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Abstract

(Pseudo)random sampling is a costly yet widely used method in machine learning.
We introduce an energy-efficient algorithm for uniform Float16 sampling, utiliz-
ing a room-temperature stochastic magnetic tunnel junction device to generate
truly random floating-point numbers. By avoiding expensive symbolic computa-
tion and mapping physical phenomena directly to the statistical properties of the
floating-point format and uniform distribution, our approach achieves a higher
level of energy efficiency than the state-of-the-art Mersenne-Twister algorithm by
a minimum factor of 9721 and an improvement factor of 5649 compared to the
more energy-efficient PCG algorithm. We provide measurements of the potential
accumulated approximation errors, demonstrating the effectiveness of our method.

1 Introduction

The widespread implementation of artificial intelligence (AI) incurs significant energy use, financial
costs, and CO2 emissions. This not only increases the cost of products, but also presents obstacles
in addressing climate change. At the heart of machine learning are sampling and random number
generation. Examples include weight initialization, dropout regularization, or Markov chain Monte
Carlo techniques.

Addressing these challenges, this paper proposes a novel hardware framework designed to enhance
the energy efficiency of random number generation and sampling. We propose a novel uniform
floating-point format sampling method utilizing stochastically switching magnetic tunnel junction
(s-MTJ) devices as a foundation, achieving significant gains in both computational resources and
energy consumption compared to current pseudorandom number generators. In contrast to existing
generators, this device-focused strategy not only enhances sampling efficiency but also incorporates
genuine randomness originating from the thermal noise in our devices. Simultaneously, this noise is
crucial for the probabilistic functioning of the s-MTJs and is associated with low energy costs during
operation.

Our contributions can be summarized as follows.

1. We present a novel, highly energy-efficient stochastically switching magnetic tunnel junction
device which is designed to improve both the energy efficiency and precision of our sampling
approach. The device is capable of generating samples from a Bernoulli distribution whose
parameter p can be controlled using a current bias.
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2. We present a closed-form solution that defines the parameters for a collection of Bernoulli
distributions applied to the bit positions of the floating-point format, leading to samples
that adhere to a distribution without the need for symbolic calculations. Our simulations
indicate that this hardware configuration surpasses existing random number generators in
terms of energy efficiency by a factor of 5649 when using Float16. Additionally, our method
achieves genuine randomness through the use of thermal noise in our hardware devices. In
general, this approach is suitable for any entropy source device or even (pseudo)random
number generator that can produce bits in a reliable (and efficient) Bernoulli fashion.

The structure of this paper begins by reviewing relevant work on random number generation in
Section 2. Section 3 provides an introduction to the floating-point format, which is the format utilized
to generate samples. In the Approach Section 4, we introduce the stochastically switching magneto-
tunneling junction device being utilized in our approach. Following this, we outline a configuration
for these devices to generate uniform floating-point samples, addressing the statistical challenge
of mapping Bernoulli distributions to specific bitstring positions within the floating-point format.
Section 5 illustrates the energy consumption of our approach and assesses potential approximation
errors arising from the devices. The paper concludes with Section 6, where we summarize our
findings and outline further research directions.

2 Related Work

A majority of artificial intelligence algorithms rely on random number generators. Random number
generators (RNG) are employed for weight initialization or dropout in deep learning or taking random
actions in reinforcement learning. In probabilistic machine learning, Markov-Chain-Monte-Carlo
(MCMC) algorithms utilize them for sampling from proposal distributions or for making decisions
on whether to accept or reject samples based on random draws.

Hence, the research community focused on the development of efficient random number generators
[10] and their infrastructure [20, 15] shares similarities to this work. Physical (true) random number
generators (TRNG) using physical devices is an active research field since the 1950s [11]. Currently
used random number generators are often feasability-motivated free-running oscillators with ran-
domness from electronic noise [19]. A very recent subfield are Quantum Based Random Number
generators (QRNG) [12, 8, 19, 5]. The concept of employing stochastic magnetic tunnel junctions for
random number generation has been investigated in recent years. Although these methods generally
outperform traditional algorithmic random number generators in terms of energy efficiency, they lack
the ability to directly produce results using the floating-point format [23, 3, 16, 17], which is critical
for machine learning applications. Converting results to floating-point format later [4] introduces
unnecessary overhead, reducing energy efficiency. In general, the unequal spacing characteristic of
the floating-point format complicates the transition from integers, making it non-trivial to maintain
all possible floating-point number candidates within a specific distribution. It should be noted that
our conceptual approach can in principle be applied with any RNG that generates parametrizable
Bernoulli distributions, given that they are sufficiently (energy-)efficient.

Antunes and Hill [1] accurately measured the energy usage of random number generators (Mersenne-
Twister, PCG, and Philox) in programming languages and frameworks such as Python, C, Numpy,
Tensorflow, and PyTorch, thus providing a quantification of energy consumption in tools relevant to
AI. The energy measurements of this benchmark serve as baseline against our approach.

3 Preliminaries

We use the floating-point format as the number representation of interest as this is also the format
that machine learning algorithms use. We define a generic floating-point number as follows:

x = ±2e−b · d1.d2 . . . dt, (1)

where e is the exponent adjusted by a bias b, d1.d2 . . . dt represent the mantissa, di ∈ {0, 1}, and
d1 = 1 indicates an implicit leading bit for normalized numbers.

While our approach is generally applicable to any floating-point format, we demonstrate the approach
for the Float16 format in this paper. The use of the Float16 format compared to formats with more
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precision bits is advantageous in a real-world setting as it demands less rigor in setting the current
bias for the s-MTJ devices, which is especially relevant for higher-order exponent bits.

In the following, we describe a Float16 number by its 16-bit organization

B = (b0, b1, . . . , b15), (2)

where b15 is the sign bit, b14 to b10 are the exponent bits with a bias of 15, and b9 to b0 are the
mantissa bits. The implicit bit remains unexpressed. This arrangement represents the actual storage
format of the bits in memory. By expressing the floating-point format in terms of its bit structure, we
can directly map an s-MTJ device’s output bit to its equivalent position in the Float16 format.

4 Approach

4.1 Probabilistic Spintronic Devices

Spintronic devices are a class of computing (logic and memory) devices that harness the spin of
electrons (in addition to their charge) for computation [7]. This contrasts with traditional electronic
devices which only use electron charges for computation. Spintronic devices are built using magnetic
materials, as the magnetization (magnetic moment per unit volume) of a magnet is a macroscopic
manifestation of its correlated electron spins. The prototypical spintronic device, called the magnetic
tunnel junction (MTJ), is a three-layer device which can act both as a memory unit and a switch [14].
It consists of two ferromagnetic layers separated by a thin, insulating non-magnetic layer. When the
magnetization of the two ferromagnetic layers is aligned parallel to each other, the MTJ exhibits a low
resistance (RP ). Conversely, when the two magnetizations are aligned anti-parallel, the MTJ exhibits
a high resistance (RAP ). By virtue of the two discrete resistance states, an MTJ can act as a memory
bit as well as a switch. In practice, the MTJs are constructed such that one of the ferromagnetic layers
stays fixed, while the other layer’s magnetization can be easily toggled (free layer, FL). Thus, by
toggling the FL, using a magnetic field or electric currents, the MTJ can be switched between its ‘0’
and ‘1’ state.

An MTJ can serve as a natural source of randomness upon aggressive scaling, i.e. when the FL of
the MTJ is shrunk to such a small volume that it toggles randomly just due to thermal energy in
the vicinity. It is worth noting that the s-MTJ can produce a Bernoulli distribution like probability
density function (PDF), with p = 0.5, without any external stimulus, by virtue of only the ambient
temperature. However, applying a bias current across the s-MTJ can allow tuning of the PDF through
the spin transfer torque mechanism. As shown in Figure 5c-f of Appendix A, applying a positive bias
current across the device makes the high resistance state more favorable, while applying a negative
current has the opposite effect. In fact, by applying an appropriate bias current across the s-MTJ,
using a simple current-mode digital to analog converter as shown in Figure 6a of Appendix A, we
can achieve precise control over the Bernoulli parameter (p) exhibited by the s-MTJ. The p-value of
the s-MTJ responds to the bias current through a sigmoidal dependence. A more detailed version of
this section on the physical principles, device structure and simulations of the s-MTJ device can be
found in Appendix A.

4.2 Random Number Sampling

This section describes the configuration of s-MTJ devices representing Bernoulli distributions for
generating uniform random numbers in floating-point formats, particularly Float16. To apply this
method to other floating-point formats, modify the number of total bits in Equation (3), (5) and (6) as
well as the number of exponent bits in (8) and their positions in the format in variable e of (6).

The configuration C for a set of s-MTJ devices is defined as follows:

C = {(bi, pi) | pi ∈ [0, 1], bi ∈ {b0, . . . , b15}}, (3)

where each pi is the parameter of a Bernoulli distribution representing the probability of the corre-
sponding Float16 format bit being ‘1’ in the output.

The goal is to configure C so that, with infinite resampling, the sequence Bn of Float16 values
converges to a uniform distribution D over the full format. Formally, we seek C such that:

lim
n→∞

P (Bn = b | C) = D(b), where D = Uniform(−65504, 65504) (4)
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Table 1: Required 1-bit occurrences in a 3-bit exponent representation
1-Bit Count

e3 0 0 0 0 24 25 26 27

e2 0 0 22 23 0 0 26 27

e1 0 21 0 23 0 25 0 27

In order to meet this condition, we need to assign each bit position bi of the Float16 format a
probability pi, representing the frequency of each bit’s occurrence in a uniform Float16 distribution
(Equations (5)-(8)). The mantissa bits are assigned a value of 0.5, as detailed in line (6), ensuring
uniformity across the range they cover. This method extends to the sign bit, whose equal likelihood
of toggling maintains the format’s symmetry.

In floating-point formats, increasing the exponent doubles the range covered by the mantissa due to the
base 2 system. Higher exponent ranges need more frequent sampling to maintain uniform coverage,
as simply doubling sample occurrence from one range to the next does not preserve uniformity. Table
1 shows the number of 1-bits for each exponent in a 3-bit example. In general, one can see a specific
overall pattern. Specifically, e1 has four groups of size 1, e2 has two groups of size 2, and e3 has one
group of size 1. More generally, the first count of any exponent group is always 22

i−1

. For the first
exponent, groups are size 1 (excludable by 1{i>1}). For other exponents, remaining 1-Bit counts in
the first group are

∑c−1
k=1 2

2i−1+k, where c = 2i−1 is the group size, depending on the position i in
the floating-point format. The count of groups based on bit position i and total bits e is z = 2−i+e.
The count sums for remaining groups are given by

∑z−1
k=1

∑c−1
g=1 2

2i−1+2i·k+g , where z is the number
of groups and c their size. The highest exponent bit e3 with one group is excluded using 1{z>1}.
To find the probability of 1-Bit occurrences for each exponent ei, divide by the total bits 2(2

e) − 1,
which depends on the exponent bits e.

Combining everything, we derive the equation for the configuration C as follows:

C = {(bi, pi) | pi ∈ [0, 1], bi ∈ {b0, . . . , b15}}, where (5)

pi =

{
oi−9

2(2e)−1
if i ∈ {10, . . . , 14},

0.5 otherwise
, and (6)

oi = 22
i−1

+

c−1∑
k=1

22
i−1+k · 1{i>1} +

z−1∑
k=1

22
i−1+2i·k +

z−1∑
k=1

c−1∑
g=1

22
i−1+2i·k+g · 1{z>1}, and (7)

z = 2−i+e, c = 2i−1, e = 5. (8)

After obtaining a sample s, min-max normalization can be applied to linearly transform it into a
sample s′ that adheres to any specified uniform distribution within the Float16 range:

s′ ∼ Uniform(a, b) = a+
(s+ 65504) · (b− a)

131008
. (9)

The transformation must be performed in a format exceeding Float16, like Float32 or a specialized cir-
cuit, to maintain numerical stability and precision, due to exceeding Float16 limits in the denominator
of Equation (9). We assume special cases like NaNs or Infinities are discarded.

5 Evaluation

5.1 Energy Consumption of the s-MTJ Approach

Our work is motivated to use s-MTJ based random number generators for AI algorithms. We do not
focus on advancing s-MTJ devices in the material sense. AI algorithms require an energy-saving
random number generator that directly outputs uniformly in the floating-point format. We assess the
energy consumption of our method against current (pseudo)random number generators employed in
AI algorithms, incorporating a linear transformation (Equation (9) in section 4.2) to fit any specified
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Figure 1: Hardware setup for sampling one value from a uniform Float16 distribution.

uniform number range. Although our technique inherently does not need this transformation, we
include it in the energy-efficiency analysis to ensure a highly adaptable, fair, and conservative
benchmark. This benchmark serves as comparison of our s-MTJ based sampling approach against
traditional pseudorandom sampling approaches, not other s-MTJ devices in the material sense. The
novelty and advantage of our approach against other s-MTJ based random number generators is the
procedure of directly producing floating-point numbers without conversion from integer bitstreams.
Any s-MTJ device implementation can be used with our approach.

Figure 1 depicts our hardware configuration for sampling a single Float16 value. Each di is an s-MTJ
device. The devices d10, · · · , d14 for the exponent are equipped with 4 control bits to adjust the
current bias ci, which corresponds to the Bernoulli probability. The other devices are set to a fixed
current bias equivalent to a Bernoulli of 0.5. The resolution, which determines how accurately we
can set the Bernoulli distributions for a device, is dependent on the number of control bits and is
visualized in Figure 2. This Figure displays the specific Bernoulli values achievable with 4 control
bits. Although additional control bits could allow for more precise settings, we restrict this number
to 4 due to physical limitations in setting current biases in hardware with higher resolution while
keeping the bias circuit simple (and hence energy-efficient). Our approach focuses on achieving
high accuracy around a probability of 1 (cf. configuration in Section 5.2) by taking advantage of
the characteristics of the sigmoid function, thus making 4 bits sufficient for achieving the required
probability density function.

For our specific case, where the s-MTJs are being configured to generate a uniform distribution of
Float16 samples, the p for each s-MTJ is predetermined and fixed. All the mantissa bits and the sign
bits require p = 0.5, which is exhibited by the s-MTJ without any current bias (cf. 4.1 and 4.2). Thus,
these eleven s-MTJs do not require a current biasing circuit. The predetermined p-values for the five
exponent bits correspond to specific current biases as shown in Figure 2, which amount to a total
power consumption of 20.86 µW, as determined through SPICE simulations (details in Appendix
C). For a sampling rate of 1MHz, this corresponds to 20.86 pJ biasing energy per Float16 sample.
Additionally, reading the state of all the sixteen s-MTJs, assuming a nominal resistance of 1 kΩ and
10 ns readout with 10 µA probe current, amounts to a readout energy dissipation of 16 fJ per Float16
sample.

Given a hardware accelerator-style architecture, our system is designed with an embarrassingly
parallel structure, capable of producing samples every 1 µs. Energy-wise, there is no difference
between parallel and sequential setups. Using min-max normalization, sampled intervals can be
transformed efficiently into other intervals. It is reasonable that each of the five floating point
operations mentioned in Equation 9 within a normalization circuit consumes about 150 fJ on modern
microprocessors [6], leading to an extra energy cost of 750 fJ per sample.

Consequently, generating 230 samples without linear transformation yields an energy consumption of

(16 · 1 fJ + 20.862 pJ) · 230 = 22.42mJ. (10)

Applying the transformation yields

(16 · 1 fJ + 20.862 pJ + 750 fJ) · 230 = 23.22mJ. (11)

Our method’s energy usage is compared to actual energy measurements taken by Antunes and Hill
[1]. They benchmarked advanced pseudorandom number generators like Mersenne Twister, PCG,
and Philox. This includes evaluations across original C versions (O2 and O3 suffixes refer to C flags)
and adaptations in Python, NumPy, TensorFlow, and PyTorch, relevant platforms and languages for
AI. Each measurement reports the total energy used to produce 230 pseudorandom 32-bit integers
or 64-bit doubles, which are common outputs from these generators. Often, specific algorithms and
implementations are limited to producing only certain numeric formats (like integers or doubles),
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Figure 2: Possible Bernoulli resolutions for s-MTJ device with 4 control bits.

(a) First Moment (Mean) (b) Second Moment (Variance) (c) Third Moment (Kurtosis)

Figure 3: Physical approximation error comparison for the first three moments of the uniform
distribution (s-MTJ-based approach vs. closed-form solution sampling). Second moment standard
deviation omitted due to equivalence to the means.

particular bit sizes, or specific stochastic properties. As such, comparing different implementations
and floating-point formats is somewhat limited. However, given that all implementations serve the
same machine learning algorithms and that our energy consumption estimates show vast differences,
this comparison is deemed both reasonable and significant.

Although our method introduces considerable energy costs due to transformations, the overall energy
usage, when including linear transformations, is reduced by factor 5649 (pcg32integer) compared
to the most efficient pseudorandom number generator currently available. Compared to the double-
generating Mersenne-Twister (mt19937arO2), we obtain an improvement by factor 9721. We provide
a full comparison against all benchmarked generators in Figure 7 of Appendix D.

5.2 Physical Approximation Error: Impact of Control Bits Resolution

The number of control bits in an s-MTJ device impacts both energy consumption and the precision
of setting the energy bias, which in turn affects the available probabilities of obtaining bit samples.
Figure 2 illustrates this relationship. This section evaluates the approximation error caused by
imprecision in achieving a desired Bernoulli distribution.

Four control bits allow 16 distinct, uniformly spaced current biases for an s-MTJ device. The stability
of reading a ‘1’ or ‘0’ from the device follows a sigmoid function, enhancing resolution near 0 and 1,
but reducing it around 0.5. This effect is beneficial as it yields the configurations c10, c11, · · · , c14 =
{(10, 0.66666), (11, 0.80000), (12, 0.94118), (13, 0.99611), (14, 0.99998)} for our hardware setup
shown in Figure 1, as derived from Equations 5-8. Higher exponent bits demand greater precision
than lower ones, highlighting the advantages of the Float16 format over larger formats due to the
physical constraints in setting the energy bias.

To precisely analyze distribution shifts, we compared the first three moments (mean, variance,
kurtosis) of the uniform Float16 distribution in Figures 3a, 3b, and 3c. We conducted 100 000
samples per measurement, repeating each measurement 100 times, and report the results as mean and
standard deviations. We evaluated the empirical moments of these distributions against theoretical
expectations using closed-form solutions. Control Bits Sampling v1 uses the closest distance,
assigning equal probabilities of 0.9933 to c13 and c14. Control Bits Sampling v2 assigns probabilities
of 0.9911 to c13 and 0.9933 to c14, testing whether having a difference is more effective than the
closest distance method (see Figure 2). The mean values over all three moments are consistent for all
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bit resolutions. Furthermore, the deviation in the second moment is relatively minor given its high
absolute value in the closed-form expression.

Figure 9-12 of Appendix E visualizes samples using perfect resolution sampling and sampling that
considers physical control bit boundaries. The distributions with approximation offsets show a
slight bias, favoring values near zero (this is experimentally attributable to the offsets in exponent 4
and 5). However, this primarily accounts for only two bins in the overall range, each representing
0.25% of values. While the overall distribution remains unaffected, the effect can be removed by
rejecting samples from the two bins in question, impacting approximately every 200th sample. These
observations highlight that physical inaccuracies have minor effects. If necessary, these can be easily
addressed through rejection from those bins, depending on the application’s requirements. Although
we assume that most applications will not be significantly affected, performance evaluations are
required to verify this assumption (for any minor distribution shifts).

6 Conclusion and Future Work

We introduced a hardware-driven highly energy-efficient method for sampling uniform floating-point
numbers, using stochastically switching magnetic tunnel junctions. This method includes a precise
initialization for these devices and beats current state-of-the-art Mersenne-Twister by a factor of
5649.

We assessed the approximation error associated with the s-MTJ devices and our method. Findings
show that the physical approximation error is negligible when sampling uniform random numbers.
Future studies will explore the energy impact on specific algorithms in machine learning and validate
the s-MTJ method by building a prototype including statistical randomness testing of the device
[13, 11].
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A Additional Information on the Spintronic Device

Spintronic devices are a class of computing (logic and memory) devices that harness the spin of
electrons (in addition to their charge) for computation. This contrasts with traditional electronic
devices which only use electron charges for computation. Spintronic devices are built using magnetic
materials, as the magnetization (magnetic moment per unit volume) of a magnet is a macroscopic
manifestation of its correlated electron spins. The prototypical spintronic device, called the magnetic
tunnel junction (MTJ), is a three-layer device which can act both as a memory unit and a switch
[7, 14]. It consists of two ferromagnetic layers separated by a thin, insulating non-magnetic layer.
When the magnetization of the two ferromagnetic layers is aligned parallel to each other, the MTJ
exhibits a low resistance (RP ). Conversely, when the two magnetizations are aligned anti-parallel,
the MTJ exhibits a high resistance (RAP ). By virtue of the two discrete resistance states, an MTJ
can act as a memory bit as well as a switch. In practice, the MTJs are constructed such that one
of the ferromagnetic layers stays fixed, while the other layer’s magnetization can be easily toggled
(free layer, FL). Thus, by toggling the FL, using a magnetic field or electric currents, the MTJ can be
switched between its ‘0’ and ‘1’ state.

An MTJ can serve as a natural source of randomness upon aggressive scaling, i.e. when the FL
of the MTJ is shrunk to such a small volume that it toggles randomly just due to thermal energy
in the vicinity. As schematically illustrated in Figure 4a, the self-energy of the magnetic layer is
minimum and equal for the magnetization pointing vertically up or down, i.e. polar angle θM = 0o

or 180o, respectively. The self-energy is maximum for the horizontal orientation (θM = 90o). The
corresponding energy barrier, ∆E dictates the time scale at which the magnet can toggle between
the up and down oriented states owing to thermal energy. This time scale follows an Arrhenius law
dependence [2], i.e.

τ↑↓ = τ0e
∆E
kT , (12)

where, τ0 is the inverse of attempt frequency, typically of the order of 1 ns, k is the Boltzmann constant
and T is the ambient temperature. The energy barrier for a magnet is ∆E = KUV = µ0HKMSV/2,
where KU , V , HK and MS are the magnet’s uniaxial anisotropy energy, volume, effective magnetic
anisotropy field and saturation magnetization, respectively. µ0 is the magnetic permeability of free
space. Thus, it can be observed that by reducing the volume V of the magnetic free layer, we can
make its ∆E comparable to kT and achieve natural toggling frequencies of computational relevance,
as shown in Figure 4b. Figure 5a shows a time-domain plot of the normalized state of such an s-MTJ,
calculated using micromagnetic simulations with the MuMax3 package [21]. Further details on the
micromagnetic simulations are included in Appendix B. A histogram of the resistance state of this
s-MTJ is presented in Figure 5b. It is worth noting that the s-MTJ can produce such a Bernoulli
distribution like probability density function (PDF), with p = 0.5, without any external stimulus,
by virtue of only the ambient temperature. However, applying a bias current across the s-MTJ can
allow tuning of the PDF through the spin transfer torque mechanism [18]. As shown in Figure 5c-f,
applying a positive bias current across the device makes the high resistance state more favorable,
while applying a negative current has the opposite effect. In fact, by applying an appropriate bias
current across the s-MTJ, using a simple current-mode digital to analog converter as shown in Figure
6a, we can achieve precise control over the Bernoulli parameter (p) exhibited by the s-MTJ. Details
on the current-biasing circuit are included in Appendix C. The p-value of the s-MTJ responds to the
bias current through a sigmoidal dependence, as shown in Figure 6b.

9



Figure 4: (a) Schematic illustration of the self-energy (E) of a nanomagnet with respect to the polar
angle (θM ) of its magnetization (indicated by thick arrows). (b) Natural frequency of stochastic
switching for a nanomagnet of a particular diameter at different temperatures.

Figure 5: Dynamics of the normalized resistance of a stochastic MTJ for different bias current
densities. (a) Ibias = 0 produces equal probability of observing the high or low state. (b) Histogram of
the observed resistance state for Ibias = 0. (c, d) Trace and histogram of the observed resistance for a
bias current of 2 × 1011 A/m2. (e, f) Trace and histogram of the observed resistance for a bias current
of -2 × 1011 A/m2.



Figure 6: (a) Schematic diagram of a current-mode digital to analog converter for providing the
biasing current to a stochastic MTJ. (b) Variation of the Bernoulli parameter of the stochastic MTJ
with bias current. Red triangles are data point obtained from micromagnetic simulations, while the
grey dotted line is a theoretical fit (sigmoid function).



B Micromagnetic Simulations

Dynamics of a ferromagnet’s magnetization in response to external stimuli, like magnetic fields,
currents or heat can be modelled using micromagnetic simulations. The magnetization dynamics
can be described using a differential equation, known as the Landau-Lifshitz-Gilbert-Slonczewski
(LLGS) equation:

dm⃗

dt
= −γm⃗× H⃗eff + αm⃗× dm⃗

dt
+ τ∥

m⃗× (x⃗× m⃗)

|x⃗× m⃗|
+ τ⊥

x⃗× m⃗

|x⃗× m⃗|
(13)

where, m⃗ is the normalized magnetization (M⃗/|M⃗ |), and are the gyromagnetic ratio and damping
constant for the ferromagnet, x is a unit vector along the direction of applied electric current and, τ∥
and τ⊥ are current-induced torque magnitudes acting parallel and perpendicular to the current. H⃗eff is
the effective magnetic field acting on the ferromagnet, which contains contributions from externally
applied magnetic fields, exchange interactions, magneto-crystalline anisotropy, shape anisotropy,
thermal fields, and demagnetization, among others.

The simulations results presented here are performed for a van der Waals (vdW) magnetic material,
Fe3GaTe2 (FGaT) [22, 9]. Being a vdW material, FGaT has a layered structure which makes it
an ideal candidate for building ultra-thin (monolayer) magnetic thin films of high quality needed
for achieving stochasticity. FGaT also exhibits perpendicular magnetic anisotropy, which means
its self-energy is lower for magnetization pointing out of plane as compared to the magnetization
pointing in-plane. This property is crucial for building compact, nanoscale spintronic devices. The
simulations are performed using the MuMax3 program [21], for devices shaped as circular discs.
The values of different physical parameters used in the micromagnetic simulations are compiled in
Table 2. Certain parameters, whose experimental values are not determined, are set to typical values
for similar materials and are indicated as such. All simulations can be replicated using standard
consumer-grade computers without requiring extensive resources.

Table 2: Parameters Used in Micromagnetic Simulations With the MuMax3 Code.
Parameter Value

Saturation magnetization (MS) 3.95× 104 A/m [9]
Effective anisotropy field (KU ) 3.02× 106 A/m [9]
Permeability of free space (µ0) 1.26× 10−6 kg·m/s2·A2

Temperature (T ) 300 K
Gilbert damping constant (α) 0.02 (typical)
Exchange stiffness (Aex) 1.3× 1013 J/m
Thickness 1 nm
Diameter 2 nm
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C Power Estimation of the Current Biasing Circuit

The current biasing circuit was simulated using Cadence Virtuoso using the Global Foundries 22FDX
(22 nm FDSOI) process design kit. The circuit has been designed for a maximum bias current of
20 µA to attain an s-MTJ with Bernoulli parameter p = 0.99. The current levels corresponding to
p = 0.67 and p = 0.99 are divided into 4-bit resolution (Figure 2). The four bias bits (B0-B3) are
fed to the transistors P0, P1, P2, P3 (LSB to MSB), which are sized to produce currents I0, 2I0, 4I0
and 8I0, respectively, when the corresponding bias bit it ‘1’. A constant current Ibase = 2.82 µA is
additionally supplied through P4 to create a baseline of p = 0.67 for the s-MTJs. The transistors are
operated at a low supply voltage of 0.35 V to achieve a small I0 = 1.14 µA. Thus, each exponent
bit can be set to its requisite Bernoulli parameter by appropriately setting the 4-bit bias word, and
the power dissipation in the biasing circuit can be estimated for each of the exponent bits. Lengths
of all the transistors are set to 20 nm. Width of P4 is set to 260 nm, while the widths of P0, P1, P2
and P3 are 100 nm, 200 nm, 400 nm, and 800 nm, respectively. As discussed in the main text, our
proposed method requires only positive current biases for the stochastic MTJs. Thus, the unipolar
current mode DAC proposed here suffices for our application. For more general use cases where both
positive and negative bias currents may be needed, a bipolar current-steering DAC can be utilized.
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D Energy Consumption of Random Number Generators
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Figure 7: Power consumption analysis in Joules (logarithmic scale) for 230 random numbers. Bench-
marks were performed by Antunes and Hill [1].
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E Additional Figures on Physical Approximation Error

Figure 8: Visualization of samples obtained with three different assumptions. Perfect Resolution
Sampling assumes the precise values obtained from Equations 5-8 in Section 4.2. Control Bits
Sampling v1 assumes the closest distance measure to actual obtainable control bits. Control Bits
Sampling v2 assumes that each exponent bit should actually be different over closest distance, even if
the physically closest distance would imply redundant values.
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Figure 9: Histogram of 100 000 samples with 400 bins over the full Float16 range obtained by Perfect
Resolution Sampling.

Figure 10: Histogram of 100 000 samples with 400 bins spanning the full Float16 range obtained
via Control Bits Sampling v1. The values show a slight bias, favoring those near zero. Each bin
represents 0.25% of the overall range. Flattening the distribution by rejecting samples from the two
most overrepresented bins would affect only 0.5 % of samples.

Figure 11: Histogram of 100 000 samples with 400 bins spanning the full Float16 range obtained
via Control Bits Sampling v2. The values show a slight bias, favoring those near zero. Each bin
represents 0.25% of the overall range. Flattening the distribution by rejecting samples from the two
most overrepresented bins would affect only 0.5% of samples.

Figure 12: Histogram of 100 000 samples with 400 bins spanning the full Float16 range obtained via
Control Bits Sampling v1 with rejecting from the two most overrepresented bins around zero.
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