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ABSTRACT

While score-based generative models are the model of choice across diverse do-
mains, there are limited tools available for controlling inference-time behavior
in a principled manner, e.g. for composing multiple pretrained models. Existing
classifier-free guidance methods use a simple heuristic to mix conditional and
unconditional scores to approximately sample from conditional distributions. How-
ever, such methods do not approximate the intermediate distributions, necessitating
additional ‘corrector’ steps. In this work, we provide an efficient and principled
method for sampling from a sequence of annealed, geometric-averaged, or product
distributions derived from pretrained score-based models. We derive a weighted
simulation scheme which we call FEYNMAN-KAC CORRECTORS (FKCs) based on
the celebrated Feynman-Kac formula by carefully accounting for terms in the ap-
propriate partial differential equations (PDEs). To simulate these PDEs, we propose
Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time
scaling to improve sampling quality. We empirically demonstrate the utility of
our methods by proposing amortized sampling via inference-time temperature
annealing, improving multi-objective molecule generation using pretrained models,
and improving classifier-free guidance for text-to-image generation.

1 INTRODUCTION

Score-based generative models, also known as diffusion models, have emerged as the model of
choice across diverse generative tasks such as image generation, natural language, and protein
simulation (Saharia et al., 2022; Sahoo et al., 2024; Abramson et al., 2024). These models
leverage the ability to estimate scores of the sequence of noise-corrupted distributions and then
use the learned scores to reverse the corruption process enabling high quality generation. Thus,
diffusion models aim to produce new samples from the same distribution as the training data.
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additional Langevin corrector steps with the desired invariant distribution can be applied with addi-
tional simulation steps as the only practical overhead (Song et al., 2021; Bradley & Nakkiran, 2024).
However, these corrector schemes are only exact in the limit of infinite intermediate steps. Accept-
reject or Sequential Monte Carlo techniques may be used when the score is parameterized through a
scalar energy function (Du et al., 2023; Phillips et al., 2024), although these parameterizations require
extra computation during training and may sacrifice expressivity in practice (Salimans & Ho, 2021).
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While methods for sampling from mixtures or equiprobable regions of diffusion models have been pro-
posed (Skreta et al., 2024), general solutions for accurately sampling from combinations or temperings
of flexibly-parameterized diffusion models with limited computational overhead remain elusive.

To address these challenges, we introduce FEYNMAN-KAC CORRECTOR (FKCs), which enable
efficient and principled sampling from a sequence of annealed, geometric-averaged, or product
distributions derived from pretrained diffusion models. To develop FEYNMAN-KAC CORRECTORS
and test their efficacy, we make the following contributions:

* We propose a flexible recipe to construct weighted stochastic differential equations (SDEs), which
account for additional terms appearing when manipulating the distribution of generated samples.

* As our primary examples, we derive the correction terms for multiple heuristic schemes commonly
used to approximate annealed, product, or geometric averaged distributions, including CFG (Sec. 3).

* To simulate these weighted SDEs, we propose a family of Sequential Monte Carlo (SMC) resam-
pling schemes, which ‘correct’ a batch of simulated samples to closely approximate the intermediate
target distributions (Sec. 4,App. A).

* For the problem of sampling from an unnormalized density, we demonstrate that FKC allows for
sampling from a variety temperatures without retraining (Sec. 5.1). Moreover, we demonstrate
that a high-temperature learning, low-temperature inference scheme can be more efficient than the
notoriously difficult task of directly training a sampler at the lower temperature.

* For pretrained diffusion models, we demonstrate that adding FKC terms enhances compositional
generation of molecules with multiple properties (Sec. 5.2) and classifier-free guidance for image
generation (Sec. 5.3).

2 BACKGROUND
2.1 DIFFUSION MODELS

Generative modeling via diffusion models can be formulated as the simulation of the Stochastic
Differential Equation (SDE) corresponding to the reverse-time process. In particular, during training,
one gradually destroys samples from the data-distribution pga,(x) by simulating the following

nOiSing SDE: dmr == fT (mT)dT + UTdWT y Tr=0 "~ pdata(x) 5 (1)
where f;(z,) is usually some linear drift function f,(z,) = a,x,, o, defines the scale of noise
through time, and dW , is the standard Wiener process. The drift f; and the diffusion coefficient
o, are chosen so the final density is close to the standard normal distribution p,—; ~ N (0, I).

The generation process then can be defined as the family of denoising SDEs in the opposite time
direction (t =1—7), gz, = (—fe(we) + afVlogpt(xt))dt + o dWy 2)
where p; = p1_, is the density of the marginals induced by the noising process in Eq. (1); hence,

the process starts with zg ~ N (x |0, I4). By training a model of the score functions V log p;(+),
one can generate new samples from pgu, () using Eq. (2) (Song et al., 2021).

2.2 FEYNMAN-KAC PDES

While Eq. (2) describes a procedure for simulating individual particles, we can also derive Partial
Differential Equations (PDEs) which describe the time-evolution of the density of samples p;(x)
under this SDE. We begin by describing the relevant equations for the standard SDE case.
(1) Continuity Equation, which describes how the density changes when the samples move in space
according to a flow or ODE with drift v,
o ode ode

doe=wadt = P — (9,50 @y @), ®

where p¢° indicates the evolution only according to a flow.

(2) Diffusion Equation, which describes the change of the density for the pure Brownian motion

with coefficient oy, Opdiff 2 _
' dl’t = O'tth — ptT(x) = %Apglff(l') . (4)

where p{if denotes evolution due to the diffusion term only.
The SDE in Eq. (2) can be viewed as the composition of a flow and diffusion terms, where the
corresponding Fokker-Planck PDE describes the combined evolution

Ipie(x)

2
P = — (Vi (@)un(e)) + AR (@), )



Under review as a conference paper at ICLR 2025

However, our main focus in this work will be to study a third type of PDE, which will yield weighted
SDEs that we eventually use to simulate a sequence of marginals other those the forward noising
process p1—- (Sec. 3).

(3) Reweighting Equation, which describes the change of density when samples have time-dependent
log-weights w; which are updated based on the positions of samples x;,

a w
dwc =gt = 20O _ g @),

where gi(z) = g¢(x) — /gt(I)PiH(z)dI

where the last equation ensures conservation of the normalization constant, [ dx g¢(z)py’ (z) = 0.

6)

Feynman-Kac Formula We now focus on the combination of all three components to describe the
Feynman-Kac PDE,

apFK T 02 B
L) (@) + A )+ ap (@), ™
where to sample from pf*(z), one first has to sample x; via the following SDE
dl‘t = Ut(l‘t)dt —|— O'tth 5 d’LUt = gt(.’Et)dt, (8)

and then reweight the obtained samples using w;. Thus, p{*(x) reflects the density of weighted

samples, which differs from the density p}®(z) obtained via the Fokker-Planck PDE in Eq. (5) due
to the addition of reweighting terms.

In practice, we account for this difference by reweighting a collection of K particles, i.e., for
estimating the expectation of test functions ¢, we account for the weights using

5 exp(wk
By o)) = 30 =2k, ©)
=1 2 exp(wy)
This expression corresponds to Self-Normalized Importance Sampling (SNIS) estimation, which
converges to exact expectation estimators when K — oo (e.g. Naesseth et al. (2019)). For
justification of the validity of this weighting scheme for Feynman-Kac PDEs, we refer to Lelievre
et al. (2010, Ch. 4). We discuss more refined resampling techniques in App. A.

2.3  FLEXIBILITY OF SIMULATION FOR GIVEN MARGINALS

Given a PDE describing the time-evolution of a particular density p;(z), there may exist multiple
simulation methods (Song et al., 2021). While it is well-known that the diffusion equation (4) can be

2
simulated using an ODE, dz; = —%V log p: (x+)dt, we emphasize conversions to the reweighting
equation below.

Diffusion — Continuity Through simple manipulations, we can rewrite the diffusion equation
using a continuity equation and change the simulation scheme accordingly

8pé§1:) _ %?Apt(w) _ _<V7pt(x)<_%t2V10gpt(x))>

2
— dx; = —%Vlogpt(xt)dt. (10)

Continuity — Reweighting We first recast the continuity equation in terms of reweighting, in which
case the simulation changes the density solely by adjusting the weights of samples (without transport),

apéigw) = —(V,pi(z)vi(z)) = (ﬁi‘)<v,pt(1‘)vt($)>)pt(ay)
= dw = (*<V,vt($t)> - <V logpt(:ct),vt(xt»)dt an

Diffusion — Reweighting We further observe that diffusion terms may be captured in the weights via

a T 2 2
OPE) — 9% Apu(a) = T pele) (Alogpu(e) + |V log pu(x) )
2
= duwy = %(Alogpt(xt) + |V log pe (ze)||?) dt (12)

In particular, using Egs. (11) and (12) we now have an approach for translating arbitrary flow v, or
diffusion o; terms into the reweighting factors, assuming access to an exact score function V log p;.
Such manipulations will play a key role in deriving our proposed methods in Sec. 3.
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Table 1: Conversion rules for different terms of the original Feynman-Kac PDEs (FK-PDEs) and the correspond-
ing weighted SDE (wSDE). For every term corresponding to the original densities ¢; (first two columns), we
present the terms corresponding to the annealed marginals p g(x) < ¢ (x)ﬁ (top part) and the terms correspond-
ing to the product of marginals p; () o qi (x)q7 () (bottom part). Importantly, the correctors are additive in the
weight space, e.g. when transforming the Fokker-Planck equation, we transform both the continuity & diffusion
equation terms and sum the corresponding correctors. References to proofs are provided in the right-most column.

Original FK-PDE  Original wSDE

Annealed PDE

Annealed SDE dz; =

FK Corrector dw; +=

Proof

_<vY quL> ()t 7<V,pi,ﬁv,> ve(ay)dt —(B— l)<V,’vt>dt Prop. D.1
7<V,pf_3ﬂ1ff,> Bug(xy)dt B(B— 1)<V log g, 1v,>{{f Prop. D.2

, ai / _B(B-1)%
%fAlh ondW, 22 Api.p o dWy B(B—1)%(Viog q,H dt Prop. D.3
S5 Api g \%(IW, (8- )TA log q¢dt Prop. D.4
Jeqe dw; = gudt Bgtpe.p — Badt Prop. D.5
— — time-dependent annealing: 8 — 3; % log qqdt Prop. D.6

Original FK-PDE  Original wSDE Product PDE Product SDE dz; = FK Corrector dw, +=

7<V, qtvtl’2> v %dt —(V,pe(vf +27)) (vf +vP)dt ((Vlogq}, v}) +(Vlogq?, vi))dt | Prop.D.7
t;fA g2 ordW, ‘T—?Ap, o dW, —0?(Vlogq},Vlogq?)dt Prop. D.8
9 a”? dw, = gy *dt (9! + 9D (9t +g7)dt Prop. D.9

3 MODIFYING DIFFUSION INFERENCE USING FEYNMAN-KAC CORRECTORS

In this section, we propose new sampling tools for combining or modifying diffusion models at
inference time using the Feynman-Kac PDEs in Sec. 2.2. To this end, consider several different

pretrained diffusion models with marginals {q}}}; following
o % . ) 0.2 .
= —(V.ai(— fi + 07V loga))) + T Ag, (13)
dry = (—ft(wt) + 02V log qt(xt))dt + o dWy , (13b)

which is the denoising SDE from Eq. (2). Note that ¢! may arise from training on different datasets
or correspond to conditional models with different conditioning. Throughout this work, we assume
access to an exact score model si(x;0") = Vloggi(z), in part to facilitate the conversion rules
introduced in Sec. 2.3 and summarized in Table 1.

At inference time, we would like to sample from a modified target distribution involving these given
models. While other variants are possible, we focus on the following examples:

B %qt ()" pf™(a) =

A common heuristic for sampling from the distributions in the form of Eq. (14) is to sim-

ulate according to the score function corresponding to the target density. For example, in

classifier-free guidance (Ho & Salimans, 2021) we use the score of the geometric average
$0 = (1 — B)Vlog g} + BV log ¢? to simulate the following SDE

Viogp; 5 = (1
(= fi(xe) + 07V log pi5 (1)) dt + oy dW, . (15)

However, despite the similarity to Eq. (2), this heuristic does not sample from the prescribed
marginals including the final distributions, except in special cases. We proceed by using the p 5

example to illustrate our approach.

3.1

P (@)

geo

1 1 2 1 1 1— 2
7,4 @4 @) pi) = Zt(ﬁ)qt(x) Pai(z)?. (14)

d.’l?t =

OUTLINE OF OUR APPROACH

To remedy this, we 1nspect the PDE corresponding to pt B’ which can be written in terms of the

evolution of Qt and q75 8pgeo () 9 1

(1-8) 2 ) 16

= iz @) (16)

Expanding and using our expressions for the Fokker-Planck equation of ¢! in (13), we proceed to
locate terms corresponding to simulation of an SDE with the drift vy = — f;(x:) + 07 V log p{3.

Collecting all remaining terms of PDE (16) into weights g; we obtain the following Feynman- Kac
PDE, which can be simulated using the weighted SDE in Eq. (8), along with the resampling schemes
described in App. A apgeo

geo0
ot _<v ptﬁvt>
Conversion Rules To facilitate constructing the Feynman—Kac PDEs corresponding to existing
simulation schemes, in Table 1 we present the conversion rules that describe how the corresponding

PDEs change for the annealed densities and the product of densities. We use these rules as building
blocks when deriving our practical schemes.

o ApiS + 55 G- (17)
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3.2 CLASSIFIER-FREE GUIDANCE (CFG)

CFG (Ho & Salimans, 2021) is a widely-used procedure that simulates an SDE combining the scores
of conditional and unconditional models with a guidance weight /3,

Vlogpis(z) = (1 — B)Vliogg, (z|0) + BV logg; (x| c)

In practice, ¢; (x|()) may represent an unconditional model (or a model with an empty prompt)
whereas ¢7(z|c) is conditioned on a text prompt, class, or other random variables (Ho & Salimans,
2021). Alternatively, in autoguidance techniques, ¢/ may be an undertrained version of a stronger
conditional or unconditional model ¢? (Karras et al., 2024).

For our purposes, we will view CFG as it is usually presented — an attempt to sample from the
geometric average distributions p‘fe;(a:) o g} (z)' =P ¢?(x)P. Using the conversion rules in Table 1,

we derive the reweighting terms which facilitate consistent sampling along the trajectory.

Proposition 3.1 (Classifier-Free Guidance + FKC). Consider two diffusion models q; (), g7 (z)
defined via (13). The weighted SDE corresponding to the geometric average of the marginals

geo

Py p(x) oc gf (2)' =P gf (x)” is
dry = — fi(xy)dt + o2((1 — B)Vlog g} (z;) + BV log ¢ () )dt + o, dWy (18)

0.2 2
dw, = Z-B(8 —1)[|Vlog ¢} () — Vlog ¢ (z)||"dt .

See proof in Prop. E.3. As a further example, we combine CFG with a product of experts in Prop. E.4.
3.3 ANNEALED DISTRIBUTION

Next, we consider a single diffusion model with the learned score V log ¢;(x), which we use to
sample from the annealed or tempered density

P @) = au(2)° 1 Z:(5). (19)
For 5 > 1, this can be used to generate samples from modes or high-probability regions of given
models (Karczewski et al., 2024), while in Sec. 5.1 we explore the use of annealed inference in
learning diffusion samplers from Boltzmann densities. The annealed target can be shown to admit
the following Feynman-Kac weighted simulation scheme.

Proposition 3.2 (Annealed SDE + FKC). Consider a diffusion model g;(x) defined via (13).
Sampling from the annealed marginals p’gf'ge“l (z) x ¢ (I)B , B > 0 can be performed by simulating
the following weighted SDE

day = (= fi(2:) + 1oy V1og gi(x4))dt + CordWy,
2
duwy = (8 = 1(V, ful2))dt + 26|V log as ) |*dt
with the coefficients (for a € [0,1/2])
n=p+1-Ba, (=v(B+(1-p)2a)/8. (20)

See Prop. E.1 for proof, and note that linear drifts f;(z) will lead to constant divergence terms which
cancel upon reweighting in (9). We detail two choices of a.

Target Score Simulation For a = 0, we have = 8 and { = 1, which yields the farget score SDE
whose drift corresponds to the score of the annealed target,

dl’t = (—ft(l't) +Bat2Vlogqt(xt))dt+Utth (21)

Tempered Noise Simulation For a = 1/2, we have n = (1 + 3)/2,( = 1/+/B). We refer to this
as an SDE with tempered noise, namely

+1 o
doy = (= fi(ze) + s 5 otV 1og qi(x+))dt + \/—%th. (22)
We focus on these two choices of a, but note that for different 5, we found that either target score or
tempered-noise simulation could perform better in practice (Sec. 5).

3.4 PRODUCT OF EXPERTS (POE)
Intuitively, samples from the product of densities correspond to the generations that have high
likelihood values under both models. The product can also be interpreted as unanimous vote of
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experts, since a sample is not accepted if one of the densities is zero. Formally, consider the density

P (@) = ot (@)a (@) / Zs (23)
For conditional generative models, the product of densities can describe samples satisfying several con-
ditions. For example, in image generation, we could use ¢(z | “horse”)g(x | “a sandy beach”)
to generate images of “a horse on a sandy beach” (Du et al., 2023). In Sec. 5.2, we demonstrate
that the PoE target can be used to improve molecule generations which multiple conditions.

Again, a natural heuristic is to use the score of the target product density in the reverse-time SDE (2),
Vlogp}"™(z) = Vlog g (:) + Vlog g (1), (24)

In the following proposition, we further combine these rules with the annealing procedure to present

the weighted SDE that samples from the marginals pffzd(x) o (gt (x)g?(x))".

Proposition 3.3 (Product of Experts + FKC). Consider two diffusion models q} (x), q? () de-
fined via (13). The weighted SDE corresponding to the product of the marginals pirgd(z) o
(i (x)qi ()7, with B > 0 is
dzy = —fi(z)dt + ofn(Vlogg; (wr) + Vioggf (1)) dt + Cord Wy , (25)
2

dwr = B(8 — 1) 2|V log ¢} (z1) + Vlog g} (ar) | *dt + B0 (V log g} (1), V log a3 (w))dt + (28 — 1)(V, fu(ar) )t
with the coefficients (for a € [0,1/2])

n=B8+0-Ha, (=V(B+1-p)20)/5. (26)

See proof in Prop. E.2. Again, note that for linear drifts, the divergence term <V, ft(x)> is constant
and can be ignored. Similarly to Egs. (21) and (22) for annealing, we have the farget score SDE
(a=0,n=8,¢ =1)and the tempered noise SDE (a = 1/2,n1 = (8+1)/2,{ = 1//P).

4 RESAMPLING METHODS

In this section, we describe several options for utilizing the weights to improve sampling with a batch
of K particles. While the simplest technique would be to simulate the weighted SDE in Eq. (8) for K
independent particles across the full time interval ¢ € [0, 1] and reweight using SNIS in (9), we expect
these full-trajectory weights to have high variance in practice due to error accumulation.

Sequential Monte Carlo Since our weights provide a proper weighting scheme for all intermediate
distributions (Naesseth et al., 2019), we can leverage SMC techniques which reweight particles
along our trajectories. We find resampling only over an ‘active interval’ ¢ € [tmin, tmax] useful for
improving sample quality and preserving diversity, and set weights to zero outside of this interval.

Within the active interval, we resample at each step based on the increment wgk) =0 (;Lﬁk) )dt, using

systematic sampling proportional to exp{wt(k)} (Douc & Cappé, 2005). For small discretizations
dt, we expect relatively low-variance weights. From this perspective, systematic resampling is an
attractive selection mechanism as all particles are preserved in the case of uniform weights.

5 EMPIRICAL STUDY

Throughout this section, we compare our Feynman-Kac corrector (FKC) resampling schemes against
their corresponding SDEs without resampling. We consider both target score and tempered noise
SDEs. We describe the various resampling schemes in App. A and compare them on the GMM task
in App. F.2 Table 6. For the remainder of our experiments, we proceed with systematic resampling.

5.1 SAMPLERS FROM THE BOLTZMANN DENSITY

As described in Sec. 1, our FKC inference techniques suggest flexible schemes for learning diffusion
samplers at a given temperature and sampling according to a different temperature. Since we are
given an energy function in this setting, we are not restricted to learning with temperature 1 for
our base model ¢;. Thus, we use (77,,Ts) to refer to the learning (¢;) and sampling target (p; g)
distributions, with 5 = T's/T7, in the notation of Sec. 3.3.

Mixture of 40 Gaussians with Ground-Truth qf To verify our tools in a tractable setting, we
consider a highly multimodal distribution where we can calculate the optimal ¢; and V log ¢; for
(small) integer 3. We show qualitative results in Fig. 2. We find that target score + FKC performs best,
while tempered noise has a tendency to drop modes. We also find that FKC outperforms SDE-only
simulation in both tempered noise and target score settings. This is further supported by quantitative
results in Table 6.
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Starting Disribution Ground Truth Samples

Figure 2: Samples from Mixture of 40 Gaussians.

Table 2: LJ-13 sampling task with various SDEs, with

performance measured by mean + standard deviation 14
over 3 seeds. The starting temperature is 77, = 2, an- 12
nealed to target temperatures T's = 0.8 and T's = 1.5. 0

The DEM samples are generated with a model trained Z s
at those corresponding target temperatures. g
m 6
4
Target Temp.  SDE Type FKC  Distance-W, Energy-W, Energy-W, i
0.8 (8 =2.5) Tareet Score © 0912+0.016 14.521 £0.085 14.602 £ 0.076 2 .,/ =1 | N
° @ 0.9284+0.009 5.513-0.586  5.591 + 0.563 e
Tempered Noise [x) 0.924 £0.001  6.206 £ 0.007 6.272 £0.017 20 1.8 1.6 1.4 1.2 1.0 0.8
empere@ NOISe @ 09304+ 0.020 6438+ 0.994  6.620 + 0.998 . Target Temperature L .
DEM — 00100001 991040004 9.921 £ 0.004 Figure 3: 2-Wasserstein between energy distributions
1.5(3=1.33) Target Sc [x] 0.222 £0.011  5.152 £ 0.040 5.211 = 0.049 . .
arget Score © 023510009 324940003 3260 +0.004 of MCMC samples from the annealed target distribu-
. 0.215£0.004 2.075£0.010  2.236 = 0.005 . .
Tempered Noise & (51570000 070340017 0.888 < 0.048 tion and our methods at different temperatures. Note
DEM — 0074 £0.001 4461 £0.024 144 £0.042

the training temperature 17, = 2.

Sampling LJ-13 To demonstrate the utility of first learning a sampler at a high temperature then
annealing to a lower temperature vs. directly learning at a lower temperature, we consider a Lennard-
Jones (LJ) system of 13 particles at a base temperature 77, = 2. We train a Denoising Energy
Matching (DEM) model (Akhound-Sadegh et al., 2024) at T, = 2 and perform temperature-annealed
inference to lower temperatures. In Table 2 and 7 we compare the performance of a DEM model
trained at a lower temperature against a DEM model trained at a higher temperature and annealed
to the lower temperature using various SDEs. We evaluate methods using the 2-Wasserstein metric
between distance distributions, and the 1- and 2-Wasserstein metrics between energy histograms
to a reference distribution (App. F.3). We find that tempered noise+FKC performs best at higher
target temperatures. However, at lower temperatures, the target score SDE+FKC performs best. Both
methods outperform DEM directly trained at the lower temperature. We find DEM is qualitatively
easier to learn at higher temperatures requiring much less tuning compared to lower temperatures
(Fig. 5). This makes the train-then-anneal approach attractive in this setting.

We find that FKC in this setting is able to successfully sample from temperatures Ts € [2.0,0.8]
(Fig. 3). This is attractive as, with FKC, practitioners can train a single amortized model, then sample
at a variety of temperatures post-hoc. For extended results and discussion see App. F.

5.2 MULTI-PROPERTY MOLECULE GENERATION

We apply FKC to the setting of multi-property molecule generation, which requires molecules to
satisfy multiple constraints simultaneously. Here, we look at the setting of dual-target drug design,
where a molecule needs to interact with two proteins simultaneously. Dual-target drug design has
become increasingly investigated for targeting complex disease pathways (Zhou et al., 2024).

We use our PoE scheme introduced in Prop. 3.3 to take the product of two single property distributions.
We select LDMol (Chang & Ye, 2024) to generate molecules, which is a latent diffusion model con-
ditioned on natural language descriptions of molecule properties; this gives flexibility of generating
molecules with a wide range of properties. To generate molecules that inhibit a specific protein, we
prompt the model with “This molecule inhibits {protein_name}", following Wang et al. (2024).

First, we consider three proteins oracles from TDC (Huang et al., 2021): JNK3, GSK3/3, DRD2. Our
goal is to generate molecules that are simultaneously predicted to inhibit each pair of proteins. We
apply PoE using both target score and tempered noise SDEs at various J; we showcase our best
results in Table 3 and the full ablation in Table 8. We primarily evaluate the generated molecules on
their predicted ability to bind to two proteins Py and Po, taken as the product of individual predictions.
We also look at the number of valid and unique molecules generated, their diversity, and the drug-like
quality of the molecules (Lee et al., 2025). For more details on the metrics, see App. F4. As a
baseline, we consider the target score SDE with 5 = 0.5, which corresponds to a simple averaging
of scores (Liu et al., 2022). We find that the tempered noise SDE at higher 8 generates molecules
that have higher fitness for binding to each pair of proteins. When we incorporate FKC, the average
performance of the molecules further increases. Details of our experimental procedure are listed
in App. F.4. We also note that POE+FKC tends to generate more molecules that are unique, valid
and have drug-like qualities, although their diversity decreases slightly, which is a common tradeoff.
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Table 3: Multi-property molecule generation results. For a set of two target properties (P and P2), we take the
set of the top-10 best performing molecules from a batch-size of 512 as the molecules with the highest P1*P2
scores. We report averages of the top-10 molecules from 5 runs and the top-1 molecule overall. We also report
the diversity, validity & uniqueness, and quality of all molecules.

P,/P, SDE Type B FKC P;top-10(1) Patop-10(1) (P1,Pa)top-1(1)  Div.(t)  Val & Uniq. ()  Qual. (1)
INK3 Target Score 0.5 o 0.21210.016 0.35640.046 (0.500,0.580) 0.910-0.000 0.71340.027 0.127+0.015
. [x) 0.341+9.039 0.46840.041 (0.590,0.560) 0.88140.002 0.813+£0.025 0.35210.012
GSK3f§  TemperedNoise 15 20 o349 010 0.502.0054 (0.500,0.720) 088210002  0.832:0021  0.36010021
INK3 Target Score 0.5 © 0.090+0.018 0.43440.065 (0.150, 0.472) 0.915.0.001 0.67110.022 0.22810.011
DRD2  Tempered Noise 1.5 @ 0.13210.032  0.55010.036 (0.280,0.469)  0.884+0.001 0.6502+0.021 0.2580.020
h ) (] 0.141.0020 0.61710.040 (0.360,0.655) 0.88440.005 0.661+0.018 0.25240.014
GSK38 Target Score 0.5 [x) 0.14640.034 0.52840.077 (0.051,0.908) 0.914.10.001 0.70940.021 0.20310.015
DRD2  Tempered Noise 1.5 [x) 0.22810.016 0.649.0.084 (0.550,0.655) 0.88410.002 0.774:0.015 0.30310.012
P : o 0.266:0.061 0.63810036 (0.520,0.796) 0.885+0.002 0.77410.017 0.30710.012

Table 4: Docking scores of 32 generated molecules Table 5: Image generation using SDXL with
to P1=ATP1A1 and Po=CPT2. We used the tempered classifier-free guidance (CFG). For all metrics mean

noise SDE with 5 = 1.5. values are reported.
FKC (P1, P2) top-10 (}) (P1,P2)top-1(}) Div. () B FKC CLIP ImageReward Human Eval
[x) —6.65+1.05, —7.36+0.854 (—8.87,—-8.13) 0.921 25 © 3389 0.25 4.85
© (~7.4940.71,-831:004) (-8.41,-9.73) 0.895 75 @ 36.00 0.74 6.15
25 @ 3587 0.79 6.73

Finally, we consider a more challenging setting of protein-ligand docking, generating binders for
proteins ATP1A1 and CPT2. The protein pockets were obtained from Zhou et al. (2024) and the
final generated molecules were docked using AutoDock Vina (Eberhardt et al., 2021). Table 4 shows
the docking scores of molecules, and we find that incorporating FKC generates molecules with better
scores. We visualize the top molecules in App. F.4.

5.3 IMAGE GENERATION WITH STABLE DIFFUSION XL

We apply CFG from Prop. 3.1 and study the ef-  ohoto of a blue s photo of o res o ohoto of an
fect of FKC on generating images with Stable Toommarastr ™" IO ok bl e
Diffusion XL (SDXL). For generation, we inte-

grate variance-preserving SDE with 100 steps of

the Euler-Maruyama solver. We find that FKC i |
performs the best for the guidance scale 5 = 2.5
and compare it to CFG with the same scale and
the default scale 5 = 7.5. To quantitatively eval-
uate the generated images, we consider three
metrics: CLIP Score (Radford et al., 2021), Im-
ageReward (Xu et al., 2024), and Human Evalua-
tion. CLIP Score measures the cosine similarity

.5)

CFG(3

=25)

|

i

between an image embedding and a text prompt g : = —=8
embedding. ImageReward evaluates generated Figure 4: Samples: CFG(top), CFG+FKC(ours, bottom)
images by assigning a score that reflects how

closely they align with human preferences, including aesthetic quality and prompt adherence.

CFG + FKC(8

We report all three metrics in Table 5. Our method outperforms the baseline methods in ImageReward
and Human Evaluation while achieving comparable performance in terms of the CLIP score. Exam-
ples of generated images and prompts are presented in Fig. 4. Additional examples and comparisons
with both baselines are included in App. E.5.

6 CONCLUSION

In this work, we proposed FEYNMAN-KAC CORRECTORS, an array of tools allowing for a fine
control over the sample distributions of diffusion processes. These target distributions may arise in
compositional generative modeling (Du & Kaelbling, 2024), where we seek to combine specialist
models capturing various chemical properties of molecules or different aspects of a complex prompt.
Geometric averaging appears in widely-used CFG techniques while, via annealing we demonstrate that
an approach of first learning an amortized sampler at a higher temperature then annealing using FKCs
down to a lower temperature opens up a new dimension for the construction of amortized samplers.

Finally, our framework allows for the use of reward models (see Prop. E.5), and for time-dependent
annealing schedule 5; (Prop. D.6), where the log-density terms which appear in the resulting weights
can be efficiently estimated using techniques from (Skreta et al., 2024).
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7 IMPACT STATEMENT

This goal of this paper is to advance the field of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be specifically highlighted here.
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A RESAMPLING METHODS

In this section, we describe several options for utilizing the weights to improve sampling with a batch
of K particles. While the simplest technique would be to simulate the weighted SDE in Eq. (8) for K
independent particles across the full time interval ¢ € [0, 1] and reweight using SNIS in (9), we expect
these full-trajectory weights to have high variance in practice due to error accumulation.

Sequential Monte Carlo Since our weights provide a proper weighting scheme for all intermediate
distributions (Naesseth et al., 2019), we can leverage SMC techniques which reweight particles along
our trajectories. We find resampling only over an ‘active interval’ ¢ € [tin, tmax] useful for improving
sample quality and preserving diversity, and set weights to zero outside of this interval.

Within the active interval, we resample at each step based on the increment wgk) =0 (xgk) )dt, using

systematic sampling proportional to exp{wfk)} (Douc & Cappé, 2005). For small discretizations
dt, we expect relatively low-variance weights. From this perspective, systematic resampling is an
attractive selection mechanism as all particles are preserved in the case of uniform weights.

Jump Process Interpretation of Reweighting Finally, by reframing the reweighting equation in
terms of a Markov jump process (Ethier & Kurtz (2009, Ch. 4.2)), a variety of further simulation
algorithms for Feynman-Kac PDEs are possible (Del Moral (2013, Ch. 1.2.2, 5); Rousset & Stoltz
(2006); Angeli (2020)).

A Markov jump process is determined by a rate function A;(x), which governs the frequency of
jump events, and a Markov transition kernel J;(y|x), which is used to sample the next state when
a jump occurs. The forward Kolmogorov equation for a jump process is given by

ump x
W) _ ( / At<y>Jt<xy>pt<y)dy> .

where the terms can intuitively be seen to measure the inflow and outflow of probability, respectively.

Our goal is to find choices of A\;(z), J;(y|z) such that the evolution of p}"™ matches that of p’ in
Eq. (6) for a given choice of g;. As emphasized in Del Moral (2013, Ch. 5); Angeli et al. (2019),
there are many possible jump processes which satisfy this property. We present a particular choice
here, with proof in App. C.2.

Proposition A.1. For a given g; in Eq. (6), define the jump process rate and transition as
Ae(x) = (9¢(2) — Ep,[9e]) (27a)

+
(Qt(y) — Ep, [gt]) pe(y)

Tilylz) = (27b)
) S (9:(2) —Ep, [gtDert(Z)dZ
where (u)~ = max(0, —u)land (u)* == max(0,w). Then,
c‘)péat () _ 6pg§:c) = pi(@) (g:(2) — Ep, [9:]) 28)

which matches Eq. (6).

In continuous time and the mean-field limit, this jump process formulation of reweighting corresponds
to simulating
. oy w.p. 1 — Ae(z¢)dt + o(dt)
AT~ Teylme) wop. Ae()dt + o(dt).
We expect this process to improve the sample population in efficient fashion (Angeli et al., 2019),
since jump events are triggered only in states where (g;(z) — Ep, [¢:])~ > 0 = gi(z) < Ep, [g4),
and transitions are more likely to jump to states with high excess weight (g.(y) — E,, [g:]) " > 0.

(29)

In practice, we use an empirical approximation pf* (2) = + 21521 5. (z™) to approximate the jump
rate A¢(x) and transition J;(y|x). Instead of simulating Eq. (29) directly, one can also adopt an
implementation based on birth-death ‘exponential clocks’ (BDC, Del Moral (2013, Ch. 5.3-4)).
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B RELATED WORK

Sequential Monte Carlo methods have proven useful across a wide range tasks involving diffusion
models, including for reward-guided generation (Uehara et al., 2024; 2025; Singhal et al., 2025;
Kim et al., 2025), conditional generation (Wu et al., 2024), or inverse problems (Dou & Song, 2024;
Cardoso et al., 2024), with recent extensions to discrete diffusion models (Singhal et al., 2025; Li
et al., 2024; Uehara et al., 2025).

Within the context of diffusion samplers from Boltzmann densities, Phillips et al. (2024) consider
SMC for energy-based score parameterizations. Chen et al. (2025); Albergo & Vanden-Eijnden (2024)
consider SMC resampling along trajectories with respect to a prescribed geometric annealing path,
where Albergo & Vanden-Eijnden (2024) is presented through the Feynman-Kac perspective. The
approaches in (Vargas et al., 2024; Albergo & Vanden-Eijnden, 2024) correspond to the escorted Jaryn-
ski equality (Vaikuntanathan & Jarzynski, 2008; 2011), where additional transport terms are learned to
more closely match the evolution of a given density path (Arbel et al., 2021; Chemseddine et al., 2024;
Maté & Fleuret, 2023; Tian et al., 2024; Fan et al., 2024; Maurais & Marzouk, 2024). Indeed, the
celebrated Jarzynski equality (Jarzynski, 1997; Crooks, 1999) and its variants admit an elegant proof
using the Feynman-Kac formula (Lelievre et al. (2010, Ch. 4),Vaikuntanathan & Jarzynski (2008)).

Predictor-corrector simulation (Song et al., 2021) performs additional Langevin steps to promote
matching the intermediate marginals of p; of a diffusion model. These schemes can be adapted for
annealed or product targets, although Du et al. (2023) found best performance using Metropolis
corrections. Finally, Bradley & Nakkiran (2024) interpret standard CFG SDE simulation (18) as
a predictor-corrector where the corrector targets a different guidance or geometric mixture weight
B = %(5 + 1). Our resampling correctors are instead tailored to the original guidance weight (.

Amortized Sampling Recently, there has been renewed interested in learning amortized samplers,
and particularly diffusion-based amortized samplers particularly towards molecular systems. Midgley
et al. (2023) explored learning a normalizing flow using an a-divergence trained with samples using
annealed importance sampling Neal (2001). Zhang & Chen (2022); Vargas et al. (2023); Richter
& Berner (2024); Akhound-Sadegh et al. (2024); Albergo & Vanden-Eijnden (2024); Bortoli et al.
(2024) learn diffusion annealed bridges between distributions using various methods.

While we use DEM in this work as it achieves state of the art results for our LJ-13 setting, there
are several works that build upon DEM using bootstrapping OuYang et al. (2024) and learning the
energy function instead of the score Woo & Ahn (2024). We note that our FKC sampler applies to
any diffusion based sampler.

(Wasserstein)-Fisher-Rao Gradient Flows The reweighting portion of our Feynman-Kac weighted
SDEs corresponds to a non-parametric Fisher-Rao gradient flow of a linear functional G[p;] =
f g+ prdz, whereas gradient flows in the Wasserstein Fisher-Rao metric (Kondratyev et al., 2015;
Chizat et al., 2018; Liero et al., 2018) have a form similar to our weighted PDEs (Lu et al., 2019) for
an appropriate ODE simulation term v; = Vg,. In sampling applications, Chemseddine et al. (2024)
study the problem of when a given tangent direction in the Fisher-Rao space can be simulated using
transport via a tangent direction in the Wasserstein space.

C FEYNMAN-KAC PROCESSES

C.1 MARKOV GENERATORS FOR FEYNMAN-KAC PROCESSES

In Sec. 2, we described the adjoint generators £ ®) [pd, L} (@) [pd), L} (o) [pt] corresponding to flows
with vector field v, diffusions with coefficient o, and reweighting with respect to g,. In particular,
the Kolmogorov forward equation % () = L} [pt](x) corresponds to our PDEs presented in Egs. (3),

(5) and (6). In the lemma below, we recall the generators which are adjoint to those in Sec. 2 and
operate over smooth, bounded test functions with compact support, e.g. cﬁ“ [¢].
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Lemma C.1 (Adjoint Generators). Using the identity [ ¢(x) L;[p:](z) dz = [ Li[¢](z) pe(x) da
Flow:  £{"[¢](x) = (Vo(x), vi()) (30)
£, p)(x) = —(V.pe() ()
Diffusion: L\”[¢](z) = %?Agﬁ(x) 31)
2
£ (@) = Fpela) (32)
Reweighting: £7[6](2) = 0.0)(5(2) ~ [ 1(0) (o) ) (33)

L‘:(Q) [pi](x) = pi(z) (gt(l’) - /gt(x) pt(:n)dx)

Proof. The proofs for flows and diffusions follow using integration by parts, with proofs found in,
for example, Holderrieth et al. (2024, Sec. A.5). For the reweighting generator, we have

[ s = [ o) (pio) (o)~ [0 mtiray ) e
= 2@ (50 (0~ [ sty ptwriy) o

= [ pi@) £0P6)(0) da
Note that the weights g, are often chosen in relation to the unnormalized density of p; (Lelievre et al.

(2010, Sec. 4)), and our attention will be focused on the pair of generator actions £} [p,], £{97[4]
for possibly time-dependent ¢.

C.2 JuMP PROCESS INTERPRETATION OF REWEIGHTING

One way to perform simulation of the reweighting equation will be to rewrite it in terms of a jump
process. We first recall the definition of the Markov generator of a jump process (Ethier & Kurtz
(2009, 4.2), Del Moral (2013, 1.1), Holderrieth et al. (2024, A.5.3)) and derive its adjoint generator.

Lemma C.2 (Jump Process Generators). Using the definition of the jump process generator and
the identity [ ¢(x) T [p)(x) de = [ Ti[¢)(z) pi(x) dx. Letting Wiz, y) = M\(x)Ji(y|z) for
normalized Ji(y|z),

Jump Process: TV [¢](x) = / <gb(y)—qb(:r)))\t(x)Jt(y|x)dy (34a)

I il () = ( / At(y)Jt(ny)pt(y)dy) —pe(x)Ae(z)  (34b)

Proof. Through simple manipulations and changing the variables of integration, we obtain

/cb ) T [pel( d:c—/jt
-/(/ (¢<y> e >)At< Vi) Jua) da
//gb YA (2) Ty (y|x)pe(z dydxf//gb Ve (@) Je (y|z)pe(x) dydx
= [ [ @t el ) dody ~ [ [ i) iaip(z) dydo
= [ (( [ M atatimiy) - pord) ([ nwia) )i

— @) = ( / At<y>Jt<x|y>pt<y>dy) ~ pi(@)h(a)

using the assumption that J;(y|z) is normalized. O
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Reweighting — Jump Process Our goal is to derive a jump process such that the adjoint generators
are equivalent 7" [p,](z) = £;9[p,](z) for a given reweighting generator with weights g;
(Eq. (32)).

While Del Moral (2013); Angeli (2020) emphasize the freedom of choice in such generators,' Sec. 4

of (Angeli et al., 2019) argues for a particular choice to reduce the expected number of resampling
events. To define this process, consider the following thresholding operations,

(u)” = max(0, —u) ()" = max(0, u), which satisfy: (u)" — (u)” =u.  (35)
We can now define the Markov generator using
B (g:(y) — Ep, [gtDert(y)

Wi(z,y) = Ae(2) Je(ylz) () = (gt(x) —Ep, [gt]) Ji(ylz) = [(9:(2) = By, [92]) pe(2)dz
t (36)

Since jump events are triggered based on A\¢(x¢) = (g:(z) — Ep,[g¢])” and are more likely to
transition to events with high excess weight (g:(y) — E,, [g:]) " p:(y), we expect this process to
improve the sample population in efficient fashion (Angeli et al., 2019).

Proposition C.3. For a given weighting function g, and the adjoint generator L, (g ), the adjoint
generator Jt*(w) derived using in Eq. (36) satisfies jt*(w) [pe](x) = E:(g) [p¢](x). More explicitly,
we have

£:9lpi)(@ ) 7)) (37)

@) (0@) = [ (@) m(arie) =

</ (Qt(y) Ep, [Qt])7 f((;;:((ac)) IIEE [Zt]])) pt((w))d pt(y)dy> pe () (gt(a:) —Ep, [915])7.
z s 2

Proof. We start by expanding the definition of Jt*(W) [pe)(@)
7o) = ( [ At<y>Jt<ac|y>pt<y>dy) ~p(@)h(x) (80

—E,,[g:)) " pe()
(9:) ~ By lor]) f B ) ) dzmy)dy)
e >(
(9o
(

) (38b)
-(/
)

(g:(2) = Ep, [9:) " pe()
1) ity dy)( J(9:(2) - Ept[gtb*pt(z)dz)
— pe(x)

_ <f<gt(y> —E,,[9:)) " pe(y)dy
[(9:(2) — Ep, [g:]) T pe(2)dz

Pt gt
Pt gt

(38¢)

.’17 pt gt

(38d)
Using Eq. (35), note that

[ (o) = Balod) mi@)dz = [ o) (31:) - Enlad)” = [ (00(2) ~ En o)z =0

(39)

which implies [ (g:(2) —Ep, [g:])) Tpe(2)dz = [(9¢(2) —Ep, [g4]) " pe(2)dz. We proceed in two cases,
handling separately the trivial case where the denominator in Eq. (38d) is zero.

'For example, see Rousset (2006); Rousset & Stoltz (2006) for a particular instantiation combining separate
birth and death processes.
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Case 1 (\i(x) = 0Vz € supp(py)):  Note that [ (g:(2) — Ep,[g:]) pe(2)dz = 0 if and only if
g+(z) = Ep, [g¢], Vz, since (u)~ > 0. In this case, the generators become trivial and we can confirm

£ () = p(a) (gtm - [ata) mx)dm) = pe() (Epe[9e] — Epa[gi]) = 0

7 i) = [0-0w)dy - @) - 0= 0
and thus Eq. (37) holds, as desired.
Case 2 (z € supp(p;) s.t. M(z) > 0):  Under the assumption, 3z € supp(u) s.t. (g:(z) —
E,, [gt])_ > 0. This implies | (gt(z) —E,, [gt])_pt(z)dz =/ (gt(z) —E,, [gt])+pt(z)dz > 0.
J dpe(2)(9(2)~Ep,[9:])
[ dpi () (g0(2)~Ep,[g])

(40)

=1

In this case, we can conclude using Eq. (39) that

Continuing from Eq. (38d)
7" lpd@) = (f i) = S o] @)dy)mx) (0e@) ~ Epilo))”

o9 T pi(2)dz

J(9:(2)
- Pt (gt x Ept gt >_ (41a)
= pi@)((9e(2) ~ By, 0)) " — (0e(2) ~Ep,[0) ) (41b)
= pe(2)(g¢(x) — Ep, [g¢]) (41c)
= £;9p)(2) (41d)

as desired. Note that, in the second to last line, we used the identity in Eq. (35) that (u)* — (u)” =
U. O

C.3 SIMULATION SCHEMES

In practice, we use an empirical mean over K particles with as an approximation to the expectation
E,, [g¢], with
Pt ’

(gt(m(k)) —Ep, [Qt])_ ~ <9t($(k)) - ;igt(x(i)))_, (42)

(5ee®) =B fa]) " = (9ee®) — égt(w))*

See Del Moral (2013, Sec. 5.4) for discussion.

Discretization of the Continuous-Time Jump Process To simulate a jump process with generator
jt(‘]’p ) [¢], we can consider the following infinitesimal sampling procedure (Gardiner (2009, Ch. 12);
Davis (1984); Holderrieth et al. (2024)). With rate A\;(z) = (gt (x) — E,, [gt]) , the particle jumps

to a new configuration,

Xy with probability 1 — dt - A¢(z¢) + o(dt)

LNt
(9®) % I )
Yerdt ~ +— with probability dt - A\ (z¢) + o(dt)
215 (90@9) - £ 25 @)

Tidt =

(43)
The new conﬁguration is sampled according to an empirical approximation of J;(y|z) using pX (y) =
e LS 41 6, (z®)), where the outer + factor cancels.

Note that the jump rate is zero for particles with g;(z) > E,,[g:]. Resampling a new particle
proportional to (g;(z®)) — £ 3 ; 9t (()))* thus promotes the replacement of low importance-
weight samples with more promising samples.
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Interacting Particle System Following Del Moral (2013, Sec 5.4), the process may also be
simulated using ‘exponential clocks’. In particular, we sample an exponential random variable with
rate 1, 7(F) ~ exponential(1) as the time when the next jump event will occur (see Gardiner (2009,
Ch. 12)). We record artificial time by accumulating the rate function Ay,,.c = > 7_, A¢(a¢)dt for

samples x; along our simulated diffusion. Upon exceeding the threshold time )\( 2 > 7k we

sample a transition according the empirical approximaton of J;(y|z) in Eq. (43). We report results
using this scheme in App. F.2 Table 6, but found it to underperform relative to systematic resampling
in these initial experiments.

D PROOFS FOR TABLE 1
D.1 ANNEALING

Proposition D.1 (Annealed Continuity Equation). Consider the marginals generated by the
continuity equation

O0qi(z)

e —(V, q(z)v()) . (44)

The marginals p; g(x) qtﬁ (x) satisfy the following PDE
opus@) = ~ (Vopes@u(@) + @) 0@ - Bpua@], @)
g1(z) = (1= BNV, ve()) - (46)

Proof. We want to find the partial derivative of the annealed density
q(x)° 9 9

_— 47
prp(z) = deEQt )3 atptﬁ() 47)
By the straightforward calculations we have
0 0
g 108 Pes =B5; logar — /d:c Pt ﬂﬁ 7 108.qt (48)

= —B<V,vt>—B<V10th7vt>_/dxpw[—ﬁwvm—5<V10g%”f>] “49)

= —(V,u) = (Vlogps,u) + (1 = B)(V,v1) &0
arrevemaos

= —(V,vu) — (Vlogpg,v) + (1 = B)(V,v¢) —/d:z: pes[(1 =BV, ve)] -

(51
Thus, we have

%Pt,ﬂ(x) = —(V,pep(@)vi(2)) + pes(@) [(1 = BV, vi(@)) — By, , (1= BV, 0i(2))] |

(52)
which can be simulated as
diﬁt = vt(xt)dt7 (53)
dwy = — (B —1){(V,vy(x))dt . (54)
]
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Proposition D.2 (Scaled Annealed Continuity Equation). Consider the marginals generated by
the continuity equation

aqéim) = —<V, qt(x)vt(m» . (55)

The marginals p, 3(x) o q (x) satisfy the following PDE
%Pt,ﬂ(ﬂﬁ) = —(V, (@) Bve(x)) + pr.p(a) [9e(x) — Ep, ,9:(2)] (56)
gi(z) = — (1= B)(Vlogpsa(x), vi(x)) . 57

Proof. We want to find the partial derivative of the annealed density

Qt( )ﬁ 0 2

_ = = 58
Dt ﬁ( ) fdl' Qt 5 ) 8tpt,B($) ( )

By the straightforward calculations we have
gt log pe.g = ﬁ@t log g — /dw bt Bﬂ log qt (39)

—B(YV,v) — B(V log gy, vr) — / dz pos[~B(V,0,) — B(Vlogar,v)]  (60)

—(V, Bo) = (Vlogpr g, vi) — /dw pes[—B(V,v) = (Vlogpsp,ve)] (61)

= - <V751}t> - <V10gpt,ﬁaﬁvt> S ﬁ)<V10gPt,ﬁ7vt> (62)
_ /dm pe[—(1 = B){Viogpss,ve)] . (63)
Thus, we have
0

apt,ﬁ(x) = - <V7Pt,ﬁ( ) By (x >+pf g\x )[Qt(x) - Ept,ﬂgt(x)] ) (64)
gi(z) = = (1= B)(Vlogpr,p,vt), (65)

which can be simulated as
dxt = 6’Ut (It)dt, (66)
dwy = B(B — 1)<V10g Qt(xt)7vt(xt)>dt' (67)
O]

Proposition D.3 (Annealed Diffusion Equation). Consider the marginals generated by the diffusion
equation

Oqi(x) oﬁ
ot 2 Agi(z). (68)
The marginals p; g(z) qtﬁ (z) satisfy the following PDE
0 o2
&Pt,ﬂ(x) = éApt,B(CE) +Pt,6($) [gt(fE) - Ept,ﬁgt(af)] ) (69)
2
gu(@) = = B(B -1V Iog (). (70)

Proof. We want to find the partial derivative of the annealed density

qi(z)P 0 _9

pep(T) = Wa 5P () (71
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By the straightforward calculations we have

0 0 0
— =081 — —1
ot log pt,p ﬁ@t 0g gt /dCE pt,ﬁﬂat 0g qt (72)

o} o} 2 a; o}
:5?A10g(]t+57”VIOth” — [ dzpg ﬁEAIOth'FB?HVlOthH

(73)
0.2 0.2 0.2 0.2
= Alogpyp + ﬁ”Vk’gPt,ﬁ 2 - /dm i, [;Alogpm + ﬁIIVlogpt,ﬁ |2}

(74)

o2 o2 1\ o2
= L Alogpis+ = ||Viogpe sl — (1 — = )2 Viogpesll® (75)

2 2 B8) 2

1\ o2
_ /dx o {— (1 - 5) 2t||V10gpt75||2:| ) (76)
Thus, we have
0 o?
5iP6 (%) = - Apa (@) + pep() [90() — Epy p9:(2)] (77
2
g.
g(x) = = BB = 1) [Viog ()|, (78)
which can be simulated as
d.’Et = O'tth s (79)
2
g

dw, = — B(B — 1)7t||V10g g (zy)|Pdt . (80)
O

Proposition D.4 (Scaled Annealed Diffusion Equation). Consider the marginals generated by the
diffusion equation

Oqe(x) cﬁ
5% — 3 Agi(z) . 81)
The marginals p; g(x) qtﬁ () satisfy the following PDE
9 2
g0 () = 55895 () + pep(2) [00(2) — By, wu()] (82)
o2
g:(x) = (B — 1)7’5Alog qi(z) . (83)

Proof. We want to find the partial derivative of the annealed density

B 0
pt,B(‘r) = %, Ept’ﬁ(l') =7 (84)
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By the straightforward calculations we have

0 0 0
— =081 — —1
ot log pt,p ﬁ@t 0g gt /dCE pt,ﬁﬂat 0g qt (85)

o} o} 2 a; o}
:5?A10g(]t+57”VIOth” — [ dzpg ﬁjAIOth'Fﬁ?HVlOthH

(86)
_ tAIngt5+ —/dmptﬁg{ Alogptg—i— }
(87)
1\ o?
BAlogpt,g—&— HVlogpt 5|| + 1—B 7Alogpt,5 (88)
1
— /dx Dr.3 [(1 — ﬁ) ;Alogptﬁ} . (89)
Thus, we have
0 o?
Eptu@(m) = %Aptﬁ(x) +ptﬁ(x) [gt(z) - Ept,ﬁgt(x)} ) (90)
o}
gu(x) = (B~ 1)5-Alogqu(2), 1)
which can be simulated as
o
dry = \/—%th, (92)
2
dwy = (8 - 1) Alog gy(w)dt (93)
O

Proposition D.5 (Annealed Re-weighting). Consider the marginals generated by the re-weighting
equation

O0qt ()

% = ¢ (2)(9:(2) — Eq,(2)9: () - %94)
The marginals p; g(z) qf (z) satisfy the following PDE
0
5;P08(®) = Pe [B9:(x) — Bp, 5 Bg:(x)] 95)

Proof. We want to find the partial derivative of the annealed density
q:(z)? 9 _o

— 96
By the straightforward calculations we have

0 0

ot logpt,p = 5& log g — /dI bt /35 log az o7

= B(on(s) ~ Eg o (a) - / o s [Boa) = Buom(@)] 09

= Bgi(z) — /dx pr.pBg(T) . 99)
Thus, we have
%pm(x) = pe.p B (x) — Ep, ,B9:(x)] , (100)
which can be simulated as
dry =0, (101)
dwy = Bge(we) - (102)
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Proposition D.6 (Time-dependent annealing). Consider the annealed marginals py g(z) o< q;(z)?
following some F

d.]?t = Ut,5($t) + Ut,Bth s (103)
dwt = gt”@(ﬂft) o (104)
Then, for the time-dependent schedule (3, we have
da:t = V¢, B, (Sﬁ't) + Ut,ﬂtth 9 (105)
15)
e = g, (20) + o Tog u(z), (106)

sampling from p; g, (z) o< q¢(z)Pt.

Proof. First, let’s note that for the annealed marginals p; () o< g;(z)? with constant 3, we have

0 9 P

7t logpi,g = Ba log gt — /dx Dt [ﬁat log qt} (107)
1 1 o2

= — ﬁ<v7pt,ﬁvt,ﬁ> + E%APW + (gt,g — Eptﬁgt,g) . (108)

Thus, for the time-dependent 5;, we have

0 0 0 0 0
a1 log pt,5, = ﬂt& log q; + ﬂ logq; — /dm Pt.,B, {ﬁtat log q; + ﬂ log Qt] (109)

ot ot
1 1 074
= - V. pt,g,vep,) + —5—Aptg,
Peg, < t,8: Vt, 8 > pp, 2 t,8
B op
+ [(gt,ﬁt + aftt IOth) —Ep, 5, (gt,ﬁt + attlogqtﬂ . (110)
From which we have the statement of the proposition. O

D.2 PRroDUCT

Proposition D.7 (Product of Continuity Equations). Consider marginals qt1 2(x) generated by two
different continuity equations

aqt 9q?
qgix) = —~(V, g (x)vi (2)), qtaix) = —(V, @ (x)v?(z)). (111)
The product of densities p;(x) o< ¢ (x)q?(x) satisfies the following PDE
0
7;P1(@) = = (V. pi(a) (v (2) + 07 (2))) +pe(2) (9e(2) = Ep,myge(2)) . (112)
g1(z) = (Vlogg; (), v} (z)) + (Vlog ¢; (), v; () - (113)
Proof. For the continuity equations
0
S0 @) = =(V.al* @l (@) (114)
we want to find the partial derivative of the annealed density
1 2
a0
P = T @ o= (1
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By the straightforward calculations we have

O O D [ TO LD
T logpr = T logq, + 5 log g; /dw pt{at logq, + 5 log ¢; (116)
= —<V,vt1—|—vt2>—<V10gqt1,vtl>—<V10gqt2,vt2>— (117)
— /dx pt[—<V,vtl + v752> - <V10gqt1,vtl> - <Vlogq§,vt2>} (118)
= —(V,v} +v7) — (Viogps,v; +v7) + (Vioggl,vi) + (Viegg?, vf)— (119)
- /dx pe[(Viogqf,vi) + (Vioggr, v)] . (120)
Thus, we have
1o}
el = - (V, () (vf () + 0F (2))) + pe(2) (90 (2) = B, () 9:(2)) , (121)
gi(x) = (Vlogq; (), v} (x)) + (Vlog q; (), v; (x)) , (122)
which can be simulated as
dzy = (vf (2¢) + v (z¢))dt, (123)
dwy = [(Vlog qtl(xt),vf(xt» + <V10g qtz(:z:t), vtl(xt)>]dt. (124)

O

Proposition D.8 (Product of Diffusion Equations). Consider marginals qt1 2(:17) generated by two
different diffusion equations

Ogy(x) _ of Og;(z) _ of

= LA = LA (x). 12
(0 _ % gl (w), Q) _ O pgaa (125)
The product of densities p;(x) < q'(x)q?(z) satisfies the following PDE
0 o?
5Pt (®) = éﬁpt(m) +pe(@) (9¢(2) = Ep,2)9:()) (126)
g:(x) = —Uf<Vlogqtl(w),Vlogqf(x)>. (127)

Proof. We want to find the partial derivative of the annealed density
1 2
q; (2)gi' (%) 9
plr) = ——7 <5 —~, oplx) ="
[ dw g} (2)q; (x) " O
By straightforward calculations we have

(128)

9 ) 9 ) 9
atlogpt=&logqt“r&logqf—/dxpt[atlogCﬁJratlogqf
‘7152 1 Ut2 112 Ut2 2 Ut2 21(2
= 7A10gqt —&—?Hngth —&—?Alogqt + 7||Vlogth
0'2 0'2 2 0'2 0'2 2
_/dxpt[;mogm;Hwogqgu + % Alogg? + 7L | Vioga?|

o? o?
= EtAlogpt + ?tHVlogptH2 — at2<V10gqtl,Vlogqf>

- /dx pe[—07(Vlogqs,Viogqr)] . (129)
Thus, we have
0 o?
7Pt (@) = 5 Ape() + pi(2) (9¢(2) = Ep,(2)9:(2)) , (130)
gi(z) = —0?<V10gqt1(x),V10gqt2(x)>, (131)
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which can be simulated as

dl‘t = O'tth 5 (132)
dw, = [—07(Vlog qf (x,), Vlog g7 (z:))]dt . (133)
O

Proposition D.9 (Product of Re-weightings). Consider marginals qtl’z(x) generated by two
different diffusion equations

dq} 0q?
qgim) = (5}(2) ~Eqal (@) )ab(a) qéix) = (#@) ~Ezi@)@@). 134
The product of densities p;(x) o q'(x)q?(x) satisfies the following PDE
0
7P1(@) = pe() (9:(2) = Ep, () 9:()) (135)
g1(z) = g, () + g (), (136)

Proof. We want to find the partial derivative of the annealed density
q (¥)q; (x) 9

=_2tyUee s =7 137
P T g o (1
By the straightforward calculations we have
0 0 .. 0 9 0 .. 0 9
e log p; = e logq; + o log ¢; /dac Dt [815 logq; + o log ¢; (138)
= (9 @) ~Ey9i (@) + (68(2) ~ Bppgf (@) ) - (139)
[ dzpi|(9} (@) ~ Bgoi(@)) + (g(2) - Bgpgi(@))] (140)
gk (@) + g¥(a) ~ [ domlol(o) + 6] (141)
Thus, we have
0
apt(x) = pi(2)(9e(x) — Bp,(2)9:(2)) , (142)
ge(x) = g; (x) + g} (), (143)
which can be simulated as
dy =0, (144)
dw; = g (w0) + g () - (145)
O

E PROOFS OF PROPOSITIONS

Proposition E.1 (Annealed SDE). Consider the SDE
dxt = (—ft(xt) +Ut2V10gqt(xt))dt+Utth y (146)

then the samples from the annealed marginals p; g(x) q¢(z)? can be obtained via the following
family of SDEs

o7 (B+ (1 —B)2a)
B

dwn = | (3= (V. e + 302605 - DIV log () (138)

where the parameter a € [0,1/2].

duy = (= fe(ze) + (B+ (1 — B)a)o;V log qe(ay))dt + \/ dWy, (147)
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Proof. For the following SDE

dry = (—ft(xt) + 02V log qt(:ct))dt + oy dWy , (149)
let’s consider everything but the drift f;. Thus, we can write the following PDE
0
8qtt <V qt [(1 — a)o;Vlog gi(x;) + ao; Vlog Qt(fft)]> +(1- b) AQt + b*AQt (150)

We apply Prop. D.2, Prop. D.1, Prop. D.4, Prop. D.3 (rules from Table 1) to the correspondmg terms
of the PDE above. Hence, the formulas for the weights are

gi(z) = (1 — a)a2B(B — 1)[|VIog q:(2)||* — ao?(8 — 1)Alog ¢i(x)

1—b)o? bo?
£ 8- DT Mog () - 88 - ) L [ViogaP. (s
Let’s cancel out the term with the Laplacians, hence, we have 2a =1 — b (hence, a € [0,1/2]) and
gi(@) = (1 —a—b/2)07B(8 — 1)||VIegar(w)|* = *Gt BB —=1)Viga(@)|*.  (152)
The PDE for the density is
0
}gzﬁ = - <V»Pt,ﬁ(—ft +(B(1 - a) +a)oyVlog at))
1-b 2
+ (B + b) %Aptﬁ + 1.5 (9t — Ep, 59t) (153)
= —(Vopeg(—fr + (B+ (1 = Bla)o;Viog q;))
+ (1 — B)2a o}
+ %éAPtﬁ + Dt B(gt Ep, [3gt) (154)
D

This corresponds to the following family of SDEs (a € [0,1/2])

of(B+ (1 - B)2a)

dy = (—fi(z) + (B+ (1 = B)a)o; Viog qi () dt + g AW, ,  (155)
duy = | (8- 1)(V. fuw) + 3028(5 1>||V1ogqt<xt>||ﬂ . (156)
O

Proposition E.2 (Product of Experts). Consider two PDEs corresponding to the following SDEs
dxy = (—fo(xe) + 07V 1og g, % (x1))dt + o0 dW (157)

which marginals we denote as q; () and q?(z;). The following family of SDEs (for all a €
[0,1/2]) corresponds to the product of the marginals p, 5(z) < (g} (x)g?(x))”

dze = (= fi(z) + 07 (B+ (1 — B)a)(Viog qf (z¢) + Vg ¢f (2¢)))dt
. \/o%w + (- 5)20) gy, 158)

2
o
dwy = {60?<V log g} (), V log qtz(xt)> +8(8— 1)7tHV10gqt1(mt) + Vlogqtz(mt)Hz

+ (28 = 1)(V, fu(z)) | dt . (159)
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Proof. First, according to Table 1, we have the following PDE for the product density p;(z) o
1 200 i
q; (2)g; () is

8}75533) - _ <V,pt(m) (—2ft(m) +02(Vlogq} (x) + Vlogq?(x))» + %Apt(x)—i— (160)

+pe(2)(g:(2) — Ep,g:(2)) (161)
gi(z) = (Viogq; (x), — fi(z) + 07VIog ¢i (x)) + (Vg g; (z), — fr(x) + 07 V1og g (x))
*Ut<V10th( )VIOth( )>

=0;(Vlogg; (x), Viog i (z)) — (fi(x), Viogq{ (z) + Vlog ¢ (2)) - (162)
Now, combining Prop. E.1 and Prop. D.5, for the annealed density p; 5 o p;(x)” we have
0
ISE) (9, ey (a) (~26ula) + 08+ (1~ B)a)(Vlomal (2) + V9oga?(x))))
+(1 - B)2ac?
+ DO IR Ay, @) + 1) (1(2) — By pu(0) (163

g1(x) = Bo7 (Vg qf (x), Viog qi (x)) — B{fi(x), Viog i (x) + Vlog g7 (x))

2
+ (8= 1)(V.2fi(2)) + B(8 — )| Viog g} (2) + Viegg?(a) | (164)
The last step is interpreting (V,p; 5(z) f;(x)) as the weight term, i.e.
Opt [3( )

S8 (9 () (< @) + 025+ (1~ B)a)(V log g} () + T log g¥(z)))
+ B OO0 A 5(0) + s () (000) — B p31(0) (165
1(z) = o og g} (x). ¥ log (@) + 8(5 — )L |V log (&) + ¥ log a2 (x) |+
(166)
+ (28 = 1(V, fil2)) - (167)

Thus, we get the following family of SDEs (for all a € [0,1/2])

dz, = (*ft(:rt) + U?(ﬂ +(1- B)a)(VIogqtl(xt) + Vlog qf(xt)))dt + \/03(6 + (; — P)2a) AWy,
(168)
dw, = |Bo7(Viogq; (x1), Vg q; (z4))
0.2
+8(8 — 1) % || Vlog g} (x) + Viog g} ()" + (28 = 1)(V, ft(:ct)ﬂ dt. (169)
O

Proposition E.3 (Classifier-free Guidance). Consider two PDEs corresponding to the following
SDEs

dxy = (= fr(ze) + 07 Vlog g; % (xe))dt + oy dWr (170)
which marginals we denote as q; (x;) and q?(z;). The SDE corresponding to the geometric average
of the marginals p; g(z) o qf ()1 =P g?(x)? is

doy = (= filz) + o2((1 — B)Vlog g} (z;) + BV logqf(xt)))dt + o dWy , (171)

1
dw, = 5078(8 — 1)|[Vlog g} (@) — Viog g} (a0)]|"- bz
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Proof. First, according to Prop. E.1, we perform annealing p{ , 5(x) o ¢f (z)' = and p7 4(z) o
20, \8
gi (x)”, ie.

Phacs@ (9 b, (@) (~h(o) + 031 - 6 - )T logal ()
F LT A @) b (00~ Byy,a@) . (73
gi(@) = — BV, fi(@) + 50785~ D] Vogat )] (174)
and
o0 (57,32 ) (o) + (5 + (1 B)aa) ¥ log (2)))
+W“3Ap2 (x)+p?,ﬁ(m>(gt< )—Ep (), (79
9i(w) = (8 = (Y, fuw)) + 3028058~ V[ Vi ()| (176)

Now, according to Table 1, for the product densny D3 X pu_ ﬂ(;v) D; B(x) However, first, we have
to match the diffusion coefficient
17&72&1 o 5+(1—5)2a2
1-p B

af+(1-P8)>a=0 = a=a, a; =

— (1-2a))8-F>=B-B*+(1-0F)2ay  (177)

—a(1-8)°
3 :

However, we see that the only possible solution that have a; € [0,1/2] and as € [0,1/2] for positive
B is a1 = as = 0. Thus, we have

(178)

2
W) (9 () (~251(a) + 071~ B)Vlogal (x) + BV loga? () + % Apese)
+pt,3(x) (gt(x) Epf [3915( )) ’ (179)
v) = —B(V. fi@) + 50766~ 1)|[VIoga ()]
(8= (Y, fula)) + 50785~ V||V logg? (=)
+(1— B)<V IOth( )7 ft( ) + UtBVIOth ($)>
+B(Vlog q; (), — fu(x) + of (1 = )V log g (x))
- Jtﬁ(l — B)(Vlogg; (x), Viog g (x))
= 50785~ 1)|[VIogg} () ~ Vieg i (o)
—(V, felz)) = ((1 = B)Vlog g () + BV log ¢} (x), fr(2)) - (180)
Finally, we re-interpret (V, p; g(x) fi()) as the weighting term, and get
o2
aptai( m) _ ~(Vopp(@) (= ful@) + 07 (1 = B)V log g (z) + SV log 7 () + = Apr,p(w)
+pt 8(@)(9e(x) = Ep, ,9:(2)) , (181)
g(x) = So2B(8 - 1)||VIog g} (x) — Vioga? ()| (182)
Thus, we have
dr; = ( fi(zy) + 02((1 — B)Vlog g} (1) + BV log qf(mt)))dt + o dWy , (183)
dwy = fatﬂ — 1)||Vlog qi (z¢) — Vlog qtz(xt)H2 . (184)
O]
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Proposition E.4 (PoE + CFG). Consider two PDEs corresponding to the following SDEs
dxy = (—fi(x) + 02V log qi(y))dt + o, dWy (185)
dry = (—fi(ay) + 02V log ¢ (1) )dt + o, dWy (186)
with corresponding marginals q;(x¢), qi (x¢) and q?(x¢). The SDE corresponding to the product
of the marginals p; 5(x) o q:(z)2 =) (g} (z)g? (z))? is

day = (*ft(fft) + 07 (v} (1) + 07 (z1)))dt + o dWr (187)
dwy = ( 1)(||V10g(h(xt) Vlogqtl(:ﬂt)H2 + HVlogqt(wt) — Vlogq?(xt)||2)
+0; <vt (), v (2)) + (V, frlme)), (188)

where we denote v; 2($) = (1—-p)Viogq(x)+ pVlog th’Q ().

Proof. Using Prop. E.3, we start from the SDEs simulating the product ¢;(z)*~#) ¢} (z)? and
gt (2) =P g2 ()P, ie.
dr; = ( — fe(zs) + 02((1 — B)Vlog qs () + BV log qtl(xt)))dt + o dWy | (189)
vg (1)
1
dw; = iafﬁ(ﬁ — 1)“V10g qt(z) — Vlog qg(xt)’
dr; = ( — fe(zs) + 02((1 — B)Vlog qs () + BV log qf(xt)))dt + o dWy | (191)
CHE)
L, 2 2
dw, = 507 B(8 = 1)||Viog gi(z:) — Viog g7 (w,)]|” - (192)
Then we consider the product of these SDEs, i.e.

2 (190)

0.2
WSE) (. pip() (~200) + 30} () + 02 0) + D)
+pt5( )(gt( )_Ept 5gt(x))7 (193)
9i(w) = 5076~ 1) (| Vogau(x) — Viogal (0)[* + | Vg au(r) — Vioga? (0)]|*) +
(194)
+ (v (@), = fi(2) + ofvi () + (vi (@), = filx) + ofv; (2)) — o7 (v (x), vf (2))
(195)
*fatﬂ( —1)(HV10gqt(x)—Vlogqtl(z)HQ—i-HVlogqt(x)—Vlogqf(a:)HQ)
+ o7 (v (2), 0} (2)) = (fel@), v (2) + v} (2)) . (196)
Re-interpreting (V, p; g(z) fi(z)), we get
WslE) (9. oo (a) (- ula) + 020} ) + 2 (2)
+ %2 Ay @) + 0 @) (00(@) = B 1) (197)
gi(w) = 50786 - (Hwogm ) = Vioga! (2)|* + ||V log au(x) — V1og g ()*)
+at<vt (2)) + (V. filz)), (198)
which corresponds to
dwy = (= fi(we) + 07 (vf () + 07 (21))) dt + 00 dWy (199)
dw, = 5028(8 — 1) (|| log e (22) ~ Vloga (a0)||* + | Vlogas ) — Vloga? o))
+ o7 (vf (), vi(20)) + (V, felze)) - (200)
0

28



Under review as a conference paper at ICLR 2025

Proposition E.5 (Reward-tilted SDE). Consider the following SDE
dl’t = ’Ut(x)dt+0'tth 5 (201)

which samples from the marginals q:(x). The samples from the marginals p;(z) o
qt(x) exp(Bsr(x)) can be simulated according to the following SDE

dl’t = Ut (xt)dt + O'tth 5 (202)
2 Ut2 Ut2 0B

duy, — {<5m<xt>7vt<mt> _ 02V log as(es) — 2ﬂtw<xt>> 8% Ar() + atr(m} dt.

(203)

For the reverse SDE, it is
dxy = (— fi(ze) + 07V log qy(a1))dt + o1 dWy (204)

dw; = |:<6tv7"(mt)7 —fi(we) — UjﬁtVr(mt)> - 5t%?AT($t) + aaﬁttr(xt)] dt (205)

Proof. First, consider the density ¢; () that follows the PDE

o 2
qéix) = —(V,qu(x)vi(z)) + %Aqt(:ﬁ) . (206)
We want to find the PDE for the reward-tilted density
g )exp(ﬂtr( )
) = 207
P = T o) exp(Br(e) e
Straightforwardly, we get
0 0 ﬂt 0 0By
Srloen () = S ogale) + trte) - [ do (o) ogato) + Set)| o9

For the first term, we have

2 loar(a) = — (V. 04(a)  (VIog (@), () + % Alogau(z) + 2|V log (@)
(209)
= (T ,u@)) — (Togpi(a), 0(a) + T Alogpu(x) + L |V log ()|
+ <b’tV7‘(x), \(z) — 02V log () — Ujﬁ,er(x)> - ﬁt%tQAr(a:). 210)
Thus, we have
W) (9 o)) + L An@) + pu(o) (91(2) = By oy0(2) @i

ot
_ 2 Ut2 0t2 0Bt
ge(x) = ( BeVr(z), v (z) — 07V 1og qi(x) — EBtVr(m) — ﬁt7Ar($) + Er(m) . (212)

This can be simulated as

dl’t = ’Ut(l’t)dt + Utth 5 (213)
2 0
dw; = |:<6tv'r(xt)avt(xt) — 07V log g (a) — U;BtVT(xt)> Bk Ar(xt) + gr(xt) dt
(214)
O

F ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS
F.1 SAMPLING METRICS

We use a number of metrics to asses the quality of generated samples. These metrics capture different
aspects of the distribution.

Energy-W, > The Energy-W; and Energy-}V> measures the deviation in the energy value distribu-
tion of samples from the reference distribution and the generated distribution. We find this metric is
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useful to assess the overall fit of a model, although it cannot assess whether a sampler drops modes
well. A model that has a reasonably small Energy Wasserstein distance may still have missed a mode
of a similar energy value.

Maximum Mean Discrepancy (MMD) We use a radial-basis function MMD with multiple scales
to assess distribution fit. This measures how well the reference distribution matches the generated
distribution locally.

Total Variation distance For low dimensional sampling problems, it is useful to consider the total
variation distance between empirical distributions that are discretized into a grid. This measures fit in
terms of density, ignoring the underlying metric, and is less sensitive to global reweighting of modes.

1-Wasserstein and 2-Wasserstein distances (VV; / WW5) On 40 GMM we also measure the 1-
Wasserstein and 2-Wasserstein distances between the generated and reference distributions with
respect to the Euclidean metric. We note that while this is possible to measure in the LJ-13 case, it
is not as useful as particles in the LJ-13 setting are SE(3) equivariant, and therefore the Euclidean
distance is not a suitable ground metric.

F.2 MIXTURE OF 40 GAUSSIANS

The mixture of 40 Gaussians setting is a 2D energy function with 40 randomly initialized modes with
equal standard deviation. This serves as a useful experimental setting where we are able to calculate
true densities and scores efficiently without modelling error.

F.2.1 ADDITIONAL RESULTS

We include quantitative results for the tractable GMM example in Sec. 5.1, where we start at
temperature 7' = 3 and anneal to target temperature 7' = 1/3. We used a geometric noise schedule
with opin = 0.01 and opax = 500. We sample 10k samples with 1000 integration steps, with
dt = 0.001. We observe that Target Score sampling (¢ = 0) from Eq. (21) with systematic
resampling performs best in more metrics. We also use this example as an ablation study for the
impact of the resampling scheme, where we find that systematic resampling appears to outperform
the birth-death exponential clocks implementation of the jump process resampling. See App. A and
App. C.2.

On ground truth qf A subtle point to note is that th is not a mixture of || Gaussians, but rather
|7|® Gaussians for integer 3. This means that we are restricted to small integer 3. We use 3 = 3 for
all experiments in the 40 Gaussians setting.

Table 6: Mixture of 40 Gaussians. Sampling from an annealed distribution with inverse temperature 8 = 3.
Metrics are calculated over 5 runs with 10k samples.

SDE Type FKC Energy-W, MMD Total Var Wy Wa

Target Score () 0.943 +£0.026  0.020 + 0.001  0.487 £0.007 11.304 £0.296 15.671 + 0.269
Tempered Noise @ 1.032 £ 0.012 0.058 £0.001 0.638 +£0.002 16.051 +£0.123  19.627 £ 0.101
Target Score @ BDC 1.064 £ 0.369  0.010 £ 0.004 0.402 £0.029 7.797 £3.990  12.451 £ 5.417
Tempered Noise @ BDC 1.228 £ 0.401 0.056 £0.029 0.572 +£0.055 12.598 +£4.155 17.679 £ 4.178
Target Score @ systematic  1.098 £ 0.418  0.007 £ 0.005  0.372 £+ 0.020  6.256 - 3.960  11.265 + 5.629
Tempered Noise @ systematic  0.926 & 0.248  0.027 £ 0.011 0.512 £0.017 9.974 £ 1.229 14.045 + 1.308

F.3 LJ-13 SAMPLING TASK

The Lennard-Jones Potential. The Lennard-Jones (LJ) potential is an intermolecular potential,
modelling interactions of non-bonding particles. This system is studied to evaluate the performance
of various neural samplers. The energy for the system is based on the interatomic distance between

the particles is given by:
€ o \° o \
L) = & 'm) _ (Im
(37) 2T Z <d” dij

ij
where we denote the Euclidean distance between two particles ¢ and j by d;; = ||z; — z;||2 and 7,
7, € and c are physical constants. As in Kohler et al. (2020), we also add a harmonic potential to the
energy so that £L/—system — gLJ(3) 4 c£°5¢(z) The harmonic potential is given by:

. 1
£%(x) = 5 llzi — wooul*

(215)

(216)
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Figure 5: Comparison between the energy distribution of the MCMC dataset, samples generated using a DEM
model trained at the target temperature, and samples generated using temperature annealing from a model trained
at starting distribution 7" = 2. Left: the target temperature is 1.5 and temperature annealed samples correspond
to tempered noise SDE + FKC and Right: the target temperature is 0.8 and temperature annealed samples
correspond to target score SDE + FKC.

Table 7: Additional results for LJ-13 at different target temperatures. The model is trained at starting temperature
2.0 and metrics are computed over 3 runs.

Target Temp. SDE Type FKC distance-W, Energy-W; Energy-Ws
0.9 (8=2.2) Target Score (x) 0.861 £0.014 13.560 £ 0.064 13.662 + 0.068
(V) 0.861 £0.021 4.296 £0.217  4.342 +0.195
Tempered Noise € 0.853 £ 0.018 5.314 £0.047  5.350 £ 0.049
() 0.863 £0.011 3.948 +£0.235  4.104 + 0.253
1.0 (5=2.0) Target Score [x) 0.796 £0.003 12.865 £0.077 12.938 + 0.080
(V) 0.777 £0.010 4.009 £ 0.324  4.034 + 0.342
Tempered Noise € 0.771 £ 0.009 4.859 £0.085 4.919 £0.074
() 0.781 £0.021 2.587 £0.089  2.822 + 0.103
1.2 (5=1.67) Target Score [x) 0.590 £0.008 10.224 £0.102 10.248 + 0.098
(V) 0.551 £0.002 3.358 £0.024  3.363 + 0.026
Tempered Noise € 0.547 £0.005 4.042 £0.058  4.092 + 0.057
() 0.547 £ 0.007 0.956 £ 0.223  1.154 + 0.208

where xcow refers to the center of mass of the system. We setr,, = 1,7 =1, = 2.0 and c = 1.0.

Training details. All DEM models are trained for 166 epochs on 4 NVIDIA A100 80GB GPUs.
For all models, the best checkpoint with the lowest energy-)Vs is used for inference. The model is an
EGNN with the same architecture as in Akhound-Sadegh et al. (2024). Similar to Akhound-Sadegh
et al. (2024), we use a geometric noise schedule for all experiments. We set o, = 0.01 and
Omax = 4.0. We clip the score to a maximum norm of 1000 (per particle). For sampling, we use 1000
integration steps with d¢ = 0.001. For inference with FKC, we assume a Gaussian distribution at
time tsyary = 0.99 and start integration with the annealed SDE and resampling at that time. We found
that this helps significantly to reduce the variance of the results over different runs. For visualizations
in Fig. 5, we selected the best run for all methods for consistency.

In line with previous work, we find the DEM scores are noisy at high times, based on the score of the
energy. This can be seen from the score estimator in DEM, which depends on the average gradient
direction from a normal distribution sampled around x;. The variance of this estimate grows with
both time and gradient of the energy. This makes DEM style objective significantly easier to train on
smooth energies, as quantified by norm of the score of the energy.

Sampling Reference distributions To generate reference distributions from the Lennard-Jones-13
potential we use Pyro Bingham et al. (2018) and a No-U-Turn sampler Hoffman & Gelman (2011)
with default arguments. We use 20k warmup steps and collect 20k samples from the 10 chains for
each temperature.
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Figure 8: Molecules with best docking scores for binding to ATPA1 (P1) and CPT2 (P2) from PoE with FKC
(left) and without (right).

Table 8: Multi-property molecule generation results. For a set of two target properties (P and P2), we take
the set of the top-10 best performing molecules as the molecules with the highest P1*P» scores. We report the
average properties of the top-10 molecules over five runs and the top-1 molecule overall. We also report the
diversity, validity & uniqueness, and quality of all generated molecules, where quality is the percent of molecules
that are valid, unique, have a QED > 0.6 and SA < 0.4. For 8 = 1, target score and tempering noise match
(Prop. 3.3).

Py

p,  SDEType B FKC Pptop-10(1) Pytop-10(1) (P1,Pa)top-1(1)  Div.(t)  Val & Uniq. ()  Qual. (1)
Target Score 05 [x) 0.21240.016 0.35640.046 (0.500, 0.580) 0.9104.0.000 0.71340.027 0.12740.015
Tempered Noise © 0.225.0028 0.38510042 (0.440,0.690) 0.909.+0.001 0.723.40.016 0.134.40.006
— 0o © 0.28940.022  0.42910.018 (0.470,0.580) 0.898.0.002 0.811.0.008 0.20540.011

JNK3 — . [+] 0.342.0.029 0.4421¢ 051 (0.600,0.650) 0.89740.002 0.80440.015 0.20540.015
Gsk33 Target Score [x) 0.33610.031 0.4841¢.052 (0.480,0.780) 0.88610.003 0.81640.013 0.33610.022
Target Score 15 o 0.35140.0340  0.44710.026 (0.590,0.780)  0.886.0.003 0.82340.024 0.35640.037
Tempered Noise [x) 0.34140.030  0.468.10.041 (0.590, 0.560) 0.881.+0.002 0.813.£0.025 0.35240.012
Tempered Noise Qo 0.342.09012 0.50210034 (0.500, 0.720) 0.88240.002 0.832.0.021 0.36040.021
Target Score 05 [x) 0.090.0018 0.434.0.065 (0.150,0.472) 0.915.0.001 0.67110.022 0.22810.011
Tempered Score [x] 0.0664+0.015  0.57110.187 (0.110,0.943) 0.914 10.002 0.678.10.0187 0.236.40.020
— 0o © 0.087+0.028  0.62410.094 (0.100,0.978) 0.90310.001 0.67510.022 0.24110.010
JNK3 — . Q 0.094.0024 0.63510067 (0.413,0.550) 0.89940.002 0.686_10.025 0.26310.023
DRD2  Target Score [x) 0.136+0.046 0.58240.067 (0.490,0.640) 0.88610.003 0.639+0.019 0.2419.017
Target Score 15 © 0.10240.031  0.62040.148 (0.320,0.541) 0.88510.006 0.659.£0.022 0.27440.028
Tempered Noise ) 0.13240.032  0.55040.036 (0.280,0.469) 0.884.+0.001 0.650.£0.021 0.258.+0.020
Tempered Noise ® 0141.0020 0.61710.040 (0.360, 0.655) 0.88440.005 0.661.0.018 0.25240.014
Target Score 05 [x) 0.14610.034 0.52840.077 (0.051,0.908) 0.914.0.001 0.709.0.021 0.20340.015
Tempered Score - © 0.162i0.025 0.54310063 (0.430,0.965) 0.914,¢.001 0.697+0.013 0.198+0.017
— 10 © 0.20240.023  0.62040.057 (0.660,0.726)  0.908_¢.002 0.773+£0.021 0.238+0.021
GSK383 — . Qo 0.19040.022 0.666.0.003 (0.240, 0.986) 0.90740.002 0.784.9.010 0.25440.019
DRD2  Target Score [x) 0.24040.030 0.636+0.066 (0.350,0.804) 0.894.10.002 0.759+0.015 0.29040.016
Target Score 5 @ 0.22240.036  0.58410.068 (0.630,0.580) 0.891+0.003 0.740.40.027 0.283+0.020
Tempered Score ~ ~~ ) 0.22840.016  0.64910.084 (0.550, 0.655) 0.884.+0.002 0.77440.015 0.303+0.012
Tempered Score o 0.266.0061 0.638.:0.036 (0.520,0.796) 0.88540.002 0.77410.017 0.30710.012

F.4 MOLECULE GENERATION

Visualizing top-performing molecules We showcase the molecules with the best docking scores
from Table 4 in App. F.4.

Metrics In addition to reporting the top-performing molecules, we report the percent of molecules
that are valid and unique, as well as their diversity (evaluated using Tanimoto distance on Morgan
fingerprints (Rogers & Hahn, 2010)) and quality, which is the set of unique and valid molecules that
also have a quantitative estimate of drug-likeness (QED) > 0.6. This metric was taken from Lee
et al. (2025).

Inference process In practice, we find that the FKC weights have a large variance during molecule
generation. This is problematic, as a large number of samples are thrown away. Furthermore, we
noted that the score was not always well-conditioned. To ameliorate this, we divided the weights by a
set temperature term (7' = 100) to reduce their variance before resampling, clipped the top 20% to
account for any score instabilities, and did early-stopping (only resampled for 70% of the timesteps).

Molecule generation metrics for different SDE types and temperatures In Table 8, we show an
ablation over different types of SDEs and 3 , with and without FKC.
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Baseline 3= 2.5 Baseline 3= 7.5 Ours 3=2.5

1

aphoto of an
orange bench
and a black
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computer mouse

aphoto of an
orange giraffe
and a purple
baseball glove

aphotoofa
pink boat and a
blue toilet

aphoto of a
blue tvand a

green
toothbrush

Figure 9: Samples from SDXL

F.5 ADDITIONAL IMAGES FOR SDXL

We show addition images generated by our method and vanilla SDXL in Fig. 9.
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