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Abstract

In contrast to the human ability to continuously acquire knowledge, agents struggle
with the stability-plasticity dilemma in deep reinforcement learning (DRL), which
refers to the trade-off between retaining existing skills (stability) and learning new
knowledge (plasticity). Current methods focus on balancing these two aspects
at the network level, lacking sufficient differentiation and fine-grained control
of individual neurons. To overcome this limitation, we propose Neuron-level
Balance between Stability and Plasticity (NBSP) method, by taking inspiration
from the observation that specific neurons are strongly relevant to task-relevant
skills. Specifically, NBSP first (1) defines and identifies RL skill neurons that
are crucial for knowledge retention through a goal-oriented method, and then (2)
introduces a framework by employing adaptive gradient masking and experience
replay techniques targeting these neurons to preserve the encoded existing skills
while enabling adaptation to new tasks. Numerous experimental results on the Meta-
World and Atari benchmarks demonstrate that NBSP significantly outperforms
existing approaches in balancing stability and plasticity.

1 Introduction

Deep reinforcement learning (DRL) has shown exceptional capabilities across a range of complex
scenarios, such as gaming (Mnih et al.| |2013)), robotic manipulation (Andrychowicz et al., 2020), and
autonomous driving (Kiran et al.| [2021)). However, most RL research focuses on agents that learn to
solve individual problems rather than learn a sequence of tasks continually. Ideally, the agent must
maintain its performance on previously learned tasks, referred to as stability (McCloskey & Cohenl
1989), while simultaneously adapting to new tasks, known as plasticity (Carpenter & Grossberg,
1987). However, it has been revealed that emphasizing stability may hinder the ability of agents to
learn new knowledge (Nikishin et al.,[2022a; |/Abbas et al., 2023)), whereas excessive plasticity can
lead to catastrophic forgetting of previously acquired knowledge (Goodfellow et al., 2015} |Atkinson
et al.l [2021b), a challenge known as the stability-plasticity dilemma (eMermillod et al.l [2013]),
which remains a fundamental and under-explored problem and is the main focus of our work.

Existing methods to strike a balance between stability and plasticity generally fall into three categories,
i.e. (1) regularization-based methods (Kirkpatrick et al., 2017 |Kumar et al., 2023), which apply
penalties to parameter changes to mitigate forgetting while acquiring new knowledge; (2) replay-
based methods (Ahn et al.,|2024), which leverage past experiences to consolidate knowledge; and
(3) modularity-based methods (Kim et al.,[2023; |Anand & Precupl 2024)), which seek to decouple
stability and plasticity or isolate different components for different tasks. Despite their contributions,
these methods suffer from three key limitations: (1) They primarily operate at the network level, yet
their ultimate impact manifests at the level of individual neurons. However, these methods fail to
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differentiate and fine-grained control neurons based on their specific roles. Therefore, identifying
and effectively utilizing task-relevant neurons remains both critical and under-explored. (2) These
studies are primarily conducted within the paradigm of continual learning, thus overlooking the
unique characteristics intrinsic to DRL. (3) These approaches could sometimes unnecessarily inflate
model parameters, thereby introducing unwarranted complexity (Bai et al., 2023).

By analyzing the activations of neurons in the DRL net- 0.225

work, we observe that the activations of certain neurons 0.200 [] e
are strongly correlated with the task goal. For instance, 0175 T
Figure|l|illustrates the activation distribution of a specific =~ 5015 —

neuron in the network following training on the drawer- g °%!%

open task from the Meta-World benchmarkYu et al](2020).  g°'

Activation of the neuron serves as a reliable predictor of ZZ;: [

whether the task is successful. Higher activation levels 0.025 ‘ I -

correspond to an increased likelihood of completing the 0.000 L=

task successfully, indicating that this neuron encodes a o0 T activations o
critical skill essential for the task. Consequently, it plays o .

a pivotal role in retaining task-specific memory. Figure 1: Distribution histogram of the

) ) ) activation of a neuron, categorized based
Motivated by the aforementioned observations, we pro- on whether the drawer-open task was

pose Neuron-level Balance between Stability and Plas-  yccessfully completed or not.

ticity (NBSP), a novel DRL framework that operates at

the level of neurons to tackle the stability-plasticity dilemma. In particular, (1) we first introduce RL
skill neurons, which encode critical skills necessary for knowledge retention. While skill neurons
have been investigated and successfully exploited in various domains, such as pre-trained language
models (Wang et al.| 2022)) and neural machine translation (Bau et al.,[2018)), skill neurons are still
much less explored in DRL. We bridge this research gap by proposing a goal-oriented strategy for
identifying RL skill neurons. (2) We then apply gradient masking according to the scores of these
neurons, ensuring that the encoded knowledge of prior skills is preserved while allowing fine-tuning
during subsequent training. Meanwhile, the other neurons retain the ability to learn new tasks. (3)
Additionally, we incorporate experience replay to periodically revisit the past experience to reinforce
stability, preventing excessive drift from previous knowledge. Integrally, NBSP offers three key
advantages compared with previous methods: (1) The neuron-level processing enables finer control
and greater flexibility, addressing the stability-plasticity trade-off at the most fundamental level of the
network. (2) The goal-oriented approach for identifying RL skill neurons is specifically tailored to
DRL. (3) This framework is simple, avoiding complex network designs or additional parameters.

We conduct experiments on the Meta-World (Yu et al., 2020) and Atari (Mnih et al.,|2013) bench-
marks to evaluate the effectiveness of NBSP. Our results show that NBSP outperforms existing
methods in balancing stability and plasticity, enabling effective learning of new tasks while preserv-
ing knowledge from previous tasks. Additionally, we perform extensive ablation studies to investigate
the contribution of different components within NBSP. Specially, we analyze the DRL agents by
dissecting the performance of the two critical modules, i.e., the actor and the critic. Our findings
reveal that (1) addressing both the actor and critic networks yields the best performance, and (2)
the critic plays a more critical role in achieving this balance due to the differences in their inherent
training mechanisms. In summary, our key contributions include:

* We are the first to introduce the concept of RL skill neurons which encode skills of the task,
essential for knowledge retention, and propose a goal-oriented strategy specifically tailored to
DRL for identification.

* We tackle the stability-plasticity dilemma in DRL from the perspective of RL skill neurons, by
employing gradient masking and experience replay on these neurons, eliminating requirements of
complex network designs or additional parameters.

* We conduct extensive experiments on the Meta-World and Atari benchmarks to demonstrate the
effectiveness of our method in balancing stability and plasticity.

2 Related Work

Balance between stability and plasticity. In DRL, addressing the stability-plasticity dilemma
(Carpenter & Grossberg),|1988) has inspired various strategies. Stability-focused methods often utilize
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replay techniques, such as A-GEM (Chaudhry et al.,[2018b), using episodic memory to constrain
loss, and ClonEx-SAC (Wolczyk et al., 2022), enhancing performance through behavior cloning.
Pseudo-rehearsals from generative models further reduce storage requirements (Atkinson et al.|
2021a)). Plasticity-focused methods aim to preserve network expressiveness, with solutions like CBP
(Dohare et al.,|2024), resetting (Nikishin et al., 2022b), plasticity injection (Nikishin et al., [2024),
Reset & Distillation (Ahn et al.| [2024), and CRelu (Abbas et al.| 2023) to prevent activation collapse.
Modularity-based methods balance stability and plasticity by decoupling task-specific knowledge,
exemplified by soft modularity for routing networks (Yang et al.|[2020)), value function decomposition
(Anand & Precupl[2024), and compositional frameworks leveraging neural components (Mendez et al.,
2022). Methods such as CRelu and ClonEx-SAC focus on continual reinforcement learning(CRL),
but our study specifically targets the intrinsic balance between stability and plasticity, with other
factors such as task order controlled in a cycling task setting. Moreover, while most methods operate
at the network level, our approach explores neuron-level research, providing fine-grained control.

Neuron-level research. Recent research has shown that neuron sparsity often correlates with task-
specific performance (Xu et al.,[2024), driving a growing focus on skill neurons to interpret network
behavior and tackle challenges across domains. For example, skill neurons have been used to
enhance transferability and efficiency in Transformers via pruning (Wang et al., 2022)), and dormant
neurons have been recycled to improve training in DRL(Sokar et al., 2023)). Other studies, such as
identifying Rosetta Neurons (Dravid et al.l 2023)) and language-specific neurons (Tang et al., 2024),
have advanced alignment and interpretability. However, neuron-level studies in DRL are still limited,
with methods like CoTASP (Yang et al.,|2023)) and PackNet (Mallya & Lazebnik} [2018)) focusing
on task-specific sub-network selection via sparse prompts, pruning, and re-training. And NPC (Paik
et al.} 2019) restricts important neurons to maintain stability. In contrast, our work identifies RL skill
neurons specific to DRL, balancing stability and plasticity with encoded task-relevant knowledge.

3 Methodology

In this section, we first introduce the terminology of RL skill neurons and then propose the Neuron-
level Balance between Stability and Plasticity (NBSP) method.

3.1 Problem Setup

We focus on the setting of sequential task learning without constraints on the time intervals between
tasks. In this setting, the agent is expected to perform all previously learned tasks after training,
without relying on task-specific signals. For instance, large models such as DeepSeek employ RL
to enhance their reasoning capabilities. However, different tasks, such as vision and mathematics,
demand distinct reasoning abilities. To first strengthen a specific type of reasoning and then generalize
to others, it is essential to strike a balance between stability and plasticity during sequential training.
Furthermore, in real-world applications, the enhanced model should be able to handle all tasks
without relying on explicit task signals. Let 7 € {71, 72, ...} represent a sequence of task, each task 7
corresponds to a distinct Markov Decision Process (MDP) M™ = (S7, A", P", R",~4"), where S7,
A7, P™, R™ and 7" denote the state space, action space, transition dynamics, reward function, and
discount factor, respectively. Instead of addressing a single MDP, the goal is to solve a sequence of
MDPs one by one using a universal policy 7(a|s) and Q-function Q(s, a). The primary challenge
lies in balancing plasticity, which refers to maximizing the discounted return of the current task, and
stability, which emphasizes the maximization of the expected discounted return averaged across all
previous tasks. This trade-off constitutes the core problem addressed in this work.

3.2 Identifying RL Skill Neurons

In this study, we make a key observation that the stability and plasticity of the agent network are
closely related to its expressive capabilities, which are significantly influenced by the behavior of
individual neurons. As evidenced in Molchanov et al.| (2022), neuron expression determines how
information is propagated and processed, directly affecting the learning and knowledge retention
capabilities of the network. Therefore, understanding and controlling neuron behavior is at the most
fundamental level for striking a balance between stability and plasticity. On the one hand, when
neuron expression is stable and generalized, the agent network tends to exhibit high stability. On the
other hand, strong plasticity can be achieved given neuron expression is flexible and adaptable.
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Figure 2: Framework of NBSP. The agent scores and identifies RL skill neurons for each task by
measuring the activation in relation to the GM. While learning new tasks, the gradient of these
neurons is masked adaptively based on their scores to preserve the encoded skills, while still allowing
fine-tuning for new task learning. Additionally, a replay buffer is used to store a portion of the
experiences from previous tasks, which is periodically sampled to update the agent.

Several works have demonstrated the multifaceted capabilities of neurons, such as the storage of
factual knowledge (Dai et al.,|2022), the association with specific languages (Tang et al., 2024), and
the encoding of safety information (Chen et al.,[2024)). These specialized neurons, often referred as
skill neurons, have been shown to significantly contribute to network performance (Wang et al., 2022).
However, the potential of skill neurons in DRL remains largely under-explored. As illustrated in
Figure[T} activations of the specific neuron are strongly correlated with task success: higher activation
levels increase the likelihood of successful task completion, whereas lower levels are associated with
failure. This indicates that the activations of these neurons significantly affect agent performance,
effectively encoding the critical skills required for the task. By preserving the activations of such
neurons, it becomes possible to retain the learned task-specific skills, thereby improving stability.

In this work, we formally define these special neurons as RL skill neurons, which encode critical
skills, essential for knowledge retention in DRL. Furthermore, we propose a goal-oriented method
for the identification of these neurons. Unlike prior approaches that primarily focus on the inputs
triggering neuron activations (Bau et al,2020; |Gurnee & Tegmark, [2023)), our method emphasizes
their impact on achieving ultimate goals, i.e. succeeding in finishing Meta-World tasks and attaining
high scores in Atari games, by comparing the activation patterns of the neurons that exhibit varying
performance levels. In Section4.2] we empirically show the advantage of our goal-oriented method.

For a specific neuron N, let a(NN, ) represent its activation at step ¢. In fully connected layers, each
output dimension corresponds to the activation of a specific neuron, whereas in convolution layers,
the average of each output channel represents the activation of a neuron. To quantify activation level
of a neuron A/, we define the average activation as:

T

aN) = 7— > a(Nb), (1

avg 41

where T, 4, represents the average step. The activation level of the neuron can then be assessed by
comparing its current activation with the corresponding average activation.

To assess the performance of the agent at step ¢, we introduce the Goal Metric (GM), denoted as
q(t). Tt serves as an evaluation metric for assessing the performance of the agent’s network, varying
based on the objective of the task. It is computed in an online manner during training. For instance,
on the Meta-World benchmark, the GM is typically binary, determined by whether the episode is
successful, which is computed at the end of each episode. In contrast, the GM is determined by the
cumulative return of the episode for the Atari benchmark. Additionally, we define the average Goal
Metric (GM) of the agent as follows, which serves as a baseline for evaluating the performance by
comparing it with the current GM.

> a(t). @)

Y9 =1
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To differentiate the roles of neurons across various tasks, it is essential to assess neuron activations in
relation to specific goals. Intuitively, we can consider a neuron A to be positively contributing to the
goal at step ¢ when its activation a(N, t) surpasses the average activation a(N), i.e. a(N,t) > a(N),
while the GM at the same step also exceeds its average, i.e. ¢(t) > g. To quantify this contribution,
we accumulate a batch of results over 7" steps and define the over-activation rate as follows:

ZT: 11a Dem —11(or
Rover(N) = t=1 e, 2; (M)~ a( )>q]]' 3)

Here, l[condm,m] € {0, 1} denotes the indicator function, which returns 1 if and only if the specified
condition is satisfied. While Eq. (3) assesses the positive correlation of neurons towards achieving
the goal, where a higher rate implies a greater significance of the neuron in producing better outcome,
however, it overlooks neurons that exhibit a negative correlation with the goal but still carry valuable
task-related knowledge. Specifically, when the activation of a neuron falls below its average activation,
the agent performs well conversely. To this end, we define a comprehensive score Score(\N) for
the neuron that takes into account both positive and negative effects:

Score(N') = maz(Roper(N), 1 — Roper(N)). 4)

Subsequently, we rank all neurons in the agent network, excluding those in the last layer, in descending
order based on their scores. The RL skill neurons are determined by selecting the neurons with the
top m% highest scores, formally defined as follows, where 7, () denotes the top-m selection operator.
And the pseudo-code of the identification method is shown in Appendix [D]

NRL skitt = Tm (Score(N)) (5)

3.3 Neuron-level Balance between Stability and Plasticity

Building upon the concept of RL skill neurons, we propose a novel DRL framework — Neuron-level
Balance between Stability and Plasticity (NBSP), as shown in Figure 2] Unlike prior methods (Bai
et al.} 2023 Kim et al.||2023)), the framework proposed does not require complex network designs or
additional parameters. Given that RL skill neurons encode essential task-specific skills, preserving
their activation patterns is critical to maintaining knowledge from previous tasks during continual
tasks learning. However, simply freezing RL skill neurons would hinder the ability of the agent
to adapt to new tasks. To address this challenge, NBSP employs an adaptive gradient masking
technique. Specifically, during each update round in the continual learning process, the gradients of
RL skill neurons are selectively masked to restrict changes in their activation patterns while allowing
other neurons to adapt freely. This process is formally expressed as follows:

AW, ; = mask(-l) -AVV.(Z-) 6)

where AW( ) denotes the gradient with respect to the weight W in the [-th layer of the network,

)

and j is the index of the output neuron in that layer. The term mask( is associated with the score of

7-th neuron in the [-th layer, which could be calculated as follows:

a(l — Score(N)) if N € NgrL sk
1 if N & Nrpskin’

where Ny, sx:11 represents the set of RL skill neurons, and « is a super-parameter that determines the
degree of restriction on these neurons, which is configured to 0.2 in the experiment. By employing
gradient masking, NBSP effectively safeguards the encoded skills within RL skill neurons from
interference during the learning of new tasks, thereby enhancing stability. At the same time, RL
skill neurons remain adaptable, allowing fine-tuning to accommodate new tasks and maintaining
high plasticity. In addition, neurons except RL skill neurons are free to fully engage in learning
new task-specific knowledge, ensuring comprehensive learning across tasks.

mask(\) = { ™

To mitigate excessive drift from knowledge acquired in previous tasks, we integrate the experience
replay technique, periodically sampling prior experiences at specific intervals k. After training on a
task, a portion of the experiences, rather than the entirety, are stored in a unified replay buffer D,,.,
requiring only a modest memory footprint. By incorporating experience replay, the stability of DRL
agents is further enhanced. The corresponding loss function is defined as follows:

L= R(t) : E(st,at,st+1,rt,dt)~Dp,,~e [L] + (1 - R(t)) ' E(st,at,st+1,n,dt)~D[L]a (8)
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Figure 3: Training process of NBSP on the Meta-World benchmark. The segments to the left and
right of the dashed line represent the training processes of the first and second cycles, respectively.

where L denotes the original loss function, R(¢) is a binary function that evaluates to 1 if and
only if the current step ¢ is at an interval. D represents the replay buffer for the current task, and
(8¢, at, St+1,7T, dy) denotes the tuple of the current state, action, next state, reward, and whether the
episode is done sampled from the replay buffer. The pseudo-code of NBSP is shown in Appendix [D]

4 Experiment

In this section, we evaluate the performance of NBSP on the Meta-World (Yu et al.,2020) and Atari
benchmarks (Mnih et al . [2013)).

Table 1: Results of NBSP with other baselines on the Meta-World benchmark.

Cycling sequential tasks Metrics Methods
EWC NPC ANCL CoTASP CRelu CBP PI NBSP
(wind ASRT  0.63+0.03 0.26+001 0.66+0.04 0.05+£001 026=£0.14 0.67+005 0.61+0.02 0.90+0.04
W P
— window-close) FM| 0.89+007 068+0.04 0.84+0.10 0.01+£0.01 066+042 078+0.13 091+0.07 0.18=+0.01

FWT1 097 +0.02 026+001 0974003 0.04+0.01 033+£0.19 0954+0.02 0.95+0.01 0.96 + 0.02

(drawer-open ASRT  0.68+0.06 03540.05 0.64+0.02 0.07+001 0294020 0.61+003 0.60+0.07 0.96 =+ 0.02
— drawer-close) FM| 080£0.15 0.6940.05 0.88+£0.09 0.01+£0.01 031+032 091+£003 0.71£030 0.07 & 0.06
FWTT 098+0.01 0.39+009 096+0.01 0.09+0.00 042+028 093+0.04 0.88=+0.15 0.98+0.01
ASRT  0.66+0.06 0.25+0.00 0.61+001 003+£0.00 033£0.10 0624001 0.63+0.02 0.95=+0.05

(button-press-topdown

— window-open) FM| 085+0.14 0674000 095+005 0.01+0.00 094+001 0974003 097+005 0.08+0.12
FWT1 096+0.01 025+001 0954003 004+001 042+020 098+0.02 0.98+0.02 098+ 0.01

(window-open ASR1T 0444005 0.19+004 048+004 0044001 0.10+006 043+003 041+006 0.66+0.14

: V;;‘;‘:;’e‘:‘f:)":lf FM| 074+0.11 050+002 0804004 0.04=+0.01 039+002 091+005 0844005 0.48-+0.18

s drawer-close) FWT1 083+0.10 020+005 0894006 008001 0.13+0.10 0.97+002 082+0.10 0.89+0.12
(button-press-topdown ~ ASRT 043 +0.03 0.17+£001 044+003 004001 0.14+0.11 041+002 038+001 0.74+0.07
*j;"‘]‘(’)‘l{m';l‘fe FM| 081+009 0474001 087+002 0.04+000 062+0.16 0944002 097+002 0.34+0.15

s drawer-close) FWT 1 088+0.10 0.19+002 0914008 007+002 0.17+0.15 097+0.01 092+0.07 0.95+ 0.06

Experiment setting. We follow the the experimental paradigm of |Abbas et al.| (2023)); [Liu et al.
(2024), evaluating our proposed method on a cycling sequence of tasks characterized by non-
stationarity due to changing environments over time. Specifically, the agent learns each task sequen-
tially and transitions to the next without resetting the learned networks. The task cycles through a
fixed sequence, with a cycle completing once all tasks in the sequence have been learned. The agent
cycles twice, resulting in each task being repeated twice during the training process. Compared to
the CRL training paradigm, our cycling training paradigm provides a more specific evaluation of the
balance between stability and plasticity. By repeating each task twice within a cycling sequence, the
setup not only assesses the plasticity in adapting to new tasks but also evaluates its stability when
revisiting previously learned tasks, avoiding the influence of task order. Details about the benchmarks
are shown in Appendix[C.2]

For all experiments, we use the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm, as
implemented by CleanRL (Huang et al.,2022). Each agent is trained until either reaching a predefined
maximum number of steps or demonstrating stable mastery of the task in the Meta-World benchmark.
Each experiment is repeated using three different random seeds. The shaded regions in the figures
and the plus/minus numbers represent the standard error across multiple seeds. Detailed descriptions
of the hyper-parameters and other experimental settings are provided in Appendix [C.3]

Metric. Overall performance is commonly assessed using the Average Success Rate (ASR),
analogous to the AIA metric (Wang et al.}|[2024). Let sr; ; represent the success rate on the j-th task
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after completing the learning of the i-th task (¢ > j), H denote the number of tasks. The ASR is
defined as follows. The higher the ASR, the better the method balances stability and plasticity.

H
1 1
ASR= & Z - Z ST 5, )
i=1 i2>]
To evaluate the stability of the agent, we utilize the Forgetting Measure (FM) (Chaudhry et al.,
2018a). The lower the FM, the better the method maintains stability, which is calculated as:
H
1 1
FM = —— P — ST i) 10

H—1 ; i—1 ;ze{ﬁfbﬁl}(sr“ STig) (10)
To assess the plasticity of the agent, we employ the Forward Transfer (FWT) metric (Lopez-Paz &
Ranzatol 2017)), which is calculated as follows:

H
1
FWT = - ; STii. (1)

The higher the FWT, the better the method maintains plasticity. Further details about evaluation
metrics are available in Appendix [C.4]

Baseline. To assess the effectiveness of our proposed NBSP framework, we compare it with seven
baseline methods dealing with the balance between stability and plasticity. EWC (Kirkpatrick et al.,
2017) and NPC (Paik et al.l | 2019) primarily emphasize maintaining stability, while CRelu (Abbas
et al.| [2023), CBP (Dohare et al.,[2024), and PI (Nikishin et al., 2024) focus on enhancing plasticity.
ANCL (Kim et al.; 2023) and CoTASP (Yang et al.,|2023)) aim to achieve a balance between stability
and plasticity. Notably, CoTASP makes relevant tasks share more neurons in the meta-policy network,
and NPC estimates the importance value of each neuron and consolidates important neurons, they are
both relevant to neurons. Detailed descriptions of these baselines can be found in Appendix [C.T}

4.1 Experiment on the Meta-World Benchmark

The experimental results of NBSP compared with other baselines on the Meta-World benchmark
are presented in Table[I} As shown in the final column, NBSP significantly outperforms all other
methods in the overall performance metric ASR. For two-task cycling tasks, NBSP achieves an ASR
consistently above 0.9, which is substantially higher than other baselines. Its stability metric, FM, is
markedly lower, while its plasticity metric, FWT, remains at a high level. Furthermore, NBSP also
demonstrates excellent performance in four-task cycling tasks, maintaining a substantial lead.

For stability-focused baselines, EWC achieves a relatively good ASR compared to other baselines
but still falls short of NBSP. Moreover, EWC exhibits poor stability due to its high FM values. NPC
performs even worse, failing to maintain both stability and plasticity effectively. Among plasticity-
focused baselines, CBP and PI achieve comparable plasticity to NBSP, as reflected in their high FWT
scores. However, both suffer from severe stability loss, indicated by their higher FM values. Another
plasticity-focused method, CRelu, underperforms in both stability and plasticity. For baselines
attempting to balance stability and plasticity, ANCL achieves high plasticity with competitive FWT
scores but fails to retain prior knowledge, as reflected by its high FM value. CoTASP, despite being
explicitly designed for this trade-off, performs poorly overall. Its low FM is attributed to a failure to
acquire meaningful task knowledge, as evidenced by its low FWT value.

The effectiveness of NBSP is further demonstrated in Figure[3] which showcases the training dynamics
of NBSP. Specifically, during the second cycle of learning the same task, the agent exhibits a high
success rate even before retraining, indicating that it has retained significant task knowledge. As
a result, the agent is able to master the task more rapidly. This highlights the ability of NBSP to
preserve knowledge from prior tasks while simultaneously maintaining the plasticity required to learn
new tasks effectively. The other training process is demonstrated in Appendix In summary,
NBSP delivers a remarkable improvement in maintaining stability without compromising plasticity,
achieving a well-balanced trade-off in DRL.

4.2 Ablation Study

In the ablation study, we further evaluate the effectiveness of (1) the two primary components of
NBSP: the gradient masking technique and experience replay technique, (2) the neuron identification
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Table 2: Results of ablation study of gradient masking and experience replay techniques.

(button-press-topdown — window-open)

Metrics
vanilla SAC  only experience replay only gradient masking NBSP with hard gradient masking NBSP
ASR 1 0.62 £+ 0.01 0.70 £+ 0.08 0.71 £ 0.06 0.71+0.03 0.95 £+ 0.05
FM | 0.99 £+ 0.02 0.50 £ 0.16 0.73 £0.21 0.72+0.04 0.08 £ 0.12
FWT 1 098 £ 0.02 0.92 +0.05 0.97 £+ 0.02 0.98+0.03 0.98 £ 0.01
Table 3: Results of ablation study of neuron identification methods.
Metrics (window-open — window-close) (drawer-open — drawer-close) (button-press-topdown — window-open)
activation weight random ours activation weight random ours activation weight random ours

ASRT  0.65+£0.30 0.73+£0.20 0.78+0.09 0.90+0.04 0.8240.06 0.51£0.17 0.72+£0.26 0.96+0.02 0.75+0.01 0.93+0.06 0.72+0.01  0.95+0.05
FM | 0.56+£0.37 0444031 042+0.13  0.1840.01 0.44+0.16 0.67+0.00 0.41£0.28 0.07+0.06 0.65+£0.02 0.15+0.12 0.70£0.05 0.08+0.12
FWT 1 0.73+£0.35 0.81+0.22 0.90+£0.06 0.96+0.02 0.98+0.02 0.69+0.22 0.83+£0.23 0.984+0.01 0.99+£0.00 0.98+0.02 0.96+0.02 0.9840.01

method, and (3) the two critical modules of DRL: the actor and the critic. What’s more, we analyze
how the proportion of RL skill neurons influences the performance of NBSP.

Gradient masking and experience replay. To evaluate the contributions of the two core components
of NBSP, we designed five experimental settings: (1) vanilla SAC, (2) SAC with only the experience
replay, (3) SAC with only the gradient masking, (4) SAC with experience replay and hard gradient
masking, where the masks of RL skill neurons are set directly to zero, and (5) NBSP.

The results of the cycling sequential tasks (button-press-topdown — window-open) are shown in
Table 2] From the results, we observe the following: (1) The vanilla SAC algorithm suffers from
severe stability loss, as indicated by a high FM score, underscoring the need for mechanisms to retain
prior knowledge. (2) Using either experience replay or gradient masking alone alleviates the stability
loss to some extent, confirming their individual effectiveness. (3) Combining both techniques in
NBSP significantly improves performance, with lower FM (indicating enhanced stability) and higher
FWT (demonstrating maintained plasticity). (4) Our adaptive gradient masking, which sets masks of
RL skill neurons based on their scores, outperforms hard masking (setting masks to zero directly),
demonstrating its superior effectiveness. These findings demonstrate that neither experience replay
nor gradient masking alone can properly balance stability and plasticity, while their combination
achieves optimal performance. The reason is that gradient masking and experience replay focus on
different mechanisms and therefore complement each other. Gradient masking primarily targets RL
skill neurons to reduce interference with past knowledge while maintaining the ability to fine-tune for
new tasks. And experience replay mainly acts on neurons except RL skill neurons to prevents these
neurons from being overly biased toward new tasks. Additional results for different task settings are
provided in Appendix [C.§]

Neuron identification method. To evaluate the proposed goal-oriented neuron identification method,
we compare it with three alternative strategies: (1) random neuron identification, (2) identifying
neurons with activation magnitude (Jung et al., 2020), and (3) identifying neurons with weight
magnitude (Dohare et al, 2021). As shown in Table [3] our goal-oriented method consistently
outperforms the other three methods across all three metrics: ASR, FM, and FWT, which confirms
that our method effectively identifies neurons critical for knowledge retention, ensuring better stability
and plasticity in cycling sequential task learning. These findings validate the necessity of task-
specific, goal-oriented neuron identification in enhancing balance between stability and plasticity.

Actor and critic. To get a deeper understanding of the individual roles of the actor and critic in
DRL agents, we compare the performance of NBSP with that only applied on actor and critic. The
result is shown in Table[dl The results indicate that both the actor and critic networks are essential
Jor striking an optimal balance between stability and plasticity. Notably, the critic proves to be
the more critical module in balancing this trade-off , which aligns with the insight from Ma et al.
(2024) that plasticity loss in the critic serves as the principal bottleneck impeding efficient training in
DRL. We further investigate this phenomenon by dissecting the inherent training mechanisms
of actor-critic RL methods, and draw the following key observations: (1) Updates to the actor are
guided by feedback from the critic. Consequently, even if the RL skill neurons in the actor are masked,
they remain influenced by the critic, which may gradually adapt to the new task at the expense of
retaining prior knowledge; (2) In contrast, applying NBSP to the critic network indirectly constrains
the actor as well; and (3) The update process of the critic network is recursive, with its target network
updated via an exponential moving average, enabling it to preserve knowledge from the previous task
while integrating new skills. Therefore, NBSP achieves better performance on the critic than on the
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Table 4: Results of ablation study of the actor and critic modules.

Metric (window-open — window-close) (drawer-open — drawer-close) (button-press-topdown — window-open)

actor critic both actor critic both actor critic both
ASR?T 0.76+0.10 0.79+0.05 0.90+0.04 0.79+0.05 0.86+0.02 0.96+0.02 081+0.11 085+0.16 0.95 £ 0.05

FM| 058+£0.19 048+£0.09 0.18+0.01 0.55+0.15 031£0.03 0.07£0.06 045+028 0354038 0.08+0.12
FWT 1 097 £0.04 094+005 0964002 0.99£0.01 096+£0.02 0984001 0.95+£0.01 095£0.03 0.98+0.01

Table 5: Results of NBSP with other baselines on the Atari benchmark.

. . . Methods
Cycling sequential games  Metrics
EWC NPC ANCL CoTASP CRelu CBP PI NBSP
ART  0.66+007 051+002 042+029 -005=002 002+000 -0.09+000 053+001 087001
(Pong — Bowling) FM| 0584020 051+004 046+031 007+001 0.01+0.00 006+000 0784002 0.05+0.03

FWTT 0704002 0354002 0474031 -0.05+£005 0024001 -0.09+000 0.60+000 0.72% 0.01

ART  046+001 038+006 0464001 -008%005 008=005 0.12+002 048+0.14 057+ 0.02

(BankHeist — Alien) FM|  098+002 046+0.14 0984003 0274004 0524029 044+009 088+027 0.65+0.07
FWTT 0714002 0372003 0724001 -0.16£0.07 028£0.11 030£005 073+£026 0.72=0.05

actor. This demonstrates the distinct roles of the actor and critic in balancing stability and plasticity,
providing valuable insights for future research in this field.

The proportion of RL skill neurons. To evaluate the 10

impact of the proportion of RL skill neurons on the perfor- 09-

mance of NBSP, we experiment with various proportions ~ Zos \\\+ —
on the (button-press-topdown — window-open) cycling 07-

tasks. The results, shown in Figure 4] reveal an interesting 6 o o2 o4 os o8 10
trend: as the proportion of RL skill neurons increases, Proportion of RL skill neurons

the ASR improves initially, but begins to decline after
reaching a certain threshold. Specifically, when the pro-
portion is small, not all neurons encoding task-specific
skills are identified, leading to knowledge loss stored in neurons that are not selected. On the other
hand, when the proportion becomes too large, neurons that do not encode skills may be incorrectly
selected as RL skill neurons, which compromises their learning capacity and causes the true RL skill
neurons to adjust their activations to accommodate new tasks, ultimately reducing stability. Thus,
determining the optimal proportion of RL skill neurons is crucial for achieving the best performance.
Our experiments suggest that a proportion of 0.2 is ideal for balancing stability and plasticity.

Figure 4: Performance of NBSP with dif-
ferent proportions of RL skill neurons.

4.3 Experiment on the Atari Benchmark

We further evaluate NBSP on the Atari benchmark to assess its generalization ability. In contrast to
the continuous action space of Meta-World, Atari games feature discrete action spaces, and episode
returns are used to evaluate the performance of each game. The results are presented in Table[5] As
with the Meta-World benchmark, NBSP demonstrates superior performance in balancing stability
and plasticity, outperforming other baselines across key evaluation metrics, including AR (Average
Return), FM, and FWT. In a word, NBSP exhibits excellent generalization in balance stability and
plasticity across different benchmarks.

5 Conclusion

This work addresses the fundamental issue of the stability-plasticity dilemma in DRL. To tackle
this problem, we introduce the concept of RL skill neurons by identifying neurons that significantly
contribute to knowledge retention, building upon which we then propose the Neuron-level Balance
between Stability and Plasticity framework, by employing gradient masking and experience replay
techniques on RL skill neurons. Experimental results on the Meta-World and Atari benchmarks
demonstrate that NBSP significantly outperforms existing methods in managing the stability-plasticity
trade-off. Future research could explore the application of RL skill neurons like model distillation
and extend NBSP to other learning paradigms, such as supervised learning.
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A Related Wrok

Balance between stability and plasticity. In DRL, the agent faces a fundamental challenge: the
stability-plasticity dilemma, first introduced by (Carpenter & Grossberg| (1988)). Recent research has
proposed various strategies to address this issue by balancing stability and plasticity.

Replay-based methods are widely employed to enhance stability by reusing experiences from past
distributions. For example, Chaudhry et al.|(2018b) introduced A-GEM, which combines episodic
memory to ensure that the average loss of prior tasks does not increase when learning a new task.
Similarly, Wolczyk et al.|(2022)) proposed ClonEx-SAC, which uses actor behavioral cloning and best-
return exploration to boost performance in CRL. To reduce storage requirements, pseudo-rehearsals
generated from a generative model have also been proposed (Atkinson et al.,[2021a)).

Maintaining the expressiveness of neurons is key to preserving plasticity. [Nikishin et al.[(2022b)
proposed a mechanism that periodically resets a portion of the agent’s network to counteract plasticity
loss. Likewise, Nikishin et al.|(2024) introduced plasticity injection, a lightweight intervention that
enhances network plasticity without increasing trainable parameters or introducing prediction bias.
The Reset & Distillation (R&D) framework combines resetting the online actor-critic network for new
tasks with offline distillation of knowledge from previous action probabilities, effectively retaining
plasticity (Ahn et al.,[2024). Additionally, Abbas et al.|(2023) proposed the Concatenated ReLUs
(CReLUs) activation function to prevent activation collapse, thereby alleviating plasticity degradation.

Modularity-based approaches have shown promise in balancing stability and plasticity by decoupling
task-specific and general knowledge. For instance, Anand & Precup|(2024) decomposed the value
function into a permanent value function, which captures persistent knowledge, and a transient
value function, which facilitates rapid adaptation. |Yang et al.|(2020) designed a routing network to
estimate task-specific routing strategies, reconfigure the base network, and combine routes using
a soft modularity mechanism, making it effective for sequential tasks. Similarly, [Mendez et al.
(2022)) proposed a compositional lifelong RL framework that uses accumulated neural components
to accelerate learning for new tasks while preserving performance on past tasks via offline RL and
replayed experiences.

Neuron-level Research Recent research highlights that not all neurons remain active across varying
contexts, and this neuron sparsity is often positively correlated with task-specific performance (Xu
et al.| 2024)). Building on this insight, numerous studies have focused on identifying and leveraging
skill neurons to interpret network behavior and tackle specific challenges, achieving significant
advancements. For example, skill neurons in pre-trained Transformers, which demonstrate strong
predictive value for task labels, have been utilized for network pruning to enhance efficiency and
improve transferability (Wang et al.| 2022]). Sokar et al.| (2023) investigate dormant neurons in deep
reinforcement learning and propose a method to recycle them during training. Similarly, Dravid
et al.| (2023) introduce Rosetta Neurons, enabling cross-class alignments and transformations without
specialized training. In large language models, language-specific neurons have been identified to
control output languages by selective activation or deactivation (Tang et al.| [2024)), while safety
neurons have been analyzed to enhance safety alignment through mechanistic interpretability (Chen
et al.l [2024).

Despite these achievements, the exploration of skill neurons in DRL remains limited. Existing neuron-
level approaches primarily focus on task-specific sub-network selection. For instance, COTASP learns
hierarchical dictionaries and meta-policies to generate sparse prompts and extract sub-networks
as task-specific policies (Yang et al., [2023)). Similarly, Mallya & Lazebnik| (2018) sequentially
allocate multiple tasks within a single network through iterative pruning and re-training, balancing
performance and storage efficiency. Unlike these methods, our work identifies RL skill neurons
specifically tailored to deep reinforcement learning, ensuring a balance between stability and plasticity
by preserving the task-relevant knowledge encoded in these neurons while allowing for fine-tuning.

B Preliminary

B.1 Markov Decision Process (MDP)

A Markov Decision Process(MDP) is a framework used to describe a problem involving learning
from actions to achieve a goal. Almost all reinforcement learning problems can be characterized
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as a Markov Decision Process. Each MDP is defined by a tuple < S, A, P, R,y >, where S and A
represent state and action spaces respectively. The transition dynamics of the MDP are defined by the
function P : S x A x .S — [0, 1], which represents the probability of transitioning from a give state s
with action a to state s’. The reward function is represented by R : S x A x S — R, and vy € (0, 1)
is the discount factor. At each time step ¢, an agent observes the state of the environment, denoted as
s¢, and selects an action a; according to a policy 7(als). One time step later, the agent receives a
numerical reward ;4 and transitions to a new state s, 1. In the simplest case, the return is the sum
of the rewards when the agent—environment interaction naturally breaks into subsequences, which we
refer to episodes (Sutton, |[2018]).

B.2 Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) is an off-policy actor-critic deep reinforcement learning algorithm that
leverages maximum entropy to promote exploration. This work employs SAC to train a policy that
effectively balances stability and plasticity , chosen for its sample efficiency, excellent performance,
and robust stability. In this framework, the actor aims to maximize both the expected reward and the
entropy of the policy. The parameters ¢ of the actor are optimized by minimizing the following loss
function:

J‘ﬂ'(qs) = EStNDyCLt,Nﬂ'(p [O‘logﬂ-¢(at‘st) - Q{)(St, at)]’

where D is the replay buffer, « is the temperature parameter controlling the trade-off between
exploration and exploitation, 6 denotes the parameters of the critic network, 74 represents the policy
learned by the actor ¢ , and QQy denotes the Q-value estimated by the critic 6. The critic network is
trained to minimize the squared residual error:

1 .
JQ(G) = E(st,at,st+1)~D[§(Q9(5ta at) — Tt — ’YV(St-i-l)]a

V(st) = Eayrr, [Qo (51, ar) — adogmg (ar]sy)],
where ~y represents the discount factor.

B.3 Neuron

In neural networks, various components, such as blocks and layers, play distinct roles. Here, we
define a neuron as a single output dimension from a layer. For example, in a fully connected layer,
each output dimension corresponds to a neuron. Similarly, in a convolutional layer, each output
channel represents a neuron. Furthermore, following the terminology used by Sajjad et al.|(2022]),
we classify neurons that encapsulate a single concept as focused neurons, while a group of neurons
collectively representing a concept are termed group neurons.

C Experiment

C.1 Baseline

EWC: Elastic Weight Consolidation (EWC) (Kirkpatrick et al., [2017)) addresses the challenge of
catastrophic forgetting by allowing neural networks to retain proficiency in previously learned tasks
even after a long hiatus. It achieves this by selectively slowing down learning for weights that are
crucial for retaining knowledge of these tasks. This approach has demonstrated excellent performance
in sequentially solving a series of classification tasks, such as those in the MNIST handwritten digit
dataset, and in learning several Atari 2600 games sequentially.

NPC: Neuron-level Plasticity Control (NPC) (Paik et al., 2019) preserves the existing knowledge
from the previous tasks by controlling the plasticity of the network at the neuron level. NPC estimates
the importance value of each neuron and consolidates important neurons by applying lower learning
rates, rather than restricting individual connection weights to stay close to the values optimized for the
previous tasks. The experimental results on the several classification datasets show that neuron-level
consolidation is substantially effective.

ANCL: Auxiliary Network Continual Learning (ANCL) is an innovative approach that incorporates an
auxiliary network to enhance plasticity within a model that primarily emphasizes stability. Specifically,
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this framework introduces a regularizer that effectively balances plasticity and stability, achieving
superior performance over strong baselines in both task-incremental and class-incremental learning
scenarios.

CoTASP: Continual Task Allocation via Sparse Prompting (CoTASP) (Yang et al [2023) learns
over-complete dictionaries to produce sparse masks as prompts extracting a sub-network for each task
from a meta-policy network. Hence, relevant tasks share more neurons in the meta-policy network
due to similar prompts while cross-task interference causing forgetting is effectively restrained. It
outperforms existing continual and multi-task RL methods on all seen tasks, forgetting reduction, and
generalization to unseen tasks.

CRelu: Concatenated ReL.Us (CReLUs) (Abbas et all, [2023)) is a simple activation function that
concatenates the input with its negation and applies ReLU to the result. It performs effectively in
facilitating continual learning in a changing environment.

CBP: Continual BackPropagation (CBP) (Dohare et al.} [2024) reinitializes a small number of units
during training, typically fewer than one per step. To prevent disruption of what the network
has already learned, only the least-used units are considered for reinitialization. It shows great
performance on Continual ImageNet and class-incremental CIFAR-100.

PI: Plasticity Injection (PI) (Nikishin et al.,[2024)) freeze the parameters 6 and introduce a new set
of parameters 6/ sampled from random initialization at some point in training, where the network
might have started losing plasticity. The results on Atari show that plasticity injection attains stronger
performance compared to alternative methods while being computationally efficient.

C.2 Benchmark
Meta-World. Meta-World is an open-source benchmark for meta-reinforcement learning and
multitask learning, comprising 50 distinct robotic manipulation tasks (Yu et al., [2020).

All tasks are executed by a simulated Sawyer robot, with the action space defined as a 2-tuple: the
change in the 3D position of the end-effector, followed by a normalized torque applied to the gripper
fingers.

The observation space has a consistent dimensionality of 39, although different dimensions correspond
to various aspects of each task. Typically, the observation space is represented as a 6-tuple, including
the 3D Cartesian position of the end-effector, a normalized measure of the gripper’s openness, the 3D
position and the quaternion of the first object, the 3D position and quaternion of the second object, all
previous measurements within the environment, and the 3D position of the goal.

The reward function for all tasks is structured and multi-component, aiding in effective policy learning
for each task component. With this design, the reward functions maintain a similar magnitudes across
tasks, generally ranging between 0 and 10. The descriptions of the six tasks used in our experiments
are listed below, and the appearance of these tasks is shown in Figure 5]

* drawer-open: Open a drawer, with randomized drawer positions.

* drawer-close: Push and close a drawer, with randomized drawer positions.

* window-open: Push and open a window, with randomized window positions.

» window-close: Push and close a window, with randomized window positions.

* door-open: Open a door with a revolving joint. Randomize door positions.

* button-press-topdown: Press a button from the top. Randomize button positions.

(a) drawer-open (b) drawer-close (c) window-open (d) window-close (e) door-open (f) button-press-topdown

Figure 5: Tasks in the Meta-World benchmark used in our experiments.
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Atari. Atari environments are simulated using the Arcade Learning Environment (ALE) (Bellemare|
2013) via the Stella emulator.

Each environment utilizes a subset of the full action space, which includes actions like NOOP,
FIRE, UP, RIGHT, LEFT, DOWN, UPRIGHT, UPLEFT, DOWNRIGHT, DOWNLEFT, UPFIRE,
RIGHTFIRE, LEFTFIRE, DOWNFIRE, UPRIGHTFIRE, UPLEFTFIRE, DOWNRIGHTFIRE, and
DOWNLEFTFIRE. By default, most environments employ only a smaller subset of these actions,
excluding those that have no effect on gameplay.

Observations in Atari environments are RGB images displayed to human players, with obs_type =
"rgb”, corresponding to an observation space defined as Box(0, 255, (210, 160, 3), np.uint8).

The specific reward dynamics vary depending on the environment and are typically detailed in the
game’s manual.

The descriptions of the four games used in our experiments are listed below (Foundation, [2024), and
the appearance of these games is shown in Figure 6]

* Bowling: The goal is to score as many points as possible in a 10-frame game. Each frame allows
up to two tries. Knocking down all pins on the first try is called a "strike", while doing so on the
second try is a "spare". Failing to knock down all pins in two attempts results in an "open" frame.

¢ Pong: You control the right paddle and compete against the computer-controlled left paddle. The
objective is to deflect the ball away from your goal and into the opponent’s goal.

* BankHeist: You play as a bank robber trying to rob as many banks as possible while avoiding the
police in maze-like cities. You can destroy police cars using dynamite and refill your gas tank by
entering new cities. Lives are lost if you run out of gas, are caught by the police, or run over your
own dynamite.

* Alien: You are trapped in a maze-like spaceship with three aliens. Your goal is to destroy their
eggs scattered throughout the ship while avoiding the aliens. You have a flamethrower to fend
them off and can occasionally collect a power-up (pulsar) that temporarily enables you to kill

aliens.

(a) Bowling (b) Pong (c) BankHeist (d) Alien

Figure 6: Games in the Atari benchmark used in our experiments.

C.3 Experiment setting

For all experiments, we utilize the open-source PyTorch implementation of Soft Actor-Critic (SAC)
provided by CleanRL (Huang et al., [2022) on a single RTX2080Ti GPU. CleanRL is a Deep
Reinforcement Learning library that offers high-quality, single-file implementations with research-
friendly features. The code is both clean and straightforward, and we adhere to the configurations
provided by CleanRL. During training, we employ an e-greedy exploration policy at the start,
setting € = 1 for the first 10* time steps to promote exploration. The environment is wrapped
using Gym wrappers to facilitate experimentation. For the Meta-World benchmark, we utilize the
RecordEpisodeStatistics wrapper to gather episode statistics. For the Atari benchmark, in addition
to RecordEpisodeStatistics, we preprocess the 210 x 160 pixel images by downsampling them to
84 x 84 using bilinear interpolation, converting the RGB images to the YUV format, and using only
the grayscale channel. Additionally, we set a maximum limit on the number of noop and skip steps to
standardize the exploration.

Regarding network architecture, we use the same actor and critic networks for all tasks within the
same benchmark to ensure consistency. For the Meta-World benchmark, we employ a neural network
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659 comprising four fully connected layers, of which the hidden size is [768, 768, 768]. For the Atari
660 benchmark, we use a convolutional neural network (CNN) with three convolutional layers featuring
661 32, 64, and 64 channels, respectively, followed by three fully connected layers, of which the hidden
662 size is [768, 768].

663 To reduce randomness and enhance the reliability of our results, we train each agent using three
es4 random seeds. Additional hyper-parameters for the SAC algorithm applied in the Meta-World and
665 Atari benchmarks are detailed in Table

Table 6: Hyper-parameters of SAC in our experiments.

Parameters Values for Meta-World  Values for Atari
Initial collect steps 10000 20000
Discount factor 0.99 0.99
Training environment steps 108 1.5 x 106, 3 x 108
Testing environment steps 10° 10°
Replay buffer size 108 2 x 10°
Updates per environment step (Replay Ratio) 2 4
Target network update period 1 8000
Target smoothing coefficient 0.005 1
Optimizer Adam Adam
Policy learning rate 3x 1074 1074
Q-value learning rate 1073 10~4
Minibatch size 256 64
Alpha 0.2 0.2
Autotune True True
Average environment steps of success rate 10 -
Stable threshold to finish training 0.9 -
Replay interval 10 10
No-op max - 30
Target entropy scale - 0.89
Storing experience size 10° 10°

666 C.4 Metrics

667 For the Meta-World benchmark, the average success rate is computed over 20 episodes. For the Atari
e68 benchmark, the success rate is replaced by the return of each episode. We normalize the return for
669 each game to obtain summary statistics across games, as follows:

R = Tagent — T'random (12)

)
Thuman — Trandom

670 where 7,4¢n: represents the average return evaluated over 10° steps, the random score 7qpndom and
671 human score 7,mqn are consistent with those used by Mnih et al.|(2015), as detailed in Table

Table 7: Normalization scores of Atari games.

games Trandom Thuman
Bowling 23.1 154.8
Pong -20.7 9.3
BankHeist 14.2 734.4
Alien 227.5 6875

672 For the Atari benchmark tasks, the overall performance is evaluated by Average Return (AR), which
673 is analogous to ASR in the Meta-World benchmark. It is calculated as follows:

1ea1
AR= %"= Rij. (13)

i=1 = i>j
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where R; ; represents the average return evaluated on the j-th task after completing the learning of
the ¢-th task (¢ > 7), and k represents the number of tasks. A higher AR indicates better performance
in balancing stability and plasticity.

C.5 RL Skill Neurons
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Figure 7: Distribution histogram of the activations of a neuron in two learning settings.

To validate the existence of RL skill neurons in sequential task learning instead of single task
learning, we conduct an additional analysis comparing the activation distributions of neurons when
learning button-press-topdown in isolation versus learning button-press-topdown and window-open
simultaneously. As shown in Figure[/] the activation distribution of a representative neuron remains
highly correlated with task success, regardless of whether it is learned in isolation or alongside
another skill. This observation supports our hypothesis that skill-specific neurons retain their essential
role even in a sequential task learning scenario.

Additionally, we dig deeper into the identified RL skill neurons and separate them into general and
specific skills. How to deeply investigate general skills is key for our future research. To explore
this, we design an experiment to verify the existence of general and specific skills. After sequentially
training on the button-press-topdown and window-open tasks, we identify the RL skill neurons
associated with each task. We hypothesize that the intersection set represents general skill neurons,
while the difference set represents specific skill neurons. To validate this hypothesis, we zero out the
outputs of these neurons separately. The results in Table [§]show that when the outputs of the general
skill neurons are zeroed out, the agent fails to complete both tasks. In contrast, when the outputs of
task-specific neurons are zeroed out, the agent can’t complete the corresponding task but is still able
to complete the other task. This confirms the existence of both general and specific skills.

Table 8: Results of zeroing out the output of general of specific skill neurons.

tasks zero out the in- zero out the difference set zero out the difference set
tersection set of button-press-topdown of window-open relative to
relative to window-open button-press-topdown
button-press-topdown 0 0.33 1.00
window-open 0 1.0 0.42

C.6 Results of Vanilla SAC

To validate the effectiveness of NBSP, it is essential to first confirm whether the vanilla SAC algorithm
can successfully solve each task individually. So we conducted experiments by training a vanilla
SAC agent on all tasks in our experiment. The results, presented in Figure 8| demonstrate that the
vanilla SAC algorithm successfully learns all tasks in our experiment. This confirms that the balance
between stability and plasticity is not an artifact of modifications to the SAC algorithm itself but
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701 rather a result of NBSP. Furthermore, the failure of other methods is not due to limitations of the SAC
702 algorithm.
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Figure 8: Training process of vanilla SAC on each individual task in our experiment.

703 C.7 Results on the Meta-world Benchmark

704 The training process of the other four-tasks cycling task is shown in Figure 9] and those of the
705 two-task cycling tasks are shown in Figure[I0} Figure[TTand Figure [I2]respectively. The same as
706 found in Section[4.I] during the second cycle of learning the same task, the agent is able to master
707 the task more rapidly.

708 C.8 Ablation Study

709 The results of the ablation study on two critical components, gradient masking and experience replay
710 techniques, are shown in Table[9|for the (window-open — window-close) cycling task and in Table[I0]
711 for the (drawer-open — drawer-close) cycling task. From these results, it is evident that both gradient
712 masking and experience replay techniques independently contribute to improving the stability of
713 the agent while maintain great plasticity. Furthermore, combining both techniques yields superior
714  performance, demonstrating the enhanced effectiveness of their integration.
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Table 9: Results of ablation study of gradient masking and experience replay techniques on (window-
open — window-close) cycling task.

(button-press-topdown — window-open)

Metrics

vanilla SAC only experience replay only gradient masking NBSP with hard gradient masking NBSP
ASR?T  0.63£0.02 0.81 £ 0.08 0.78 £ 0.11 0.7140.04 0.90 £ 0.04
FM | 0.91 £0.10 0.41£0.13 0.54 £0.26 0.5440.13 0.18 £ 0.01
FWT 1  0.97 £0.02 0.96 £ 0.01 0.98 + 0.01 0.9140.05 0.96 £ 0.02

Table 10: Results of ablation study of gradient masking and experience replay techniques on (drawer-
open — drawer-close) cycling task.

(button-press-topdown — window-open)

Metrics

vanilla SAC only experience replay only gradient masking NBSP with hard gradient masking NBSP
ASR 1 0.67 £ 0.05 0.78 £ 0.04 0.74 £ 0.01 0.59+0.16 0.96 £ 0.02
FM | 0.78 £ 0.10 0.48 £0.10 0.64 £ 0.01 0.524+0.35 0.07 £ 0.06
FWT 1 094 £0.04 0.97 £ 0.01 0.98 + 0.02 0.82+0.21 0.98 £ 0.01

D Algorithm

The pseudo-code of the goal-oriented method to find RL skill neurons is presented in Algorithm
And the pseudo-code for SAC with NBSP is presented in Algorithm [2} Key differences from
standard SAC are highlighted in blue. In addition to the extra input, two main modifications include
the sampling process and the network update process.

E Limitation and Future Work

Limitation. While the proposed NBSP method effectively balances stability and plasticity in DRL,
it does have a notable limitation. Specifically, the number of RL skill neurons must be manually
determined and adjusted according to the complexity of the learning task, as there is no automatic
mechanism for this selection. And our method currently faces challenges when applied to longer
task sequences (e.g., 10+ tasks). One key limitation is the constraint imposed by the model scale,
which inherently limits the number of skills it can learn. As the number of tasks increases, the overlap
between skill neurons across different tasks may become significant. Consequently, applying a mask
to protect RL skill neurons can restrict the learning of new tasks, making it difficult to scale without
introducing interference with previously learned knowledge.

Future work. The neuron analysis introduced in this work offers a novel approach for identifying
RL skill neurons, significantly enhancing the balance between stability and plasticity in DRL. The
identification of RL skill neurons opens up several promising directions for future research and
applications, such as: (1) Model Distillation: by focusing on RL skill neurons, it becomes possible to
distill models by pruning less relevant neurons, leading to more efficient and compact models with
minimal performance degradation. (2) Bias Control and Model Manipulation: RL skill neurons could
be leveraged to control biases and modify model behaviors by selectively adjusting their activations.
This approach could be particularly valuable in scenarios requiring specific outputs or behaviors.

While our current method may not yet fully address longer task sequences, it lays a strong foundation
for future research. Moving forward, we aim to explore strategies to better leverage RL skill neurons
for continual learning over an extended sequence of tasks. What’s more, its applicable potential
extends beyond DRL. It could also be adapted to other learning paradigms, such as supervised and
unsupervised learning, to address similar stability-plasticity challenges. In future work, we plan to
explore these extensions and verify their effectiveness across various domains.
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Algorithm 1 Procedure for Identifying RL Skill Neurons
Input: Initial average step Ty, , initial evaluation step 7', initial proportion of RL skill neuron m,
initial average activation @(N) = 0, initial average GM g = 0, initial over-activation rate Ryye, = 0.
1: for each step t do
2: Compute activation a(N, t) < ¢(-)
3: Compute GM ¢(t)
4: Compute average activation:

5: Compute average GM:

end for

for each step t do
Compute activation a(N, t) < ¢(-)
Compute GM ¢(t)
Capture association:

SR

—_

1

Rover - Rover + Tl[l[a(,’\/,t)>5(!\/’)]:1[q(t)>§]]

11: end for
12: Derive scores Score for each neuron:

Score(N) = maz(Roper(N), 1 — Royer(N))
13: Identify the top-performing neurons as RL skill neurons:

NRL skit = Tm<SCO’I"€(N>)
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Algorithm 2 Neuron-level Balance between Stability and Plasticity (NBSP) Applied in SAC

Initialize policy parameters 6, Q-function parameters ¢1, ¢, and target Q-function parameters ¢}, ¢4
Initialize empty replay buffer D

Initialize replay interval k

Input: Replay buffer Dy, mask of the policy masky and mask of the Q-function parameters
mask,, , mask

P19 Q2

1: for each task do

2: for each iteration do

3: for each environment step do

4: Sample action a; ~ mg(as|st)

5: Execute action a; and observe reward r; and next state s;41

6: Store (s¢, ag, r¢, S¢11) in replay buffer D

7: end for

8: for each gradient step do

o: if step = 0 (mod k) then Sample batch of transitions (s;, a;, ri, si+1) from Dp,e
10: else Sample batch of transitions (s;, a;, r;, $;+1) from D
11: end if
12: Compute target value:

Yyi =1+ <j:iIT12 Qqs; (Sit+1,@i+1) — alog W@(a’i-ﬁ-lsi'i‘l)) swhere aity ~ 7o (-[si41)
13: Update Q-functions by one step of gradient descent with mask:
1 2 .
O — ¢j — )\Qmask(,jv,ﬁjﬁ Z (Q¢j (si,ai) — yi) for j=1,2
i
14: Update policy by one step of gradient ascent with mask:
. ~ 1 .
0+ 0+ )\Wlnask()v(;ﬁ Z alogmg(as|s;) — J11211112 Qo, (5i,a4)
- ;
15: Update temperature o by one step of gradient descent:
1 _
o~ o — )\QVQN Z (—a log 7o (a;|s;) — a?—l)
3
16: Update target Q-function parameters:
O = 7¢;+ (1 —7)¢; forj=1,2

17: end for
18: end for

19: Select RL skill neurons { NVry, skin } according to Algorithm
20: Update mask,, ,mask;, and masky:

b2

a(l — Score(N)) it N € Ngr skin

mask(N) = L h
) {1 it N ¢ Nrr skin

21: Store part of D into Dy,
22: end for
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: Our main claims are summarized in Figure[2] Section [3|and Section 4] offer detailed
explainations.

Guidelines:
* The answer NA means that the abstract and introduction do not include the claims made in
the paper.
* The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of the work in Appendix [E} and the problem setup of our
work is described in Subsection 3.1}

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to vi-
olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

» The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

¢ The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

L]

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]
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Justification: Our paper is not a theoretical work.

Guidelines:

L]

The answer NA means that the paper does not include theoretical results.
All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions of
the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We carefully introduce our proposed framework in Section [3] and explained our
settings and hyper-parameters in Section[d and Appendix [C.3]

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived well by
the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide our code in the supplemental material.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

* Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification: The training and test details are described in Sectionf]and Appendix [C.3] and we
provide the code in the supplemental material.
Guidelines:
* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail that
is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We show the standard error in the training curves and the table of results with an
average of over three random seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of the
mean.

* Jtis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.
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 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: We provide sufficient information on the computer resources in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

¢ The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experi-
mental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the Neur[PS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and understood the code of ethics and have done our best to conform.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

e If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: Our work proposes a neuron-level framework to balance stability and plasticity in
DRL, which does no impact the society at large, beyond improving our understanding of certain
aspects of deep learning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.
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13.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA|

Justification: Our paper poses no such risks for a novel framework to balance stability and
plasticity in DRL.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: We describe the benchmarks in our experiments in Section d]and provide the code
base in Appendix[C.3]

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.
For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|

Justification: We do not release new assets currently.
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Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
¢ Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

¢ According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.
Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

e The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our work does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.
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1057 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
1058 what should or should not be described.
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