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ABSTRACT

While score-based generative models are the model of choice across diverse do-
mains, there are limited tools available for controlling inference-time behavior
in a principled manner, e.g. for composing multiple pretrained models. Existing
classifier-free guidance methods use a simple heuristic to mix conditional and
unconditional scores to approximately sample from conditional distributions. How-
ever, such methods do not approximate the intermediate distributions, necessitating
additional ‘corrector’ steps. In this work, we provide an efficient and principled
method for sampling from a sequence of annealed, geometric-averaged, or product
distributions derived from pretrained score-based models. We derive a weighted
simulation scheme which we call FEYNMAN-KAC CORRECTORS (FKCs) based on
the celebrated Feynman-Kac formula by carefully accounting for terms in the ap-
propriate partial differential equations (PDEs). To simulate these PDEs, we propose
Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time
scaling to improve sampling quality. We empirically demonstrate the utility of
our methods by proposing amortized sampling via inference-time temperature
annealing, improving multi-objective molecule generation using pretrained models,
and improving classifier-free guidance for text-to-image generation.

1 INTRODUCTION

Score-based generative models, also known as diffusion models, have emerged as the model of
choice across diverse generative tasks such as image generation, natural language, and protein
simulation (Saharia et al., 2022; Sahoo et al., 2024; Abramson et al., 2024). These models
leverage the ability to estimate scores of the sequence of noise-corrupted distributions and then
use the learned scores to reverse the corruption process enabling high quality generation. Thus,
diffusion models aim to produce new samples from the same distribution as the training data.

Figure 1: FEYNMAN-KAC CORRECTOR Infer-
ence for annealed pt,β(x) ∝ qt(x)

β=10 and
product pt(x) ∝ q1t (x)q

2
t (x) densities.

However, the classical paradigm of generative model-
ing as the problem of reproducing the training data dis-
tribution becomes less relevant for many applications
including drug discovery and text-to-image generation.
In practice, generative models demonstrate the best per-
formance when tailored to specific needs at inference
time. For instance, linear combinations of scores al-
low for concept composition (Liu et al., 2022) or for
increasing image-prompt consistency as in classifier-
free guidance (CFG) (Ho & Salimans, 2021). However,
by modifying the scores, one loses the control over
the marginal distributions of the generated samples.
Various approaches from the Monte Carlo sampling lit-
erature have been adapted to ‘correct’ samples along a
trajectory to more closely match the prescribed interme-
diate distributions. Assuming access to an exact score,
additional Langevin corrector steps with the desired invariant distribution can be applied with addi-
tional simulation steps as the only practical overhead (Song et al., 2021; Bradley & Nakkiran, 2024).
However, these corrector schemes are only exact in the limit of infinite intermediate steps. Accept-
reject or Sequential Monte Carlo techniques may be used when the score is parameterized through a
scalar energy function (Du et al., 2023; Phillips et al., 2024), although these parameterizations require
extra computation during training and may sacrifice expressivity in practice (Salimans & Ho, 2021).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

While methods for sampling from mixtures or equiprobable regions of diffusion models have been pro-
posed (Skreta et al., 2024), general solutions for accurately sampling from combinations or temperings
of flexibly-parameterized diffusion models with limited computational overhead remain elusive.
To address these challenges, we introduce FEYNMAN-KAC CORRECTOR (FKCs), which enable
efficient and principled sampling from a sequence of annealed, geometric-averaged, or product
distributions derived from pretrained diffusion models. To develop FEYNMAN-KAC CORRECTORS
and test their efficacy, we make the following contributions:
• We propose a flexible recipe to construct weighted stochastic differential equations (SDEs), which

account for additional terms appearing when manipulating the distribution of generated samples.
• As our primary examples, we derive the correction terms for multiple heuristic schemes commonly

used to approximate annealed, product, or geometric averaged distributions, including CFG (Sec. 3).
• To simulate these weighted SDEs, we propose a family of Sequential Monte Carlo (SMC) resam-

pling schemes, which ‘correct’ a batch of simulated samples to closely approximate the intermediate
target distributions (Sec. 4,App. A).

• For the problem of sampling from an unnormalized density, we demonstrate that FKC allows for
sampling from a variety temperatures without retraining (Sec. 5.1). Moreover, we demonstrate
that a high-temperature learning, low-temperature inference scheme can be more efficient than the
notoriously difficult task of directly training a sampler at the lower temperature.

• For pretrained diffusion models, we demonstrate that adding FKC terms enhances compositional
generation of molecules with multiple properties (Sec. 5.2) and classifier-free guidance for image
generation (Sec. 5.3).

2 BACKGROUND

2.1 DIFFUSION MODELS

Generative modeling via diffusion models can be formulated as the simulation of the Stochastic
Differential Equation (SDE) corresponding to the reverse-time process. In particular, during training,
one gradually destroys samples from the data-distribution pdata(x) by simulating the following
noising SDE: dxτ = fτ (xτ )dτ + στdW τ , xτ=0 ∼ pdata(x) , (1)
where fτ (xτ ) is usually some linear drift function fτ (xτ ) = ατxτ , στ defines the scale of noise
through time, and dW τ is the standard Wiener process. The drift fτ and the diffusion coefficient
στ are chosen so the final density is close to the standard normal distribution pτ=1 ≈ N (0, Id).
The generation process then can be defined as the family of denoising SDEs in the opposite time
direction (t = 1− τ ), dxt =

(
−ft(xt) + σ2

t∇ log pt(xt)
)
dt+ σtdWt , (2)

where pt = p1−τ is the density of the marginals induced by the noising process in Eq. (1); hence,
the process starts with x0 ∼ N (x | 0, Id). By training a model of the score functions ∇ log pt(·),
one can generate new samples from pdata(x) using Eq. (2) (Song et al., 2021).

2.2 FEYNMAN-KAC PDES

While Eq. (2) describes a procedure for simulating individual particles, we can also derive Partial
Differential Equations (PDEs) which describe the time-evolution of the density of samples pt(x)
under this SDE. We begin by describing the relevant equations for the standard SDE case.
(1) Continuity Equation, which describes how the density changes when the samples move in space
according to a flow or ODE with drift vt,

dxt = vt(xt)dt =⇒ ∂pode
t (x)

∂t
= −

〈
∇, pode

t (x)vt(x)
〉
. (3)

where pode
t indicates the evolution only according to a flow.

(2) Diffusion Equation, which describes the change of the density for the pure Brownian motion
with coefficient σt,

dxt = σtdWt =⇒ ∂pdiff
t (x)

∂t
=

σ2
t

2
∆pdiff

t (x) . (4)

where pdiff
t denotes evolution due to the diffusion term only.

The SDE in Eq. (2) can be viewed as the composition of a flow and diffusion terms, where the
corresponding Fokker-Planck PDE describes the combined evolution

∂psde
t (x)

∂t
= −

〈
∇, psde

t (x)vt(x)
〉
+

σ2
t

2
∆psde

t (x). (5)
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However, our main focus in this work will be to study a third type of PDE, which will yield weighted
SDEs that we eventually use to simulate a sequence of marginals other those the forward noising
process p1−τ (Sec. 3).
(3) Reweighting Equation, which describes the change of density when samples have time-dependent
log-weights wt which are updated based on the positions of samples xt,

dwt = ḡt(xt)dt =⇒ ∂pwt (x)

∂t
= ḡt(x)p

w
t (x) ,

where ḡt(x) = gt(x)−
∫

gt(x)p
w
t (x)dx

(6)

where the last equation ensures conservation of the normalization constant,
∫
dx ḡt(x)p

w
t (x) = 0.

Feynman-Kac Formula We now focus on the combination of all three components to describe the
Feynman-Kac PDE,

∂pFK
t (x)

∂t
= −

〈
∇, pFK

t (x)vt(x)
〉
+

σ2
t

2
∆pFK

t (x) + ḡt(x)p
FK
t (x) , (7)

where to sample from pFK
t (x), one first has to sample xt via the following SDE

dxt = vt(xt)dt+ σtdWt , dwt = ḡt(xt)dt , (8)
and then reweight the obtained samples using wt. Thus, pFK

t (x) reflects the density of weighted
samples, which differs from the density psde

t (x) obtained via the Fokker-Planck PDE in Eq. (5) due
to the addition of reweighting terms.
In practice, we account for this difference by reweighting a collection of K particles, i.e., for
estimating the expectation of test functions ϕ, we account for the weights using

EpT
[ϕ(x)] ≈

K∑
k=1

exp(wk
T )∑

j exp(w
j
T )

ϕ(xk
T ) . (9)

This expression corresponds to Self-Normalized Importance Sampling (SNIS) estimation, which
converges to exact expectation estimators when K → ∞ (e.g. Naesseth et al. (2019)). For
justification of the validity of this weighting scheme for Feynman-Kac PDEs, we refer to Lelièvre
et al. (2010, Ch. 4). We discuss more refined resampling techniques in App. A.

2.3 FLEXIBILITY OF SIMULATION FOR GIVEN MARGINALS

Given a PDE describing the time-evolution of a particular density pt(x), there may exist multiple
simulation methods (Song et al., 2021). While it is well-known that the diffusion equation (4) can be
simulated using an ODE, dxt = −σ2

t

2 ∇ log pt(xt)dt, we emphasize conversions to the reweighting
equation below.
Diffusion → Continuity Through simple manipulations, we can rewrite the diffusion equation
using a continuity equation and change the simulation scheme accordingly

∂pt(x)

∂t
=

σ2
t

2
∆pt(x) = −

〈
∇, pt(x)

(
−σ2

t

2
∇ log pt(x)

)〉
=⇒ dxt = −σ2

t

2
∇ log pt(xt)dt . (10)

Continuity → Reweighting We first recast the continuity equation in terms of reweighting, in which
case the simulation changes the density solely by adjusting the weights of samples (without transport),

∂pt(x)

∂t
= −

〈
∇, pt(x)vt(x)

〉
=

(
−1

pt(x)

〈
∇, pt(x)vt(x)

〉)
pt(x)

=⇒ dwt = (−
〈
∇, vt(xt)

〉
−

〈
∇ log pt(xt), vt(xt)

〉
)dt (11)

Diffusion → Reweighting We further observe that diffusion terms may be captured in the weights via
∂pt(x)

∂t
=

σ2
t

2
∆pt(x) =

σ2
t

2
pt(x)

(
∆log pt(x) + ∥∇ log pt(x)∥2

)
=⇒ dwt =

σ2
t

2
(∆ log pt(xt) + ∥∇ log pt(xt)∥2) dt (12)

In particular, using Eqs. (11) and (12) we now have an approach for translating arbitrary flow vt or
diffusion σt terms into the reweighting factors, assuming access to an exact score function ∇ log pt.
Such manipulations will play a key role in deriving our proposed methods in Sec. 3.
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Table 1: Conversion rules for different terms of the original Feynman-Kac PDEs (FK-PDEs) and the correspond-
ing weighted SDE (wSDE). For every term corresponding to the original densities qt (first two columns), we
present the terms corresponding to the annealed marginals pt,β(x) ∝ qt(x)

β (top part) and the terms correspond-
ing to the product of marginals pt(x) ∝ q1t (x)q

2
t (x) (bottom part). Importantly, the correctors are additive in the

weight space, e.g. when transforming the Fokker-Planck equation, we transform both the continuity & diffusion
equation terms and sum the corresponding correctors. References to proofs are provided in the right-most column.

Original FK-PDE Original wSDE Annealed PDE Annealed SDE dxt = FK Corrector dwt += Proof

−
〈
∇, qtvt

〉
vt(xt)dt

−
〈
∇, pt,βvt

〉
vt(xt)dt −(β − 1)

〈
∇, vt

〉
dt Prop. D.1

−
〈
∇, pt,ββvt

〉
βvt(xt)dt β(β − 1)

〈
∇ log qt, vt

〉
dt Prop. D.2

σ2
t

2 ∆qt σtdWt

σ2
t

2 ∆pt,β σtdWt −β(β − 1)
σ2
t

2 ∥∇ log qt∥2dt Prop. D.3

σ2
t

2β∆pt,β
σt√
β
dWt (β − 1)

σ2
t

2 ∆ log qtdt Prop. D.4

gtqt dwt = gtdt βgtpt,β — βgtdt Prop. D.5

— — time-dependent annealing: β → βt
∂βt

∂t log qtdt Prop. D.6

Original FK-PDE Original wSDE Product PDE Product SDE dxt = FK Corrector dwt +=

−
〈
∇, qtv

1,2
t

〉
v1,2t dt −

〈
∇, pt(v

1
t + v2t )

〉
(v1t + v2t )dt (

〈
∇ log q1t , v

2
t

〉
+
〈
∇ log q2t , v

1
t

〉
)dt Prop. D.7

σ2
t

2 ∆q1,2t σtdWt
σ2
t

2 ∆pt σtdWt −σ2
t

〈
∇ log q1t ,∇ log q2t

〉
dt Prop. D.8

g1,2t q1,2t dwt = g1,2t dt (g1t + g2t )pt — (g1t + g2t )dt Prop. D.9

3 MODIFYING DIFFUSION INFERENCE USING FEYNMAN-KAC CORRECTORS

In this section, we propose new sampling tools for combining or modifying diffusion models at
inference time using the Feynman-Kac PDEs in Sec. 2.2. To this end, consider several different
pretrained diffusion models with marginals {qit}Mi=1 following

∂qit
∂t

= −
〈
∇, qit

(
− ft + σ2

t∇ log qit
)〉

+
σ2
t

2
∆qit , (13a)

dxt =
(
−ft(xt) + σ2

t∇ log qit(xt)
)
dt+ σtdWt , (13b)

which is the denoising SDE from Eq. (2). Note that qit may arise from training on different datasets
or correspond to conditional models with different conditioning. Throughout this work, we assume
access to an exact score model sit(x; θ

i) = ∇ log qit(x), in part to facilitate the conversion rules
introduced in Sec. 2.3 and summarized in Table 1.
At inference time, we would like to sample from a modified target distribution involving these given
models. While other variants are possible, we focus on the following examples:

panneal
t,β (x) =

1

Zt(β)
qt(x)

β pprod
t (x) =

1

Zt
q1t (x)q

2
t (x) pgeo

t,β(x) =
1

Zt(β)
q1t (x)

1−βq2t (x)
β . (14)

A common heuristic for sampling from the distributions in the form of Eq. (14) is to sim-
ulate according to the score function corresponding to the target density. For example, in
classifier-free guidance (Ho & Salimans, 2021) we use the score of the geometric average
∇ log pgeo

t,β = (1− β)∇ log q1t + β∇ log q2t to simulate the following SDE

dxt = (−ft(xt) + σ2
t∇ log pgeo

t,β(xt))dt+ σtdWt . (15)
However, despite the similarity to Eq. (2), this heuristic does not sample from the prescribed
marginals including the final distributions, except in special cases. We proceed by using the pgeo

t,β

example to illustrate our approach.

3.1 OUTLINE OF OUR APPROACH

To remedy this, we inspect the PDE corresponding to pgeo
t,β , which can be written in terms of the

evolution of q1t and q2t ∂pgeo
t,β(x)

∂t
=

∂

∂t

1

Zt(β)
q1t (x)

(1−β)q2t (x)
β . (16)

Expanding and using our expressions for the Fokker-Planck equation of qit in (13), we proceed to
locate terms corresponding to simulation of an SDE with the drift vt = −ft(xt) + σ2

t∇ log pgeo
t,β .

Collecting all remaining terms of PDE (16) into weights ḡt we obtain the following Feynman-Kac
PDE, which can be simulated using the weighted SDE in Eq. (8), along with the resampling schemes
described in App. A ∂pgeo

t,β

∂t
= −

〈
∇, pgeo

t,β vt

〉
+

σ2
t

2
∆pgeo

t,β + pgeo
t,β ḡt . (17)

Conversion Rules To facilitate constructing the Feynman-Kac PDEs corresponding to existing
simulation schemes, in Table 1 we present the conversion rules that describe how the corresponding
PDEs change for the annealed densities and the product of densities. We use these rules as building
blocks when deriving our practical schemes.

4
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3.2 CLASSIFIER-FREE GUIDANCE (CFG)

CFG (Ho & Salimans, 2021) is a widely-used procedure that simulates an SDE combining the scores
of conditional and unconditional models with a guidance weight β,

∇ log pt,β(x) = (1− β)∇ log q1t (x | ∅) + β∇ log q2t (x | c)

In practice, q1t (x|∅) may represent an unconditional model (or a model with an empty prompt)
whereas q2t (x|c) is conditioned on a text prompt, class, or other random variables (Ho & Salimans,
2021). Alternatively, in autoguidance techniques, q1t may be an undertrained version of a stronger
conditional or unconditional model q2t (Karras et al., 2024).
For our purposes, we will view CFG as it is usually presented — an attempt to sample from the
geometric average distributions pgeo

t,β(x) ∝ q1t (x)
1−βq2t (x)

β . Using the conversion rules in Table 1,
we derive the reweighting terms which facilitate consistent sampling along the trajectory.

Proposition 3.1 (Classifier-Free Guidance + FKC). Consider two diffusion models q1t (x), q
2
t (x)

defined via (13). The weighted SDE corresponding to the geometric average of the marginals
pgeo
t,β(x) ∝ q1t (x)

1−βq2t (x)
β is

dxt = − ft(xt)dt+ σ2
t ((1− β)∇ log q1t (xt) + β∇ log q2t (xt))dt+ σtdWt , (18)

dwt =
σ2
t

2
β(β − 1)

∥∥∇ log q1t (xt)−∇ log q2t (xt)
∥∥2dt .

See proof in Prop. E.3. As a further example, we combine CFG with a product of experts in Prop. E.4.
3.3 ANNEALED DISTRIBUTION

Next, we consider a single diffusion model with the learned score ∇ log qt(x), which we use to
sample from the annealed or tempered density

panneal
t,β (x) = qt(x)

β/Zt(β) . (19)
For β > 1, this can be used to generate samples from modes or high-probability regions of given
models (Karczewski et al., 2024), while in Sec. 5.1 we explore the use of annealed inference in
learning diffusion samplers from Boltzmann densities. The annealed target can be shown to admit
the following Feynman-Kac weighted simulation scheme.

Proposition 3.2 (Annealed SDE + FKC). Consider a diffusion model qt(x) defined via (13).
Sampling from the annealed marginals panneal

t,β (x) ∝ qt(x)
β , β > 0 can be performed by simulating

the following weighted SDE
dxt = (−ft(xt) + ησ2

t∇ log qt(xt))dt+ ζσtdWt ,

dwt = (β − 1)
〈
∇, ft(xt)

〉
dt+

σ2
t

2
β∥∇ log qt(xt)∥2dt ,

with the coefficients (for a ∈ [0, 1/2])

η = β + (1− β)a , ζ =
√

(β + (1− β)2a)/β . (20)

See Prop. E.1 for proof, and note that linear drifts ft(x) will lead to constant divergence terms which
cancel upon reweighting in (9). We detail two choices of a.

Target Score Simulation For a = 0, we have η = β and ζ = 1, which yields the target score SDE
whose drift corresponds to the score of the annealed target,

dxt = (−ft(xt) + βσ2
t∇ log qt(xt))dt+ σtdWt . (21)

Tempered Noise Simulation For a = 1/2, we have η = (1 + β)/2, ζ = 1/
√
β). We refer to this

as an SDE with tempered noise, namely

dxt = (−ft(xt) +
β + 1

2
σ2
t∇ log qt(xt))dt+

σt√
β
dWt . (22)

We focus on these two choices of a, but note that for different β, we found that either target score or
tempered-noise simulation could perform better in practice (Sec. 5).

3.4 PRODUCT OF EXPERTS (POE)
Intuitively, samples from the product of densities correspond to the generations that have high
likelihood values under both models. The product can also be interpreted as unanimous vote of

5
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experts, since a sample is not accepted if one of the densities is zero. Formally, consider the density

pprod
t (x) = q1t (x)q

2
t (x)/Zt . (23)

For conditional generative models, the product of densities can describe samples satisfying several con-
ditions. For example, in image generation, we could use q(x | “horse”)q(x | “a sandy beach”)
to generate images of “a horse on a sandy beach” (Du et al., 2023). In Sec. 5.2, we demonstrate
that the PoE target can be used to improve molecule generations which multiple conditions.
Again, a natural heuristic is to use the score of the target product density in the reverse-time SDE (2),

∇ log pprod
t (x) = ∇ log q1t (xt) +∇ log q2t (xt) , (24)

In the following proposition, we further combine these rules with the annealing procedure to present
the weighted SDE that samples from the marginals pprod

t,β (x) ∝ (q1t (x)q
2
t (x))

β .

Proposition 3.3 (Product of Experts + FKC). Consider two diffusion models q1t (x), q
2
t (x) de-

fined via (13). The weighted SDE corresponding to the product of the marginals pprod
t,β (x) ∝

(q1t (x)q
2
t (x))

β , with β > 0 is

dxt = −ft(xt)dt+ σ2
t η
(
∇ log q1t (xt) +∇ log q2t (xt)

)
dt+ ζσtdWt , (25)

dwt = β(β − 1)
σ2
t

2

∥∥∇ log q1t (xt) +∇ log q2t (xt)
∥∥2dt+ βσ2

t

〈
∇ log q1t (xt),∇ log q2t (xt)

〉
dt+ (2β − 1)

〈
∇, ft(xt)

〉
dt

with the coefficients (for a ∈ [0, 1/2])

η = β + (1− β)a , ζ =
√

(β + (1− β)2a)/β . (26)

See proof in Prop. E.2. Again, note that for linear drifts, the divergence term
〈
∇, ft(x)

〉
is constant

and can be ignored. Similarly to Eqs. (21) and (22) for annealing, we have the target score SDE
(a = 0, η = β, ζ = 1) and the tempered noise SDE (a = 1/2, η = (β + 1)/2, ζ = 1/

√
β).

4 RESAMPLING METHODS

In this section, we describe several options for utilizing the weights to improve sampling with a batch
of K particles. While the simplest technique would be to simulate the weighted SDE in Eq. (8) for K
independent particles across the full time interval t ∈ [0, 1] and reweight using SNIS in (9), we expect
these full-trajectory weights to have high variance in practice due to error accumulation.

Sequential Monte Carlo Since our weights provide a proper weighting scheme for all intermediate
distributions (Naesseth et al., 2019), we can leverage SMC techniques which reweight particles
along our trajectories. We find resampling only over an ‘active interval’ t ∈ [tmin, tmax] useful for
improving sample quality and preserving diversity, and set weights to zero outside of this interval.
Within the active interval, we resample at each step based on the increment w(k)

t = gt(x
(k)
t )dt, using

systematic sampling proportional to exp{w(k)
t } (Douc & Cappé, 2005). For small discretizations

dt, we expect relatively low-variance weights. From this perspective, systematic resampling is an
attractive selection mechanism as all particles are preserved in the case of uniform weights.

5 EMPIRICAL STUDY
Throughout this section, we compare our Feynman-Kac corrector (FKC) resampling schemes against
their corresponding SDEs without resampling. We consider both target score and tempered noise
SDEs. We describe the various resampling schemes in App. A and compare them on the GMM task
in App. F.2 Table 6. For the remainder of our experiments, we proceed with systematic resampling.
5.1 SAMPLERS FROM THE BOLTZMANN DENSITY

As described in Sec. 1, our FKC inference techniques suggest flexible schemes for learning diffusion
samplers at a given temperature and sampling according to a different temperature. Since we are
given an energy function in this setting, we are not restricted to learning with temperature 1 for
our base model qt. Thus, we use (TL, TS) to refer to the learning (qt) and sampling target (pt,β)
distributions, with β = TS/TL in the notation of Sec. 3.3.
Mixture of 40 Gaussians with Ground-Truth qβt To verify our tools in a tractable setting, we
consider a highly multimodal distribution where we can calculate the optimal qt and ∇ log qt for
(small) integer β. We show qualitative results in Fig. 2. We find that target score + FKC performs best,
while tempered noise has a tendency to drop modes. We also find that FKC outperforms SDE-only
simulation in both tempered noise and target score settings. This is further supported by quantitative
results in Table 6.
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Figure 2: Samples from Mixture of 40 Gaussians.
Table 2: LJ-13 sampling task with various SDEs, with
performance measured by mean ± standard deviation
over 3 seeds. The starting temperature is TL = 2, an-
nealed to target temperatures TS = 0.8 and TS = 1.5.
The DEM samples are generated with a model trained
at those corresponding target temperatures.

Target Temp. SDE Type FKC Distance-W2 Energy-W1 Energy-W2

0.8 (β = 2.5) Target Score 0.912 ± 0.016 14.521 ± 0.085 14.602 ± 0.076
0.928 ± 0.009 5.513 ± 0.586 5.591 ± 0.563

Tempered Noise 0.924 ± 0.001 6.206 ± 0.007 6.272 ± 0.017
0.930 ± 0.020 6.438 ± 0.994 6.620 ± 0.998

DEM — 0.010 ± 0.001 9.910 ± 0.004 9.921 ± 0.004

1.5 (β = 1.33) Target Score 0.222 ± 0.011 5.152 ± 0.040 5.211 ± 0.049
0.225 ± 0.009 3.249 ± 0.003 3.269 ± 0.004

Tempered Noise 0.215 ± 0.004 2.075 ± 0.010 2.236 ± 0.005
0.217 ± 0.009 0.703 ± 0.017 0.888 ± 0.048

DEM — 0.074 ± 0.001 4.461 ± 0.024 5.144 ± 0.042

Figure 3: 2-Wasserstein between energy distributions
of MCMC samples from the annealed target distribu-
tion and our methods at different temperatures. Note
the training temperature TL = 2.

Sampling LJ-13 To demonstrate the utility of first learning a sampler at a high temperature then
annealing to a lower temperature vs. directly learning at a lower temperature, we consider a Lennard-
Jones (LJ) system of 13 particles at a base temperature TL = 2. We train a Denoising Energy
Matching (DEM) model (Akhound-Sadegh et al., 2024) at TL = 2 and perform temperature-annealed
inference to lower temperatures. In Table 2 and 7 we compare the performance of a DEM model
trained at a lower temperature against a DEM model trained at a higher temperature and annealed
to the lower temperature using various SDEs. We evaluate methods using the 2-Wasserstein metric
between distance distributions, and the 1- and 2-Wasserstein metrics between energy histograms
to a reference distribution (App. F.3). We find that tempered noise+FKC performs best at higher
target temperatures. However, at lower temperatures, the target score SDE+FKC performs best. Both
methods outperform DEM directly trained at the lower temperature. We find DEM is qualitatively
easier to learn at higher temperatures requiring much less tuning compared to lower temperatures
(Fig. 5). This makes the train-then-anneal approach attractive in this setting.
We find that FKC in this setting is able to successfully sample from temperatures TS ∈ [2.0, 0.8]
(Fig. 3). This is attractive as, with FKC, practitioners can train a single amortized model, then sample
at a variety of temperatures post-hoc. For extended results and discussion see App. F.

5.2 MULTI-PROPERTY MOLECULE GENERATION

We apply FKC to the setting of multi-property molecule generation, which requires molecules to
satisfy multiple constraints simultaneously. Here, we look at the setting of dual-target drug design,
where a molecule needs to interact with two proteins simultaneously. Dual-target drug design has
become increasingly investigated for targeting complex disease pathways (Zhou et al., 2024).
We use our PoE scheme introduced in Prop. 3.3 to take the product of two single property distributions.
We select LDMol (Chang & Ye, 2024) to generate molecules, which is a latent diffusion model con-
ditioned on natural language descriptions of molecule properties; this gives flexibility of generating
molecules with a wide range of properties. To generate molecules that inhibit a specific protein, we
prompt the model with “This molecule inhibits {protein_name}", following Wang et al. (2024).
First, we consider three proteins oracles from TDC (Huang et al., 2021): JNK3, GSK3β, DRD2. Our
goal is to generate molecules that are simultaneously predicted to inhibit each pair of proteins. We
apply PoE using both target score and tempered noise SDEs at various β; we showcase our best
results in Table 3 and the full ablation in Table 8. We primarily evaluate the generated molecules on
their predicted ability to bind to two proteins P1 and P2, taken as the product of individual predictions.
We also look at the number of valid and unique molecules generated, their diversity, and the drug-like
quality of the molecules (Lee et al., 2025). For more details on the metrics, see App. F.4. As a
baseline, we consider the target score SDE with β = 0.5, which corresponds to a simple averaging
of scores (Liu et al., 2022). We find that the tempered noise SDE at higher β generates molecules
that have higher fitness for binding to each pair of proteins. When we incorporate FKC, the average
performance of the molecules further increases. Details of our experimental procedure are listed
in App. F.4. We also note that PoE+FKC tends to generate more molecules that are unique, valid
and have drug-like qualities, although their diversity decreases slightly, which is a common tradeoff.
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Table 3: Multi-property molecule generation results. For a set of two target properties (P1 and P2), we take the
set of the top-10 best performing molecules from a batch-size of 512 as the molecules with the highest P1*P2

scores. We report averages of the top-10 molecules from 5 runs and the top-1 molecule overall. We also report
the diversity, validity & uniqueness, and quality of all molecules.

P1 / P2 SDE Type β FKC P1 top-10 (↑) P2 top-10 (↑) (P1, P2) top-1 (↑) Div. (↑) Val. & Uniq. (↑) Qual. (↑)

JNK3
GSK3β

Target Score 0.5 0.212±0.016 0.356±0.046 (0.500, 0.580) 0.910±0.000 0.713±0.027 0.127±0.015

Tempered Noise 1.5 0.341±0.039 0.468±0.041 (0.590, 0.560) 0.881±0.002 0.813±0.025 0.352±0.012

0.342±0.012 0.502±0.034 (0.500,0.720) 0.882±0.002 0.832±0.021 0.360±0.021

JNK3
DRD2

Target Score 0.5 0.090±0.018 0.434±0.065 (0.150, 0.472) 0.915±0.001 0.671±0.022 0.228±0.011

Tempered Noise 1.5 0.132±0.032 0.550±0.036 (0.280, 0.469) 0.884±0.001 0.650±0.021 0.258±0.020

0.141±0.020 0.617±0.040 (0.360,0.655) 0.884±0.005 0.661±0.018 0.252±0.014

GSK3β
DRD2

Target Score 0.5 0.146±0.034 0.528±0.077 (0.051, 0.908) 0.914±0.001 0.709±0.021 0.203±0.015

Tempered Noise 1.5 0.228±0.016 0.649±0.084 (0.550, 0.655) 0.884±0.002 0.774±0.015 0.303±0.012

0.266±0.061 0.638±0.036 (0.520,0.796) 0.885±0.002 0.774±0.017 0.307±0.012

Table 4: Docking scores of 32 generated molecules
to P1=ATP1A1 and P2=CPT2. We used the tempered
noise SDE with β = 1.5.

FKC (P1, P2) top-10 (↓) (P1, P2) top-1 (↓) Div. (↑)

−6.65±1.05,−7.36±0.854 (−8.87,−8.13) 0.921
(−7.49±0.71,−8.31±0.94) (−8.41,−9.73) 0.895

Table 5: Image generation using SDXL with
classifier-free guidance (CFG). For all metrics mean
values are reported.

β FKC CLIP ImageReward Human Eval

2.5 33.89 0.25 4.85
7.5 36.00 0.74 6.15
2.5 35.87 0.79 6.73

Finally, we consider a more challenging setting of protein-ligand docking, generating binders for
proteins ATP1A1 and CPT2. The protein pockets were obtained from Zhou et al. (2024) and the
final generated molecules were docked using AutoDock Vina (Eberhardt et al., 2021). Table 4 shows
the docking scores of molecules, and we find that incorporating FKC generates molecules with better
scores. We visualize the top molecules in App. F.4.

5.3 IMAGE GENERATION WITH STABLE DIFFUSION XL

‘a photo of an 
orange bench and a 
black refrigerator’

‘a photo of a red 
handbag and a green 
computer mouse’

‘a photo of a blue 
TV and a green 
toothbrush’

Figure 4: Samples: CFG(top), CFG+FKC(ours, bottom)

We apply CFG from Prop. 3.1 and study the ef-
fect of FKC on generating images with Stable
Diffusion XL (SDXL). For generation, we inte-
grate variance-preserving SDE with 100 steps of
the Euler-Maruyama solver. We find that FKC
performs the best for the guidance scale β = 2.5
and compare it to CFG with the same scale and
the default scale β = 7.5. To quantitatively eval-
uate the generated images, we consider three
metrics: CLIP Score (Radford et al., 2021), Im-
ageReward (Xu et al., 2024), and Human Evalua-
tion. CLIP Score measures the cosine similarity
between an image embedding and a text prompt
embedding. ImageReward evaluates generated
images by assigning a score that reflects how
closely they align with human preferences, including aesthetic quality and prompt adherence.
We report all three metrics in Table 5. Our method outperforms the baseline methods in ImageReward
and Human Evaluation while achieving comparable performance in terms of the CLIP score. Exam-
ples of generated images and prompts are presented in Fig. 4. Additional examples and comparisons
with both baselines are included in App. F.5.

6 CONCLUSION

In this work, we proposed FEYNMAN-KAC CORRECTORS, an array of tools allowing for a fine
control over the sample distributions of diffusion processes. These target distributions may arise in
compositional generative modeling (Du & Kaelbling, 2024), where we seek to combine specialist
models capturing various chemical properties of molecules or different aspects of a complex prompt.
Geometric averaging appears in widely-used CFG techniques while, via annealing we demonstrate that
an approach of first learning an amortized sampler at a higher temperature then annealing using FKCs
down to a lower temperature opens up a new dimension for the construction of amortized samplers.
Finally, our framework allows for the use of reward models (see Prop. E.5), and for time-dependent
annealing schedule βt (Prop. D.6), where the log-density terms which appear in the resulting weights
can be efficiently estimated using techniques from (Skreta et al., 2024).
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7 IMPACT STATEMENT

This goal of this paper is to advance the field of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here.
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A RESAMPLING METHODS

In this section, we describe several options for utilizing the weights to improve sampling with a batch
of K particles. While the simplest technique would be to simulate the weighted SDE in Eq. (8) for K
independent particles across the full time interval t ∈ [0, 1] and reweight using SNIS in (9), we expect
these full-trajectory weights to have high variance in practice due to error accumulation.

Sequential Monte Carlo Since our weights provide a proper weighting scheme for all intermediate
distributions (Naesseth et al., 2019), we can leverage SMC techniques which reweight particles along
our trajectories. We find resampling only over an ‘active interval’ t ∈ [tmin, tmax] useful for improving
sample quality and preserving diversity, and set weights to zero outside of this interval.

Within the active interval, we resample at each step based on the increment w(k)
t = gt(x

(k)
t )dt, using

systematic sampling proportional to exp{w(k)
t } (Douc & Cappé, 2005). For small discretizations

dt, we expect relatively low-variance weights. From this perspective, systematic resampling is an
attractive selection mechanism as all particles are preserved in the case of uniform weights.

Jump Process Interpretation of Reweighting Finally, by reframing the reweighting equation in
terms of a Markov jump process (Ethier & Kurtz (2009, Ch. 4.2)), a variety of further simulation
algorithms for Feynman-Kac PDEs are possible (Del Moral (2013, Ch. 1.2.2, 5); Rousset & Stoltz
(2006); Angeli (2020)).
A Markov jump process is determined by a rate function λt(x), which governs the frequency of
jump events, and a Markov transition kernel Jt(y|x), which is used to sample the next state when
a jump occurs. The forward Kolmogorov equation for a jump process is given by

∂pjump
t (x)

∂t
=

(∫
λt(y)Jt(x|y)pt(y)dy

)
− pt(x)λt(x)

where the terms can intuitively be seen to measure the inflow and outflow of probability, respectively.

Our goal is to find choices of λt(x), Jt(y|x) such that the evolution of pjump
t matches that of pwt in

Eq. (6) for a given choice of gt. As emphasized in Del Moral (2013, Ch. 5); Angeli et al. (2019),
there are many possible jump processes which satisfy this property. We present a particular choice
here, with proof in App. C.2.

Proposition A.1. For a given gt in Eq. (6), define the jump process rate and transition as

λt(x) =
(
gt(x)− Ept [gt]

)−
(27a)

Jt(y|x) =
(
gt(y)− Ept

[gt]
)+

pt(y)∫ (
gt(z)− Ept

[gt]
)+

pt(z)dz
(27b)

where (u)− := max(0,−u) and (u)+ := max(0, u). Then,

∂pjump
t (x)

∂t
=

∂pw
t (x)

∂t
= pt(x)

(
gt(x)− Ept [gt]

)
(28)

which matches Eq. (6).

In continuous time and the mean-field limit, this jump process formulation of reweighting corresponds
to simulating

xt+dt =

{
xt w.p. 1− λt(xt)dt+ o(dt)

∼ Jt(y|xt) w.p. λt(xt)dt+ o(dt).
(29)

We expect this process to improve the sample population in efficient fashion (Angeli et al., 2019),
since jump events are triggered only in states where (gt(x)− Ept

[gt])
− ≥ 0 =⇒ gt(x) ≤ Ept

[gt],
and transitions are more likely to jump to states with high excess weight (gt(y)− Ept

[gt])
+ > 0.

In practice, we use an empirical approximation pKt (z) = 1
K

∑K
k=1 δz(x

(k)) to approximate the jump
rate λt(x) and transition Jt(y|x). Instead of simulating Eq. (29) directly, one can also adopt an
implementation based on birth-death ‘exponential clocks’ (BDC, Del Moral (2013, Ch. 5.3-4)).

13
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B RELATED WORK

Sequential Monte Carlo methods have proven useful across a wide range tasks involving diffusion
models, including for reward-guided generation (Uehara et al., 2024; 2025; Singhal et al., 2025;
Kim et al., 2025), conditional generation (Wu et al., 2024), or inverse problems (Dou & Song, 2024;
Cardoso et al., 2024), with recent extensions to discrete diffusion models (Singhal et al., 2025; Li
et al., 2024; Uehara et al., 2025).
Within the context of diffusion samplers from Boltzmann densities, Phillips et al. (2024) consider
SMC for energy-based score parameterizations. Chen et al. (2025); Albergo & Vanden-Eijnden (2024)
consider SMC resampling along trajectories with respect to a prescribed geometric annealing path,
where Albergo & Vanden-Eijnden (2024) is presented through the Feynman-Kac perspective. The
approaches in (Vargas et al., 2024; Albergo & Vanden-Eijnden, 2024) correspond to the escorted Jaryn-
ski equality (Vaikuntanathan & Jarzynski, 2008; 2011), where additional transport terms are learned to
more closely match the evolution of a given density path (Arbel et al., 2021; Chemseddine et al., 2024;
Máté & Fleuret, 2023; Tian et al., 2024; Fan et al., 2024; Maurais & Marzouk, 2024). Indeed, the
celebrated Jarzynski equality (Jarzynski, 1997; Crooks, 1999) and its variants admit an elegant proof
using the Feynman-Kac formula (Lelièvre et al. (2010, Ch. 4),Vaikuntanathan & Jarzynski (2008)).
Predictor-corrector simulation (Song et al., 2021) performs additional Langevin steps to promote
matching the intermediate marginals of pt of a diffusion model. These schemes can be adapted for
annealed or product targets, although Du et al. (2023) found best performance using Metropolis
corrections. Finally, Bradley & Nakkiran (2024) interpret standard CFG SDE simulation (18) as
a predictor-corrector where the corrector targets a different guidance or geometric mixture weight
β′ = 1

2 (β + 1). Our resampling correctors are instead tailored to the original guidance weight β.

Amortized Sampling Recently, there has been renewed interested in learning amortized samplers,
and particularly diffusion-based amortized samplers particularly towards molecular systems. Midgley
et al. (2023) explored learning a normalizing flow using an α-divergence trained with samples using
annealed importance sampling Neal (2001). Zhang & Chen (2022); Vargas et al. (2023); Richter
& Berner (2024); Akhound-Sadegh et al. (2024); Albergo & Vanden-Eijnden (2024); Bortoli et al.
(2024) learn diffusion annealed bridges between distributions using various methods.
While we use DEM in this work as it achieves state of the art results for our LJ-13 setting, there
are several works that build upon DEM using bootstrapping OuYang et al. (2024) and learning the
energy function instead of the score Woo & Ahn (2024). We note that our FKC sampler applies to
any diffusion based sampler.

(Wasserstein)-Fisher-Rao Gradient Flows The reweighting portion of our Feynman-Kac weighted
SDEs corresponds to a non-parametric Fisher-Rao gradient flow of a linear functional G[pt] =∫
gt ptdx, whereas gradient flows in the Wasserstein Fisher-Rao metric (Kondratyev et al., 2015;

Chizat et al., 2018; Liero et al., 2018) have a form similar to our weighted PDEs (Lu et al., 2019) for
an appropriate ODE simulation term vt = ∇gt. In sampling applications, Chemseddine et al. (2024)
study the problem of when a given tangent direction in the Fisher-Rao space can be simulated using
transport via a tangent direction in the Wasserstein space.

C FEYNMAN-KAC PROCESSES

C.1 MARKOV GENERATORS FOR FEYNMAN-KAC PROCESSES

In Sec. 2, we described the adjoint generators L∗(v)
t [pt],L∗(σ)

t [pt],L∗(g)
t [pt] corresponding to flows

with vector field vt, diffusions with coefficient σt, and reweighting with respect to gt. In particular,
the Kolmogorov forward equation ∂pt

∂t (x) = L∗
t [pt](x) corresponds to our PDEs presented in Eqs. (3),

(5) and (6). In the lemma below, we recall the generators which are adjoint to those in Sec. 2 and
operate over smooth, bounded test functions with compact support, e.g. L(v)

t [ϕ].
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Lemma C.1 (Adjoint Generators). Using the identity
∫
ϕ(x) L∗

t [pt](x) dx =
∫
Lt[ϕ](x) pt(x) dx

Flow: L(v)
t [ϕ](x) = ⟨∇ϕ(x), vt(x)⟩ (30)

L∗(v)
t [pt](x) = −⟨∇, pt(x) vt(x)⟩

Diffusion: L(σ)
t [ϕ](x) =

σ2
t

2
∆ϕ(x) (31)

L∗(σ)
t [pt](x) =

σ2
t

2
pt(x) (32)

Reweighting: L(g,p)
t [ϕ](x) = ϕt(x)

(
gt(x)−

∫
gt(x) pt(x) dx

)
(33)

L∗(g)
t [pt](x) = pt(x)

(
gt(x)−

∫
gt(x) pt(x)dx

)
Proof. The proofs for flows and diffusions follow using integration by parts, with proofs found in,
for example, Holderrieth et al. (2024, Sec. A.5). For the reweighting generator, we have∫

ϕ(x)L∗(g)
t [pt](x)dx =

∫
ϕ(x)

(
pt(x)

(
gt(x)−

∫
gt(y) pt(y)dy

))
dx

=

∫
pt(x)

(
ϕ(x)

(
gt(x)−

∫
gt(y) pt(y)dy

))
dx

=:

∫
pt(x) L(g,p)

t [ϕ](x) dx

Note that the weights gt are often chosen in relation to the unnormalized density of pt (Lelièvre et al.
(2010, Sec. 4)), and our attention will be focused on the pair of generator actions L∗(g)

t [pt],L(g,p)
t [ϕ]

for possibly time-dependent ϕ.

C.2 JUMP PROCESS INTERPRETATION OF REWEIGHTING

One way to perform simulation of the reweighting equation will be to rewrite it in terms of a jump
process. We first recall the definition of the Markov generator of a jump process (Ethier & Kurtz
(2009, 4.2), Del Moral (2013, 1.1), Holderrieth et al. (2024, A.5.3)) and derive its adjoint generator.
Lemma C.2 (Jump Process Generators). Using the definition of the jump process generator and
the identity

∫
ϕ(x) J ∗

t [pt](x) dx =
∫
Jt[ϕ](x) pt(x) dx. Letting Wt(x, y) = λt(x)Jt(y|x) for

normalized Jt(y|x),

Jump Process: J (W )
t [ϕ](x) :=

∫ (
ϕ(y)− ϕ(x)

)
λt(x)Jt(y|x)dy (34a)

J ∗(W )
t [pt](x) =

(∫
λt(y)Jt(x|y)pt(y)dy

)
− pt(x)λt(x) (34b)

Proof. Through simple manipulations and changing the variables of integration, we obtain∫
ϕ(x) J ∗

t [pt](x) dx =

∫
Jt[ϕ](x) pt(x) dx

=

∫ (∫ (
ϕ(y)− ϕ(x)

)
λt(x)Jt(y|x)dy

)
pt(x) dx

=

∫ ∫
ϕ(y)λt(x)Jt(y|x)pt(x) dydx−

∫ ∫
ϕ(x)λt(x)Jt(y|x)pt(x) dydx

=

∫ ∫
ϕ(x)λt(y)Jt(x|y)pt(y) dxdy −

∫ ∫
ϕ(x)λt(x)Jt(y|x)pt(x) dydx

=

∫
ϕ(x)

((∫
λt(y)Jt(x|y)pt(y)dy

)
− pt(x)λt(x)

(∫
Jt(y|x)dy

))
dx

=⇒ J ∗
t [pt](x) =

(∫
λt(y)Jt(x|y)pt(y)dy

)
− pt(x)λt(x)

using the assumption that Jt(y|x) is normalized.
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Reweighting → Jump Process Our goal is to derive a jump process such that the adjoint generators
are equivalent J ∗(W )

t [pt](x) = L∗(g)
t [pt](x) for a given reweighting generator with weights gt

(Eq. (32)).
While Del Moral (2013); Angeli (2020) emphasize the freedom of choice in such generators,1 Sec. 4
of (Angeli et al., 2019) argues for a particular choice to reduce the expected number of resampling
events. To define this process, consider the following thresholding operations,

(u)
− := max(0,−u) (u)

+ := max(0, u), which satisfy: (u)
+ − (u)

−
= u. (35)

We can now define the Markov generator using

Wt(x, y) = λt(x)Jt(y|x) λt(x) :=
(
gt(x)− Ept [gt]

)−
Jt(y|x) :=

(gt(y)− Ept
[gt])

+
pt(y)∫

(gt(z)− Ept [gt])
+
pt(z)dz

(36)
Since jump events are triggered based on λt(xt) = (gt(x) − Ept

[gt])
− and are more likely to

transition to events with high excess weight (gt(y) − Ept [gt])
+pt(y), we expect this process to

improve the sample population in efficient fashion (Angeli et al., 2019).

Proposition C.3. For a given weighting function gt and the adjoint generator L∗(g)
t , the adjoint

generator J ∗(W )
t derived using in Eq. (36) satisfies J ∗(W )

t [pt](x) = L∗(g)
t [pt](x). More explicitly,

we have
L∗(g)
t [pt](x) = J ∗(W )

t [pt](x) (37)

pt(x)

(
gt(x)−

∫
gt(x) pt(x)dx

)
=(∫ (

gt(y)− Ept [gt]
)− (gt(x)− Ept [gt])

+pt(x)∫
(gt(z)− Ept [gt])

+pt(z)dz
pt(y)dy

)
pt(x)

(
gt(x)− Ept [gt]

)−
.

Proof. We start by expanding the definition of J ∗(W )
t [pt](x)

J ∗(W )
t [pt](x) =

(∫
λt(y)Jt(x|y)pt(y)dy

)
− pt(x)λt(x) (38a)

=

(∫ (
gt(y)− Ept

[gt]
)− (gt(x)− Ept [gt])

+
pt(x)∫

(gt(z)− Ept [gt])
+
pt(z)dz

pt(y)dy

)

− pt(x)
(
gt(x)− Ept

[gt]
)−

(38b)

=

(∫ (
gt(y)− Ept

[gt]
)−

pt(y)dy

)(
(gt(x)− Ept

[gt])
+
pt(x)∫

(gt(z)− Ept
[gt])

+
pt(z)dz

)

− pt(x)
(
gt(x)− Ept [gt]

)−
(38c)

=

(∫
(gt(y)− Ept [gt])

−
pt(y)dy∫

(gt(z)− Ept [gt])
+
pt(z)dz

)
pt(x)

(
gt(x)− Ept

[gt]
)+

− pt(x)
(
gt(x)− Ept

[gt]
)−

(38d)
Using Eq. (35), note that∫ (

gt(z)− Ept
[gt]
)+

pt(z)dz −
∫

dpt(z)
(
gt(z)− Ept

[gt]
)−

=

∫
(gt(z)− Ept

[gt])pt(z)dz = 0

(39)

which implies
∫
(gt(z)−Ept [gt])

+pt(z)dz =
∫
(gt(z)−Ept [gt])

−pt(z)dz. We proceed in two cases,
handling separately the trivial case where the denominator in Eq. (38d) is zero.

1For example, see Rousset (2006); Rousset & Stoltz (2006) for a particular instantiation combining separate
birth and death processes.
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Case 1 (λt(x) = 0 ∀z ∈ supp(pt)): Note that
∫ (

gt(z) − Ept
[gt]
)−

pt(z)dz = 0 if and only if
gt(z) = Ept

[gt], ∀z, since (u)− ≥ 0. In this case, the generators become trivial and we can confirm

L∗(g)
t [pt](x) = pt(x)

(
gt(x)−

∫
gt(x) pt(x)dx

)
= pt(x)(Ept [gt]− Ept [gt]) = 0

J ∗(W )
t [pt](x) =

∫
0 · 0 pt(y)dy − pt(x) · 0 = 0

(40)

and thus Eq. (37) holds, as desired.
Case 2 (∃x ∈ supp(pt) s.t. λt(x) > 0): Under the assumption, ∃x ∈ supp(µt) s.t.

(
gt(x) −

Ept
[gt]
)−

> 0. This implies
∫ (

gt(z)− Ept
[gt]
)−

pt(z)dz =
∫ (

gt(z)− Ept
[gt]
)+

pt(z)dz > 0.

In this case, we can conclude using Eq. (39) that
∫
dpt(z)

(
gt(z)−Ept [gt]

)−
∫
dpt(z)

(
gt(z)−Ept [gt]

)+ = 1.

Continuing from Eq. (38d)

J ∗(W )
t [pt](x) =

(∫
(gt(y)− Ept

[gt])
−
pt(y)dy∫

(gt(z)− Ept
[gt])

+
pt(z)dz

)
pt(x)

(
gt(x)− Ept [gt]

)+
− pt(x)

(
gt(x)− Ept [gt]

)−
(41a)

= pt(x)
((

gt(x)− Ept [gt]
)+

−
(
gt(x)− Ept [gt]

)−)
(41b)

= pt(x)(gt(x)− Ept
[gt]) (41c)

= L∗(g)
t [pt](x) (41d)

as desired. Note that, in the second to last line, we used the identity in Eq. (35) that (u)+ − (u)
−
=

u.

C.3 SIMULATION SCHEMES

In practice, we use an empirical mean over K particles with as an approximation to the expectation
Ept

[gt], with (
gt(x

(k))− Ept
[gt]
)−

≈
(
gt(x

(k))− 1

K

K∑
i=1

gt(x
(i))
)−

, (42)

(
gt(x

(k))− Ept
[gt]
)+

≈
(
gt(x

(k))− 1

K

K∑
i=1

gt(x
(i))
)+

See Del Moral (2013, Sec. 5.4) for discussion.

Discretization of the Continuous-Time Jump Process To simulate a jump process with generator
J (J,p)
t [ϕ], we can consider the following infinitesimal sampling procedure (Gardiner (2009, Ch. 12);

Davis (1984); Holderrieth et al. (2024)). With rate λt(x) =
(
gt(x)− Ept

[gt]
)−

, the particle jumps
to a new configuration,

xt+dt =


xt with probability 1− dt · λt(xt) + o(dt)

yt+dt ∼

(
gt(x

(k))− 1
K

∑K
i=1 gt(x

(i))
)+

∑K
j=1

(
gt(x(j))− 1

K

∑K
i=1 gt(x

(i))
)+ with probability dt · λt(xt) + o(dt)

(43)

The new configuration is sampled according to an empirical approximation of Jt(y|x) using pKt (y) =
1
K

∑K
k=1 δy(x

(k)), where the outer 1
K factor cancels.

Note that the jump rate is zero for particles with gt(x) ≥ Ept [gt]. Resampling a new particle
proportional to (gt(x

(k)) − 1
K

∑
j gt(x

(j)))+ thus promotes the replacement of low importance-
weight samples with more promising samples.
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Interacting Particle System Following Del Moral (2013, Sec 5.4), the process may also be
simulated using ‘exponential clocks’. In particular, we sample an exponential random variable with
rate 1, τ (k) ∼ exponential(1) as the time when the next jump event will occur (see Gardiner (2009,
Ch. 12)). We record artificial time by accumulating the rate function λtlast:s =

∑s
t=tlast

λt(xt)dt for

samples xt along our simulated diffusion. Upon exceeding the threshold time λ
(k)
tlast:s ≥ τ (k), we

sample a transition according the empirical approximaton of Jt(y|x) in Eq. (43). We report results
using this scheme in App. F.2 Table 6, but found it to underperform relative to systematic resampling
in these initial experiments.

D PROOFS FOR TABLE 1

D.1 ANNEALING

Proposition D.1 (Annealed Continuity Equation). Consider the marginals generated by the
continuity equation

∂qt(x)

∂t
= −

〈
∇, qt(x)vt(x)

〉
. (44)

The marginals pt,β(x) ∝ qβt (x) satisfy the following PDE
∂

∂t
pt,β(x) = −

〈
∇, pt,β(x)vt(x)

〉
+ pt,β(x)

[
gt(x)− Ept,β

gt(x)
]
, (45)

gt(x) = (1− β)
〈
∇, vt(x)

〉
. (46)

Proof. We want to find the partial derivative of the annealed density

pt,β(x) =
qt(x)

β∫
dx qt(x)β

,
∂

∂t
pt,β(x) =? (47)

By the straightforward calculations we have
∂

∂t
log pt,β = β

∂

∂t
log qt −

∫
dx pt,ββ

∂

∂t
log qt (48)

= − β
〈
∇, vt

〉
− β

〈
∇ log qt, vt

〉
−
∫

dx pt,β
[
−β
〈
∇, vt

〉
− β

〈
∇ log qt, vt

〉]
(49)

= −
〈
∇, vt

〉
−
〈
∇ log pt,β , vt

〉
+ (1− β)

〈
∇, vt

〉
(50)

−
∫

dx pt,β
[
−β
〈
∇, vt

〉
−
〈
∇ log pt,β , vt

〉]
= −

〈
∇, vt

〉
−
〈
∇ log pt,β , vt

〉
+ (1− β)

〈
∇, vt

〉
−
∫

dx pt,β
[
(1− β)

〈
∇, vt

〉]
.

(51)
Thus, we have

∂

∂t
pt,β(x) = −

〈
∇, pt,β(x)vt(x)

〉
+ pt,β(x)

[
(1− β)

〈
∇, vt(x)

〉
− Ept,β

(1− β)
〈
∇, vt(x)

〉]
,

(52)
which can be simulated as

dxt = vt(xt)dt , (53)

dwt = − (β − 1)
〈
∇, vt(xt)

〉
dt . (54)
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Proposition D.2 (Scaled Annealed Continuity Equation). Consider the marginals generated by
the continuity equation

∂qt(x)

∂t
= −

〈
∇, qt(x)vt(x)

〉
. (55)

The marginals pt,β(x) ∝ qβt (x) satisfy the following PDE
∂

∂t
pt,β(x) = −

〈
∇, pt,β(x)βvt(x)

〉
+ pt,β(x)

[
gt(x)− Ept,β

gt(x)
]
, (56)

gt(x) = − (1− β)
〈
∇ log pt,β(x), vt(x)

〉
. (57)

Proof. We want to find the partial derivative of the annealed density

pt,β(x) =
qt(x)

β∫
dx qt(x)β

,
∂

∂t
pt,β(x) =? (58)

By the straightforward calculations we have
∂

∂t
log pt,β = β

∂

∂t
log qt −

∫
dx pt,ββ

∂

∂t
log qt (59)

= − β
〈
∇, vt

〉
− β

〈
∇ log qt, vt

〉
−
∫

dx pt,β
[
−β
〈
∇, vt

〉
− β

〈
∇ log qt, vt

〉]
(60)

= −
〈
∇, βvt

〉
−
〈
∇ log pt,β , vt

〉
−
∫

dx pt,β
[
−β
〈
∇, vt

〉
−
〈
∇ log pt,β , vt

〉]
(61)

= −
〈
∇, βvt

〉
−
〈
∇ log pt,β , βvt

〉
− (1− β)

〈
∇ log pt,β , vt

〉
(62)

−
∫

dx pt,β
[
−(1− β)

〈
∇ log pt,β , vt

〉]
. (63)

Thus, we have
∂

∂t
pt,β(x) = −

〈
∇, pt,β(x)βvt(x)

〉
+ pt,β(x)

[
gt(x)− Ept,β

gt(x)
]
, (64)

gt(x) = − (1− β)
〈
∇ log pt,β , vt

〉
, (65)

which can be simulated as
dxt = βvt(xt)dt , (66)

dwt = β(β − 1)
〈
∇ log qt(xt), vt(xt)

〉
dt . (67)

Proposition D.3 (Annealed Diffusion Equation). Consider the marginals generated by the diffusion
equation

∂qt(x)

∂t
=

σ2
t

2
∆qt(x) . (68)

The marginals pt,β(x) ∝ qβt (x) satisfy the following PDE
∂

∂t
pt,β(x) =

σ2
t

2
∆pt,β(x) + pt,β(x)

[
gt(x)− Ept,β

gt(x)
]
, (69)

gt(x) = − β(β − 1)
σ2
t

2
∥∇ log qt(x)∥2 . (70)

Proof. We want to find the partial derivative of the annealed density

pt,β(x) =
qt(x)

β∫
dx qt(x)β

,
∂

∂t
pt,β(x) =? (71)
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By the straightforward calculations we have
∂

∂t
log pt,β = β

∂

∂t
log qt −

∫
dx pt,ββ

∂

∂t
log qt (72)

= β
σ2
t

2
∆ log qt + β

σ2
t

2
∥∇ log qt∥2 −

∫
dx pt,β

[
β
σ2
t

2
∆ log qt + β

σ2
t

2
∥∇ log qt∥

]
(73)

=
σ2
t

2
∆ log pt,β +

σ2
t

2β
∥∇ log pt,β∥2 −

∫
dx pt,β

[
σ2
t

2
∆ log pt,β +

σ2
t

2β
∥∇ log pt,β∥2

]
(74)

=
σ2
t

2
∆ log pt,β +

σ2
t

2
∥∇ log pt,β∥2 −

(
1− 1

β

)
σ2
t

2
∥∇ log pt,β∥2 (75)

−
∫

dx pt,β

[
−
(
1− 1

β

)
σ2
t

2
∥∇ log pt,β∥2

]
. (76)

Thus, we have
∂

∂t
pt,β(x) =

σ2
t

2
∆pt,β(x) + pt,β(x)

[
gt(x)− Ept,β

gt(x)
]
, (77)

gt(x) = − β(β − 1)
σ2
t

2
∥∇ log qt(x)∥2 , (78)

which can be simulated as
dxt = σtdWt , (79)

dwt = − β(β − 1)
σ2
t

2
∥∇ log qt(xt)∥2dt . (80)

Proposition D.4 (Scaled Annealed Diffusion Equation). Consider the marginals generated by the
diffusion equation

∂qt(x)

∂t
=

σ2
t

2
∆qt(x) . (81)

The marginals pt,β(x) ∝ qβt (x) satisfy the following PDE
∂

∂t
pt,β(x) =

σ2
t

2β
∆pt,β(x) + pt,β(x)

[
gt(x)− Ept,β

gt(x)
]
, (82)

gt(x) = (β − 1)
σ2
t

2
∆ log qt(x) . (83)

Proof. We want to find the partial derivative of the annealed density

pt,β(x) =
qt(x)

β∫
dx qt(x)β

,
∂

∂t
pt,β(x) =? (84)
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By the straightforward calculations we have
∂

∂t
log pt,β = β

∂

∂t
log qt −

∫
dx pt,ββ

∂

∂t
log qt (85)

= β
σ2
t

2
∆ log qt + β

σ2
t

2
∥∇ log qt∥2 −

∫
dx pt,β

[
β
σ2
t

2
∆ log qt + β

σ2
t

2
∥∇ log qt∥

]
(86)

=
σ2
t

2
∆ log pt,β +

σ2
t

2β
∥∇ log pt,β∥2 −

∫
dx pt,β

[
σ2
t

2
∆ log pt,β +

σ2
t

2β
∥∇ log pt,β∥2

]
(87)

=
σ2
t

2β
∆ log pt,β +

σ2
t

2β
∥∇ log pt,β∥2 +

(
1− 1

β

)
σ2
t

2
∆ log pt,β (88)

−
∫

dx pt,β

[(
1− 1

β

)
σ2
t

2
∆ log pt,β

]
. (89)

Thus, we have
∂

∂t
pt,β(x) =

σ2
t

2β
∆pt,β(x) + pt,β(x)

[
gt(x)− Ept,β

gt(x)
]
, (90)

gt(x) = (β − 1)
σ2
t

2
∆ log qt(x) , (91)

which can be simulated as
dxt =

σt√
β
dWt , (92)

dwt = (β − 1)
σ2
t

2
∆ log qt(xt)dt . (93)

Proposition D.5 (Annealed Re-weighting). Consider the marginals generated by the re-weighting
equation

∂qt(x)

∂t
= qt(x)

(
gt(x)− Eqt(x)gt(x)

)
. (94)

The marginals pt,β(x) ∝ qβt (x) satisfy the following PDE
∂

∂t
pt,β(x) = pt,β

[
βgt(x)− Ept,β

βgt(x)
]
. (95)

Proof. We want to find the partial derivative of the annealed density

pt,β(x) =
qt(x)

β∫
dx qt(x)β

,
∂

∂t
pt,β(x) =? (96)

By the straightforward calculations we have
∂

∂t
log pt,β = β

∂

∂t
log qt −

∫
dx pt,ββ

∂

∂t
log qt (97)

= β
(
gt(x)− Eqt(x)gt(x)

)
−
∫

dx pt,β
[
β
(
gt(x)− Eqt(x)gt(x)

)]
(98)

= βgt(x)−
∫

dx pt,ββgt(x) . (99)

Thus, we have
∂

∂t
pt,β(x) = pt,β

[
βgt(x)− Ept,β

βgt(x)
]
, (100)

which can be simulated as
dxt = 0 , (101)
dwt = βgt(xt) . (102)
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Proposition D.6 (Time-dependent annealing). Consider the annealed marginals pt,β(x) ∝ qt(x)
β

following some F
dxt = vt,β(xt) + σt,βdWt , (103)
dwt = gt,β(xt) . (104)

Then, for the time-dependent schedule βt, we have
dxt = vt,βt

(xt) + σt,βt
dWt , (105)

dwt = gt,βt(xt) +
∂βt

∂t
log qt(xt) , (106)

sampling from pt,βt(x) ∝ qt(x)
βt .

Proof. First, let’s note that for the annealed marginals pt,β(x) ∝ qt(x)
β with constant β, we have

∂

∂t
log pt,β = β

∂

∂t
log qt −

∫
dx pt,β

[
β
∂

∂t
log qt

]
(107)

= − 1

pt,β

〈
∇, pt,βvt,β

〉
+

1

pt,β

σ2
t,β

2
∆pt,β +

(
gt,β − Ept,β

gt,β
)
. (108)

Thus, for the time-dependent βt, we have
∂

∂t
log pt,βt

= βt
∂

∂t
log qt +

∂βt

∂t
log qt −

∫
dx pt,βt

[
βt

∂

∂t
log qt +

∂βt

∂t
log qt

]
(109)

= − 1

pt,βt

〈
∇, pt,βt

vt,βt

〉
+

1

pt,βt

σ2
t,βt

2
∆pt,βt

+

[(
gt,βt +

∂βt

∂t
log qt

)
− Ept,βt

(
gt,βt +

∂βt

∂t
log qt

)]
. (110)

From which we have the statement of the proposition.

D.2 PRODUCT

Proposition D.7 (Product of Continuity Equations). Consider marginals q1,2t (x) generated by two
different continuity equations

∂q1t (x)

∂t
= −

〈
∇, q1t (x)v

1
t (x)

〉
,

∂q2t (x)

∂t
= −

〈
∇, q2t (x)v

2
t (x)

〉
. (111)

The product of densities pt(x) ∝ q1(x)q2(x) satisfies the following PDE
∂

∂t
pt(x) = −

〈
∇, pt(x)

(
v1t (x) + v2t (x)

)〉
+ pt(x)

(
gt(x)− Ept(x)gt(x)

)
, (112)

gt(x) =
〈
∇ log q1t (x), v

2
t (x)

〉
+
〈
∇ log q2t (x), v

1
t (x)

〉
. (113)

Proof. For the continuity equations
∂

∂t
q1,2t (x) = −

〈
∇, q1,2t (x)v1,2t (x)

〉
, (114)

we want to find the partial derivative of the annealed density

pt(x) =
q1t (x)q

2
t (x)∫

dx q1t (x)q
2
t (x)

,
∂

∂t
pt(x) =? (115)
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By the straightforward calculations we have
∂

∂t
log pt =

∂

∂t
log q1t +

∂

∂t
log q2t −

∫
dx pt

[
∂

∂t
log q1t +

∂

∂t
log q2t

]
(116)

= −
〈
∇, v1t + v2t

〉
−
〈
∇ log q1t , v

1
t

〉
−
〈
∇ log q2t , v

2
t

〉
− (117)

−
∫

dx pt
[
−
〈
∇, v1t + v2t

〉
−
〈
∇ log q1t , v

1
t

〉
−
〈
∇ log q2t , v

2
t

〉]
(118)

= −
〈
∇, v1t + v2t

〉
−
〈
∇ log pt, v

1
t + v2t

〉
+
〈
∇ log q1t , v

2
t

〉
+
〈
∇ log q2t , v

1
t

〉
− (119)

−
∫

dx pt
[〈
∇ log q1t , v

2
t

〉
+
〈
∇ log q2t , v

1
t

〉]
. (120)

Thus, we have
∂

∂t
pt(x) = −

〈
∇, pt(x)

(
v1t (x) + v2t (x)

)〉
+ pt(x)

(
gt(x)− Ept(x)gt(x)

)
, (121)

gt(x) =
〈
∇ log q1t (x), v

2
t (x)

〉
+
〈
∇ log q2t (x), v

1
t (x)

〉
, (122)

which can be simulated as
dxt =

(
v1t (xt) + v2t (xt)

)
dt , (123)

dwt =
[〈
∇ log q1t (xt), v

2
t (xt)

〉
+
〈
∇ log q2t (xt), v

1
t (xt)

〉]
dt . (124)

Proposition D.8 (Product of Diffusion Equations). Consider marginals q1,2t (x) generated by two
different diffusion equations

∂q1t (x)

∂t
=

σ2
t

2
∆q1t (x) ,

∂q2t (x)

∂t
=

σ2
t

2
∆q2t (x) . (125)

The product of densities pt(x) ∝ q1(x)q2(x) satisfies the following PDE
∂

∂t
pt(x) =

σ2
t

2
∆pt(x) + pt(x)

(
gt(x)− Ept(x)gt(x)

)
, (126)

gt(x) = − σ2
t

〈
∇ log q1t (x),∇ log q2t (x)

〉
. (127)

Proof. We want to find the partial derivative of the annealed density

pt(x) =
q1t (x)q

2
t (x)∫

dx q1t (x)q
2
t (x)

,
∂

∂t
pt(x) =? (128)

By straightforward calculations we have
∂

∂t
log pt =

∂

∂t
log q1t +

∂

∂t
log q2t −

∫
dx pt

[
∂

∂t
log q1t +

∂

∂t
log q2t

]
=

σ2
t

2
∆ log q1t +

σ2
t

2

∥∥∇ log q1t
∥∥2 + σ2

t

2
∆ log q2t +

σ2
t

2

∥∥∇ log q2t
∥∥2

−
∫

dx pt

[
σ2
t

2
∆ log q1t +

σ2
t

2

∥∥∇ log q1t
∥∥2 + σ2

t

2
∆ log q2t +

σ2
t

2

∥∥∇ log q2t
∥∥2]

=
σ2
t

2
∆ log pt +

σ2
t

2
∥∇ log pt∥2 − σ2

t

〈
∇ log q1t ,∇ log q2t

〉
−
∫

dx pt
[
−σ2

t

〈
∇ log q1t ,∇ log q2t

〉]
. (129)

Thus, we have
∂

∂t
pt(x) =

σ2
t

2
∆pt(x) + pt(x)

(
gt(x)− Ept(x)gt(x)

)
, (130)

gt(x) = − σ2
t

〈
∇ log q1t (x),∇ log q2t (x)

〉
, (131)
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which can be simulated as
dxt = σtdWt , (132)

dwt =
[
−σ2

t

〈
∇ log q1t (xt),∇ log q2t (xt)

〉]
dt . (133)

Proposition D.9 (Product of Re-weightings). Consider marginals q1,2t (x) generated by two
different diffusion equations

∂q1t (x)

∂t
=
(
g1t (x)− Eq1t

g1t (x)
)
q1t (x) ,

∂q2t (x)

∂t
=
(
g2t (x)− Eq2t

g2t (x)
)
q2t (x) . (134)

The product of densities pt(x) ∝ q1(x)q2(x) satisfies the following PDE
∂

∂t
pt(x) = pt(x)

(
gt(x)− Ept(x)gt(x)

)
, (135)

gt(x) = g1t (x) + g2t (x) , (136)

Proof. We want to find the partial derivative of the annealed density

pt(x) =
q1t (x)q

2
t (x)∫

dx q1t (x)q
2
t (x)

,
∂

∂t
pt(x) =? (137)

By the straightforward calculations we have
∂

∂t
log pt =

∂

∂t
log q1t +

∂

∂t
log q2t −

∫
dx pt

[
∂

∂t
log q1t +

∂

∂t
log q2t

]
(138)

=
(
g1t (x)− Eq1t

g1t (x)
)
+
(
g2t (x)− Eq2t

g2t (x)
)
− (139)

−
∫

dx pt

[(
g1t (x)− Eq1t

g1t (x)
)
+
(
g2t (x)− Eq2t

g2t (x)
)]

(140)

= g1t (x) + g2t (x)−
∫

dx pt
[
g1t (x) + g2t (x)

]
. (141)

Thus, we have
∂

∂t
pt(x) = pt(x)

(
gt(x)− Ept(x)gt(x)

)
, (142)

gt(x) = g1t (x) + g2t (x) , (143)
which can be simulated as

dxt = 0 , (144)

dwt = g1t (xt) + g2t (xt) . (145)

E PROOFS OF PROPOSITIONS

Proposition E.1 (Annealed SDE). Consider the SDE
dxt =

(
−ft(xt) + σ2

t∇ log qt(xt)
)
dt+ σtdWt , (146)

then the samples from the annealed marginals pt,β(x) ∝ qt(x)
β can be obtained via the following

family of SDEs

dxt =
(
−ft(xt) + (β + (1− β)a)σ2

t∇ log qt(xt)
)
dt+

√
σ2
t (β + (1− β)2a)

β
dWt , (147)

dwt =

[
(β − 1)

〈
∇, ft(xt)

〉
+

1

2
σ2
t β(β − 1)∥∇ log qt(xt)∥2

]
dt , (148)

where the parameter a ∈ [0, 1/2].
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Proof. For the following SDE
dxt =

(
−ft(xt) + σ2

t∇ log qt(xt)
)
dt+ σtdWt , (149)

let’s consider everything but the drift ft. Thus, we can write the following PDE
∂qt
∂t

=
〈
∇, qt

[
(1− a)σ2

t∇ log qt(xt) + aσ2
t∇ log qt(xt)

]〉
+ (1− b)

σ2
t

2
∆qt + b

σ2
t

2
∆qt . (150)

We apply Prop. D.2, Prop. D.1, Prop. D.4, Prop. D.3 (rules from Table 1) to the corresponding terms
of the PDE above. Hence, the formulas for the weights are

gt(x) = (1− a)σ2
t β(β − 1)∥∇ log qt(x)∥2 − aσ2

t (β − 1)∆ log qt(x)

+ (β − 1)
(1− b)σ2

t

2
∆ log qt(xt)− β(β − 1)

bσ2
t

2
∥∇ log qt(xt)∥2 . (151)

Let’s cancel out the term with the Laplacians, hence, we have 2a = 1− b (hence, a ∈ [0, 1/2]) and

gt(x) = (1− a− b/2)σ2
t β(β − 1)∥∇ log qt(x)∥2 =

1

2
σ2
t β(β − 1)∥∇ log qt(x)∥2 . (152)

The PDE for the density is
∂pt,β
∂t

= −
〈
∇, pt,β

(
−ft + (β(1− a) + a)σ2

t∇ log qt
)〉

+

(
1− b

β
+ b

)
σ2
t

2
∆pt,β + pt,β

(
gt − Ept,β

gt
)

(153)

= −
〈
∇, pt,β

(
−ft + (β + (1− β)a)σ2

t∇ log qt
)〉

+
β + (1− β)2a

β

σ2
t

2
∆pt,β + pt,β

(
gt − Ept,β

gt
)

(154)

This corresponds to the following family of SDEs (a ∈ [0, 1/2])

dxt =
(
−ft(xt) + (β + (1− β)a)σ2

t∇ log qt(xt)
)
dt+

√
σ2
t (β + (1− β)2a)

β
dWt , (155)

dwt =

[
(β − 1)

〈
∇, ft(xt)

〉
+

1

2
σ2
t β(β − 1)∥∇ log qt(xt)∥2

]
dt . (156)

Proposition E.2 (Product of Experts). Consider two PDEs corresponding to the following SDEs

dxt = (−ft(xt) + σ2
t∇ log q1,2t (xt))dt+ σtdWt , (157)

which marginals we denote as q1t (xt) and q2t (xt). The following family of SDEs (for all a ∈
[0, 1/2]) corresponds to the product of the marginals pt,β(x) ∝ (q1t (x)q

2
t (x))

β

dxt =
(
−ft(xt) + σ2

t (β + (1− β)a)(∇ log q1t (xt) +∇ log q2t (xt))
)
dt

+

√
σ2
t (β + (1− β)2a)

β
dWt , (158)

dwt =

[
βσ2

t

〈
∇ log q1t (xt),∇ log q2t (xt)

〉
+ β(β − 1)

σ2
t

2

∥∥∇ log q1t (xt) +∇ log q2t (xt)
∥∥2

+ (2β − 1)
〈
∇, ft(xt)

〉]
dt . (159)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof. First, according to Table 1, we have the following PDE for the product density pt(x) ∝
q1t (x)q

2
t (x) is

∂pt(x)

∂t
= −

〈
∇, pt(x)

(
−2ft(x) + σ2

t (∇ log q1t (x) +∇ log q2t (x))
)〉

+
σ2
t

2
∆pt(x)+ (160)

+ pt(x)(gt(x)− Eptgt(x)) , (161)

gt(x) =
〈
∇ log q1t (x),−ft(x) + σ2

t∇ log q2t (x)
〉
+
〈
∇ log q2t (x),−ft(x) + σ2

t∇ log q1t (x)
〉

− σ2
t

〈
∇ log q1t (x),∇ log q2t (x)

〉
= σ2

t

〈
∇ log q1t (x),∇ log q2t (x)

〉
−
〈
ft(x),∇ log q1t (x) +∇ log q2t (x)

〉
. (162)

Now, combining Prop. E.1 and Prop. D.5, for the annealed density pt,β ∝ pt(x)
β we have

∂pt,β(x)

∂t
= −

〈
∇, pt,β(x)

(
−2ft(x) + σ2

t (β + (1− β)a)(∇ log q1t (x) +∇ log q2t (x))
)〉

+
β + (1− β)2a

β

σ2
t

2
∆pt,β(x) + pt,β(x)

(
gt(x)− Ept,β

gt(x)
)
, (163)

gt(x) = βσ2
t

〈
∇ log q1t (x),∇ log q2t (x)

〉
− β

〈
ft(x),∇ log q1t (x) +∇ log q2t (x)

〉
+ (β − 1)

〈
∇, 2ft(x)

〉
+ β(β − 1)

σ2
t

2

∥∥∇ log q1t (x) +∇ log q2t (x)
∥∥2 . (164)

The last step is interpreting
〈
∇, pt,β(x)ft(x)

〉
as the weight term, i.e.

∂pt,β(x)

∂t
= −

〈
∇, pt,β(x)

(
−ft(x) + σ2

t (β + (1− β)a)(∇ log q1t (x) +∇ log q2t (x))
)〉

+
β + (1− β)2a

β

σ2
t

2
∆pt,β(x) + pt,β(x)

(
gt(x)− Ept,β

gt(x)
)
, (165)

gt(x) = βσ2
t

〈
∇ log q1t (x),∇ log q2t (x)

〉
+ β(β − 1)

σ2
t

2

∥∥∇ log q1t (x) +∇ log q2t (x)
∥∥2+

(166)

+ (2β − 1)
〈
∇, ft(x)

〉
. (167)

Thus, we get the following family of SDEs (for all a ∈ [0, 1/2])

dxt =
(
−ft(xt) + σ2

t (β + (1− β)a)(∇ log q1t (xt) +∇ log q2t (xt))
)
dt+

√
σ2
t (β + (1− β)2a)

β
dWt ,

(168)

dwt =

[
βσ2

t

〈
∇ log q1t (xt),∇ log q2t (xt)

〉
+ β(β − 1)

σ2
t

2

∥∥∇ log q1t (xt) +∇ log q2t (xt)
∥∥2 + (2β − 1)

〈
∇, ft(xt)

〉]
dt . (169)

Proposition E.3 (Classifier-free Guidance). Consider two PDEs corresponding to the following
SDEs

dxt = (−ft(xt) + σ2
t∇ log q1,2t (xt))dt+ σtdWt , (170)

which marginals we denote as q1t (xt) and q2t (xt). The SDE corresponding to the geometric average
of the marginals pt,β(x) ∝ q1t (x)

1−βq2t (x)
β is

dxt =
(
−ft(xt) + σ2

t ((1− β)∇ log q1t (xt) + β∇ log q2t (xt))
)
dt+ σtdWt , (171)

dwt =
1

2
σ2
t β(β − 1)

∥∥∇ log q1t (xt)−∇ log q2t (xt)
∥∥2 . (172)
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Proof. First, according to Prop. E.1, we perform annealing p1t,1−β(x) ∝ q1t (x)
1−β and p2t,β(x) ∝

q2t (x)
β , i.e.
∂p1t,1−β(x)

∂t
= −

〈
∇, p1t,1−β(x)

(
−ft(x) + σ2

t (1− β − a1)∇ log q1t (x)
)〉

+
1− β − 2a1

1− β

σ2
t

2
∆p1t,1−β(x) + p1t,1−β(x)

(
gt(x)− Ep1

t,1−β
gt(x)

)
, (173)

gt(x) = − β
〈
∇, ft(x)

〉
+

1

2
σ2
t β(β − 1)

∥∥∇ log q1t (xt)
∥∥2 , (174)

and
∂p2t,β(x)

∂t
= −

〈
∇, p2t,β(x)

(
−ft(x) + σ2

t (β + (1− β)a2)∇ log q2t (x)
)〉

+
β(1− β)2a2

β

σ2
t

2
∆p2t,β(x) + p2t,β(x)

(
gt(x)− Ep2

t,β
gt(x)

)
, (175)

gt(x) = (β − 1)
〈
∇, ft(x)

〉
+

1

2
σ2
t β(β − 1)

∥∥∇ log q2t (xt)
∥∥2 , (176)

Now, according to Table 1, for the product density pt,β ∝ p1t,1−β(x)p
2
t,β(x). However, first, we have

to match the diffusion coefficient
1− β − 2a1

1− β
=

β + (1− β)2a2
β

=⇒ (1− 2a1)β − β2 = β − β2 + (1− β)22a2 (177)

a1β + (1− β)2a2 = 0 =⇒ a2 := a , a1 =
−a(1− β)2

β
. (178)

However, we see that the only possible solution that have a1 ∈ [0, 1/2] and a2 ∈ [0, 1/2] for positive
β is a1 = a2 = 0. Thus, we have
∂pt,β(x)

∂t
= −

〈
∇, pt,β(x)

(
−2ft(x) + σ2

t (1− β)∇ log q1t (x) + β∇ log q2t (x))
)〉

+
σ2
t

2
∆pt,β(x)

+ pt,β(x)
(
gt(x)− Ept,β

gt(x)
)
, (179)

gt(x) = −β
〈
∇, ft(x)

〉
+

1

2
σ2
t β(β − 1)

∥∥∇ log q1t (x)
∥∥2

+ (β − 1)
〈
∇, ft(x)

〉
+

1

2
σ2
t β(β − 1)

∥∥∇ log q2t (x)
∥∥2

+ (1− β)
〈
∇ log q1t (x),−ft(x) + σ2

t β∇ log q2t (x)
〉

+ β
〈
∇ log q2t (x),−ft(x) + σ2

t (1− β)∇ log q1t (x)
〉

− σ2
t β(1− β)

〈
∇ log q1t (x),∇ log q2t (x)

〉
=

1

2
σ2
t β(β − 1)

∥∥∇ log q1t (x)−∇ log q2t (x)
∥∥2

−
〈
∇, ft(x)

〉
−
〈
(1− β)∇ log q1t (x) + β∇ log q2t (x), ft(x)

〉
. (180)

Finally, we re-interpret
〈
∇, pt,β(x)ft(x)

〉
as the weighting term, and get

∂pt,β(x)

∂t
= −

〈
∇, pt,β(x)

(
−ft(x) + σ2

t ((1− β)∇ log q1t (x) + β∇ log q2t (x))
)〉

+
σ2
t

2
∆pt,β(x)

+ pt,β(x)
(
gt(x)− Ept,β

gt(x)
)
, (181)

gt(x) =
1

2
σ2
t β(β − 1)

∥∥∇ log q1t (x)−∇ log q2t (x)
∥∥2 . (182)

Thus, we have
dxt =

(
−ft(xt) + σ2

t ((1− β)∇ log q1t (xt) + β∇ log q2t (xt))
)
dt+ σtdWt , (183)

dwt =
1

2
σ2
t β(β − 1)

∥∥∇ log q1t (xt)−∇ log q2t (xt)
∥∥2 . (184)
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Proposition E.4 (PoE + CFG). Consider two PDEs corresponding to the following SDEs
dxt = (−ft(xt) + σ2

t∇ log qt(xt))dt+ σtdWt , (185)

dxt = (−ft(xt) + σ2
t∇ log q1,2t (xt))dt+ σtdWt , (186)

with corresponding marginals qt(xt), q1t (xt) and q2t (xt). The SDE corresponding to the product
of the marginals pt,β(x) ∝ qt(x)

2(1−β)(q1t (x)q
2
t (x))

β is

dxt =
(
−ft(xt) + σ2

t (v
1
t (xt) + v2t (xt))

)
dt+ σtdWt , (187)

dwt =
1

2
σ2
t β(β − 1)

(∥∥∇ log qt(xt)−∇ log q1t (xt)
∥∥2 + ∥∥∇ log qt(xt)−∇ log q2t (xt)

∥∥2)
+ σ2

t

〈
v1t (xt), v

2
t (xt)

〉
+
〈
∇, ft(xt)

〉
, (188)

where we denote v1,2t (x) = (1− β)∇ log qt(x) + β∇ log q1,2t (x).

Proof. Using Prop. E.3, we start from the SDEs simulating the product qt(x)(1−β)q1t (x)
β and

qt(x)
(1−β)q2t (x)

β , i.e.
dxt =

(
− ft(xt) + σ2

t ((1− β)∇ log qt(xt) + β∇ log q1t (xt)︸ ︷︷ ︸
v1
t (xt)

)
)
dt+ σtdWt , (189)

dwt =
1

2
σ2
t β(β − 1)

∥∥∇ log qt(xt)−∇ log q1t (xt)
∥∥2 , (190)

dxt =
(
− ft(xt) + σ2

t ((1− β)∇ log qt(xt) + β∇ log q2t (xt)︸ ︷︷ ︸
v2
t (xt)

)
)
dt+ σtdWt , (191)

dwt =
1

2
σ2
t β(β − 1)

∥∥∇ log qt(xt)−∇ log q2t (xt)
∥∥2 . (192)

Then we consider the product of these SDEs, i.e.
∂pt,β(x)

∂t
= −

〈
∇, pt,β(x)

(
−2ft(x) + σ2

t (v
1
t (x) + v2t (x))

)〉
+

σ2
t

2
∆pt,β(x)

+ pt,β(x)
(
gt(x)− Ept,β

gt(x)
)
, (193)

gt(x) =
1

2
σ2
t β(β − 1)

(∥∥∇ log qt(x)−∇ log q1t (x)
∥∥2 + ∥∥∇ log qt(x)−∇ log q2t (x)

∥∥2)+
(194)

+
〈
v1t (x),−ft(x) + σ2

t v
2
t (x)

〉
+
〈
v2t (x),−ft(x) + σ2

t v
1
t (x)

〉
− σ2

t

〈
v1t (x), v

2
t (x)

〉
(195)

=
1

2
σ2
t β(β − 1)

(∥∥∇ log qt(x)−∇ log q1t (x)
∥∥2 + ∥∥∇ log qt(x)−∇ log q2t (x)

∥∥2)
+ σ2

t

〈
v1t (x), v

2
t (x)

〉
−
〈
ft(x), v

1
t (x) + v2t (x)

〉
. (196)

Re-interpreting
〈
∇, pt,β(x)ft(x)

〉
, we get

∂pt,β(x)

∂t
= −

〈
∇, pt,β(x)

(
−ft(x) + σ2

t (v
1
t (x) + v2t (x))

)〉
+

σ2
t

2
∆pt,β(x) + pt,β(x)

(
gt(x)− Ept,β

gt(x)
)
, (197)

gt(x) =
1

2
σ2
t β(β − 1)

(∥∥∇ log qt(x)−∇ log q1t (x)
∥∥2 + ∥∥∇ log qt(x)−∇ log q2t (x)

∥∥2)
+ σ2

t

〈
v1t (x), v

2
t (x)

〉
+
〈
∇, ft(x)

〉
, (198)

which corresponds to
dxt =

(
−ft(xt) + σ2

t (v
1
t (xt) + v2t (xt))

)
dt+ σtdWt , (199)

dwt =
1

2
σ2
t β(β − 1)

(∥∥∇ log qt(xt)−∇ log q1t (xt)
∥∥2 + ∥∥∇ log qt(xt)−∇ log q2t (xt)

∥∥2)
+ σ2

t

〈
v1t (xt), v

2
t (xt)

〉
+
〈
∇, ft(xt)

〉
. (200)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Proposition E.5 (Reward-tilted SDE). Consider the following SDE
dxt = vt(x)dt+ σtdWt , (201)

which samples from the marginals qt(x). The samples from the marginals pt(x) ∝
qt(x) exp(βtr(x)) can be simulated according to the following SDE
dxt = vt(xt)dt+ σtdWt , (202)

dwt =

[〈
βt∇r(xt), vt(xt)− σ2

t∇ log qt(xt)−
σ2
t

2
βt∇r(xt)

〉
− βt

σ2
t

2
∆r(xt) +

∂βt

∂t
r(xt)

]
dt .

(203)
For the reverse SDE, it is

dxt = (−ft(xt) + σ2
t∇ log qt(xt))dt+ σtdWt , (204)

dwt =

[〈
βt∇r(xt),−ft(xt)−

σ2
t

2
βt∇r(xt)

〉
− βt

σ2
t

2
∆r(xt) +

∂βt

∂t
r(xt)

]
dt (205)

Proof. First, consider the density qt(x) that follows the PDE
∂qt(x)

∂t
= −

〈
∇, qt(x)vt(x)

〉
+

σ2
t

2
∆qt(x) . (206)

We want to find the PDE for the reward-tilted density

pt(x) =
qt(x) exp(βtr(x))∫
dx qt(x) exp(βtr(x))

. (207)

Straightforwardly, we get
∂

∂t
log pt(x) =

∂

∂t
log qt(x) +

∂βt

∂t
r(x)−

∫
dx pt(x)

[
∂

∂t
log qt(x) +

∂βt

∂t
r(x)

]
(208)

For the first term, we have
∂

∂t
log qt(x) = −

〈
∇, vt(x)

〉
−
〈
∇ log qt(x), vt(x)

〉
+

σ2
t

2
∆ log qt(x) +

σ2
t

2
∥∇ log qt(x)∥2

(209)

= −
〈
∇, vt(x)

〉
−
〈
∇ log pt(x), vt(x)

〉
+

σ2
t

2
∆ log pt(x) +

σ2
t

2
∥∇ log pt(x)∥2

+

〈
βt∇r(x), vt(x)− σ2

t∇ log qt(x)−
σ2
t

2
βt∇r(x)

〉
− βt

σ2
t

2
∆r(x) . (210)

Thus, we have
∂pt(x)

∂t
= −

〈
∇, pt(x)vt(x)

〉
+

σ2
t

2
∆pt(x) + pt(x)

(
gt(x)− Ept(x)gt(x)

)
(211)

gt(x) =

〈
βt∇r(x), vt(x)− σ2

t∇ log qt(x)−
σ2
t

2
βt∇r(x)

〉
− βt

σ2
t

2
∆r(x) +

∂βt

∂t
r(x) . (212)

This can be simulated as
dxt = vt(xt)dt+ σtdWt , (213)

dwt =

[〈
βt∇r(xt), vt(xt)− σ2

t∇ log qt(xt)−
σ2
t

2
βt∇r(xt)

〉
− βt

σ2
t

2
∆r(xt) +

∂βt

∂t
r(xt)

]
dt

(214)

F ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

F.1 SAMPLING METRICS

We use a number of metrics to asses the quality of generated samples. These metrics capture different
aspects of the distribution.

Energy-W1/2 The Energy-W1 and Energy-W2 measures the deviation in the energy value distribu-
tion of samples from the reference distribution and the generated distribution. We find this metric is
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useful to assess the overall fit of a model, although it cannot assess whether a sampler drops modes
well. A model that has a reasonably small Energy Wasserstein distance may still have missed a mode
of a similar energy value.

Maximum Mean Discrepancy (MMD) We use a radial-basis function MMD with multiple scales
to assess distribution fit. This measures how well the reference distribution matches the generated
distribution locally.

Total Variation distance For low dimensional sampling problems, it is useful to consider the total
variation distance between empirical distributions that are discretized into a grid. This measures fit in
terms of density, ignoring the underlying metric, and is less sensitive to global reweighting of modes.

1-Wasserstein and 2-Wasserstein distances (W1 / W2) On 40 GMM we also measure the 1-
Wasserstein and 2-Wasserstein distances between the generated and reference distributions with
respect to the Euclidean metric. We note that while this is possible to measure in the LJ-13 case, it
is not as useful as particles in the LJ-13 setting are SE(3) equivariant, and therefore the Euclidean
distance is not a suitable ground metric.

F.2 MIXTURE OF 40 GAUSSIANS

The mixture of 40 Gaussians setting is a 2D energy function with 40 randomly initialized modes with
equal standard deviation. This serves as a useful experimental setting where we are able to calculate
true densities and scores efficiently without modelling error.

F.2.1 ADDITIONAL RESULTS

We include quantitative results for the tractable GMM example in Sec. 5.1, where we start at
temperature T = 3 and anneal to target temperature T = 1/3. We used a geometric noise schedule
with σmin = 0.01 and σmax = 500. We sample 10k samples with 1000 integration steps, with
dt = 0.001. We observe that Target Score sampling (a = 0) from Eq. (21) with systematic
resampling performs best in more metrics. We also use this example as an ablation study for the
impact of the resampling scheme, where we find that systematic resampling appears to outperform
the birth-death exponential clocks implementation of the jump process resampling. See App. A and
App. C.2.

On ground truth qβt A subtle point to note is that qβt is not a mixture of |π| Gaussians, but rather
|π|β Gaussians for integer β. This means that we are restricted to small integer β. We use β = 3 for
all experiments in the 40 Gaussians setting.

Table 6: Mixture of 40 Gaussians. Sampling from an annealed distribution with inverse temperature β = 3.
Metrics are calculated over 5 runs with 10k samples.

SDE Type FKC Energy-W2 MMD Total Var W1 W2

Target Score 0.943 ± 0.026 0.020 ± 0.001 0.487 ± 0.007 11.304 ± 0.296 15.671 ± 0.269
Tempered Noise 1.032 ± 0.012 0.058 ± 0.001 0.638 ± 0.002 16.051 ± 0.123 19.627 ± 0.101
Target Score BDC 1.064 ± 0.369 0.010 ± 0.004 0.402 ± 0.029 7.797 ± 3.990 12.451 ± 5.417
Tempered Noise BDC 1.228 ± 0.401 0.056 ± 0.029 0.572 ± 0.055 12.598 ± 4.155 17.679 ± 4.178
Target Score systematic 1.098 ± 0.418 0.007 ± 0.005 0.372 ± 0.020 6.256 ± 3.960 11.265 ± 5.629
Tempered Noise systematic 0.926 ± 0.248 0.027 ± 0.011 0.512 ± 0.017 9.974 ± 1.229 14.045 ± 1.308

F.3 LJ-13 SAMPLING TASK

The Lennard-Jones Potential. The Lennard-Jones (LJ) potential is an intermolecular potential,
modelling interactions of non-bonding particles. This system is studied to evaluate the performance
of various neural samplers. The energy for the system is based on the interatomic distance between
the particles is given by:

ELJ(x) =
ε

2τ

∑
ij

((
rm
dij

)6

−
(
rm
dij

)12
)

(215)

where we denote the Euclidean distance between two particles i and j by dij = ∥xi − xj∥2 and rm,
τ , ϵ and c are physical constants. As in Köhler et al. (2020), we also add a harmonic potential to the
energy so that ELJ−system = ELJ(x) + cEosc(x) The harmonic potential is given by:

Eosc(x) =
1

2

∑
i

||xi − xCOM||2 (216)
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Figure 5: Comparison between the energy distribution of the MCMC dataset, samples generated using a DEM
model trained at the target temperature, and samples generated using temperature annealing from a model trained
at starting distribution T = 2. Left: the target temperature is 1.5 and temperature annealed samples correspond
to tempered noise SDE + FKC and Right: the target temperature is 0.8 and temperature annealed samples
correspond to target score SDE + FKC.

Table 7: Additional results for LJ-13 at different target temperatures. The model is trained at starting temperature
2.0 and metrics are computed over 3 runs.

Target Temp. SDE Type FKC distance-W2 Energy-W1 Energy-W2

0.9 (β=2.2) Target Score 0.861 ± 0.014 13.560 ± 0.064 13.662 ± 0.068
0.861 ± 0.021 4.296 ± 0.217 4.342 ± 0.195

Tempered Noise 0.853 ± 0.018 5.314 ± 0.047 5.350 ± 0.049
0.863 ± 0.011 3.948 ± 0.235 4.104 ± 0.253

1.0 (β=2.0) Target Score 0.796 ± 0.003 12.865 ± 0.077 12.938 ± 0.080
0.777 ± 0.010 4.009 ± 0.324 4.034 ± 0.342

Tempered Noise 0.771 ± 0.009 4.859 ± 0.085 4.919 ± 0.074
0.781 ± 0.021 2.587 ± 0.089 2.822 ± 0.103

1.2 (β=1.67) Target Score 0.590 ± 0.008 10.224 ± 0.102 10.248 ± 0.098
0.551 ± 0.002 3.358 ± 0.024 3.363 ± 0.026

Tempered Noise 0.547 ± 0.005 4.042 ± 0.058 4.092 ± 0.057
0.547 ± 0.007 0.956 ± 0.223 1.154 ± 0.208

where xCOM refers to the center of mass of the system. We set rm = 1, τ = 1, ε = 2.0 and c = 1.0.

Training details. All DEM models are trained for 166 epochs on 4 NVIDIA A100 80GB GPUs.
For all models, the best checkpoint with the lowest energy-W2 is used for inference. The model is an
EGNN with the same architecture as in Akhound-Sadegh et al. (2024). Similar to Akhound-Sadegh
et al. (2024), we use a geometric noise schedule for all experiments. We set σmin = 0.01 and
σmax = 4.0. We clip the score to a maximum norm of 1000 (per particle). For sampling, we use 1000
integration steps with dt = 0.001. For inference with FKC, we assume a Gaussian distribution at
time tstart = 0.99 and start integration with the annealed SDE and resampling at that time. We found
that this helps significantly to reduce the variance of the results over different runs. For visualizations
in Fig. 5, we selected the best run for all methods for consistency.
In line with previous work, we find the DEM scores are noisy at high times, based on the score of the
energy. This can be seen from the score estimator in DEM, which depends on the average gradient
direction from a normal distribution sampled around xt. The variance of this estimate grows with
both time and gradient of the energy. This makes DEM style objective significantly easier to train on
smooth energies, as quantified by norm of the score of the energy.

Sampling Reference distributions To generate reference distributions from the Lennard-Jones-13
potential we use Pyro Bingham et al. (2018) and a No-U-Turn sampler Hoffman & Gelman (2011)
with default arguments. We use 20k warmup steps and collect 20k samples from the 10 chains for
each temperature.
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Figure 6: Left: 1-Wasserstein between energy distributions and Right: 2-Wasserstein between distributions of
interatomic distances of MCMC samples from the annealed distribution and generated samples.

Figure 7: Energy distributions of samples generated with temperature annealing compared to the MCMC samples
(in green), at different target temperatures. The starting temperature is T = 2.0.
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Figure 8: Molecules with best docking scores for binding to ATPA1 (P1) and CPT2 (P2) from PoE with FKC
(left) and without (right).

Table 8: Multi-property molecule generation results. For a set of two target properties (P1 and P2), we take
the set of the top-10 best performing molecules as the molecules with the highest P1*P2 scores. We report the
average properties of the top-10 molecules over five runs and the top-1 molecule overall. We also report the
diversity, validity & uniqueness, and quality of all generated molecules, where quality is the percent of molecules
that are valid, unique, have a QED ≥ 0.6 and SA < 0.4. For β = 1, target score and tempering noise match
(Prop. 3.3).

P1

P2
SDE Type β FKC P1 top-10 (↑) P2 top-10 (↑) (P1, P2) top-1 (↑) Div. (↑) Val. & Uniq. (↑) Qual. (↑)

JNK3
GSK3β

Target Score 0.5 0.212±0.016 0.356±0.046 (0.500, 0.580) 0.910±0.000 0.713±0.027 0.127±0.015

Tempered Noise 0.225±0.028 0.385±0.042 (0.440,0.690) 0.909±0.001 0.723±0.016 0.134±0.006
— 1.0 0.289±0.022 0.429±0.018 (0.470, 0.580) 0.898±0.002 0.811±0.008 0.205±0.011

— 0.342±0.029 0.442±0.051 (0.600,0.650) 0.897±0.002 0.804±0.015 0.205±0.015
Target Score

1.5

0.336±0.031 0.484±0.052 (0.480, 0.780) 0.886±0.003 0.816±0.013 0.336±0.022

Target Score 0.351±0.0340 0.447±0.026 (0.590,0.780) 0.886±0.003 0.823±0.024 0.356±0.037

Tempered Noise 0.341±0.039 0.468±0.041 (0.590, 0.560) 0.881±0.002 0.813±0.025 0.352±0.012

Tempered Noise 0.342±0.012 0.502±0.034 (0.500, 0.720) 0.882±0.002 0.832±0.021 0.360±0.021

JNK3
DRD2

Target Score 0.5 0.090±0.018 0.434±0.065 (0.150, 0.472) 0.915±0.001 0.671±0.022 0.228±0.011

Tempered Score 0.066±0.015 0.571±0.187 (0.110,0.943) 0.914±0.002 0.678±0.0187 0.236±0.020
— 1.0 0.087±0.028 0.624±0.094 (0.100, 0.978) 0.903±0.001 0.675±0.022 0.241±0.010

— 0.094±0.024 0.635±0.067 (0.413,0.550) 0.899±0.002 0.686±0.025 0.263±0.023
Target Score

1.5

0.136±0.046 0.582±0.067 (0.490,0.640) 0.886±0.003 0.639±0.019 0.241±0.017

Target Score 0.102±0.031 0.620±0.148 (0.320, 0.541) 0.885±0.006 0.659±0.022 0.274±0.028

Tempered Noise 0.132±0.032 0.550±0.036 (0.280, 0.469) 0.884±0.001 0.650±0.021 0.258±0.020

Tempered Noise 0.141±0.020 0.617±0.040 (0.360, 0.655) 0.884±0.005 0.661±0.018 0.252±0.014

GSK3β
DRD2

Target Score 0.5 0.146±0.034 0.528±0.077 (0.051, 0.908) 0.914±0.001 0.709±0.021 0.203±0.015

Tempered Score 0.162±0.025 0.543±0.063 (0.430,0.965) 0.914±0.001 0.697±0.013 0.198±0.017
— 1.0 0.202±0.023 0.620±0.057 (0.660,0.726) 0.908±0.002 0.773±0.021 0.238±0.021

— 0.190±0.022 0.666±0.093 (0.240, 0.986) 0.907±0.002 0.784±0.010 0.254±0.019
Target Score

1.5

0.240±0.030 0.636±0.066 (0.350, 0.804) 0.894±0.002 0.759±0.015 0.290±0.016

Target Score 0.222±0.036 0.584±0.068 (0.630, 0.580) 0.891±0.003 0.740±0.027 0.283±0.020

Tempered Score 0.228±0.016 0.649±0.084 (0.550, 0.655) 0.884±0.002 0.774±0.015 0.303±0.012

Tempered Score 0.266±0.061 0.638±0.036 (0.520,0.796) 0.885±0.002 0.774±0.017 0.307±0.012

F.4 MOLECULE GENERATION

Visualizing top-performing molecules We showcase the molecules with the best docking scores
from Table 4 in App. F.4.

Metrics In addition to reporting the top-performing molecules, we report the percent of molecules
that are valid and unique, as well as their diversity (evaluated using Tanimoto distance on Morgan
fingerprints (Rogers & Hahn, 2010)) and quality, which is the set of unique and valid molecules that
also have a quantitative estimate of drug-likeness (QED) ≥ 0.6. This metric was taken from Lee
et al. (2025).

Inference process In practice, we find that the FKC weights have a large variance during molecule
generation. This is problematic, as a large number of samples are thrown away. Furthermore, we
noted that the score was not always well-conditioned. To ameliorate this, we divided the weights by a
set temperature term (T = 100) to reduce their variance before resampling, clipped the top 20% to
account for any score instabilities, and did early-stopping (only resampled for 70% of the timesteps).

Molecule generation metrics for different SDE types and temperatures In Table 8, we show an
ablation over different types of SDEs and β , with and without FKC.
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Figure 9: Samples from SDXL

F.5 ADDITIONAL IMAGES FOR SDXL

We show addition images generated by our method and vanilla SDXL in Fig. 9.
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