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Abstract

In contrast to the human ability to continuously acquire knowledge, agents struggle1

with the stability-plasticity dilemma in deep reinforcement learning (DRL), which2

refers to the trade-off between retaining existing skills (stability) and learning new3

knowledge (plasticity). Current methods focus on balancing these two aspects4

at the network level, lacking sufficient differentiation and fine-grained control5

of individual neurons. To overcome this limitation, we propose Neuron-level6

Balance between Stability and Plasticity (NBSP) method, by taking inspiration7

from the observation that specific neurons are strongly relevant to task-relevant8

skills. Specifically, NBSP first (1) defines and identifies RL skill neurons that9

are crucial for knowledge retention through a goal-oriented method, and then (2)10

introduces a framework by employing adaptive gradient masking and experience11

replay techniques targeting these neurons to preserve the encoded existing skills12

while enabling adaptation to new tasks. Numerous experimental results on the Meta-13

World and Atari benchmarks demonstrate that NBSP significantly outperforms14

existing approaches in balancing stability and plasticity.15

1 Introduction16

Deep reinforcement learning (DRL) has shown exceptional capabilities across a range of complex17

scenarios, such as gaming (Mnih et al., 2013), robotic manipulation (Andrychowicz et al., 2020), and18

autonomous driving (Kiran et al., 2021). However, most RL research focuses on agents that learn to19

solve individual problems rather than learn a sequence of tasks continually. Ideally, the agent must20

maintain its performance on previously learned tasks, referred to as stability (McCloskey & Cohen,21

1989), while simultaneously adapting to new tasks, known as plasticity (Carpenter & Grossberg,22

1987). However, it has been revealed that emphasizing stability may hinder the ability of agents to23

learn new knowledge (Nikishin et al., 2022a; Abbas et al., 2023), whereas excessive plasticity can24

lead to catastrophic forgetting of previously acquired knowledge (Goodfellow et al., 2015; Atkinson25

et al., 2021b), a challenge known as the stability-plasticity dilemma (eMermillod et al., 2013),26

which remains a fundamental and under-explored problem and is the main focus of our work.27

Existing methods to strike a balance between stability and plasticity generally fall into three categories,28

i.e. (1) regularization-based methods (Kirkpatrick et al., 2017; Kumar et al., 2023), which apply29

penalties to parameter changes to mitigate forgetting while acquiring new knowledge; (2) replay-30

based methods (Ahn et al., 2024), which leverage past experiences to consolidate knowledge; and31

(3) modularity-based methods (Kim et al., 2023; Anand & Precup, 2024), which seek to decouple32

stability and plasticity or isolate different components for different tasks. Despite their contributions,33

these methods suffer from three key limitations: (1) They primarily operate at the network level, yet34

their ultimate impact manifests at the level of individual neurons. However, these methods fail to35
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differentiate and fine-grained control neurons based on their specific roles. Therefore, identifying36

and effectively utilizing task-relevant neurons remains both critical and under-explored. (2) These37

studies are primarily conducted within the paradigm of continual learning, thus overlooking the38

unique characteristics intrinsic to DRL. (3) These approaches could sometimes unnecessarily inflate39

model parameters, thereby introducing unwarranted complexity (Bai et al., 2023).40

Figure 1: Distribution histogram of the
activation of a neuron, categorized based
on whether the drawer-open task was
successfully completed or not.

By analyzing the activations of neurons in the DRL net-41

work, we observe that the activations of certain neurons42

are strongly correlated with the task goal. For instance,43

Figure 1 illustrates the activation distribution of a specific44

neuron in the network following training on the drawer-45

open task from the Meta-World benchmarkYu et al. (2020).46

Activation of the neuron serves as a reliable predictor of47

whether the task is successful. Higher activation levels48

correspond to an increased likelihood of completing the49

task successfully, indicating that this neuron encodes a50

critical skill essential for the task. Consequently, it plays51

a pivotal role in retaining task-specific memory.52

Motivated by the aforementioned observations, we pro-53

pose Neuron-level Balance between Stability and Plas-54

ticity (NBSP), a novel DRL framework that operates at55

the level of neurons to tackle the stability-plasticity dilemma. In particular, (1) we first introduce RL56

skill neurons, which encode critical skills necessary for knowledge retention. While skill neurons57

have been investigated and successfully exploited in various domains, such as pre-trained language58

models (Wang et al., 2022) and neural machine translation (Bau et al., 2018), skill neurons are still59

much less explored in DRL. We bridge this research gap by proposing a goal-oriented strategy for60

identifying RL skill neurons. (2) We then apply gradient masking according to the scores of these61

neurons, ensuring that the encoded knowledge of prior skills is preserved while allowing fine-tuning62

during subsequent training. Meanwhile, the other neurons retain the ability to learn new tasks. (3)63

Additionally, we incorporate experience replay to periodically revisit the past experience to reinforce64

stability, preventing excessive drift from previous knowledge. Integrally, NBSP offers three key65

advantages compared with previous methods: (1) The neuron-level processing enables finer control66

and greater flexibility, addressing the stability-plasticity trade-off at the most fundamental level of the67

network. (2) The goal-oriented approach for identifying RL skill neurons is specifically tailored to68

DRL. (3) This framework is simple, avoiding complex network designs or additional parameters.69

We conduct experiments on the Meta-World (Yu et al., 2020) and Atari (Mnih et al., 2013) bench-70

marks to evaluate the effectiveness of NBSP. Our results show that NBSP outperforms existing71

methods in balancing stability and plasticity, enabling effective learning of new tasks while preserv-72

ing knowledge from previous tasks. Additionally, we perform extensive ablation studies to investigate73

the contribution of different components within NBSP. Specially, we analyze the DRL agents by74

dissecting the performance of the two critical modules, i.e., the actor and the critic. Our findings75

reveal that (1) addressing both the actor and critic networks yields the best performance, and (2)76

the critic plays a more critical role in achieving this balance due to the differences in their inherent77

training mechanisms. In summary, our key contributions include:78

• We are the first to introduce the concept of RL skill neurons which encode skills of the task,79

essential for knowledge retention, and propose a goal-oriented strategy specifically tailored to80

DRL for identification.81

• We tackle the stability-plasticity dilemma in DRL from the perspective of RL skill neurons, by82

employing gradient masking and experience replay on these neurons, eliminating requirements of83

complex network designs or additional parameters.84

• We conduct extensive experiments on the Meta-World and Atari benchmarks to demonstrate the85

effectiveness of our method in balancing stability and plasticity.86

2 Related Work87

Balance between stability and plasticity. In DRL, addressing the stability-plasticity dilemma88

(Carpenter & Grossberg, 1988) has inspired various strategies. Stability-focused methods often utilize89
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replay techniques, such as A-GEM (Chaudhry et al., 2018b), using episodic memory to constrain90

loss, and ClonEx-SAC (Wolczyk et al., 2022), enhancing performance through behavior cloning.91

Pseudo-rehearsals from generative models further reduce storage requirements (Atkinson et al.,92

2021a). Plasticity-focused methods aim to preserve network expressiveness, with solutions like CBP93

(Dohare et al., 2024), resetting (Nikishin et al., 2022b), plasticity injection (Nikishin et al., 2024),94

Reset & Distillation (Ahn et al., 2024), and CRelu (Abbas et al., 2023) to prevent activation collapse.95

Modularity-based methods balance stability and plasticity by decoupling task-specific knowledge,96

exemplified by soft modularity for routing networks (Yang et al., 2020), value function decomposition97

(Anand & Precup, 2024), and compositional frameworks leveraging neural components (Mendez et al.,98

2022). Methods such as CRelu and ClonEx-SAC focus on continual reinforcement learning(CRL),99

but our study specifically targets the intrinsic balance between stability and plasticity, with other100

factors such as task order controlled in a cycling task setting. Moreover, while most methods operate101

at the network level, our approach explores neuron-level research, providing fine-grained control.102

Neuron-level research. Recent research has shown that neuron sparsity often correlates with task-103

specific performance (Xu et al., 2024), driving a growing focus on skill neurons to interpret network104

behavior and tackle challenges across domains. For example, skill neurons have been used to105

enhance transferability and efficiency in Transformers via pruning (Wang et al., 2022), and dormant106

neurons have been recycled to improve training in DRL(Sokar et al., 2023). Other studies, such as107

identifying Rosetta Neurons (Dravid et al., 2023) and language-specific neurons (Tang et al., 2024),108

have advanced alignment and interpretability. However, neuron-level studies in DRL are still limited,109

with methods like CoTASP (Yang et al., 2023) and PackNet (Mallya & Lazebnik, 2018) focusing110

on task-specific sub-network selection via sparse prompts, pruning, and re-training. And NPC (Paik111

et al., 2019) restricts important neurons to maintain stability. In contrast, our work identifies RL skill112

neurons specific to DRL, balancing stability and plasticity with encoded task-relevant knowledge.113

3 Methodology114

In this section, we first introduce the terminology of RL skill neurons and then propose the Neuron-115

level Balance between Stability and Plasticity (NBSP) method.116

3.1 Problem Setup117

We focus on the setting of sequential task learning without constraints on the time intervals between118

tasks. In this setting, the agent is expected to perform all previously learned tasks after training,119

without relying on task-specific signals. For instance, large models such as DeepSeek employ RL120

to enhance their reasoning capabilities. However, different tasks, such as vision and mathematics,121

demand distinct reasoning abilities. To first strengthen a specific type of reasoning and then generalize122

to others, it is essential to strike a balance between stability and plasticity during sequential training.123

Furthermore, in real-world applications, the enhanced model should be able to handle all tasks124

without relying on explicit task signals. Let τ ∈ {τ1, τ2, ...} represent a sequence of task, each task τ125

corresponds to a distinct Markov Decision Process (MDP) Mτ = (Sτ , Aτ , P τ , Rτ , γτ ), where Sτ ,126

Aτ , P τ , Rτ and γτ denote the state space, action space, transition dynamics, reward function, and127

discount factor, respectively. Instead of addressing a single MDP, the goal is to solve a sequence of128

MDPs one by one using a universal policy π(a|s) and Q-function Q(s, a). The primary challenge129

lies in balancing plasticity, which refers to maximizing the discounted return of the current task, and130

stability, which emphasizes the maximization of the expected discounted return averaged across all131

previous tasks. This trade-off constitutes the core problem addressed in this work.132

3.2 Identifying RL Skill Neurons133

In this study, we make a key observation that the stability and plasticity of the agent network are134

closely related to its expressive capabilities, which are significantly influenced by the behavior of135

individual neurons. As evidenced in Molchanov et al. (2022), neuron expression determines how136

information is propagated and processed, directly affecting the learning and knowledge retention137

capabilities of the network. Therefore, understanding and controlling neuron behavior is at the most138

fundamental level for striking a balance between stability and plasticity. On the one hand, when139

neuron expression is stable and generalized, the agent network tends to exhibit high stability. On the140

other hand, strong plasticity can be achieved given neuron expression is flexible and adaptable.141

3



Figure 2: Framework of NBSP. The agent scores and identifies RL skill neurons for each task by
measuring the activation in relation to the GM. While learning new tasks, the gradient of these
neurons is masked adaptively based on their scores to preserve the encoded skills, while still allowing
fine-tuning for new task learning. Additionally, a replay buffer is used to store a portion of the
experiences from previous tasks, which is periodically sampled to update the agent.

Several works have demonstrated the multifaceted capabilities of neurons, such as the storage of142

factual knowledge (Dai et al., 2022), the association with specific languages (Tang et al., 2024), and143

the encoding of safety information (Chen et al., 2024). These specialized neurons, often referred as144

skill neurons, have been shown to significantly contribute to network performance (Wang et al., 2022).145

However, the potential of skill neurons in DRL remains largely under-explored. As illustrated in146

Figure 1, activations of the specific neuron are strongly correlated with task success: higher activation147

levels increase the likelihood of successful task completion, whereas lower levels are associated with148

failure. This indicates that the activations of these neurons significantly affect agent performance,149

effectively encoding the critical skills required for the task. By preserving the activations of such150

neurons, it becomes possible to retain the learned task-specific skills, thereby improving stability.151

In this work, we formally define these special neurons as RL skill neurons, which encode critical152

skills, essential for knowledge retention in DRL. Furthermore, we propose a goal-oriented method153

for the identification of these neurons. Unlike prior approaches that primarily focus on the inputs154

triggering neuron activations (Bau et al., 2020; Gurnee & Tegmark, 2023), our method emphasizes155

their impact on achieving ultimate goals, i.e. succeeding in finishing Meta-World tasks and attaining156

high scores in Atari games, by comparing the activation patterns of the neurons that exhibit varying157

performance levels. In Section 4.2, we empirically show the advantage of our goal-oriented method.158

For a specific neuron N , let a(N , t) represent its activation at step t. In fully connected layers, each159

output dimension corresponds to the activation of a specific neuron, whereas in convolution layers,160

the average of each output channel represents the activation of a neuron. To quantify activation level161

of a neuron N , we define the average activation as:162

a(N ) =
1

Tavg

T∑
t=1

a(N , t), (1)

where Tavg represents the average step. The activation level of the neuron can then be assessed by163

comparing its current activation with the corresponding average activation.164

To assess the performance of the agent at step t, we introduce the Goal Metric (GM), denoted as165

q(t). It serves as an evaluation metric for assessing the performance of the agent’s network, varying166

based on the objective of the task. It is computed in an online manner during training. For instance,167

on the Meta-World benchmark, the GM is typically binary, determined by whether the episode is168

successful, which is computed at the end of each episode. In contrast, the GM is determined by the169

cumulative return of the episode for the Atari benchmark. Additionally, we define the average Goal170

Metric (GM) of the agent as follows, which serves as a baseline for evaluating the performance by171

comparing it with the current GM.172

q =
1

Tavg

T∑
t=1

q(t). (2)
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To differentiate the roles of neurons across various tasks, it is essential to assess neuron activations in173

relation to specific goals. Intuitively, we can consider a neuron N to be positively contributing to the174

goal at step t when its activation a(N , t) surpasses the average activation a(N ), i.e. a(N , t) > a(N ),175

while the GM at the same step also exceeds its average, i.e. q(t) > q. To quantify this contribution,176

we accumulate a batch of results over T steps and define the over-activation rate as follows:177

Rover(N ) =

∑T
t=1 1[1[a(N ,t)>a(N)]=1[q(t)>q]]

T
. (3)

Here, 1[condition] ∈ {0, 1} denotes the indicator function, which returns 1 if and only if the specified178

condition is satisfied. While Eq. (3) assesses the positive correlation of neurons towards achieving179

the goal, where a higher rate implies a greater significance of the neuron in producing better outcome,180

however, it overlooks neurons that exhibit a negative correlation with the goal but still carry valuable181

task-related knowledge. Specifically, when the activation of a neuron falls below its average activation,182

the agent performs well conversely. To this end, we define a comprehensive score Score(N ) for183

the neuron that takes into account both positive and negative effects:184

Score(N ) = max(Rover(N ), 1−Rover(N )). (4)

Subsequently, we rank all neurons in the agent network, excluding those in the last layer, in descending185

order based on their scores. The RL skill neurons are determined by selecting the neurons with the186

top m% highest scores, formally defined as follows, where τm(·) denotes the top-m selection operator.187

And the pseudo-code of the identification method is shown in Appendix D.188

NRL skill = τm(Score(N )) (5)

3.3 Neuron-level Balance between Stability and Plasticity189

Building upon the concept of RL skill neurons, we propose a novel DRL framework — Neuron-level190

Balance between Stability and Plasticity (NBSP), as shown in Figure 2. Unlike prior methods (Bai191

et al., 2023; Kim et al., 2023), the framework proposed does not require complex network designs or192

additional parameters. Given that RL skill neurons encode essential task-specific skills, preserving193

their activation patterns is critical to maintaining knowledge from previous tasks during continual194

tasks learning. However, simply freezing RL skill neurons would hinder the ability of the agent195

to adapt to new tasks. To address this challenge, NBSP employs an adaptive gradient masking196

technique. Specifically, during each update round in the continual learning process, the gradients of197

RL skill neurons are selectively masked to restrict changes in their activation patterns while allowing198

other neurons to adapt freely. This process is formally expressed as follows:199

∆W:,j = mask
(l)
j ·∆W

(l)
:,j , (6)

where ∆W
(l)
:,j denotes the gradient with respect to the weight W (l)

:,j in the l-th layer of the network,200

and j is the index of the output neuron in that layer. The term mask
(l)
j is associated with the score of201

j-th neuron in the l-th layer, which could be calculated as follows:202

mask(N ) =

{
α(1− Score(N )) if N ∈ NRLskill

1 if N /∈ NRLskill
, (7)

whereNRLskill represents the set of RL skill neurons, and α is a super-parameter that determines the203

degree of restriction on these neurons, which is configured to 0.2 in the experiment. By employing204

gradient masking, NBSP effectively safeguards the encoded skills within RL skill neurons from205

interference during the learning of new tasks, thereby enhancing stability. At the same time, RL206

skill neurons remain adaptable, allowing fine-tuning to accommodate new tasks and maintaining207

high plasticity. In addition, neurons except RL skill neurons are free to fully engage in learning208

new task-specific knowledge, ensuring comprehensive learning across tasks.209

To mitigate excessive drift from knowledge acquired in previous tasks, we integrate the experience210

replay technique, periodically sampling prior experiences at specific intervals k. After training on a211

task, a portion of the experiences, rather than the entirety, are stored in a unified replay buffer Dpre,212

requiring only a modest memory footprint. By incorporating experience replay, the stability of DRL213

agents is further enhanced. The corresponding loss function is defined as follows:214

L = R(t) · E(st,at,st+1,rt,dt)∼Dpre
[L] + (1−R(t)) · E(st,at,st+1,rt,dt)∼D[L], (8)
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Figure 3: Training process of NBSP on the Meta-World benchmark. The segments to the left and
right of the dashed line represent the training processes of the first and second cycles, respectively.

where L denotes the original loss function, R(t) is a binary function that evaluates to 1 if and215

only if the current step t is at an interval. D represents the replay buffer for the current task, and216

(st, at, st+1, rt, dt) denotes the tuple of the current state, action, next state, reward, and whether the217

episode is done sampled from the replay buffer. The pseudo-code of NBSP is shown in Appendix D.218

4 Experiment219

In this section, we evaluate the performance of NBSP on the Meta-World (Yu et al., 2020) and Atari220

benchmarks (Mnih et al., 2013).221

Table 1: Results of NBSP with other baselines on the Meta-World benchmark.

Cycling sequential tasks Metrics Methods
EWC NPC ANCL CoTASP CRelu CBP PI NBSP

(window-open
→ window-close)

ASR ↑ 0.63 ± 0.03 0.26 ± 0.01 0.66 ± 0.04 0.05 ± 0.01 0.26 ± 0.14 0.67 ± 0.05 0.61 ± 0.02 0.90 ± 0.04
FM ↓ 0.89 ± 0.07 0.68 ± 0.04 0.84 ± 0.10 0.01 ± 0.01 0.66 ± 0.42 0.78 ± 0.13 0.91 ± 0.07 0.18 ± 0.01

FWT ↑ 0.97 ± 0.02 0.26 ± 0.01 0.97 ± 0.03 0.04 ± 0.01 0.33 ± 0.19 0.95 ± 0.02 0.95 ± 0.01 0.96 ± 0.02

(drawer-open
→ drawer-close)

ASR ↑ 0.68 ± 0.06 0.35 ± 0.05 0.64 ± 0.02 0.07 ± 0.01 0.29 ± 0.20 0.61 ± 0.03 0.60 ± 0.07 0.96 ± 0.02
FM ↓ 0.80 ± 0.15 0.69 ± 0.05 0.88 ± 0.09 0.01 ± 0.01 0.31 ± 0.32 0.91 ± 0.03 0.71 ± 0.30 0.07 ± 0.06

FWT ↑ 0.98 ± 0.01 0.39 ± 0.09 0.96 ± 0.01 0.09 ± 0.00 0.42 ± 0.28 0.93 ± 0.04 0.88 ± 0.15 0.98 ± 0.01

(button-press-topdown
→ window-open)

ASR ↑ 0.66 ± 0.06 0.25 ± 0.00 0.61 ± 0.01 0.03 ± 0.00 0.33 ± 0.10 0.62 ± 0.01 0.63 ± 0.02 0.95 ± 0.05
FM ↓ 0.85 ± 0.14 0.67 ± 0.00 0.95 ± 0.05 0.01 ± 0.00 0.94 ± 0.01 0.97 ± 0.03 0.97 ± 0.05 0.08 ± 0.12

FWT ↑ 0.96 ± 0.01 0.25 ± 0.01 0.95 ± 0.03 0.04 ± 0.01 0.42 ± 0.20 0.98 ± 0.02 0.98 ± 0.02 0.98 ± 0.01
(window-open
→ window-close
→ drawer-open
→ drawer-close)

ASR ↑ 0.44 ± 0.05 0.19 ± 0.04 0.48 ± 0.04 0.04 ± 0.01 0.10 ± 0.06 0.43 ± 0.03 0.41 ± 0.06 0.66 ± 0.14
FM ↓ 0.74 ± 0.11 0.50 ± 0.02 0.80 ± 0.04 0.04 ± 0.01 0.39 ± 0.02 0.91 ± 0.05 0.84 ± 0.05 0.48 ± 0.18

FWT ↑ 0.83 ± 0.10 0.20 ± 0.05 0.89 ± 0.06 0.08 ± 0.01 0.13 ± 0.10 0.97 ± 0.02 0.82 ± 0.10 0.89 ± 0.12
(button-press-topdown
→ window-close
→ door-open
→ drawer-close)

ASR ↑ 0.43 ± 0.03 0.17 ± 0.01 0.44 ± 0.03 0.04 ± 0.01 0.14 ± 0.11 0.41 ± 0.02 0.38 ± 0.01 0.74 ± 0.07
FM ↓ 0.81 ± 0.09 0.47 ± 0.01 0.87 ± 0.02 0.04 ± 0.00 0.62 ± 0.16 0.94 ± 0.02 0.97 ± 0.02 0.34 ± 0.15

FWT ↑ 0.88 ± 0.10 0.19 ± 0.02 0.91 ± 0.08 0.07 ± 0.02 0.17 ± 0.15 0.97 ± 0.01 0.92 ± 0.07 0.95 ± 0.06

Experiment setting. We follow the the experimental paradigm of Abbas et al. (2023); Liu et al.222

(2024), evaluating our proposed method on a cycling sequence of tasks characterized by non-223

stationarity due to changing environments over time. Specifically, the agent learns each task sequen-224

tially and transitions to the next without resetting the learned networks. The task cycles through a225

fixed sequence, with a cycle completing once all tasks in the sequence have been learned. The agent226

cycles twice, resulting in each task being repeated twice during the training process. Compared to227

the CRL training paradigm, our cycling training paradigm provides a more specific evaluation of the228

balance between stability and plasticity. By repeating each task twice within a cycling sequence, the229

setup not only assesses the plasticity in adapting to new tasks but also evaluates its stability when230

revisiting previously learned tasks, avoiding the influence of task order. Details about the benchmarks231

are shown in Appendix C.2.232

For all experiments, we use the Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm, as233

implemented by CleanRL (Huang et al., 2022). Each agent is trained until either reaching a predefined234

maximum number of steps or demonstrating stable mastery of the task in the Meta-World benchmark.235

Each experiment is repeated using three different random seeds. The shaded regions in the figures236

and the plus/minus numbers represent the standard error across multiple seeds. Detailed descriptions237

of the hyper-parameters and other experimental settings are provided in Appendix C.3.238

Metric. Overall performance is commonly assessed using the Average Success Rate (ASR),239

analogous to the AIA metric (Wang et al., 2024). Let sri,j represent the success rate on the j-th task240
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after completing the learning of the i-th task (i ≥ j), H denote the number of tasks. The ASR is241

defined as follows. The higher the ASR, the better the method balances stability and plasticity.242

ASR =
1

H

H∑
i=1

1

i

∑
i≥j

sri,j , (9)

To evaluate the stability of the agent, we utilize the Forgetting Measure (FM) (Chaudhry et al.,243

2018a). The lower the FM, the better the method maintains stability, which is calculated as:244

FM =
1

H − 1

H∑
i=2

1

i− 1

∑
i≥j

max
l∈{1,...,i−1}

(srl,j − sri,j). (10)

To assess the plasticity of the agent, we employ the Forward Transfer (FWT) metric (Lopez-Paz &245

Ranzato, 2017), which is calculated as follows:246

FWT =
1

H

H∑
i=1

sri,i. (11)

The higher the FWT, the better the method maintains plasticity. Further details about evaluation247

metrics are available in Appendix C.4.248

Baseline. To assess the effectiveness of our proposed NBSP framework, we compare it with seven249

baseline methods dealing with the balance between stability and plasticity. EWC (Kirkpatrick et al.,250

2017) and NPC (Paik et al., 2019) primarily emphasize maintaining stability, while CRelu (Abbas251

et al., 2023), CBP (Dohare et al., 2024), and PI (Nikishin et al., 2024) focus on enhancing plasticity.252

ANCL (Kim et al., 2023) and CoTASP (Yang et al., 2023) aim to achieve a balance between stability253

and plasticity. Notably, CoTASP makes relevant tasks share more neurons in the meta-policy network,254

and NPC estimates the importance value of each neuron and consolidates important neurons, they are255

both relevant to neurons. Detailed descriptions of these baselines can be found in Appendix C.1.256

4.1 Experiment on the Meta-World Benchmark257

The experimental results of NBSP compared with other baselines on the Meta-World benchmark258

are presented in Table 1. As shown in the final column, NBSP significantly outperforms all other259

methods in the overall performance metric ASR. For two-task cycling tasks, NBSP achieves an ASR260

consistently above 0.9, which is substantially higher than other baselines. Its stability metric, FM, is261

markedly lower, while its plasticity metric, FWT, remains at a high level. Furthermore, NBSP also262

demonstrates excellent performance in four-task cycling tasks, maintaining a substantial lead.263

For stability-focused baselines, EWC achieves a relatively good ASR compared to other baselines264

but still falls short of NBSP. Moreover, EWC exhibits poor stability due to its high FM values. NPC265

performs even worse, failing to maintain both stability and plasticity effectively. Among plasticity-266

focused baselines, CBP and PI achieve comparable plasticity to NBSP, as reflected in their high FWT267

scores. However, both suffer from severe stability loss, indicated by their higher FM values. Another268

plasticity-focused method, CRelu, underperforms in both stability and plasticity. For baselines269

attempting to balance stability and plasticity, ANCL achieves high plasticity with competitive FWT270

scores but fails to retain prior knowledge, as reflected by its high FM value. CoTASP, despite being271

explicitly designed for this trade-off, performs poorly overall. Its low FM is attributed to a failure to272

acquire meaningful task knowledge, as evidenced by its low FWT value.273

The effectiveness of NBSP is further demonstrated in Figure 3, which showcases the training dynamics274

of NBSP. Specifically, during the second cycle of learning the same task, the agent exhibits a high275

success rate even before retraining, indicating that it has retained significant task knowledge. As276

a result, the agent is able to master the task more rapidly. This highlights the ability of NBSP to277

preserve knowledge from prior tasks while simultaneously maintaining the plasticity required to learn278

new tasks effectively. The other training process is demonstrated in Appendix C.7. In summary,279

NBSP delivers a remarkable improvement in maintaining stability without compromising plasticity,280

achieving a well-balanced trade-off in DRL.281

4.2 Ablation Study282

In the ablation study, we further evaluate the effectiveness of (1) the two primary components of283

NBSP: the gradient masking technique and experience replay technique, (2) the neuron identification284
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Table 2: Results of ablation study of gradient masking and experience replay techniques.

Metrics (button-press-topdown→ window-open)
vanilla SAC only experience replay only gradient masking NBSP with hard gradient masking NBSP

ASR ↑ 0.62 ± 0.01 0.70 ± 0.08 0.71 ± 0.06 0.71±0.03 0.95 ± 0.05
FM ↓ 0.99 ± 0.02 0.50 ± 0.16 0.73 ± 0.21 0.72±0.04 0.08 ± 0.12
FWT ↑ 0.98 ± 0.02 0.92 ± 0.05 0.97 ± 0.02 0.98±0.03 0.98 ± 0.01

Table 3: Results of ablation study of neuron identification methods.

Metrics (window-open→ window-close) (drawer-open→ drawer-close) (button-press-topdown→ window-open)

activation weight random ours activation weight random ours activation weight random ours

ASR ↑ 0.65±0.30 0.73±0.20 0.78±0.09 0.90±0.04 0.82±0.06 0.51±0.17 0.72±0.26 0.96±0.02 0.75±0.01 0.93±0.06 0.72±0.01 0.95±0.05
FM ↓ 0.56±0.37 0.44±0.31 0.42±0.13 0.18±0.01 0.44±0.16 0.67±0.00 0.41±0.28 0.07±0.06 0.65±0.02 0.15±0.12 0.70±0.05 0.08±0.12
FWT ↑ 0.73±0.35 0.81±0.22 0.90±0.06 0.96±0.02 0.98±0.02 0.69±0.22 0.83±0.23 0.98±0.01 0.99±0.00 0.98±0.02 0.96±0.02 0.98±0.01

method, and (3) the two critical modules of DRL: the actor and the critic. What’s more, we analyze285

how the proportion of RL skill neurons influences the performance of NBSP.286

Gradient masking and experience replay. To evaluate the contributions of the two core components287

of NBSP, we designed five experimental settings: (1) vanilla SAC, (2) SAC with only the experience288

replay, (3) SAC with only the gradient masking, (4) SAC with experience replay and hard gradient289

masking, where the masks of RL skill neurons are set directly to zero, and (5) NBSP.290

The results of the cycling sequential tasks (button-press-topdown→ window-open) are shown in291

Table 2.From the results, we observe the following: (1) The vanilla SAC algorithm suffers from292

severe stability loss, as indicated by a high FM score, underscoring the need for mechanisms to retain293

prior knowledge. (2) Using either experience replay or gradient masking alone alleviates the stability294

loss to some extent, confirming their individual effectiveness. (3) Combining both techniques in295

NBSP significantly improves performance, with lower FM (indicating enhanced stability) and higher296

FWT (demonstrating maintained plasticity). (4) Our adaptive gradient masking, which sets masks of297

RL skill neurons based on their scores, outperforms hard masking (setting masks to zero directly),298

demonstrating its superior effectiveness. These findings demonstrate that neither experience replay299

nor gradient masking alone can properly balance stability and plasticity, while their combination300

achieves optimal performance. The reason is that gradient masking and experience replay focus on301

different mechanisms and therefore complement each other. Gradient masking primarily targets RL302

skill neurons to reduce interference with past knowledge while maintaining the ability to fine-tune for303

new tasks. And experience replay mainly acts on neurons except RL skill neurons to prevents these304

neurons from being overly biased toward new tasks. Additional results for different task settings are305

provided in Appendix C.8.306

Neuron identification method. To evaluate the proposed goal-oriented neuron identification method,307

we compare it with three alternative strategies: (1) random neuron identification, (2) identifying308

neurons with activation magnitude (Jung et al., 2020), and (3) identifying neurons with weight309

magnitude (Dohare et al., 2021). As shown in Table 3, our goal-oriented method consistently310

outperforms the other three methods across all three metrics: ASR, FM, and FWT, which confirms311

that our method effectively identifies neurons critical for knowledge retention, ensuring better stability312

and plasticity in cycling sequential task learning. These findings validate the necessity of task-313

specific, goal-oriented neuron identification in enhancing balance between stability and plasticity.314

Actor and critic. To get a deeper understanding of the individual roles of the actor and critic in315

DRL agents, we compare the performance of NBSP with that only applied on actor and critic. The316

result is shown in Table 4. The results indicate that both the actor and critic networks are essential317

for striking an optimal balance between stability and plasticity. Notably, the critic proves to be318

the more critical module in balancing this trade-off , which aligns with the insight from Ma et al.319

(2024) that plasticity loss in the critic serves as the principal bottleneck impeding efficient training in320

DRL. We further investigate this phenomenon by dissecting the inherent training mechanisms321

of actor-critic RL methods, and draw the following key observations: (1) Updates to the actor are322

guided by feedback from the critic. Consequently, even if the RL skill neurons in the actor are masked,323

they remain influenced by the critic, which may gradually adapt to the new task at the expense of324

retaining prior knowledge; (2) In contrast, applying NBSP to the critic network indirectly constrains325

the actor as well; and (3) The update process of the critic network is recursive, with its target network326

updated via an exponential moving average, enabling it to preserve knowledge from the previous task327

while integrating new skills. Therefore, NBSP achieves better performance on the critic than on the328
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Table 4: Results of ablation study of the actor and critic modules.

Metric (window-open→ window-close) (drawer-open→ drawer-close) (button-press-topdown→ window-open)
actor critic both actor critic both actor critic both

ASR ↑ 0.76 ± 0.10 0.79 ± 0.05 0.90 ± 0.04 0.79 ± 0.05 0.86 ± 0.02 0.96 ± 0.02 0.81 ± 0.11 0.85 ± 0.16 0.95 ± 0.05
FM ↓ 0.58 ± 0.19 0.48 ± 0.09 0.18 ± 0.01 0.55 ± 0.15 0.31 ± 0.03 0.07 ± 0.06 0.45 ± 0.28 0.35 ± 0.38 0.08 ± 0.12

FWT ↑ 0.97 ± 0.04 0.94 ± 0.05 0.96 ± 0.02 0.99 ± 0.01 0.96 ± 0.02 0.98 ± 0.01 0.95 ± 0.01 0.95 ± 0.03 0.98 ± 0.01

Table 5: Results of NBSP with other baselines on the Atari benchmark.

Cycling sequential games Metrics Methods
EWC NPC ANCL CoTASP CRelu CBP PI NBSP

(Pong→ Bowling)
AR ↑ 0.66 ± 0.07 0.51 ± 0.02 0.42 ± 0.29 -0.05 ± 0.02 0.02 ± 0.00 -0.09 ± 0.00 0.53 ± 0.01 0.87 ± 0.01
FM ↓ 0.58 ± 0.20 0.51 ± 0.04 0.46 ± 0.31 0.07 ± 0.01 0.01 ± 0.00 0.06 ± 0.00 0.78 ± 0.02 0.05 ± 0.03

FWT ↑ 0.70 ± 0.02 0.35 ± 0.02 0.47 ± 0.31 -0.05 ± 0.05 0.02 ± 0.01 -0.09 ± 0.00 0.60 ± 0.00 0.72 ± 0.01

(BankHeist→ Alien)
AR ↑ 0.46 ± 0.01 0.38 ± 0.06 0.46 ± 0.01 -0.08 ± 0.05 0.08 ± 0.05 0.12 ± 0.02 0.48 ± 0.14 0.57 ± 0.02
FM ↓ 0.98 ± 0.02 0.46 ± 0.14 0.98 ± 0.03 0.27 ± 0.04 0.52 ± 0.29 0.44 ± 0.09 0.88 ± 0.27 0.65 ± 0.07

FWT ↑ 0.71 ± 0.02 0.37 ± 0.03 0.72 ± 0.01 -0.16 ± 0.07 0.28 ± 0.11 0.30 ± 0.05 0.73 ± 0.26 0.72 ± 0.05

actor. This demonstrates the distinct roles of the actor and critic in balancing stability and plasticity,329

providing valuable insights for future research in this field.330

Figure 4: Performance of NBSP with dif-
ferent proportions of RL skill neurons.

The proportion of RL skill neurons. To evaluate the331

impact of the proportion of RL skill neurons on the perfor-332

mance of NBSP, we experiment with various proportions333

on the (button-press-topdown→ window-open) cycling334

tasks. The results, shown in Figure 4, reveal an interesting335

trend: as the proportion of RL skill neurons increases,336

the ASR improves initially, but begins to decline after337

reaching a certain threshold. Specifically, when the pro-338

portion is small, not all neurons encoding task-specific339

skills are identified, leading to knowledge loss stored in neurons that are not selected. On the other340

hand, when the proportion becomes too large, neurons that do not encode skills may be incorrectly341

selected as RL skill neurons, which compromises their learning capacity and causes the true RL skill342

neurons to adjust their activations to accommodate new tasks, ultimately reducing stability. Thus,343

determining the optimal proportion of RL skill neurons is crucial for achieving the best performance.344

Our experiments suggest that a proportion of 0.2 is ideal for balancing stability and plasticity.345

4.3 Experiment on the Atari Benchmark346

We further evaluate NBSP on the Atari benchmark to assess its generalization ability. In contrast to347

the continuous action space of Meta-World, Atari games feature discrete action spaces, and episode348

returns are used to evaluate the performance of each game. The results are presented in Table 5. As349

with the Meta-World benchmark, NBSP demonstrates superior performance in balancing stability350

and plasticity, outperforming other baselines across key evaluation metrics, including AR (Average351

Return), FM, and FWT. In a word, NBSP exhibits excellent generalization in balance stability and352

plasticity across different benchmarks.353

5 Conclusion354

This work addresses the fundamental issue of the stability-plasticity dilemma in DRL. To tackle355

this problem, we introduce the concept of RL skill neurons by identifying neurons that significantly356

contribute to knowledge retention, building upon which we then propose the Neuron-level Balance357

between Stability and Plasticity framework, by employing gradient masking and experience replay358

techniques on RL skill neurons. Experimental results on the Meta-World and Atari benchmarks359

demonstrate that NBSP significantly outperforms existing methods in managing the stability-plasticity360

trade-off. Future research could explore the application of RL skill neurons like model distillation361

and extend NBSP to other learning paradigms, such as supervised learning.362
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A Related Wrok491

Balance between stability and plasticity. In DRL, the agent faces a fundamental challenge: the492

stability-plasticity dilemma, first introduced by Carpenter & Grossberg (1988). Recent research has493

proposed various strategies to address this issue by balancing stability and plasticity.494

Replay-based methods are widely employed to enhance stability by reusing experiences from past495

distributions. For example, Chaudhry et al. (2018b) introduced A-GEM, which combines episodic496

memory to ensure that the average loss of prior tasks does not increase when learning a new task.497

Similarly, Wolczyk et al. (2022) proposed ClonEx-SAC, which uses actor behavioral cloning and best-498

return exploration to boost performance in CRL. To reduce storage requirements, pseudo-rehearsals499

generated from a generative model have also been proposed (Atkinson et al., 2021a).500

Maintaining the expressiveness of neurons is key to preserving plasticity. Nikishin et al. (2022b)501

proposed a mechanism that periodically resets a portion of the agent’s network to counteract plasticity502

loss. Likewise, Nikishin et al. (2024) introduced plasticity injection, a lightweight intervention that503

enhances network plasticity without increasing trainable parameters or introducing prediction bias.504

The Reset & Distillation (R&D) framework combines resetting the online actor-critic network for new505

tasks with offline distillation of knowledge from previous action probabilities, effectively retaining506

plasticity (Ahn et al., 2024). Additionally, Abbas et al. (2023) proposed the Concatenated ReLUs507

(CReLUs) activation function to prevent activation collapse, thereby alleviating plasticity degradation.508

Modularity-based approaches have shown promise in balancing stability and plasticity by decoupling509

task-specific and general knowledge. For instance, Anand & Precup (2024) decomposed the value510

function into a permanent value function, which captures persistent knowledge, and a transient511

value function, which facilitates rapid adaptation. Yang et al. (2020) designed a routing network to512

estimate task-specific routing strategies, reconfigure the base network, and combine routes using513

a soft modularity mechanism, making it effective for sequential tasks. Similarly, Mendez et al.514

(2022) proposed a compositional lifelong RL framework that uses accumulated neural components515

to accelerate learning for new tasks while preserving performance on past tasks via offline RL and516

replayed experiences.517

Neuron-level Research Recent research highlights that not all neurons remain active across varying518

contexts, and this neuron sparsity is often positively correlated with task-specific performance (Xu519

et al., 2024). Building on this insight, numerous studies have focused on identifying and leveraging520

skill neurons to interpret network behavior and tackle specific challenges, achieving significant521

advancements. For example, skill neurons in pre-trained Transformers, which demonstrate strong522

predictive value for task labels, have been utilized for network pruning to enhance efficiency and523

improve transferability (Wang et al., 2022). Sokar et al. (2023) investigate dormant neurons in deep524

reinforcement learning and propose a method to recycle them during training. Similarly, Dravid525

et al. (2023) introduce Rosetta Neurons, enabling cross-class alignments and transformations without526

specialized training. In large language models, language-specific neurons have been identified to527

control output languages by selective activation or deactivation (Tang et al., 2024), while safety528

neurons have been analyzed to enhance safety alignment through mechanistic interpretability (Chen529

et al., 2024).530

Despite these achievements, the exploration of skill neurons in DRL remains limited. Existing neuron-531

level approaches primarily focus on task-specific sub-network selection. For instance, CoTASP learns532

hierarchical dictionaries and meta-policies to generate sparse prompts and extract sub-networks533

as task-specific policies (Yang et al., 2023). Similarly, Mallya & Lazebnik (2018) sequentially534

allocate multiple tasks within a single network through iterative pruning and re-training, balancing535

performance and storage efficiency. Unlike these methods, our work identifies RL skill neurons536

specifically tailored to deep reinforcement learning, ensuring a balance between stability and plasticity537

by preserving the task-relevant knowledge encoded in these neurons while allowing for fine-tuning.538

B Preliminary539

B.1 Markov Decision Process (MDP)540

A Markov Decision Process(MDP) is a framework used to describe a problem involving learning541

from actions to achieve a goal. Almost all reinforcement learning problems can be characterized542
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as a Markov Decision Process. Each MDP is defined by a tuple < S,A, P,R, γ >, where S and A543

represent state and action spaces respectively. The transition dynamics of the MDP are defined by the544

function P : S×A×S → [0, 1], which represents the probability of transitioning from a give state s545

with action a to state s′. The reward function is represented by R : S ×A× S → R, and γ ∈ (0, 1)546

is the discount factor. At each time step t, an agent observes the state of the environment, denoted as547

st, and selects an action at according to a policy π(a|s). One time step later, the agent receives a548

numerical reward rt+1 and transitions to a new state st+1. In the simplest case, the return is the sum549

of the rewards when the agent–environment interaction naturally breaks into subsequences, which we550

refer to episodes (Sutton, 2018).551

B.2 Soft Actor-Critic (SAC)552

Soft Actor-Critic (SAC) is an off-policy actor-critic deep reinforcement learning algorithm that
leverages maximum entropy to promote exploration. This work employs SAC to train a policy that
effectively balances stability and plasticity , chosen for its sample efficiency, excellent performance,
and robust stability. In this framework, the actor aims to maximize both the expected reward and the
entropy of the policy. The parameters ϕ of the actor are optimized by minimizing the following loss
function:

Jπ(ϕ) = Est∼D,at∼πϕ
[αlogπϕ(at|st)−Qθ(st, at)],

where D is the replay buffer, α is the temperature parameter controlling the trade-off between
exploration and exploitation, θ denotes the parameters of the critic network, πϕ represents the policy
learned by the actor ϕ , and Qθ denotes the Q-value estimated by the critic θ. The critic network is
trained to minimize the squared residual error:

JQ(θ) = E(st,at,st+1)∼D[
1

2
(Qθ(st, at)− rt − γV̂ (st+1)],

V̂ (st) = Eat∼πϕ
[Qθ(st, at)− αlogπϕ(at|st)],

where γ represents the discount factor.553

B.3 Neuron554

In neural networks, various components, such as blocks and layers, play distinct roles. Here, we555

define a neuron as a single output dimension from a layer. For example, in a fully connected layer,556

each output dimension corresponds to a neuron. Similarly, in a convolutional layer, each output557

channel represents a neuron. Furthermore, following the terminology used by Sajjad et al. (2022),558

we classify neurons that encapsulate a single concept as focused neurons, while a group of neurons559

collectively representing a concept are termed group neurons.560

C Experiment561

C.1 Baseline562

EWC: Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) addresses the challenge of563

catastrophic forgetting by allowing neural networks to retain proficiency in previously learned tasks564

even after a long hiatus. It achieves this by selectively slowing down learning for weights that are565

crucial for retaining knowledge of these tasks. This approach has demonstrated excellent performance566

in sequentially solving a series of classification tasks, such as those in the MNIST handwritten digit567

dataset, and in learning several Atari 2600 games sequentially.568

NPC: Neuron-level Plasticity Control (NPC) (Paik et al., 2019) preserves the existing knowledge569

from the previous tasks by controlling the plasticity of the network at the neuron level. NPC estimates570

the importance value of each neuron and consolidates important neurons by applying lower learning571

rates, rather than restricting individual connection weights to stay close to the values optimized for the572

previous tasks. The experimental results on the several classification datasets show that neuron-level573

consolidation is substantially effective.574

ANCL: Auxiliary Network Continual Learning (ANCL) is an innovative approach that incorporates an575

auxiliary network to enhance plasticity within a model that primarily emphasizes stability. Specifically,576
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this framework introduces a regularizer that effectively balances plasticity and stability, achieving577

superior performance over strong baselines in both task-incremental and class-incremental learning578

scenarios.579

CoTASP: Continual Task Allocation via Sparse Prompting (CoTASP) (Yang et al., 2023) learns580

over-complete dictionaries to produce sparse masks as prompts extracting a sub-network for each task581

from a meta-policy network. Hence, relevant tasks share more neurons in the meta-policy network582

due to similar prompts while cross-task interference causing forgetting is effectively restrained. It583

outperforms existing continual and multi-task RL methods on all seen tasks, forgetting reduction, and584

generalization to unseen tasks.585

CRelu: Concatenated ReLUs (CReLUs) (Abbas et al., 2023) is a simple activation function that586

concatenates the input with its negation and applies ReLU to the result. It performs effectively in587

facilitating continual learning in a changing environment.588

CBP: Continual BackPropagation (CBP) (Dohare et al., 2024) reinitializes a small number of units589

during training, typically fewer than one per step. To prevent disruption of what the network590

has already learned, only the least-used units are considered for reinitialization. It shows great591

performance on Continual ImageNet and class-incremental CIFAR-100.592

PI: Plasticity Injection (PI) (Nikishin et al., 2024) freeze the parameters θ and introduce a new set593

of parameters θ′ sampled from random initialization at some point in training, where the network594

might have started losing plasticity. The results on Atari show that plasticity injection attains stronger595

performance compared to alternative methods while being computationally efficient.596

C.2 Benchmark597

Meta-World. Meta-World is an open-source benchmark for meta-reinforcement learning and598

multitask learning, comprising 50 distinct robotic manipulation tasks (Yu et al., 2020).599

All tasks are executed by a simulated Sawyer robot, with the action space defined as a 2-tuple: the600

change in the 3D position of the end-effector, followed by a normalized torque applied to the gripper601

fingers.602

The observation space has a consistent dimensionality of 39, although different dimensions correspond603

to various aspects of each task. Typically, the observation space is represented as a 6-tuple, including604

the 3D Cartesian position of the end-effector, a normalized measure of the gripper’s openness, the 3D605

position and the quaternion of the first object, the 3D position and quaternion of the second object, all606

previous measurements within the environment, and the 3D position of the goal.607

The reward function for all tasks is structured and multi-component, aiding in effective policy learning608

for each task component. With this design, the reward functions maintain a similar magnitudes across609

tasks, generally ranging between 0 and 10. The descriptions of the six tasks used in our experiments610

are listed below, and the appearance of these tasks is shown in Figure 5.611

• drawer-open: Open a drawer, with randomized drawer positions.612

• drawer-close: Push and close a drawer, with randomized drawer positions.613

• window-open: Push and open a window, with randomized window positions.614

• window-close: Push and close a window, with randomized window positions.615

• door-open: Open a door with a revolving joint. Randomize door positions.616

• button-press-topdown: Press a button from the top. Randomize button positions.617

Figure 5: Tasks in the Meta-World benchmark used in our experiments.
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Atari. Atari environments are simulated using the Arcade Learning Environment (ALE) (Bellemare618

et al., 2013) via the Stella emulator.619

Each environment utilizes a subset of the full action space, which includes actions like NOOP,620

FIRE, UP, RIGHT, LEFT, DOWN, UPRIGHT, UPLEFT, DOWNRIGHT, DOWNLEFT, UPFIRE,621

RIGHTFIRE, LEFTFIRE, DOWNFIRE, UPRIGHTFIRE, UPLEFTFIRE, DOWNRIGHTFIRE, and622

DOWNLEFTFIRE. By default, most environments employ only a smaller subset of these actions,623

excluding those that have no effect on gameplay.624

Observations in Atari environments are RGB images displayed to human players, with obs_type =625

”rgb”, corresponding to an observation space defined as Box(0, 255, (210, 160, 3), np.uint8).626

The specific reward dynamics vary depending on the environment and are typically detailed in the627

game’s manual.628

The descriptions of the four games used in our experiments are listed below (Foundation, 2024), and629

the appearance of these games is shown in Figure 6.630

• Bowling: The goal is to score as many points as possible in a 10-frame game. Each frame allows631

up to two tries. Knocking down all pins on the first try is called a "strike", while doing so on the632

second try is a "spare". Failing to knock down all pins in two attempts results in an "open" frame.633

• Pong: You control the right paddle and compete against the computer-controlled left paddle. The634

objective is to deflect the ball away from your goal and into the opponent’s goal.635

• BankHeist: You play as a bank robber trying to rob as many banks as possible while avoiding the636

police in maze-like cities. You can destroy police cars using dynamite and refill your gas tank by637

entering new cities. Lives are lost if you run out of gas, are caught by the police, or run over your638

own dynamite.639

• Alien: You are trapped in a maze-like spaceship with three aliens. Your goal is to destroy their640

eggs scattered throughout the ship while avoiding the aliens. You have a flamethrower to fend641

them off and can occasionally collect a power-up (pulsar) that temporarily enables you to kill642

aliens.643

Figure 6: Games in the Atari benchmark used in our experiments.

C.3 Experiment setting644

For all experiments, we utilize the open-source PyTorch implementation of Soft Actor-Critic (SAC)645

provided by CleanRL (Huang et al., 2022) on a single RTX2080Ti GPU. CleanRL is a Deep646

Reinforcement Learning library that offers high-quality, single-file implementations with research-647

friendly features. The code is both clean and straightforward, and we adhere to the configurations648

provided by CleanRL. During training, we employ an ϵ-greedy exploration policy at the start,649

setting ϵ = 1 for the first 104 time steps to promote exploration. The environment is wrapped650

using Gym wrappers to facilitate experimentation. For the Meta-World benchmark, we utilize the651

RecordEpisodeStatistics wrapper to gather episode statistics. For the Atari benchmark, in addition652

to RecordEpisodeStatistics, we preprocess the 210 × 160 pixel images by downsampling them to653

84× 84 using bilinear interpolation, converting the RGB images to the YUV format, and using only654

the grayscale channel. Additionally, we set a maximum limit on the number of noop and skip steps to655

standardize the exploration.656

Regarding network architecture, we use the same actor and critic networks for all tasks within the657

same benchmark to ensure consistency. For the Meta-World benchmark, we employ a neural network658
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comprising four fully connected layers, of which the hidden size is [768, 768, 768]. For the Atari659

benchmark, we use a convolutional neural network (CNN) with three convolutional layers featuring660

32, 64, and 64 channels, respectively, followed by three fully connected layers, of which the hidden661

size is [768, 768].662

To reduce randomness and enhance the reliability of our results, we train each agent using three663

random seeds. Additional hyper-parameters for the SAC algorithm applied in the Meta-World and664

Atari benchmarks are detailed in Table 6.665

Table 6: Hyper-parameters of SAC in our experiments.

Parameters Values for Meta-World Values for Atari
Initial collect steps 10000 20000

Discount factor 0.99 0.99
Training environment steps 106 1.5× 106, 3× 106

Testing environment steps 105 105

Replay buffer size 106 2× 105

Updates per environment step (Replay Ratio) 2 4
Target network update period 1 8000
Target smoothing coefficient 0.005 1

Optimizer Adam Adam
Policy learning rate 3× 10−4 10−4

Q-value learning rate 10−3 10−4

Minibatch size 256 64
Alpha 0.2 0.2

Autotune True True
Average environment steps of success rate 10 -

Stable threshold to finish training 0.9 -
Replay interval 10 10

No-op max - 30
Target entropy scale - 0.89

Storing experience size 105 105

C.4 Metrics666

For the Meta-World benchmark, the average success rate is computed over 20 episodes. For the Atari667

benchmark, the success rate is replaced by the return of each episode. We normalize the return for668

each game to obtain summary statistics across games, as follows:669

R =
ragent − rrandom
rhuman − rrandom

, (12)

where ragent represents the average return evaluated over 105 steps, the random score rrandom and670

human score rhuman are consistent with those used by Mnih et al. (2015), as detailed in Table 7.671

Table 7: Normalization scores of Atari games.

games rrandom rhuman

Bowling 23.1 154.8
Pong -20.7 9.3

BankHeist 14.2 734.4
Alien 227.5 6875

For the Atari benchmark tasks, the overall performance is evaluated by Average Return (AR), which672

is analogous to ASR in the Meta-World benchmark. It is calculated as follows:673

AR =
1

k

k∑
i=1

1

i

∑
i≥j

Ri,j , (13)
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where Ri,j represents the average return evaluated on the j-th task after completing the learning of674

the i-th task (i ≥ j), and k represents the number of tasks. A higher AR indicates better performance675

in balancing stability and plasticity.676

C.5 RL Skill Neurons677

Figure 7: Distribution histogram of the activations of a neuron in two learning settings.

To validate the existence of RL skill neurons in sequential task learning instead of single task678

learning, we conduct an additional analysis comparing the activation distributions of neurons when679

learning button-press-topdown in isolation versus learning button-press-topdown and window-open680

simultaneously. As shown in Figure 7, the activation distribution of a representative neuron remains681

highly correlated with task success, regardless of whether it is learned in isolation or alongside682

another skill. This observation supports our hypothesis that skill-specific neurons retain their essential683

role even in a sequential task learning scenario.684

Additionally, we dig deeper into the identified RL skill neurons and separate them into general and685

specific skills. How to deeply investigate general skills is key for our future research. To explore686

this, we design an experiment to verify the existence of general and specific skills. After sequentially687

training on the button-press-topdown and window-open tasks, we identify the RL skill neurons688

associated with each task. We hypothesize that the intersection set represents general skill neurons,689

while the difference set represents specific skill neurons. To validate this hypothesis, we zero out the690

outputs of these neurons separately. The results in Table 8 show that when the outputs of the general691

skill neurons are zeroed out, the agent fails to complete both tasks. In contrast, when the outputs of692

task-specific neurons are zeroed out, the agent can’t complete the corresponding task but is still able693

to complete the other task. This confirms the existence of both general and specific skills.694

Table 8: Results of zeroing out the output of general of specific skill neurons.

tasks zero out the in-
tersection set

zero out the difference set
of button-press-topdown
relative to window-open

zero out the difference set
of window-open relative to
button-press-topdown

button-press-topdown 0 0.33 1.00
window-open 0 1.0 0.42

C.6 Results of Vanilla SAC695

To validate the effectiveness of NBSP, it is essential to first confirm whether the vanilla SAC algorithm696

can successfully solve each task individually. So we conducted experiments by training a vanilla697

SAC agent on all tasks in our experiment. The results, presented in Figure 8, demonstrate that the698

vanilla SAC algorithm successfully learns all tasks in our experiment. This confirms that the balance699

between stability and plasticity is not an artifact of modifications to the SAC algorithm itself but700
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rather a result of NBSP. Furthermore, the failure of other methods is not due to limitations of the SAC701

algorithm.702

Figure 8: Training process of vanilla SAC on each individual task in our experiment.

C.7 Results on the Meta-world Benchmark703

The training process of the other four-tasks cycling task is shown in Figure 9, and those of the704

two-task cycling tasks are shown in Figure 10, Figure 11 and Figure 12 respectively. The same as705

found in Section 4.1, during the second cycle of learning the same task, the agent is able to master706

the task more rapidly.707

C.8 Ablation Study708

The results of the ablation study on two critical components, gradient masking and experience replay709

techniques, are shown in Table 9 for the (window-open→ window-close) cycling task and in Table 10710

for the (drawer-open→ drawer-close) cycling task. From these results, it is evident that both gradient711

masking and experience replay techniques independently contribute to improving the stability of712

the agent while maintain great plasticity. Furthermore, combining both techniques yields superior713

performance, demonstrating the enhanced effectiveness of their integration.714
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Figure 9: Training process of NBSP on (button-press-topdown→ window-close→ door-open→
drawer-close) cycling task.

Figure 10: Training process of NBSP on (window-open→ window-close) cycling task.

Figure 11: Training process of NBSP on (drawer-open→ drawer-close) cycling task.

Figure 12: Training process of NBSP on (button-press-topdown→ window-open) cycling task.
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Table 9: Results of ablation study of gradient masking and experience replay techniques on (window-
open→ window-close) cycling task.

Metrics (button-press-topdown→ window-open)
vanilla SAC only experience replay only gradient masking NBSP with hard gradient masking NBSP

ASR ↑ 0.63 ± 0.02 0.81 ± 0.08 0.78 ± 0.11 0.71±0.04 0.90 ± 0.04
FM ↓ 0.91 ± 0.10 0.41 ± 0.13 0.54 ± 0.26 0.54±0.13 0.18 ± 0.01
FWT ↑ 0.97 ± 0.02 0.96 ± 0.01 0.98 ± 0.01 0.91±0.05 0.96 ± 0.02

Table 10: Results of ablation study of gradient masking and experience replay techniques on (drawer-
open→ drawer-close) cycling task.

Metrics (button-press-topdown→ window-open)
vanilla SAC only experience replay only gradient masking NBSP with hard gradient masking NBSP

ASR ↑ 0.67 ± 0.05 0.78 ± 0.04 0.74 ± 0.01 0.59±0.16 0.96 ± 0.02
FM ↓ 0.78 ± 0.10 0.48 ± 0.10 0.64 ± 0.01 0.52±0.35 0.07 ± 0.06
FWT ↑ 0.94 ± 0.04 0.97 ± 0.01 0.98 ± 0.02 0.82±0.21 0.98 ± 0.01

D Algorithm715

The pseudo-code of the goal-oriented method to find RL skill neurons is presented in Algorithm716

1. And the pseudo-code for SAC with NBSP is presented in Algorithm 2. Key differences from717

standard SAC are highlighted in blue. In addition to the extra input, two main modifications include718

the sampling process and the network update process.719

E Limitation and Future Work720

Limitation. While the proposed NBSP method effectively balances stability and plasticity in DRL,721

it does have a notable limitation. Specifically, the number of RL skill neurons must be manually722

determined and adjusted according to the complexity of the learning task, as there is no automatic723

mechanism for this selection. And our method currently faces challenges when applied to longer724

task sequences (e.g., 10+ tasks). One key limitation is the constraint imposed by the model scale,725

which inherently limits the number of skills it can learn. As the number of tasks increases, the overlap726

between skill neurons across different tasks may become significant. Consequently, applying a mask727

to protect RL skill neurons can restrict the learning of new tasks, making it difficult to scale without728

introducing interference with previously learned knowledge.729

Future work. The neuron analysis introduced in this work offers a novel approach for identifying730

RL skill neurons, significantly enhancing the balance between stability and plasticity in DRL. The731

identification of RL skill neurons opens up several promising directions for future research and732

applications, such as: (1) Model Distillation: by focusing on RL skill neurons, it becomes possible to733

distill models by pruning less relevant neurons, leading to more efficient and compact models with734

minimal performance degradation. (2) Bias Control and Model Manipulation: RL skill neurons could735

be leveraged to control biases and modify model behaviors by selectively adjusting their activations.736

This approach could be particularly valuable in scenarios requiring specific outputs or behaviors.737

While our current method may not yet fully address longer task sequences, it lays a strong foundation738

for future research. Moving forward, we aim to explore strategies to better leverage RL skill neurons739

for continual learning over an extended sequence of tasks. What’s more, its applicable potential740

extends beyond DRL. It could also be adapted to other learning paradigms, such as supervised and741

unsupervised learning, to address similar stability-plasticity challenges. In future work, we plan to742

explore these extensions and verify their effectiveness across various domains.743
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Algorithm 1 Procedure for Identifying RL Skill Neurons
Input: Initial average step Tavg, initial evaluation step T , initial proportion of RL skill neuron m,
initial average activation a(N ) = 0, initial average GM q = 0, initial over-activation rate Rover = 0.

1: for each step t do
2: Compute activation a(N , t)← ϕ(·)
3: Compute GM q(t)
4: Compute average activation:

a(N ) = a(N ) +
1

Tavg
a(N , t).

5: Compute average GM:

q = q +
1

Tavg
q(t).

6: end for
7: for each step t do
8: Compute activation a(N , t)← ϕ(·)
9: Compute GM q(t)

10: Capture association:

Rover = Rover +
1

T
1[1[a(N ,t)>a(N)]=1[q(t)>q]]

11: end for
12: Derive scores Score for each neuron:

Score(N ) = max(Rover(N ), 1−Rover(N ))

13: Identify the top-performing neurons as RL skill neurons:

NRL skill = τm(Score(N ))
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Algorithm 2 Neuron-level Balance between Stability and Plasticity (NBSP) Applied in SAC
Initialize policy parameters θ, Q-function parameters ϕ1, ϕ2, and target Q-function parameters ϕ′

1, ϕ′
2

Initialize empty replay buffer D
Initialize replay interval k
Input: Replay buffer Dpre, mask of the policy maskθ and mask of the Q-function parameters
maskϕ1 ,maskϕ2

1: for each task do
2: for each iteration do
3: for each environment step do
4: Sample action at ∼ πθ(at|st)
5: Execute action at and observe reward rt and next state st+1

6: Store (st, at, rt, st+1) in replay buffer D
7: end for
8: for each gradient step do
9: if step≡ 0 (mod k) then Sample batch of transitions (si,ai, ri, si+1) fromDpre

10: else Sample batch of transitions (si, ai, ri, si+1) from D
11: end if
12: Compute target value:

yi = ri + γ

(
min
j=1,2

Qϕ′
j
(si+1, ãi+1)− α log πθ(ãi+1|si+1)

)
, where ãi+1 ∼ πθ(·|si+1)

13: Update Q-functions by one step of gradient descent with mask:

ϕj ← ϕj − λQmaskϕj
∇ϕj

1

N

∑
i

(
Qϕj (si, ai)− yi

)2
for j = 1, 2

14: Update policy by one step of gradient ascent with mask:

θ ← θ + λπmaskθ∇θ
1

N

∑
i

(
α log πθ(ai|si)− min

j=1,2
Qϕj

(si, ai)

)
15: Update temperature α by one step of gradient descent:

α← α− λα∇α
1

N

∑
i

(
−α log πθ(ai|si)− αH̄

)
16: Update target Q-function parameters:

ϕ′
j ← τϕj + (1− τ)ϕ′

j for j = 1, 2

17: end for
18: end for
19: Select RL skill neurons {NRLskill} according to Algorithm 1
20: Update maskϕ1 ,maskϕ2 and maskθ:

mask(N ) =

{
α(1− Score(N )) if N ∈ NRLskill

1 if N /∈ NRLskill

21: Store part of D into Dpre

22: end for
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NeurIPS Paper Checklist744

1. Claims745

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s746

contributions and scope?747

Answer: [Yes]748

Justification: Our main claims are summarized in Figure 2, Section 3 and Section 4 offer detailed749

explainations.750

Guidelines:751

• The answer NA means that the abstract and introduction do not include the claims made in752

the paper.753

• The abstract and/or introduction should clearly state the claims made, including the contribu-754

tions made in the paper and important assumptions and limitations. A No or NA answer to755

this question will not be perceived well by the reviewers.756

• The claims made should match theoretical and experimental results, and reflect how much757

the results can be expected to generalize to other settings.758

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are759

not attained by the paper.760

2. Limitations761

Question: Does the paper discuss the limitations of the work performed by the authors?762

Answer: [Yes]763

Justification: We discuss the limitations of the work in Appendix E, and the problem setup of our764

work is described in Subsection 3.1.765

Guidelines:766

• The answer NA means that the paper has no limitation while the answer No means that the767

paper has limitations, but those are not discussed in the paper.768

• The authors are encouraged to create a separate "Limitations" section in their paper.769

• The paper should point out any strong assumptions and how robust the results are to vi-770

olations of these assumptions (e.g., independence assumptions, noiseless settings, model771

well-specification, asymptotic approximations only holding locally). The authors should772

reflect on how these assumptions might be violated in practice and what the implications773

would be.774

• The authors should reflect on the scope of the claims made, e.g., if the approach was only775

tested on a few datasets or with a few runs. In general, empirical results often depend on776

implicit assumptions, which should be articulated.777

• The authors should reflect on the factors that influence the performance of the approach. For778

example, a facial recognition algorithm may perform poorly when image resolution is low or779

images are taken in low lighting. Or a speech-to-text system might not be used reliably to780

provide closed captions for online lectures because it fails to handle technical jargon.781

• The authors should discuss the computational efficiency of the proposed algorithms and how782

they scale with dataset size.783

• If applicable, the authors should discuss possible limitations of their approach to address784

problems of privacy and fairness.785

• While the authors might fear that complete honesty about limitations might be used by786

reviewers as grounds for rejection, a worse outcome might be that reviewers discover787

limitations that aren’t acknowledged in the paper. The authors should use their best judgment788

and recognize that individual actions in favor of transparency play an important role in789

developing norms that preserve the integrity of the community. Reviewers will be specifically790

instructed to not penalize honesty concerning limitations.791

3. Theory assumptions and proofs792

Question: For each theoretical result, does the paper provide the full set of assumptions and a793

complete (and correct) proof?794

Answer: [NA]795
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Justification: Our paper is not a theoretical work.796

Guidelines:797

• The answer NA means that the paper does not include theoretical results.798

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.799

• All assumptions should be clearly stated or referenced in the statement of any theorems.800

• The proofs can either appear in the main paper or the supplemental material, but if they801

appear in the supplemental material, the authors are encouraged to provide a short proof802

sketch to provide intuition.803

• Inversely, any informal proof provided in the core of the paper should be complemented by804

formal proofs provided in appendix or supplemental material.805

• Theorems and Lemmas that the proof relies upon should be properly referenced.806

4. Experimental result reproducibility807

Question: Does the paper fully disclose all the information needed to reproduce the main808

experimental results of the paper to the extent that it affects the main claims and/or conclusions of809

the paper (regardless of whether the code and data are provided or not)?810

Answer: [Yes]811

Justification: We carefully introduce our proposed framework in Section 3 and explained our812

settings and hyper-parameters in Section 4 and Appendix C.3.813

Guidelines:814

• The answer NA means that the paper does not include experiments.815

• If the paper includes experiments, a No answer to this question will not be perceived well by816

the reviewers: Making the paper reproducible is important, regardless of whether the code817

and data are provided or not.818

• If the contribution is a dataset and/or model, the authors should describe the steps taken to819

make their results reproducible or verifiable.820

• Depending on the contribution, reproducibility can be accomplished in various ways. For821

example, if the contribution is a novel architecture, describing the architecture fully might822

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary823

to either make it possible for others to replicate the model with the same dataset, or provide824

access to the model. In general. releasing code and data is often one good way to accomplish825

this, but reproducibility can also be provided via detailed instructions for how to replicate826

the results, access to a hosted model (e.g., in the case of a large language model), releasing827

of a model checkpoint, or other means that are appropriate to the research performed.828

• While NeurIPS does not require releasing code, the conference does require all submissions829

to provide some reasonable avenue for reproducibility, which may depend on the nature of830

the contribution. For example831

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to832

reproduce that algorithm.833

(b) If the contribution is primarily a new model architecture, the paper should describe the834

architecture clearly and fully.835

(c) If the contribution is a new model (e.g., a large language model), then there should either836

be a way to access this model for reproducing the results or a way to reproduce the model837

(e.g., with an open-source dataset or instructions for how to construct the dataset).838

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are839

welcome to describe the particular way they provide for reproducibility. In the case of840

closed-source models, it may be that access to the model is limited in some way (e.g.,841

to registered users), but it should be possible for other researchers to have some path to842

reproducing or verifying the results.843

5. Open access to data and code844

Question: Does the paper provide open access to the data and code, with sufficient instructions to845

faithfully reproduce the main experimental results, as described in supplemental material?846

Answer: [Yes]847

Justification: We provide our code in the supplemental material.848
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• The answer NA means that paper does not include experiments requiring code.850

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/851

guides/CodeSubmissionPolicy) for more details.852

• While we encourage the release of code and data, we understand that this might not be853

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including854

code, unless this is central to the contribution (e.g., for a new open-source benchmark).855

• The instructions should contain the exact command and environment needed to run to856

reproduce the results. See the NeurIPS code and data submission guidelines (https:857
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(if applicable).865
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• For asymmetric distributions, the authors should be careful not to show in tables or figures902

symmetric error bars that would yield results that are out of range (e.g. negative error rates).903

• If error bars are reported in tables or plots, The authors should explain in the text how they904
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8. Experiments compute resources906
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Answer: [Yes]910
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• The authors should make sure to preserve anonymity (e.g., if there is a special consideration930
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12. Licenses for existing assets979

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the980

paper, properly credited and are the license and terms of use explicitly mentioned and properly981

respected?982

Answer: [Yes]983

Justification: We describe the benchmarks in our experiments in Section 4 and provide the code984

base in Appendix C.3.985
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13. New assets1000

Question: Are new assets introduced in the paper well documented and is the documentation1001

provided alongside the assets?1002

Answer: [NA]1003

Justification: We do not release new assets currently.1004
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Guidelines:1005

• The answer NA means that the paper does not release new assets.1006

• Researchers should communicate the details of the dataset/code/model as part of their1007
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used.1011

• At submission time, remember to anonymize your assets (if applicable). You can either1012
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details about compensation (if any)?1017

Answer: [NA]1018

Justification: This work does not involve crowdsourcing nor research with human subjects.1019
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• The answer NA means that the paper does not involve crowdsourcing nor research with1021

human subjects.1022
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of the paper involves human subjects, then as much detail as possible should be included in1024
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15. Institutional review board (IRB) approvals or equivalent for research with human subjects1028
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(or an equivalent approval/review based on the requirements of your country or institution) were1031
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for1057

what should or should not be described.1058
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