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Abstract

Learning effective data representations has been
crucial in non-parametric two-sample testing. Com-
mon approaches will first split data into training
and test sets and then learn data representations
purely on the training set. However, recent theoret-
ical studies have shown that, as long as the sample
indexes are not used during the learning process,
the whole data can be used to learn data representa-
tions, meanwhile ensuring control of Type-I errors.
The above fact motivates us to use the test set (but
without sample indexes) to facilitate the data rep-
resentation learning in the testing. To this end, we
propose a representation-learning two-sample test-
ing (RL-TST) framework. RL-TST first performs
purely self-supervised representation learning on
the entire dataset to capture inherent representa-
tions (IRs) that reflect the underlying data man-
ifold. A discriminative model is then trained on
these IRs to learn discriminative representations
(DRs), enabling the framework to leverage both the
rich structural information from IRs and the dis-
criminative power of DRs. Extensive experiments
demonstrate that RL-TST outperforms representat-
ive approaches by simultaneously using data mani-
fold information in the test set and enhancing test
power via finding the DRs with the training set.

1 INTRODUCTION

Two-sample tests aim to answer a question: “Are two
samples drawn from the same distribution?”. Classical two-
sample tests, including t-tests which test the empirical mean
differences between two samples, often need to assume that
samples are drawn from specific distributions (e.g., Gaus-
sian distributions with the same variance). To alleviate the
assumptions, non-parametric two-sample tests are proposed

to solve the problem only based on observed data [Gretton
et al., 2012b, Heller and Heller, 2016, Székely and Rizzo,
2013, Jitkrittum et al., 2016, Chen and Friedman, 2017,
Ghoshdastidar et al., 2017, Lopez-Paz and Oquab, 2017,
Ramdas et al., 2017, Sutherland et al., 2017, Gao et al.,
2018, Ghoshdastidar and von Luxburg, 2018, Lerasle et al.,
2019, Liu et al., 2020, Kirchler et al., 2020, Kübler et al.,
2020, Cheng and Xie, 2021, Kübler et al., 2022, Kübler
et al., 2022, Liu et al., 2021, Deka and Sutherland, 2023,
Bonnier et al., 2023, Schrab et al., 2023, Biggs et al., 2023].

For example, the Kolmogorov-Smirnov (K-S) test is de-
signed to compare the cumulative distribution functions
derived from two samples, but generalisation to higher di-
mension is challenging [Bickel, 1969]. The maximum mean
discrepancy (MMD) test adopts the kernel mean embed-
ding of distribution and uses it to measure the discrepancy
between two distributions [Gretton et al., 2012a] whose
dimensions can be relatively higher than classical meth-
ods [Liu et al., 2020]. The statistics used in these non-
parametric two-sample tests are also widely adopted in many
other fields, such as domain adaptation, generative mod-
eling, adversarial learning, membership inference attack,
machine-generated text detection and more [Gong et al.,
2016, Bińkowski et al., 2018, Stojanov et al., 2019, Cano
and Krawczyk, 2020, Gao et al., 2021, Fang et al., 2021b,a,
Song et al., 2021, Tahmasbi et al., 2021, Taskesen et al.,
2021, Bergamin et al., 2022, Zhang et al., 2024a,b, Sun
et al., 2025, Li et al., 2025].

To improve the test power (i.e., control the type II error) of
non-parametric two-sample tests in practical applications,
recent studies have shown that learning good data repres-
entations is crucial before performing two-sample testing
[Kirchler et al., 2020, Liu et al., 2020, 2021, Gao et al.,
2021, Bergamin et al., 2022]. For example, Kirchler et al.
[2020] directly use a pre-trained feature extractor to extract
features of two samples and find it is useful to increase the
test power during the testing. Meanwhile, Liu et al. [2020]
propose a learning paradigm to learn deep-net representa-
tions of data via maximizing the test power of MMD and
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show that the learned representations can help capture the
difference between two complex-structured samples. Even
though utilizing a fraction of the samples to train a classi-
fier [Lopez-Paz and Oquab, 2017] or a kernel function [Liu
et al., 2020] enables deriving discriminative representations
(DRs) of the remaining samples, the data splitting process
results in a trade-off between the extra power provided by
the learned functions/kernels and the sacrificed power due
to the decreasing testing sample size.

However, Biggs et al. [2023] have pointed out that, after
discarding the sample information (namely, we do not know
which sample the data belongs to), learning purely inherent
representations (IRs) from these samples will not influence
the type I error of permutation-based testing methods in
theory, showing the possibility to learn useful information
from the test set instead of only from the training set. Nev-
ertheless, learning purely IRs will miss the discriminative
power, making it underperform on complex-structured data.

Motivated by the above theoretical studies and existing chal-
lenges, we propose a representation-learning two-sample
testing (RL-TST) framework that focuses on learning good
representations on the samples, from both IRs and DRs.
Since two-sample testing data mainly follows a manifold
assumption where the (high-dimensional) data lie (roughly)
on a low-dimensional manifold, we could firstly learn an
encoder from the representation learning that is respons-
ible for extracting the IRs of entire samples. Then, train
a discriminative model on the learned IRs will enable the
model with discriminative ability directly on the inherent
manifolds of samples rather than on the complex embed-
ded space of samples. This framework captures the sample
structure information discarded in the data splitting pro-
cess and exhibits a higher discriminative power than purely
unsupervised representation learning on the entire dataset.

We conduct extensive experiments to implement RL-TST
on different kinds of MMD-based two-sample testing meth-
ods, we verify the empirical effectiveness of RL-TST over
the state-of-the-art (SOTA) two-sample testing methods
on synthetic high-dimensional Gaussian mixture (HDGM)
dataset, MNIST dataset and ImageNet dataset. These are
the commonly used benchmarks to detect the performance
of two-sample testing methods. Our main contributions are:

• We propose a novel RL-TST, which can address the
challenges of two existing frameworks and provide a
new research direction of two-sample testing under the
control of both type I and type II errors.

• Empirically, various implementations of RL-TST out-
perform SOTA methods across different benchmarks.

• Comparatively, we provide the discussion and em-
pirical evidence of why alternative potential frame-
works, such as semi-supervised learning or purely
self-supervised learning are facing challenges in two-
sample testing scenarios.

2 PRELIMINARIES

Two-sample Testing. Two-sample testing is one of the stat-
istical hypothesis tests that aims to assess whether two in-
dependent and identically distributed samples, denoted by
SP = {xi}ni=1 ∼ Pn and SQ = {yj}mj=1 ∼ Qm, where
xi, yj ∈ X , are drawn from the same distribution [Lehmann
and Romano, 2005]. In two-sample testing, the null hypo-
thesis H0 refers to two samples being drawn from the same
distribution, which corresponds to P = Q. The alternative
hypothesis H1 indicates that two samples are drawn from
different distributions, meaning P ̸= Q. Whether we should
accept or reject H0 depends on the test statistic t̂, which
represents the differences between two samples.

Classifier Two-sample Testing (C2ST). C2ST aims to
train a binary classifier: if the classifier obtains a testing
accuracy significantly better than random guessing, it sug-
gests that the two samples come from different distributions
[Lopez-Paz and Oquab, 2017]. Specifically, given dataset
S = {(xi, 0)|xi ∈ SP}ni=1 ∪ {(yj , 1)|yj ∈ SQ}mj=1 :=

{(zk, lk)}m+n
k=1 , where m = n, and we can shuffle and split

S into training set Str and testing set Ste, let f∗ : X →
{0, 1} be a binary classifier that is well-trained on Str, then
the test statistic or the accuracy of the classifier f∗ on Ste is

t̂ =
1

nte

∑
(zk,lk)∈Ste

I [f∗(zk) = lk] , (1)

where nte = |Ste| and I is the indicator function. Finally, we
compute the p-value to see if the test statistic is significantly
greater than the random guessing accuracy, utilizing the
approximate null distribution [Lopez-Paz and Oquab, 2017,
Kim et al., 2021] or the permutation test [Good, 2004].

C2ST with logits (C2ST-L). Moreover, we can also con-
sider using the trained classifier f∗ in C2ST not directly
to compute the accuracy but to extract representations of
two samples [Cheng and Cloninger, 2022]. Let h be the
feature extractor of f∗, then h(z) (model’s output should be
logits) can be regarded as representations of two samples
as the new two samples with the information of prediction
confidence. For these new two samples, we can use L2 norm
to compute the difference between two samples. Let Ste

P
and Ste

Q be the splitting samples of SP and SQ in the testing
set Ste and ntex and ntey be the sample size of Ste

P and Ste
Q .

In general, the statistic used in C2ST-L is

t̂L =

∥∥∥∥∥∥ 1

ntex

∑
xi∈Ste

P

h(xi)−
1

ntey

∑
yi∈Ste

Q

h(yi)

∥∥∥∥∥∥
2

2

, (2)

where ∥ · ∥2 is the L2 norm.

Maximum Mean Discrepancy (MMD) Test with Deep
Kernel (MMD-D). A quick recap on unbiased U -statisticd



estimator for MMD2 when m = n:

M̂MD
2

u(SP, SQ; k) :=
1

n(n− 1)

∑
i ̸=j

Hij (3)

Hij := k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj , yi).
Compared to training a classifier, MMD-D focuses on learn-
ing a powerful deep kernel function kθ,

kϕ(x, y) = [(1− ϵ)κ(ϕ(x), ϕ(y)) + ϵ]q(x, y), (4)

where ϕ : X → Rk is the deep neural network (with para-
meters θϕ) which outputs the DRs of samples, ϵ is the inter-
polation weigth that 0 < ϵ < 1, and κ and q are character-
istic kernels with hyperparameters θκ and θq respectively.
To ensure the deep kernel can directly measure the distance
of representations of complex-structured samples, optimiz-
ing the kernel with the highest test power will approximately
maximize [Sutherland et al., 2017, Liu et al., 2020]

J := MMD2(P,Q; kϕ)/σH1(P,Q; kϕ), (5)

where σ2
H1

(P,Q; kϕ) := 4(E[H12H13] − E[H12]
2]) is the

variance of
√
nMMD2

u −MMD2 under the alternative hy-
pothesis H1 : P ̸= Q by a standard central limit theorem
[Liu et al., 2020], and the Hij follows the definition above.

Permutation Testing. According to the standard central
limit theorem [Serfling, 2009], the test statistic t̂ in Eq. (1)
converges to normal distributions under both the null or
alternative hypothesis [Lopez-Paz and Oquab, 2017]. Al-
though it is feasible for us to derive the threshold tα of the
null hypothesis distribution and perform a traditional Z-Test,
it is simpler and faster to instead implement a permutation
test for all test statistics Eq. (1), Eq. (2) and Eq. (3) [Suth-
erland et al., 2017]. We will permute and randomly assign
samples to new Ste′

P and Ste′

Q for many times. Under H0,
samples from P and Q should be interchangeable, imply-
ing that the test statistic should exhibit minimal variation
between its value based on the original sequence of samples
and its computation from several randomly permuted se-
quences. Thus, if the original test statistic is large enough
than most of the statistic derived from the randomly per-
muted sequences, we can reject H0 [Good, 2004].

3 REPRESENTATION-LEARNING
TWO-SAMPLE TESTING

In this section, we introduce our proposed RL-TST frame-
work and several implementations that could leverage the
information from unlabelled data in two-sample testing.
Next, we provide an understanding of why learning good
representations could enhance the power of two-sample test-
ing. At the end, we discuss the significant challenges if we
want to use mainstream semi-supervised learning methods
(e.g., methods based on label propagation [Lee et al., 2013])
to address two-sample testing problems, which is another
framework to exploit information from unlabelled data.

3.1 OUR PROPOSAL: RL-TST

The key to enhance learning representations in two-sample
testing is to leverage the information from both the la-
belled training and unlabelled testing data. Various semi-
or self-supervised learning techniques can achieve it, but
due to the unique properties of two-sample testing data, two
samples often follow two very similar but in fact different
distributions under the alternative hypothesis, which makes
it difficult to obtain effective information from unlabeled
samples through most label propagation [Lee et al., 2013]
or augmentation-based [Grill et al., 2020] techniques. From
the recent studies, Cheng and Xie [2024] claims that most of
the two-sample testing data follow the manifold assumption,
where the data are low-dimensional intrinsic manifolds em-
bedded in high-dimensional space. Thus, we propose to use
a two-phase pipeline in two-sample testing that leverages
the labelled and unlabelled samples to learn IRs and DRs
respectively [Dai and Le, 2015].

Generally, since the effectiveness of auto-encoder-based
(AE-based) representation learning mainly relies on the
manifold assumption [Vincent et al., 2008], the first phase
is an unsupervised AE-based representation learning, which
learns a feature extractor that captures the inherent features
for both samples. The next phase is to train a multilayer
perceptron (MLP, used to classify two samples) or a charac-
teristic kernel (with optimized parameters) on those IRs of
two-sample testing data, so the final model will exhibit the
discriminative ability directly on the intrinsic manifolds of
two samples [Belkin et al., 2006]. Finally, we apply the final
model to the remaining samples (excluded in the second
phase) to obtain their DRs and perform permutation test-
ing on DRs to derive the final testing result. Overall, our
framework can be generalised in three main steps: learn IRs,
learn DRs, and then testing. The general framework can be
visualised in Figure 1. In the following, we will introduce
our framework in detail.

Learning Details. Since RL-TST has two phases, for C2ST,
we need to decompose the classifier-based model f into two
parts: a feature extractor ϕ ∈ F : X → Rk that used to
learn IRs and followed by a classifier g ∈ G : Rk → {0, 1}
that used to learn DRs. We denote by ϕf and gf the feature
extractor and the classifier of a specified model f . For the
input samples, removing the label information will leave an
unlabeled dataset Sunl = {zk}m+n

k=1 that is equal to SP ∪SQ.

Learning IRs. The first step is to train a representation
learning encoder on the whole unlabelled dataset Sunl, with
the training objective mainly to minimize the differences
between input and reconstructed output. Generally, we aim
to learn a featurizer ϕ∗ such that

ϕ∗, ψ∗ = argmin
ϕ,ψ
R̂IR(ϕ, ψ), (6)

where ψ : Rk → X is the decoder. For a specific example
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Figure 1: Overview of the RL-TST framework. Firstly, an encoder was learned from any AE-based representation learning
algorithms on whole data, which can chosen from standard auto-encoder, wasserstein auto-encoder, etc. Secondly, fine-tune
the learned encoder followed by a component that has the discriminative ability. At last, utilizing the final classifier or deep
kernel to perform the permutation test based on statistic Eq. (1), Eq. (2) or Eq. (3) to derive the two-sample testing result.

(e.g., mean squared error (MSE) in basic auto-encoder)

R̂IR(ϕ, ψ) =
1

|Sunl|
∑

zi∼Sunl

∥ψ(ϕ(zi))− zi∥22 , (7)

and the objective will be slightly varied with some penaliza-
tion terms depending on different AE-based algorithms,
such as variational auto-encoder [Kingma and Welling,
2019] or wasserstein auto-encoder [Tolstikhin et al., 2018].
After training, ϕ∗(zi) is called the IR of zi.

Learning DRs. Then, utilize the featurizer ϕ∗ from the rep-
resentation learning model and concatenate with either an
MLP g or a deep kernel k to form a final modelM. The
combined model is fine-tuned on Str, focusing on maximiz-
ing the distance of MLP’s output of two samples or the test
power of MMD regarding the two samples. Formally, for
MLP-basedM := g ◦ ϕ∗, we aim to learn a function g∗ on
Str by minimizing

LDR(g) =
1

|Str|
∑

(zi,li)∼Str

ℓDR(ϕ
∗(zi), li, g), (8)

where ℓDR(ϕ
∗(zi), li, g) can be empirically implemented

using a loss function such as binary cross entropy (BCE)
loss, defined for binary classification as:

ℓ̂DR(ϕ
∗(zi), li, g) = −[li log p̂i+(1−li)(1−log p̂i)], (9)

where p̂i = (1 + g ◦ ϕ∗(zi))−1 is the estimate of p. As g∗

is an MLP, so g∗ can be expressed by g∗ = h∗ ◦ h∗rep where
h∗rep ∈ {hrep : Rk → Rdrep} and h∗ ∈ {h : Rdrep →
{0, 1}}. Normally, h∗ is called a classification head, and

h∗rep is called a representation function. Thus, a DR of zi is
h∗rep ◦ ϕ∗(zi) if we use C2ST-based methods for testing.

For a MMD-basedM := kϕ∗ , we aim to empirically learn a
deep kernel k∗ (shown in Eq. (4)) on the Str by maximizing
the empirical estimate of J in Eq. (5)

ĴDR(S
tr
P , S

tr
Q ; kϕ∗) =

M̂MD
2

u(S
tr
P , S

tr
Q ; kϕ∗)

σ̂H1,λ(S
tr
P , S

tr
Q ; kϕ∗)

(10)

where Str
P and Str

Q be the splitting samples of SP and SQ in
the training set Str and ntrx and ntry be the sample size of
Str
P and Str

Q . σ̂H1,λ represents for the regularized estimator
of σH1

defined in [Liu et al., 2020].

Testing. In the end, compute any of the three test statistics
in Eq. (1) (by setting f∗ as g∗ ◦ ϕ∗), in Eq. (2) (by set-
ting h∗ as h∗rep ◦ ϕ∗, or in Eq. (3) (by setting k∗(·, ·) =
[(1− ϵ)κ∗(ϕ∗(·), ϕ∗(·))+ ϵ]q∗(·, ·) based on the original se-
quence of samples and the r times permuted samples [Doran
et al., 2014], reject H0 if original statistic is larger than the
threshold derived from permuted statistics. The difference
of these three statistics are pure accuracy in Eq. (1), linear
kernel that contain confidence information from accuracy in
Eq. (2), and higher-order deep kernel that explains complex
structure information in Eq. (3).

Discussion of Alternatives. In the first phase, if the data
sometimes follow a smoothness assumption where small
perturbations will not influence the distribution of data (i.e.,
the distance between two distributions will be significantly
larger than the distance between the augmentations [Xie
et al., 2020]), an augmentation-based self-supervised rep-



Algorithm 1 Training models in RL-TST framework

Input: SP, SQ, ϕ, ψ, g, κϕ
ϕ∗ ← argminϕ R̂(ϕ, ψ, SP ∪ SQ) Eq. (7): learning IRs
Split: SP, SQ into Str

P , S
tr
Q, S

te
P , S

te
Q

Str ← (Str
P , 0) ∪ (Str

Q, 1)
if learn DRs by classifier then
g∗ ← argming L̂(g, Str) Eq. (8)
M← g∗ ◦ ϕ∗ learning DRs by classifiers

else
κ∗ ← argminκϕ∗ Ĵ (κϕ∗ , Str

P , S
tr
Q) Eq. (10)

M← κ∗ϕ∗ learning DRs by deep kernels
end if
Output:M

resentation learning can also be used [Grill et al., 2020, Li
et al., 2021]. Instance-level representation learning through
contrastive discrimination, like SimCLR [Chen et al., 2020],
is not recommended in two-sample testing scenarios, even
when both the smoothness and manifold assumptions are sat-
isfied, since only holistic approaches, such as BYOL [Grill
et al., 2020], can effectively capture the IRs of whole data.
However, we are proposing a general framework that can
be applied to all the two-sample data, so we do not include
such representation learning algorithm in the framework.

3.2 DISCUSSION OF THE TYPE I ERROR AND
TYPE II ERROR CONTROL

Control of type I error (α). In testing phase, since we
are conducting the permutation test on the learned repres-
entations of test data, it can guarantee the validity of the
type I error rate under exchangeability conditions [Hemerik
and Goeman, 2017, Biggs et al., 2023]. In general, RL-TST
learned an autoencoder-based feature map in an unsuper-
vised manner, independent of the sample labels. Hence,
the unsupervisedly learned nonlinear transformation applies
symmetrically to both samples. This symmetry preserves the
exchangeability required for a permutation test, controlling
of type I error regardless of nonlinear transformations.

For the example to understand the type I error control, given
the two samples SP ∼ Pn and SQ ∼ Qm, we first treat them
as unlabeled data Z = {z1, . . . , zn+m} and learn an unsu-
pervised map ϕ∗ from X to some feature space. Because ϕ∗

depends only on the unlabeled observations, it remains the
same under any permutation of the labels that split Z into
two groups S′

P and S′
Q (i.e., SP and SQ are interchangeable

from the perspective of ϕ∗), so that under the null hypo-
thesis P = Q, all label assignments are equally plausible
and the embedded data preserve exchangeability. When we
define a test statistic T (ϕ∗(SP), ϕ

∗(SQ)), permuting the la-
bels leaves ϕ∗ unchanged, implying that T (ϕ∗(SP), ϕ

∗(SQ))
has the same distribution as T (ϕ∗(S′

P), ϕ
∗(S′

Q)) for any per-
mutation. Hence, the permutation test on the embedded data

Table 1: Main theoretical results from [Yan and Zhang,
2023], which displays that the relationship between the
dimension of the data (denoted by p) and the sample size
(denoted by N) will affect the l-order moment discrepancy
the kernel two-sample testing being detected.

Dimension and sample size orders Main features captured

N = o(
√
p) Mean and trace of covariance

N = o(p3/2) Mean and covariance
N = o(pl−1/2) The first lth moments
Fixed p, growing N Total homogeneity

remains valid, preserving the type I error control by lever-
aging the symmetry inherent in unsupervised representation
learning [Biggs et al., 2023].

Control of type II error (β). For the test power (1 − β)
under alternative hypothesis, the analysis of how well the
learned representations (both IRs and DRs) preserve or amp-
lify distributional differences remains an active research
challenge in the field. However, under the manifold assump-
tion, the learned IRs retain the key compressed information
necessary for distinguishing the two samples. In recent the-
oretical research of two-sample testing, as shown in Table 1,
researchers have found that the lower dimension is reduced
relative to the sample size, the higher-order moment discrep-
ancy the MMD test is capable to detect [Yan and Zhang,
2023]. Therefore, if we learn better representations of input
samples under the manifold assumption, it will effectively
extract the lower dimensional features without increasing
sample size, making the MMD test more likely to capture
the higher-order discrepancy. Since C2ST or C2ST-L are es-
sentially MMD-based two-sample testing methods with sign
kernel or linear kernel [Liu et al., 2020], it is compelling
that if we can learn better representations on the two-sample
testing data, we will derive higher test power from any two-
sample testing methods. In Appendix C.5, we also provide
the empirical results to show that the learned IRs will not
lose information of the original distributional difference.

3.3 CAN WE USE SEMI-SUPERVISED LEARNING
METHODS FOR TESTING?

After introducing the RL-TST framework, we find a way to
make good use of the information from unlabelled data to
improve test power. In machine learning, there is another
modern technique called semi-supervised learning (SSL),
which is also designed to utilize the information from unla-
belled data to improve classification. In this section, we will
discuss why mainstream SSL methods (e.g., label propaga-
tion [Lee et al., 2013]) cannot be generally used to address

1The result does not include standard deviation, since each
trial we are testing whether two groups of drawn samples are from
same distribution or not, and the result of each trial is either 0 or 1.
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Figure 2: Visualisation of first two dimensions of samples for different levels of the high-dimensional Gaussian mixture
(HDGM) dataset whose dimension is 10. For the HDGM-Easy and HDGM-Medium, the cluster mean difference ∆µ within
the same distribution is 10, while for the HDGM-Hard, ∆µ is 0.5. For the HDGM-Easy, the distribution mean difference
∆q between P and Q is 5, while for HDGM-Medium and HDGM-Hard, ∆q is 0. Other setting of how to generate HDGM
dataset is described in Appendix C.4.

Table 2: Result of C2ST test power on HDGM-Easy, -Medium and -Hard (d=10), on different total size N of two samples
inputed in 100 trials. Compared to other application of mainstream SSL methods on C2ST, where C2ST-CR, C2ST-PL,
C2ST-GM, and C2ST-HB represent that we learn the classifier of C2ST using four different mainstream SSL frameworks. 1

Method HDGM-Easy HDGM-Medium HDGM-Hard

N=60 N=80 N=100 N=2000 N=3000 N=4000 N=4000 N=6000 N=8000

C2ST 0.64 0.91 0.99 0.44 0.82 0.97 0.29 0.49 0.78

C2ST-CR 0.65 0.92 1.00 0.40 0.84 0.97 0.32 0.42 0.75
C2ST-PL 0.72 0.96 0.99 0.40 0.76 0.93 0.36 0.45 0.77
C2ST-GM 0.64 0.92 1.00 0.43 0.85 0.97 0.22 0.40 0.72
C2ST-HB 0.99 1.00 1.00 0.25 0.43 0.58 0.28 0.43 0.65

two-sample testing problems where Str is regarded as the
training set and Sunl is regarded as the unlabeled set.

We first recall the basic assumptions required by SSL meth-
ods [Chapelle et al., 2006]:

• Smoothness assumption: If points x1 and x2 are close,
then so should be their labels y1, y2.

• Cluster assumption: If points are in the same cluster,
they are likely to be of the same class.

• Manifold assumption: The (high-dimensional) data lie
(roughly) on a low-dimensional manifold.

Based on those assumptions, there are five representat-
ive semi-superivsed learning frameworks [Yang et al.,
2023]: consistency-regularisation [Xie et al., 2020], pseudo-
labelling [Lee et al., 2013], graph-based [Song et al., 2022],
generative-models [Kingma and Welling, 2014] and hybrid
[Sohn et al., 2020] SSL methods. The consistency regular-
isation techniques assume that the model can predict the
same label between the augmented or permuted samples and
original samples; the pseudo-labelling techniques assume
that if the samples form a cluster, then all of samples have

same label in the same cluster; graph-based techniques as-
sume that the input samples are graph-structured or the input
can be represented as graph-structured data; the generative-
model techniques assume that the generative samples have
the same distribution as input samples. Hybrid techniques
can embrace the advantages of the above techniques, how-
ever they also require all assumptions to hold. The details
of above SSL methods are demonstrated in Appendix B.1.

Even though those methods are comprehensive and ad-
vanced in the field of SSL to leverage the information from
unlabelled data, they are inherently incompatible to the
two-sample testing scenarios. In the general case, data in
two-sample testing often form a high-degree of overlapping
between two samples, which will decrease the useful in-
formation content of unlabelled data [Chapelle et al., 2006],
and the empirical verification on the challenges of applying
semi-supervised techniques is presented below.

Empirical Results for Validity of Mainstream Semi-
supervised Learning Techniques. In Figure 2, it shows
different levels of overlap in the two-sample testing data,
and we will conduct experiments on these datasets. Since



SSL methods mainly applied on the classifier-based model,
we explore the performance of C2ST-based methods.

In Table 22, the empirical results show that even though
the application of mainstream SSL methods on C2ST can
have better performance on the HDGM-Easy dataset, but it
often yields poorer results compared to the original C2ST
on HDGM-Medium and HDGM-Hard datasets, which rep-
resents the common overlapping distribution data in the
context of two-sample testing. This underperformance can
be attributed to the fundamental nature of the testing pro-
cedure, which is distinct from accuracy evaluation in the
classification tasks. In two-sample testing, our aim is to
maximize the distance of two whole samples, rather than
focusing on correctly classifying all the unseen data points
(which is also impossible in two-sample testing). During
the training of classifiers, we manually assign labels to fa-
cilitate distinction by the classifier, whereas in testing, we
consider the two samples holistically rather than focusing
on individual instance accuracy.

Furthermore, mainstream SSL methods, which primarily
enhance classification through data augmentation based
on smoothness assumptions or propagate pseudo labels
based on clustering assumptions, aim to generate high-
confidence training data. However, in two-sample testing,
these approaches are flawed; data augmentation may alter
the samples’ distributions, and pseudo label propagation
often proves inaccurate. These discrepancies lead to the fre-
quent ineffectiveness of these SSL methods in two-sample
testing contexts. The details of why testing data does not
always satisfy the assumptions made by many SSL methods
is analyzed in Appendix B.2. Moreover, two-phase repres-
entation learning can also be considered as semi-supervised
learning [Dai and Le, 2015], and RL-C2ST is the classifier-
based model implemented on the RL-TST framework, so
we will also provide more concrete theoretical analysis on
how to understand the test power improvement of RL-C2ST
in a semi-supervised discriminator’s view in Appendix D.

Insights For Futures. An interesting view of SSL is that
SSL presumes perfectly reliable labels and focuses on
propagating that clean supervision to unlabeled data. How-
ever, the alternative hypothesis in two-sample testing posits
a distributional shift in the feature and label joint distribu-
tion, which will directly treat the observed labels as poten-
tially corrupted. This mismatch suggests a new research
direction: build noise-aware SSL objectives that estimate a
label-corruption channel and couple it with geometry-based
regularisation, or design representations optimised to max-
imise the power of label-shift tests. These approaches would
reconcile SSL with the realities captured by distribution
testing, turning label noise from an obstacle into a signal.

2The experimental details of this table can be found in Ap-
pendix B.1, where all detailed description of semi-supervised
methods and how to use these methods in testing are introduced.

4 EXPERIMENTS

Datasets. We conducted experiments on five different data-
sets to thoroughly evaluate our methods in two different as-
pects: 1) To assess the performance of alternative SSL learn-
ing methods directly applied to two-sample testing methods,
we utilized three synthetic datasets: HDGM-Easy, HDGM-
Medium, and HDGM-Hard. As we have already mentioned
in Appendix B, these datasets represent three different levels
of data structure complexity often encountered in the two-
sample testing scenarios, which can verify whether the main-
stream SSL techniques are robust to various two-sample test-
ing tasks or not; 2) To verify the effectiveness of proposed
two-phase RL-TST framework applied on two-sample test-
ing methods (i.e., RL-C2ST, RL-MMD-D) than the other
existing work, we conduct the experiments of an imple-
mented RL-TST against other SOTA two-sample testing
methods. These experiments were carried out on three rep-
resentative datasets: MNIST, ImageNet, and HDGM-D (a.k.a.
HDGM-Hard) to evaluate the enhanced performance of our
RL-TST framework. Detailed descriptions of these datasets
are provided in Appendix C.1.

Baselines. The baselines are the SOTA two-sample testing
methods from the existing frameworks. Our main empirical
experiments aim to evaluate the performance of two-sample
testing methods built on the RL-TST framework (i.e., RL-
C2ST and RL-MMD-D) against several SOTA methods in
two-sample testing, specifically C2ST, C2ST-L, MMD-D,
and MMD-FUSE. These methods serve as competitive ref-
erences to highlight the improvements achieved by focusing
on learning good representations from RL-TST framework.
The following are the overall descriptions of each method.

• C2ST: C2ST learns a classifier and uses statistic in Eq. (1)
to measure the difference of two samples [Lopez-Paz and
Oquab, 2017].

• C2ST-L: same as C2ST, except it uses the statistic in
Eq. (2) to measure the absolute mean differences between
the probability of the logits of two samples, as we discuss
in the Section 2 [Cheng and Cloninger, 2022].

• MMD-D: MMD test trains a neural network to derive a
deep kernel [Liu et al., 2020].

• MMD-FUSE: a SOTA testing method that learns IRs
from different fixed kernels without data splitting [Biggs
et al., 2023].

• RL-C2ST: RL-C2ST is a C2ST improved by our pro-
posed RL-TST framework, as we discussed in the Sec-
tion 3.1. RL-C2ST-L uses Eq. (2) as test statistic.

• RL-MMD-D: RL-MMD-D is the implementation of RL-
TST on the MMD-D as we discussed in the Section 3.1.

For their detailed implementations and parameter settings,
please refer to Appendix C.3. Moreover, the methods listed
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Figure 3: Test power of two different implementations of RL-TST framework on the two-sample testing method C2ST.
Barplot to show how standard auto-encoder RL-C2ST and wasserstein auto-encoder RL-C2ST both outperform C2ST in the
MNIST dataset (a), HDGM-D when d = 2 (b) and HDGM-D when d = 10 (c).

in the Table 2 represent our implementations, which serves
as an alternative idea’s motivation experiment to highlight
the challenges of the research gap between the fields of semi-
supervised learning and two-sample testing. Thus, they are
not intended to be considered as formal baselines.

Ablation Study. We conduct the ablation study on RL-TST
framework by not solely applying one single representa-
tion learning algorithm on the original two-sample testing
methods. To ensure the effectiveness of the RL-TST frame-
work can be further investigated with other advanced rep-
resentation learning algorithms, except for comparing one
basic standard AE [Schmidhuber, 2015], we also imple-
ment another AE-based representation learning algorithm,
Wasserstein auto-encoder (WAE) [Tolstikhin et al., 2018],
where they both show that various IR learning algorithms
can all leverage the information discarded by data splitting
to improve the test power of original methods.

For the details of these two AE-based representation learn-
ing, the standard auto-encoder has an unrestricted lat-
ent space which can more focus on the reconstruction
[Schmidhuber, 2015], while the wasserstein auto-encoder
can match the latent space with a target prior distribution
(i.e., Gaussian) to make sure the generating power [Tol-
stikhin et al., 2018]. Thus, in application, depending on the
characteristics of different AEs, we can choose the suitable
one for the downstream task or target data structure.

For the empirical experiments result, the visualized result of
how two kinds of RL-C2STs outperform C2ST is displayed
in Figure 3. In both dataset MNIST and HDGM-Hard, we
can see that the test powers of RL-C2STs are higher than
that of C2ST no matter how many numbers of two samples
are drawn from the distribution. Although the differences
between two methods are little when N is small, the test
powers of RL-C2STs have a huge gap over C2ST when N
is large enough and converges to 1 with a relative smaller
N compare to C2ST. Since under the alternative hypothesis
H1 : P ̸= Q, if the number of samples goes to infinity,
an effective two-sample testing method will always reject

the null hypothesis H0 : P = Q, thus, the less samples
needed to reach the test power of 1, the better perform-
ance the method has. Thus, the empirical results can clearly
verify that no matter what kinds of representation learning
algorithms that can effectively learn IRs from two-sample
testing data before learning DRs, we can finally derive a
better representation than purely learning DRs.

Compared to C2ST, both RL-C2STs learn a compact and
potentially more informative representation of the whole
data, which makes efficient use of the unlabelled test data.
This can not only discover underlying patterns or features
that might not be directly related to the labels yet to the
data distribution itself, but also provide a regularizing ef-
fect to prevent the model being more likely to overfit the
training data. Similar to all of the applications of RL-TST,
such featurizer in the RL-TST can result in better general-
ization from the learned representations and improve the
classifier’s performance on the testing set predictions. The
empirical outperformance of different learning algorithms
also validates that RL-TST is a compelling framework for
two-sample testing methods learning from unlabelled data.

Result Analysis. After we validate the effectiveness of RL-
TST on C2ST, we will also display how effective the RL-
TST applied on two advanced two-sample testing methods,
which results in RL-C2ST-L and RL-MMD-D. They both
show not only how they improve the original C2ST-L and
MMD-D, but also how they outperform the most SOTA
testing method MMD-FUSE.

The overall results on the HDGM dataset are shown in Fig-
ure 4. We can see that all the RL-TST methods have higher
test power than their original methods, no matter how we
choose N , while all type-I errors are reasonably controlled
around α = 0.05. We provide an extra type I error checking
experiment under different levels of significance level and
under 1, 000 trial repetitions in Appendix C.9. For MNIST
and ImageNet datasets, the results of all methods are shown
in Table 3, all the RL-TST methods still outperform the
original methods. Moreover, RL-C2ST-L and RL-MMD-D,



Table 3: MNIST and ImageNet (α = 0.05). Average test power for comparing M real MNIST images to M DCGAN-
generated MNIST images, and Average test power for comparing M real ImageNet images to M StyleGAN-XL-generated
ImageNet images. The three implementations of RL-TST are all using standard auto-encoder in the learning IRs step, we
could replace it into other alternative auto-encoders, such as wasserstein auto-encoder discussed in the Section 4.

Method MNIST ImageNet

M=200 M=400 M=600 M=800 M=1000 Avg. M=200 M=400 M=600 M=800 M=1000 Avg.

C2ST 0.180±.046 0.720±.023 0.980±.013 1.000±.000 1.000±.000 0.776 0.150±.022 0.300±.029 0.350±.026 0.600±.036 0.850±.016 0.450
C2ST-L 0.250±.047 0.730±.053 0.990±.009 1.000±.000 1.000±.000 0.794 0.150±.042 0.350±.030 0.450±.040 0.700±.049 0.850±.034 0.500
MMD-D 0.290±.017 0.996±.009 1.000±.000 1.000±.000 1.000±.000 0.857 0.210±.031 0.400±.039 0.570±.033 0.780±.041 1.000±.000 0.592
MMD-FUSE 0.320±.032 0.870±.033 1.000±.000 1.000±.000 1.000±.000 0.838 0.230±.029 0.450±.034 0.610±.037 0.790±.029 1.000±.000 0.616

RL-C2ST 0.260±.049 0.950±.022 1.000±.000 1.000±.000 1.000±.000 0.842 0.200±.036 0.400±.049 0.500±.061 0.650±.050 0.950±.022 0.540
RL-C2ST-L 0.491±.060 0.985±.013 1.000±.000 1.000±.000 1.000±.000 0.895 0.400±.059 0.500±.059 0.650±.056 0.750±.054 1.000±.000 0.660
RL-MMD-D 0.420±.072 1.000±.000 1.000±.000 1.000±.000 1.000±.000 0.884 0.330±.051 0.470±.069 0.680±.055 0.890±.037 1.000±.000 0.674
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Figure 4: Results on HDGM-D and HDGM-S for α = 0.05.
(a) average test power and (b) average type I error keeping
d = 2 in 100 trials when increasing N from N = 1000 to
N = 10000. All RL-TST methods use the standard auto-
encoder, we could replace it with other alternative auto-
encoders, such as Wasserstein auto-encoder (see Section 4).

which are the most two powerful applications, can have the
highest test power than other SOTA methods among differ-
ent sample size N or M , which can verify the improvement
of our RL-TST on different two-sample testing methods.

Discussion of Sequential Two-sample Testing. Sequential
two-sample testing methods also utilize information from
the test data. Thus, in this part, we will compare ours and
sequential two-sample tests. Briefly, we find that sequential
two-sample testing has a different problem setting from
what we are interested in [Li et al., 2022, Pandeva et al.,
2022, Li et al., 2023]. In our problem setting, we assume
the total number of samples is fixed and given, and we are
trying to distinguish whether these two given samples are
from the same distribution or not. No more extra data are
provided for testing data and the test data is known, so it
can be regarded as a transductive learning problem, while
the sequential two-sample testing assumes the testing data
can infinitely arrive as batch.

In sequential two-sample testing, a classifier is trained to de-
termine whether two samples from a single batch originate
from the same distribution. Initially, batches are split and
fed sequentially into the classifier as testing data. Batches

that do not reject the null hypothesis are concatenated with
previous batches and used as training data for the classi-
fier, continuing until all batches are exhausted or a single
batch rejects the null hypothesis. The sequential nature of
the test emerges from the use of e-values, which are updated
as more data becomes available, allowing for a dynamic
assessment of the testing hypothesis. However, this method
should not be directly compared to our method due to dif-
ferent problem settings and designs. Firstly, in sequential
two-sample testing, data are split into several batches and
tests are conducted on single, small batches. Conversely, in
other supervised two-sample testing approaches, data are
only split into two halves, creating a trade-off between the
number of training and testing samples.

Furthermore, the design of our RL-TST framework is com-
patible with any other supervised two-sample testing frame-
work, including sequential two-sample testing. As long as
a proportion of data is used for testing, we can remove the
labels from this testing data and concatenate it into the train-
ing data. This allows us to learn IRs through representation
learning, followed by the original supervised two-sample
testing framework. We also provide experimental results in
Appendix C.7 demonstrating that RL-TST can outperform
these sequential approaches within the same setting.

5 CONCLUSION

This paper presents a unified view, focusing on learning
good representations from both labelled and unlabelled
samples, to both leverage the discarded information in the
data splitting process and enhance the discriminative ability,
which can address the existing drawbacks of two-sample
testing methods. In order to examine the viability of the view,
we conduct a thorough survey in the field of two-sample test-
ing and the potential fields that enable to utilize information
from unlabelled data, and propose a feasible framework that
empirically improve the performance of two-sample test-
ing methods. In the future, many advanced representation
learning techniques for two-sample testing can be developed
based on the new research direction proposed in this paper.
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A ALGORITHM

We present the details of Algorithm 1 about framework for RL-TST in the following Algorithm 2.

Algorithm 2 Paradigm of testing with RL-TST

Input: SP, SQ, significance level α, an auto-encoder fa consist of a featurizer ϕ and a decoder ϕ−1, a final classifier
M := g ◦ ϕ or a deep kernelM := kϕ included with the featurizer, total epochs for learning IRs TIR, total epochs for
learning DRs TDR.
1: Derive the unlabelled data Sunl = shuffle(SP ∪ SQ)
# Phase 1: derive Featurizer ϕ from learning IRs
for t = 1, 2, . . . , TIR do

2: Xt ← minibatch from Sunl;
3: ϕ∗ ← argminϕR(fa, X) based on Eq. (6);

end for
# Phase 2: train a classifier or kernelM to learn DRs on Str = (Str

P ,0) ∪ (Str
Q ,1)

for t = 1, 2, . . . , TDR do
5: (Xt, lt)← minibatch from Str;
6: g∗ ← argming LDR(ϕ

∗(Xt), lt, g) based on Eq. (8), if learning classifier;
end for
or
7: k∗ ← argmaxkϕ∗ ĴDR(S

tr
P , S

tr
Q ; kϕ∗) based on 10, if learning deep kernel;

# Phase 3: permutation test with f on Ste = Ste
P ∪ Ste

Q
8: est← t̂(Ste

P , S
te
Q ;M) based on Eq. (1), Eq. (2), or Eq. (3);

for i = 1, 2, . . . , nperm do
9: Shuffle Ste into X and Y ;
10: permi ← t̂(X,Y ;M)

end for
Output: I

[
1

nperm

∑nperm

i=1 I(est < permi) ≤ α
]

B DISCUSSION OF SEMI-SUPERVISED LEARNING

B.1 OVERVIEW OF MAIN CATEGORIES OF SEMI-SUPERVISED LEARNING METHODS

Building on the semi-supervised learning (SSL) assumptions, we will recap how contemporary SOTA SSL methods
incorporate these principles and assumptions, setting the stage for an analysis of their applicability to the specific challenges
presented by our problem setting.

Transductive vs Inductive learning. Classification tasks within machine learning can typically be categorized within two
distinct problem settings: transductive and inductive learning [Chapelle et al., 2006]. Transductive learning is concerned with
predicting the labels of the specific unlabelled data that was present during the training process, emphasizing a tailored fit to
this data. Inductive learning, on the other hand, focuses on the generalization of the learned classifier to new, unseen data. In
learnable two-sample testing, the goal is to test whether the given two samples are drawn from same distributions. To make
it, we firstly split samples into labelled set and unlabelled set, then find out that whether it is possible to learn a classifier that
can distinguish two samples from the mixed unlabelled set. It becomes apparent that applying SSL methodologies to the
two-sample testing problem inherently requires a transductive learning approach. This conceptual groundwork necessitates a
detailed examination of current SSL methods to identify their foundational assumptions and evaluate their performance in
two-sample test scenarios.

Major categories. Currently, we identify that there are five main categories of SOTA SSL methods: consistency regular-
isation, pseudo-labelling, graph-based, generative models and hybrid (often a combination of consistency regularisation
and pseudo-labelling) [Yang et al., 2023]. We will succinctly explicate how they work, and how they are applied for our
downstream two-sample testing tasks in the experiments of various levels of HDGM.

• Consistency Regularisation: Based on the manifold assumption or the smoothness assumption, the consistency



regularisation methods apply consistency constraints to the final loss function, where the intuition is that if the data
follows the smoothness assumption or manifold assumption, even though we construct some perturbations in the inputs,
it will not influence the output of classification [Xie et al., 2020].

• Pseudo-Labelling: Pseudo-labelling uses its own predictions to generate labels for unlabelled data, which are then used
to further train the model. It relies on the assumptions that model’s high-confidence predictions are accurate. This
assumption is based on the cluster assumption for the validity and efficacy of propagating labels to unlabelled data
based on model predictions [Lee et al., 2013].

• Graph-Based: Graph-based methods will construct a similarity graph based on the raw dataset, where each node
represents a data instance, and weighted-edge represents the similarity between two data instances. Based on the
smoothness assumption, the label information can be propagated from labelled nodes to unlabelled nodes, if two nodes
are closely connected in the constructed graph [Song et al., 2022].

• Generative Models: Generative methods learn to model the underlying distribution of both labelled data and unlabelled
data, using this learned representation to generate new data points and infer missing labels. Based on the manifold
assumption, the generative models aim to learn the underlying low-dimensional manifold and generate data points that
adhere to the same manifold, used for further model training [Kingma and Welling, 2014].

• Hybrid: Hybrid methods are just combination of multiple methods, such as consistency regularisation, pseudo-
labelling, and sometimes generative approaches. These models typically rely on the smoothness assumption and cluster
assumption, in order to infer the labels of unlabelled data [Sohn et al., 2020].

B.2 ANALYSIS OF WHY TWO-SAMPLE TESTING DATA ARE NOT SATISFIED FOR SSL

In the traditional two-sample testing problem settings, there is often overlap between the two samples. As we can see in
Figure 2b and Figure 2c, for the HDGM-Medium and HDGM-Hard datasets, there are high-overlapping areas between
two distributions. This will highly violate the first two assumptions of SSL mentioned previously. For the smoothness
assumption, our dataset will have large amounts of nearly the same data points in two samples, but allocated different labels;
this will notably influence the SSL methods that based on such assumption. For the cluster assumptions, we can see in
HDGM-Medium that although there are two obvious clusters, they do not have the same labels within the same cluster in a
holistic view. The SOTA SSL techniques will rely on at least one of the smoothness assumption or cluster assumption to
ensure that the unlabeled samples’ label information can be inferred, or extra training samples can be created. However, our
samples will face a challenge that they may only follow the manifold assumption: to ensure the robustness of the methods,
we have to make sure that they can be applied on all the possible scenarios.

C EXPERIMENTAL DETAILS

C.1 OVERVIEW OF DATASETS

High-Dimensional Gaussian mixtures. The high dimensional Gaussian mixtures (HDGM) benchmark is a synthetic dataset
that is composed of multiple Gaussian distributions, each representing a cluster, which is proposed by Liu et al. [2020]. In
our experiments, we are considering bimodal Gaussian mixtures, which means the number of clusters remains 2 irrelevant to
the dimension of the multivariate Gaussian distributions. In Appendix B, we consider there are three levels of HDGM, which
are HDGM-Easy, HDGM-Medium and HDGM-Hard in order to specify different levels of data distribution existing in the
two-sample testing problems. In other places of this paper, rather than Appendix B, we regard HDGM as HDGM-Hard.
Under H0, P and Q are the same, which denoted as HDGM-S to verify the type I error under control; and under H1, we
slightly modify a mild covariance ±0.5 between first two dimensions in the covariance matrix of Q and other setups are the
same as HDGM-S, which is referred to as HDGM-D. Thus, HDGM-S and HDGM-D are both noted by hard-level HDGM.
The details of how to synthesize P and Q to derive HDGM-Easy, HDGM-Medium, HDGM-Hard, HDGM-S and HDGM-D
are described in Appendix C.4. We regard nc as the number of samples drawn from each cluster in each distribution and N
as the number of total samples drawn from both P and Q, where N = n× c× 2. We conduct two experiments on HDGM-D,
increasing the N from N = 1000 to N = 10000 when keeping the dimension d remain the same. One experiment is a
low-dimensional HDGM-D with d = 2 and another is a high-dimensional HDGM-D with d = 10. Moreover, we conduct
both low-dimensional and high-dimensional HDGM-S to show that the type-I error is controlled. The result is shown in
Figures 3 and 4, which will be analyzed in the below subsection.



MNIST vs MNIST-Fake. The MNIST datasets is a collection of 70,000 grayscale images of handwritten digits, ranging
from 0 to 9, divided into a training set of 60,000 images and a test of 10,000 images [LeCun et al., 1998]. The MNIST-Fake is
the a set of 10,000 images generated by a pretrained deep convolutional generative adversarial network (DCGAN) [Radford
et al., 2016]. The MNIST benchmark (MNIST vs MNIST-Fake) is also proposed by Liu et al. [2020], aiming to test the
performance of testing methods in the image space. Under H0, we draw samples both from the MNIST-Fake. Under H1,
we compare the samples from real MNIST, P, and samples from MNIST-Fake, Q. We regard N as the number of samples
each drawn from P and Q, where we increase N from N = 200 to N = 1000. The result of the average test power of all
methods is displayed in the Table 3. All methods are tested with a reasonable type-I error rate.

ImageNet vs ImageNet-Fake. The ImageNet dataset is a comprehensive collection of over 14 million labelled high-
resolution images belonging to roughly 22,000 categories [Deng et al., 2009]. The ImageNet-Fake dataset comprises
10,000 high-quality images generated using the advanced StyleGAN-XL model, a state-of-the-art generative adversarial
network designed for large and diverse datasets [Sauer et al., 2022]. This benchmark (ImageNet vs ImageNet-Fake) extends
the framework established by Liu et al. [2020] to a more complex and diverse image domain, testing the robustness of
two-sample testing methods at a larger scale. Under the null hypothesis H0, samples are drawn from ImageNet-Fake, while
under the alternative hypothesis H1, we compare samples from the real ImageNet dataset, P, with those from ImageNet-Fake,
Q. We vary the number of samples drawn from each, P and Q, from N = 200 to N = 1000 to examine the scalability of
the test methods. The outcomes in terms of average test power across various methodologies are summarized in Table 3,
with all tests maintaining a reasonable type-I error rate.

C.2 IMPLEMENTATION DETAILS OF C2ST AND RL-C2ST

• C2ST: C2ST has the ability of learn DRs from two samples, by learning a well-trained classifier to only get prediction
accuracy information. Implementation of C2ST paradigm is to only take Phase 2 and Phase 3 from Algorithm 2. Most
of the implementation details are referenced from Lopez-Paz and Oquab [2017] and Liu et al. [2020]. The splitting
portion of training and testing is always half to half, and the model architecture is the same for C2ST and RL-C2ST,
where first few layers are feature extractor and followed by a classification layer. Moreover, in the first step of Phase 3,
we do not utilize the the softmax probability of the first value of the logits returned by the classifier to calculate the
statistic of two samples, we apply Eq. (1) which directly derive the mean of the classification prediction accuracy of
two samples.

• RL-C2ST: a unified representation learning version of C2ST. We firstly learn an encoder that can extract IRs from
whole samples, and boost the discriminative ability by minizing the prediction error of classifier. Replacing the test
statistics of RL-C2ST from Eq. (1) into Eq. (2) will result in RL-C2ST-L. Most of the implementation details are
described in the Algorithm 2.

In C2ST, we have a classifier f consisting of a randomly initialized feature extractor ϕθ(x) followed by a logistic regression
layer with parameters w and b, where

f(x) = ϕθ(x)×w + b.

As the f is a binary classifier, f(x) = [z0, z1] and softmax(f(x)) = [p0, p1], where p0 + p1 = 1. All parameters θ,w
and b are updated through the supervised learning on the training set, which aims to minimize the occurrence of incorrect
predictions. Then, use the empirical probability of the correct predictions on an unseen testing set to measure the difference
between two samples.

However, in RL-C2ST, we have g consisting of a feature extractor ϕa(x) trained on Str
P ∪ Ste

P ∪ Str
Q ∪ Ste

Q without labels
via unsupervised learning and a logistic regression layer for subsequent supervised training purpose. In the unsupervised
learning step, we use ϕa(x) to extract a latent feature vector z from the input x, and then use a decoder ϕ−1

a (x) to reconstruct
z to a reconstructed x′. We update the parameters of ϕa by minimizing the difference between the reconstructed input x′

and the original input x. After the unsupervised training procedure, we add a classification layer after ϕa to form a classifier
g, and train the classification layer in the same way as the C2ST.

C.3 DETAILS OF RL-C2ST-L AND OTHER MMD BASED METHODS

We first introduce RL-C2ST-L and compare the following state-of-the-art testing methods on two benchmark datasets:

• C2ST-L: The name of C2ST-L is originated from Liu et al. [2020], where L refers to logit. It can capture more



discriminative information from the confidence of predictions. The implementation detail is the same as C2ST, except
not computing the prediction probability, but using the logit output directly to measure the distance.

• RL-C2ST-L: A RL-TST implemented on C2ST-L. Rather than using the prediction labels (0 or 1) to measure the test
accuracy, we utilize MMD to calculate the differences between output features extracted from the RL-C2ST. The output
features could be the output of the hidden layer or the logits output of the classifier trained by the RL-C2ST, as we
discuss in Section 3.1.

• MMD-D: a SOTA testing method to learn a deep kernel with a neural network that can extract DRs. MMD-D has the
training objectives of directly maximizing the test power of MMD, leading to an increase in test power on the testing
set. The implementation is strictly aligned with the code provided in Liu et al. [2020], where we simultaneously train a
deep neural network and deep kernel Gaussian bandwidths by maximizing the training objectives Ĵ = M̂MDu/σ̂H1,λ.

• RL-MMD-D: A RL-TST implemented on MMD-D to alleviate the drawbacks of decreasing the testing samples size
from data splitting process, as we discussed in the Section 3.1.

• MMD-FUSE: MMD-FUSE fuses several MMD statistics based on the simple kernel of different combinations of
hyperparameters into a new powerful statistic, then conducts a permutation test based on the fused statistic. The
implementation is strictly aligned with the code provided in Biggs et al. [2023], where we compute and fuse the test
statistics based on different kernel functions and hyperparameters in order to capture complex data structure in an
unsupervised way.

C.4 DETAILS OF HDGM DATASETS

Table 4 displays the details of how HDGM datasets are generated [Liu et al., 2020]. Different levels of HDGM datasets
are first proposed in this paper, in order to show why SOTA SSL methods cannot be directly applied in the two-sample
testing problem. The level of HDGM is differed from whether the data points are highly overlapping or whether the clusters
within the same distribution are isolated. For the HDGM-Easy, ∆µ = 10 and ∆q = 5. For the HDGM-Medium, ∆µ = 10
and ∆q = 0. For the HDGM-Hard, ∆µ = 0.5 and ∆q = 0.

Table 4: Details of how to synthesize P and Q in the experiments. Let c = 2 be the number of the clusters in each distribution,
d > 2 be the dimension of multivariate normal distribution of each cluster. (µ1, . . . ,µc) is a set of d-dimensional mean
vector µi that specifies that mean of each dimension in the distribution, where µ1 = 0d,µi = µi−1 +∆µ × 1d. Id is the
d× d identity matrix, ∆µ is the cluster mean difference within the same distribution, and ∆q is the mean difference between

P and Q. ∆1 = 0.5, ∆2 = −0.5, and Σi =

 1 ∆i 0d−2

∆i 1 0d−2

0Td−2 0Td−2 Id−2

.

Datasets P Q

HDGM-S
∑c
i=1N (µi, Id)

∑c
i=1N (µi, Id)

HDGM-D
∑c
i=1N (µi, Id)

∑c
i=1N (µi +∆q,Σi)

C.5 EMPIRICAL RESULTS OF TYPE II ERROR CONTROL

In this subsection, we empirically show that the learned IRs will not lose the information of original distribution differences.
Inspired by Biggs et al. [2023], we implement the IR learning step before the state-of-the-art baselines MMD-FUSE
to clearly show that compared to distinguish between the original features, the IRs could at least preserve the original
distributions differences between two samples, but also often compress key information to enhance the test power. In Table
5, we can find that the IRs will never underperform than the original features. Moreover, before the test power coverges, the
compressed low-dimensional key information can boost the performance.

C.6 DETAILS OF COMPUTING RESOURCES

The experiments of the work are conducted on three platforms. One platform is a Nvidia-4090 GPU PC with Pytorch
framework. The second platform is a High-performance Computer cluster with lots of Nvidia-A100 GPU with Pytorch



Table 5: Experimental results of test power across sample sizes in the HDGM-D (d=10) in 100 trials. IR-MMD-FUSE means
we use the IRs learned from Eq. (7) to input the MMD-FUSE testing, compared to the original features.

N = 1000 N = 2000 N = 4000 N = 6000 N = 8000 Avg.
MMD-FUSE 0.06 0.14 0.36 0.70 0.95 0.442
IR-MMD-FUSE 0.07 0.16 0.43 0.82 0.95 0.486

framework. The last platform is a Nvidia-4090 GPU Window Subsystem for Linux with Jax framework. The memory of
three platforms are all over 16 GB. The storage of disk of three platforms are all over 512 GB.

C.7 EXPERIMENT RESULT OF SEQUENTIAL TWO-SAMPLE TESTING

In this part, we will display the result of supervised sequential two-sample test that proposed by Pandeva et al. [2022] on
the HDGM-Hard dataset, and compared the result with original C2ST and RL-C2ST in our problem setting. We can find
that even though this method can have a small increase on the test power over the original C2ST method, but have a large
decrease to our method. The number of batches we choose is five, if we choose the number of batches to two, it is exactly
similar as C2ST; if we choose the number of batches to a large number like ten, the test power will drop down, since the test
data size will be too small. Thus, we decide five as the number of batches, and C2ST-Sequential(5) in the Table 6 represent
the supervised sequential two-sample testing with the number of batches equal to five.

Table 6: Experiment results of test power of sequential two-sample testing with Batch5 over original C2ST and our propose
RL-C2ST on HDGM-hard dataset. N is the total size of two samples inputed in 100 trials.

Method N=4000 N=6000 N=8000 Avg.

C2ST-Sequential (5) 0.32 0.57 0.79 0.56
C2ST 0.29 0.49 0.78 0.52
RL-C2ST 0.50 0.81 0.99 0.77

C.8 REPRODUCIBILITY

All the reproducible code can be found in the anonymous link, and some of the two-sample testing methods are used in the
package AdapTesting.

C.9 EXTRA TYPE I ERROR CHECKING EXPERIMENTS RESULTS

In Table 7, we conduct these additional type I error checks when setting the significance level α at different values, which
have helped strengthen our analysis of type I error control.

D THEORETICAL DISCUSSION AND ANALYSIS

The following theoretical discussions are based on the assumption that the input two-sample testing data can follow the
assumptions of the applied semi-supervised methods. Moreover, those theorems are only applied to MLP-based two-sample
testing methods, such as RL-C2ST or RL-C2ST-L.

D.1 THEORETICAL DECLARATION AND INTERPRETATION

Test Power. Test power is the probability that a test will correctly reject H0, when H1 holds. It represents the ability of the
test to detect the difference between P and Q, so analyzing this power is essential for evaluating the performance of one
two-sample testing method.

Definition D.1. Let f ′ ∈ Cϕ : X → {0, 1} denotes the RL-C2ST classifier model with specific feature extractor ϕ, where
Cϕ = {f ′|f ′ = g ◦ ϕ, g ∈ G} ⊆ C and C =

⋃
ϕ∈F Cϕ.

https://anonymous.4open.science/r/Revisit-non-parametric-two-sample-testing-as-a-semi-supervised-learning-problem-6D0D/README.md


Table 7: Type I error (mean ± standard error) for various sample sizes N and levels α under 1, 000 repetitions on HDGM-S
dataset.

N=1000 N=2000 N=4000 N=6000 N=8000 Avg

α = 0.05
RL-C2ST 0.0100± 0.009 0.0300± 0.015 0.0300± 0.030 0.0400± 0.031 0.0400± 0.016 0.0300
RL-C2ST-L 0.0400± 0.016 0.0400± 0.021 0.0400± 0.016 0.0800± 0.024 0.0300± 0.015 0.0460
RL-MMD-D 0.0400± 0.016 0.0600± 0.016 0.0300± 0.015 0.0300± 0.015 0.0300± 0.021 0.0380

α = 0.03
RL-C2ST 0.0100± 0.006 0.0200± 0.011 0.0300± 0.011 0.0300± 0.013 0.0300± 0.015 0.0240
RL-C2ST-L 0.0350± 0.010 0.0300± 0.011 0.0400± 0.012 0.0200± 0.008 0.0200± 0.008 0.0290
RL-MMD-D 0.0350± 0.013 0.0350± 0.010 0.0200± 0.011 0.0200± 0.008 0.0350± 0.010 0.0290

α = 0.01
RL-C2ST 0.0067± 0.002 0.0133± 0.003 0.0000± 0.000 0.0100± 0.002 0.0100± 0.003 0.0080
RL-C2ST-L 0.0100± 0.003 0.0000± 0.000 0.0100± 0.003 0.0166± 0.004 0.0000± 0.000 0.0073
RL-MMD-D 0.0120± 0.002 0.0100± 0.002 0.0000± 0.000 0.0133± 0.015 0.0133± 0.004 0.0097

Theorem D.2. [Lopez-Paz and Oquab, 2017] Let H0 : t = 1
2 and H1 : t = 1− ϵ(P,Q; f ′), where t is the test accuracy

and ϵ(P,Q; f ′) = Pr(zi,li)∼D [f ′(zi) ̸= li] /2 ∈
(
0, 12

)
represents the inability of f ′ to distinguish between P and Q. The

test power of t̂ is:

PrH1

(
t̂H0

> tα
)
= Φ

((
1
2 − ϵ(P,Q; f ′)

)√
nte − Φ−1(1− α)/2√

ϵ(P,Q; f ′)− ϵ(P,Q; f ′)2

)
, (11)

where α ∈ (0, 1) is the significance level, tα is the (1− α) quantile and Φ is the CDF of standard normal distribution. The
Type-I error of t̂ is also controlled no more than α, which ensures that the test will not always reject H0, when H0 is true.

Understand RL-C2ST via Theorem D.2. In hypothesis testing, our primary aim is to maximize test power while maintaining
control over the Type-I error rate. While we know that via Theorem D.2, Φ−1(1− α)/2 is a constant, for a reasonably fixed
large nte, the first term ( 12 − ϵ(P,Q; f ′)) in the numerator dominates the test power. In fact, to ensure that the model can
achieve the optimal test power on a fixed test dataset, it is equivalent to minimize

J (P,Q; f ′) := ϵ(P,Q; f ′)
/
(1− ϵ(P,Q; f ′)), (12)

where we estimate it with

Ĵ (SP , SQ; f
′) :=

ϵ̂(SP , SQ; f
′)

(1− ϵ̂(SP , SQ; f ′))
, and ϵ̂(SP , SQ; f ′) ∈

(
0,

1

2

)
, (13)

where
ϵ̂(SP , SQ; f

′) =
1

2
êrr(f ′) =

1

2|S|
∑

(xi,li)∼S

I[f ′(xi) ̸= li].

From Eq. (13), we can find that if we can learn a classifier f ′ from Eq. (8) that has a smaller ϵ̂(SP , SQ; f ′), we can minimize
the Ĵ , leading to maxmizing the test power. Thus, we will analyze how the use of unlabelled data and the size of unlabelled
data mu helps to learn a classifier model f ′ that have a smaller ϵ̂(SP , SQ; f ′) in the semi-supervised learning.

We first give a definition of compatibility, an important measurement when analyzing SSL methods.

Definition D.3 (Compatibility). The compatibility of classifier model f is defined as χ : C × X → [0, 1], and χ(f,D) =
Ex∼D[χ(f, x)] estimates how “compatible" the f is with D. Thus, for a given sample S , the incompatibility of f with S is
1− χ(f,S). We can also call it unlabelled error rate errunl(f), where êrrunl(f) = 1− χ(f,S), e.g., for the consistency
regularization technique, 1− χ(f, x) = (f(x)− f(A(x))2, where A is the data augmentation function. Moreover, given
value ξ, we define CS,χ(ξ) = {f ∈ C : êrrunl(f) ≤ ξ}.

Then, the following theorems show our main theoretical result, based on the compatibility.



Theorem D.4. Balcan and Blum [2010] Let f∗ = argminf∈Cϕ
[ϵ(P,Q; f)|errunl(f) ≤ ξ]. Then, the following holds, with

probability at least 1− δ, and for any arbitrarily small ∆mu,ml
> 0,

ϵ̂(SP , SQ; f) ≤ ϵ(P,Q; f∗) +
∆mu,ml

2
+

√
ln
(
4
δ

)
8mu

, (14)

with the unlabelled sample size
mu = O

(
∆−2 log∆−1V(C) + ∆−2 log(2/δ)

)
,

where V(C) = max [V Cdim (C) , V Cdim (χ(C))], and the labelled sample size

ml =
8

∆2

[
log
(
2CS,χ(ξ + 2∆) [2ml,S]

)
+ log(4/δ)

]
.

Here, χ(C) = {χf : f ∈ C} is assumed to have a finite VC dimension, χf (·) = χ(f, ·), and CS,χ(ξ + 2∆) [2ml,S] is the
expected split number for 2ml points drawn from S using functions in CS,χ(ξ + 2∆).

Theorem D.4 indicates that when the best model f∗ has an unlabelled error rate of at most ξ, the empirical inability of f will
be at most ∆ larger than that of f∗, with given labelled sample size ml and unlabeled sample size mu.

Theorem D.5. Let C = {g ◦ ϕ|ϕ ∈ F , g ∈ G}, and suppose ϕ′ ∈ F is fixed (e.g., via pretraining). Then, the following
restricted subclass

Cϕ′ =
{
g ◦ ϕ′ | g ∈ G

}
, χ(Cϕ′) =

{
χg◦ϕ′ | g ∈ G

}
.

satisfy

• Cϕ′ ⊆ C and χ(Cϕ′) ⊆ χ(C);
• VCdim

(
Cϕ′
)
≤ VCdim

(
C
)

and VCdim
(
χ(Cϕ′)

)
≤ VCdim

(
χ(C)

)
;

• V(Cϕ′) ≤ V(C).

Interpretations. Combined with Theorem D.4 and Theorem D.5, we can find that compared to letting ϕ ba learned from
scratch, if we learn a fixed ϕ′ in the representation learning step, we now need fewer unlabeled samples to achieve the same
error ∆; or equivalently, given the same unlabeled sample size, we can push ∆ smaller.

D.2 PROOF OF THEOREM D.4

Definition D.6. Let ϵ(P,Q; f) ∈
(
0, 12

)
be the inability of f to distinguish between distribution P and Q. Then we define

the errte(f) = 2ϵ(P,Q; f) ∈ (0, 1) to be the error rate of f on distribution P and Q.

Theorem D.7. [Boucheron et al., 2000] Suppose function space C : {f |f : X → {0, 1}} has finite VC-dimension for
V ≥ 1. For any sample S, any function f , we have

Pr

[
sup
f∈C
|errte(f)− êrrte(f)| ≥ ∆

]
≤ 8C[2ml,S]e−m∆2/8.

So for any ∆, δ > 0, if we draw from S a sample satisfying

ml ≥
8

∆

(
ln(C[ml,S]) + ln

(
8

δ

))
,

then, with probability at least 1− δ, all functions f satify |errte(f)− êrrte(f)| ≤ ∆.

Proof. The given unlabelled sample size implies that with probability 1− δ/2, all f ∈ C have

|êrrunl(f)− errunl(f)| ≤

√
ln
(
4s
δ

)
2mu

≤ ∆,



which also implies that

êrrunl(f) ≤ errunl(f) +

√
ln
(
4s
δ

)
2mu

≤ ξ +

√
ln
(
4s
δ

)
2mu

≤ ξ +∆.

Using the standard VC bounds (e.g., Theorem D.7), the labelled sample size ml implies that with probability at least 1− δ/4,
all f ∈ CS,χ(ξ + 2∆) have |errte(f)− êrrte(f)| ≤ ∆. Then, by Hoeffding bounds, with probability at least 1− δ/4 we
have

êrrte(f
∗) ≤ errte(f∗) +

√
log(4/δ)/2ml ≤ errte(f∗) + ∆.

Therefore, with probability at least 1− δ, the f ∈ C that optimizes êrrte(f) subject to êrrunl(f) ≤ ξ +∆ has

êrrte(f) ≤ errte(f∗) +

√
ln
(
4s
δ

)
2mu

+
√
log(4/δ)/2ml ≤ errte(f∗) +

√
ln
(
4s
δ

)
2mu

+∆.

Moreover, since we have êrrte(f) = Pr(zi,li)∼S [f(zi) ̸= li] ∈ (0, 1) which is proportional to the empirical inability
ϵ̂(SP , SQ; f) ∈

(
0, 12

)
. Thus, we can conclude the following inequality

2ϵ̂(SP , SQ; f) ≤ errte(f∗) + ∆ +

√
ln
(
4s
δ

)
2mu

,

since errte(f∗) = 2ϵ(P,Q; f∗),

ϵ̂(SP , SQ; f) ≤ ϵ(P,Q; f∗) +
∆

2
+

√
ln
(
4s
δ

)
8mu

,

which concludes the proof.
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