
(p)
q (w,w)q(w)dw, where Dh is the h-neighbourhood of the boundary of D. By a classical

asymptotic result of Totik, see [10, Theorem 4.8], w 7→ K
(p)
q (w,w) is O(p) on Dh; whereas q is a

bounded density, implying that
∫
Dh

q(w)dw = O(Vol(Dh)) = O(h). Putting together all of these,
we obtain the OP (ph/N) error term in (13). �

The rest of this section is devoted to the more involved task of analyzing the fluctuations of ΞA,DPP

and ΞA,s. For the purposes of our analysis, we discuss certain desirable regularity behaviour for our
kernels and loss functions in Section 4.1. Then, we tackle the main ideas behind the study of the
fluctuations of our estimators in Section 4.2. Details can be found in Appendix S3.

4.1 Some regularity phenomena

Assume that ( 1
p ·K

(p)
q (z, z))−1∇θL(z, θ) is bounded on the domain D uniformly in N (note that p

possibly depends on N ). Furthermore, assume that z 7→ (p−1 ·K(p)
q (z, z)q(z))−1∇θL(z, θ) · γ̃(z)

is 1-Lipschitz, with Lipschitz constant OP (1) and bounded in θ.

Such properties are natural in the context of various known asymptotic phenomena, in particular
asymptotic results on OPE kernels and the convergence of the KDE γ̃ to the distribution γ. The
detailed discussion is deferred to Appendix S2; we record here in passing that the above asymptotic
phenomena imply that

∇θL(z, θ)
1
p ·K

(p)
q (z, z)q(z)

· γ̃(z) −→ ∇θL(z, θ) · γ(z)

d∏
j=1

√
1− z[j]2. (14)

Our desired regularity properties may therefore be understood in terms of closeness to this limit,
which itself has similar regularity. At the price of these assumptions, we can use analytic tools to
derive fluctuations for ΞA,DPP by working on the limit in (14). For the fluctuation analysis of the
smoothed estimator ΞA,s, we similarly assume that (q(w)· 1pK

(p)
q (w,w))−1∇̂θL(w, θ) isOP (1) and

1-Lipschitz with an OP (1) Lipschitz constant that is bounded in θ. These are once again motivated
by the convergence of (q(w) · 1

pK
(p)
q (w,w))−1∇̂θL(w, θ) to∇θL(w, θ)

∏d
j=1

√
1−w[j]2.

4.2 Reduced fluctuations for determinantal samplers

For succinctness of presentation, we focus on the theoretical analysis of the smoothed estimator ΞA,s,
leaving the analysis of ΞA,DPP to Appendix S3, while still capturing the main ideas of our approach.

Proposition 4. Under the assumptions in Section 4.1, Var[ΞA,s|D] = OP (p−(1+1/d)).
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Proof Sketch. Invoking (7) in the case of a projection kernel,

Var[ΞA,s|D] =

∫∫ ∥∥∥∥∥ ∇̂θL(z, θ)

q(z)K
(p)
q (z, z)

− ∇̂θL(w, θ)

q(w)K
(p)
q (w,w)

∥∥∥∥∥
2

2

|K(p)
q (z,w)|2dq(z)dq(w)

=
1

p2

∫∫ ∥∥∥∥∥ ∇̂θL(z, θ)

q(z) · 1
pK

(p)
q (z, z)

− ∇̂θL(w, θ)

q(w) · 1
pK

(p)
q (w,w)

∥∥∥∥∥
2

2

|K(p)
q (z,w)|2dq(z)dq(w)

.Mθ ·
1

p2

∫ ∫
‖z −w‖22 |K

(p)
q (z,w)|2dq(z)dq(w), (15)

where we used the 1-Lipschitzianity of ∇̂θL(z,θ)

q(z)K
(p)
q (z,z)

, withMθ = OP (1) the Lipschitz constant.

We control the integral in (15) by invoking the renowned Christoffel-Darboux formula for the OPE
kernel K(p)

q [29]. For clarity of presentation, we outline here the main ideas for d = 1; the details
for general dimensions are available in Appendix S3. Broadly speaking, since K(p)

q is an orthogonal
projection of rank p in L2(q), we may observe that

∫∫
|K(p)

q (z,w)|2dq(z)dq(w) = p; so that
without the ‖z − w‖22 term in (15), we would have a OP (p−1) behaviour in total, which would
be similar to the Poissonian estimator. However, it turns out that the leading order contribution to∫ ∫
‖z − w‖22 |K

(p)
q (z,w)|2dq(z)dq(w) comes from near the diagonal z = w, and this turns out to

be neutralised in an extremely precise manner by the ‖z −w‖22 factor that vanishes on the diagonal.

This neutralisation is systematically captured by the Christoffel-Darboux formula [29], which implies

K(p)
q (x, y) = (x− y)−1Ap · (φq(x)φq−1(y)− φq(y)φq−1(x)),

where Ap = O(1) and φq, φq−1 are two orthonormal functions in L2(q). Substituting this into (15),
a simple computation shows that

∫∫
‖z − w‖22 |K

(p)
q (z,w)|2dq(z)dq(w) = O(1). This leads to a

variance bound Var[ΞA,s|D] = OP (p−2), which is the desired rate for d = 1. For general d, we use
the fact that q =

⊗d
i=1 qi is a product measure, and apply the Christoffel-Darboux formula for each

qi, leading to a variance bound of Var[ΞA,s|D] = OP (p−(1+1/d)), as desired. �

The theoretical analysis of Var[ΞA,DPP|D] follows the broad contours of the argument for
Var[ΞA,s|D] as above, with additional difficulties introduced by the spectral truncation from K

(p)
q,γ̃ to

K̃; see Section 3. This is addressed by an elaborate spectral approximation analysis in Appendix S3.
In combination with the ideas expounded in the proof of Proposition 4, our analysis in Appendix S3
indicates a fluctuation bound of Var[ΞA|D] = OP (p−(1+1/d)).

5 Experiments

In this section, we compare the empirical performance and the variance decay of our gradient
estimator ΞA,DPP to the default ΞA,Poi. We do not to include ΞA,s, whose interest is mostly
theoretical; see Section 4. Moreover, while we focus on simulated data to illustrate our theoretical
analysis, we provide experimental results on a real dataset in Appendix S4. Throughout this section,
the pdf q introduced in Section 3.2 is taken to be q(w) ∝

∏d
j=1(1 + w[j])αj (1 − w[j])βj , with

αj , βj ∈ [−1/2, 1/2] tuned to match the first two moments of the jth marginal of γ̂N . All DPPs are
sampled using the Python package DPPy [30], which is under MIT licence.

Experimental setup. We consider the ERM setting (1) for linear regression Llin((x, y), θ) =
0.5(〈x, θ〉 − y)2 and logistic regression Llog((x, y), θ) = log[1 + exp(−y〈x, θ〉)], both with an
additional `2 penalty λ(θ) = (λ0/2)‖θ‖22. Here the features are x ∈ [−1, 1]d−1, and the labels are,
respectively, y ∈ [−1, 1] and y ∈ {−1, 1}. Note that our proofs currently assume that the law γ of
z = (x, y) is continuous w.r.t. Lebesgue, which in all rigour excludes logistic regression. However,
we demonstrate below that if we draw a minibatch using our DPP but on features only, and then
deterministically associate each label to the drawn features, we observe the same gains for logistic
regression as for linear regression, where the DPP kernel takes into account both features and labels.
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For each experiment, we generate N = 1000 data points xi with either the uniform distribution or a
mixture of 2 well-separated Gaussian distributions on [−1, 1]d−1. The variable yi ∈ R is generated
as 〈xi, θtrue〉+ εi, where θtrue ∈ Rd−1 is given, and ε ∈ RN is a white Gaussian noise vector. In the
linear regression case, we scale yi by ‖y‖∞ to make sure that yi ∈ [−1, 1]. In the logistic regression
case, we replace each yi by its sign. The regularization parameter λ0 is manually set to be 0.1 and
the stepsize for the t-th iteration is set as 1/t0.9, so that (4) applies. In each experiment, performance
metrics are averaged over 1000 independent runs of each SGD variant.

Performance evaluation of sampling strategies in SGD. Figure 1 summarizes the experimental
results of ΞA,Poi and ΞA,DPP, with p = 5 and p = 10. The top row shows how the norm of the
complete gradient ‖ΞN (θt)‖ decreases with the number of individual gradient evaluations t × p,
called here budget. The bottom row shows the decrease of ‖θt − θ?‖. Note that using t× p on all
x-axes allows comparing different batchsizes. Error bars on the bottom row are ± one standard
deviation of the mean. In all experiments, using a DPP consistently improves the performance of
Poisson minibatches of the same size, and the DPP with batchsize 5 sometimes even outperforms
Poisson sampling with batchsize 10, showing that smaller but more diverse batches can be a better
way of spending a fixed number of gradient evaluations. This is particularly true for mixture data
(middle column), where forcing diversity with our DPP brings the biggest improvement. Maybe less
intuitively, the gains for the logistic regression in d = 11 (last column) are also significant, while
the case of discrete labels is not covered yet by our theoretical analysis, and the moderately large
dimension makes the improvement in the decay rate of the variance minor. This indicates that there is
variance reduction beyond the change of the rate.
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Figure 1: Summary of the performance of two sampling strategies in SGD.

Variance decay. For a given dimension d, we want to infer the rate of decay of the variance
σ2 = E[‖ΞA(θ?)‖2|D], to confirm the OP (p−(1+1/d)) rate discussed in Section 4. We take L = Llin
as an example, with N = 1000 i.i.d. samples D from the uniform distribution on [−1, 1]d. For
d = 1, 2, 3, we show in Figure 2 the sample variance of 1000 realizations of the variance of
‖ΞA,Poi(θ?)‖2 (white dots) and ‖ΞA,DPP(θ?)‖2 (black dots), conditionally on D. Blue and red
dots indicate standard 95% marginal confidence intervals, for indication only. The slope found by
maximum likelihood in a linear regression in the log-log scale is indicated as legend. The experiment
confirms that σ2 is smaller for the DPP, decays as p−1−1/d, and that this decay starts at a batchsize p
that increases with dimension.
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Figure 2: Summary of the variance decay results.

6 Discussion

In this work, we introduced an orthogonal polynomial-based DPP paradigm for sampling minibatches
in SGD that entails variance reduction in the resulting gradient estimator. We substantiated our
proposal by detailed theoretical analysis and numerical experiments. Our work raises natural questions
and leaves avenues for improvement in several directions. These include the smoothed estimator
ΞA,s, which calls for further investigation in order to be deployed as a computationally attractive
procedure; improvement in the dimension dependence of the fluctuation exponent when the gradients
are smooth enough, like [31, 32] did for [10]; sharpening of the regularity hypotheses for our
theoretical investigations to obtain a more streamlined analysis. While our estimators were motivated
by a continuous underlying data distribution, our experiments suggest notably good performance
in situations like logistic regression, where the data is at least partially discrete. Extensions to
account for discrete settings in a principled manner, via discrete OPEs or otherwise, would be a
natural topic for future research. Another natural problem is to compare our approach with other,
non-i.i.d., approaches for minibatch sampling. A case in point is the method of importance sampling,
where the independence across data points suggests that the variance should still be OP (1/p) as
in uniform sampling. More generally, incorporating ingredients from other sampling paradigms to
further enhance the variance reducing capacity of our approach would be of considerable interest.
Finally, while our results already partly apply to more sophisticated gradient estimators like Polyak-
Rupert averaged gradients [3, Section 4.2], it would be interesting to introduce repulsiveness across
consecutive SGD iterations to further minimize the variance of averaged estimators. In summary, we
believe that the ideas put forward in the present work will motivate a new perspective on improved
minibatch sampling for SGD, more generally on estimators based on linear statistics (e.g. in coreset
sampling), and beyond.
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