
Advice Querying under Budget Constraint for Online
Algorithms

Ziyad Benomar
CREST, ENSAE, Ecole polytechique

ziyad.benomar@ensae.fr

Vianney Perchet
CREST, ENSAE and Criteo AI LAB
vianney.perchet@normalesup.org

Abstract

Several problems have been extensively studied in the learning-augmented setting,
where the algorithm has access to some, possibly incorrect, predictions. However,
it is assumed in most works that the predictions are provided to the algorithm as
input, with no constraint on their size. In this paper, we consider algorithms with
access to a limited number of predictions, that they can request at any time during
their execution. We study three classical problems in competitive analysis, the ski
rental problem, the secretary problem, and the non-clairvoyant job scheduling. We
address the question of when to query predictions and how to use them.

1 Introduction

With the rise of data science and the huge emphasis on research in machine learning and artificial
intelligence, powerful predictive tools have emerged. This gave birth to learning-augmented algo-
rithms, which use these predictions to go beyond the standard long-standing worst-case limitations.
The design of such algorithms requires establishing good tradeoffs between consistency and robust-
ness, i.e. having improved performance when the predictions are accurate, and not behaving poorly
compared to the case without predictions if they are erroneous. This was formalized by Lykouris and
Vassilvitskii [41] for the caching problem, and Purohit et al. [47] for the ski-rental and scheduling
problems. Since then, the learning-augmented setting had many applications in implementing data
structures [36, 23, 39] and in the design of algorithms [15, 7, 6, 11, 30, 5, 1, 4, 10, 40].

Several questions and research directions have been explored, such as exhibiting optimal robustness-
consistency tradeoffs [48], incorporating predictions from multiple experts [3, 19], or customizing
learning approaches to make predictions for such algorithms [49, 21, 18, 34, 2]. In most papers,
those predictions are assumed to be given as inputs, which is unfortunately not realistic, practical or
applicable to real-life scenarios. Indeed, many problems such as scheduling, paging, or set cover,
require some arbitrarily large number of predictions (roughly speaking one per request or job). We
claim that, on the contrary, algorithms might have only access to a finite budget of predictions as each
one of them is costly to compute. Therefore, the main question rather becomes deciding how and
when to spend the assigned budget, by requesting new predictions. Such a setting was considered for
example in [31] for the caching problem. Moreover, it also happens that the quality of the predictions
improves with time, as more data are collected, more knowledge of the problem is gathered, or
delaying the computation of prediction allows to allocate more computational power to them, hence
enhancing their precision, for instance with more powerful forecasting models. The question of
planning the prediction requests is thus quite crucial.

The problems we mentioned fall into the category of online algorithms, operating under uncertainty,
and gaining more information about the input of the problem through time, eventually depending on
their past decisions. The performance of such algorithms is measured by their competitive ratio [14],
which is the worst-case ratio between their output and that of the optimal offline algorithm, having
full knowledge of the inputs and parameters of the problem. To illustrate our claims, we shall focus

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

on three well-established and fundamental problems in competitive analysis: ski rental, secretary,
and job scheduling problems.

Ski-rental In the ski-rental problem, the decision maker faces each day the choice of either renting
a ski for a unit cost, or buying it at a cost of b and skiing for free after that. The only decision to be
made by the algorithm is therefore when to buy. The unknown parameter is the length x of the ski
season, and the objective is to minimize the total cost of renting and buying. The optimal offline
algorithm has a cost min{x, b}, the deterministic online break-even algorithm, which consists in
renting for the first b−1 days and then buying, results in a competitive ratio of 2 [32], and the optimal
randomized algorithm introduced by Karlin et al. [33] yields a competitive ratio of e

e−1 .

Secretary problem The second problem we study is the secretary problem. Consider having N
applicants observed sequentially in a uniformly random order. Immediately after a candidate is
observed, the algorithm has to either select them and stop, or refuse them irrevocably. The objective
is to maximize the probability of selecting the best applicant overall. The particularity of this problem
is that a single incorrect decision at any point leads to failure and zero gain. Consequently, the cost of
making a wrong decision is significantly high. The optimal offline algorithm has access to all values
and thus can choose the maximum with probability 1. The optimal online strategy is to reject the first
N/e applicants, then stop at the first applicant who is better than all of them [17, 25]. This is often
referred to as the 1/e rule, and it gives a success probability of 1/e ≈ 0.368.

Job scheduling The third problem we consider is the preemptive non-clairvoyant job scheduling.
The input is a set of jobs with unknown sizes, that the algorithm needs to schedule on a single
machine, with the possibility of halting a job during its execution and resuming it later. The goal
is to minimize the sum of their completion times, i.e. finish as many jobs as possible rapidly. The
only observations made during the run of an algorithm are the completion times of the jobs. These
observations, along with the times at which they are received, depend on both the input instance
and the algorithm’s past decisions. The cost of early incorrect decisions is more significant than
that of later incorrect decisions. Take for example the instance of job sizes {x1 = 1, x2 = 100},
running x1 then x2 gives an output 1 + 101 = 102, while running them in the inverse order gives
100 + 101 = 201. The optimal offline algorithm is to schedule the jobs in increasing order of size,
and a deterministic online algorithm called round-robin, gives a competitive ratio of 2, which is
optimal for an arbitrarily large number of jobs [46].

1.1 Organization and contributions

In Section 2, we consider the ski rental problem, where we assume that an oracle provides binary
predictions on how the snow season length x compares to the purchasing cost b, and that these
predictions are accurate with a probability that is a function of time, known to the algorithm and
denoted as pt. This assumption accurately reflects and models what is practically occurring. As
the snow season begins, there is significant uncertainty about how long it will last. However, over
time, the accuracy of predictions increases as more weather observations are made, the direction of
snowstorms becomes clearer, and additional data is collected. The algorithm is permitted to request
only one prediction during its execution, at a time of its choice. Depending on the function pt and on
how the prediction is used once queried, it can be more advantageous to rent for a period of time t
before requesting it, i.e. paying a cost for making a better decision in the future. We consider that
once the prediction is queried, we use either the deterministic or the randomized algorithm presented
in [47] for the ski rental problem. We show how to optimally choose t, and how the knowledge of pt
allows to tune the parameter λ, regulating the levels of consistency and robustness in both algorithms.

Secondly, we consider in Section 3 the secretary problem with access to an oracle, accurate with a
probability p, telling if there are better applicants in the future. In practice, this would correspond to
the following scenario: consider a decision-maker with an imperfect interviewing process, and thus
can only compare the applicants with each other, i.e. observe their relative ranks, but lacks access
to their true value. On the other hand, an expert who, due to extensive experience, knows how to
better interview the applicants and extract their true value, and also knows the distribution of their
values (as in a prophet setting with i.i.d variables). The decision-maker can ask the expert to interview
some applicants for a cost. After that, the expert does not disclose the precise value of the applicant -
that is irrelevant to the decision maker-, but they provide a recommendation (accept or reject) and

2

accompany it with a confidence level, which is the probability that this recommendation is accurate.
Assuming that the decision-maker has enough budget to ask for the expert’s advice B times, we give
an algorithm whose success probability depends on p and B, converges to 1 as p goes to 1 and B
grows, and that is always lower bounded by 1/e. Our algorithm easily adapts to the case where the
accuracy of the oracle is time-dependent.

Section 4 is dedicated to the preemptive non-clairvoyant job scheduling, where we assume that
the algorithm can request access to the sizes of B chosen jobs. In contrast with the two previous
problems, there is no advantage in waiting before querying the hints, and since the jobs play identical
roles, the algorithm can only request the sizes of B randomly chosen ones. We show first that the
competitive ratio 2 cannot be improved unless B = Ω(N), where N is the number of jobs. Then we
present an algorithm that chooses randomly B jobs and requests their sizes, then runs concurrently
the optimal offline algorithms on those jobs and round-robin on the others, with time-dependent
processing rates. We prove a generic expression for the output of this algorithm that depends on the
chosen processing rate, and then we give a particular processing rate that yields a competitive ratio of
2− (B/N)2, therefore interpolating the competitive ratios 2 and 1 met respectively when no hint is
given, and when all the job sizes are known.

Finally, we run simulations of our algorithms in Section 5. We show that the performance of the
algorithm we introduced for the secretary problem matches our theoretical lower bound, and we
compare it to another heuristic version that we did not study theoretically. Then, by exhaustively
testing the algorithm we designed for the scheduling problem with access B job sizes on various
benchmark instances, we observe that it has a better performance in practice than the theoretical
upper bound 2− (B/N)2.

1.2 Related work

The ski-rental and scheduling problems have received extensive attention in the realm of learning-
augmented algorithms [47, 48, 3, 19, 18, 37, 9]. They serve respectively as notable examples for
problems requiring a single prediction and multiple predictions. Moreover, they both have numerous
applications and variants, as [32, 12, 24, 44] for the ski rental and [42, 16, 38] for the scheduling
problem. The secretary problem was also among the first problems studied with the advice model.
Dütting et al. [22] consider that a binary prediction is received with each applicant, indicating whether
it is the best overall or not. Assuming that these predictions are accurate each with a probability p
independently, they design algorithms that improve upon the 1/e success probability. While this
model closely aligns with ours, we consider a scenario where the algorithm has a limited budget of
predictions and must carefully determine when to query them. Antoniadis et al. [7] studied a variant
of the problem where the objective is to maximize the value of the selected applicant. They consider
that the algorithm is provided with a prediction of the value of the best applicant.

For both the ski-rental and the secretary problems, we consider predictions that are accurate with a
known probability. A similar assumption was made in [28], where the oracle is assumed to deliver a
prediction that is accurate with a probability of at least ϵ, and that can be arbitrarily inaccurate with
the remaining probability. The authors give improved competitive ratios depending on ϵ for some
online problems including caching, online set cover, and facility location.

The aspect of having a limited prediction budget is relatively underexplored in the literature. The
question was initially examined in the context of the online linear optimization problem with hints,
where Bhaskara et al. [13] demonstrated that a sublinear number of hints is sufficient to achieve regret
bounds similar to those in the full hints setting when the timing of requesting hints is well chosen.
Im et al. [31] also investigated this question for the caching problem, presenting an algorithm that
strategically utilizes the assigned prediction budget to improve the competitive ratio as the budget
increases. In a very recent paper, the ski-rental and the Bahncard problems were explored in a setting
with costly predictions [20], where the cost of predictions is added to the total cost paid by the
algorithm. This can be seen as a penalized version of querying predictions under budget constraints.
Other works have also investigated the reduction of the prediction size rather than the number of
predictions. Specifically, they consider binary predictions encoded on a single bit and explore how
the competitive ratio can be enhanced compared to other types of predictions [22, 45, 8].

Another important question we cover thanks to the ski-rental problem is how to optimally balance
robustness vs consistency with respect to predictions [47]. This tradeoff is usually done by adding

3

some extra-parameter λ ∈ [0, 1] that reflects how much the decision-maker is willing to trust blindly
the prediction, and which appears naturally in the bounds of the competitive ratio. Roughly speaking,
for λ = 1, the decision maker focuses solely on the performances of their algorithms when predictions
are incorrect (hence predictions are actually disregarded), while for λ = 0, they naïvely consider
that predictions are correct. Intermediate values of λ correspond to less extreme behaviors, and the
final competitive ratio strongly depends on the value of this parameter and the total “amount” of
errors (measured with respect to some problem-dependent metric) in predictions. Setting a value
for this parameter requires having some knowledge about the quality of the prediction. Khodak
et al. [34] shows how to learn to set λ’s value in an online learning setting, where the algorithm runs
repeatedly on different instances, and learns to predict unknown parameters based on features on the
new instances. After many runs, the value of λ can be increased since the predictions become more
and more accurate. In our case, we have binary predictions that are correct with a known probability,
which is a natural assumption for binary predictions [45, 22], and we show that this allows us to
optimally choose the value of λ.

2 Ski-rental with time-dependent guarantees on the prediction

We consider that the cost of renting a ski for one day is 1, while the cost of buying is b > 1, and we
denote x the duration of the ski season, which is unknown. For all the algorithms we present, if the
ski season is over then the algorithm stops and no further cost is paid. In the learning-augmented
setting, we assume that the algorithm possesses a prediction y for x. Many variants of this scenario
have also been explored in previous research papers [47, 35, 27, 48]. We restrain ourselves to the
case of binary predictions, comparing the number of snow days to the budget. More precisely, we
assume the existence of an oracle, that can be called at any time t, predicting whether x− t > b or
not, where x− t is the number of remaining snow days. Furthermore, we assume that the accuracy of
the oracle improves over time. If queried at time t, then the prediction is correct with a probability
pt, known to the algorithm, that is independent of the problem’s history and increases over time.
We assume that, due to budget limitations, the algorithm can access the oracle only once during its
execution, and thus it must carefully choose the time of asking for the prediction.

Let ALG be an algorithm such that, with a prediction accurate with probability p, it has a competitive
ratio C(ALG, p). We define the algorithm ALGt that rents for the first t days, then queries a prediction
Qt of 1(x− t ≥ b) at the start of day t+ 1, and then acts like ALG. We have the following result.
Lemma 2.1. ALGt has a competitive ratio of at most t

b + C(ALG, pt).

The term t/b represents the additional cost due to renting the first t days, in order to have a better
accuracy pt which decreases the second term. The optimal time for querying a prediction is t⋆

minimizing the function t/b+C(ALG, pt). Although this requires knowing all the sequence (pt)t≥0

in advance, we can design simple online heuristics for being close to a local minimum, where the
accuracy of the oracle at some step t is only revealed when that step is reached. We can for example
access the oracle at the first time t when t/b+ C(ALG, pt) increases.

In the following, we show how Lemma 2.1 can be applied with explicit algorithms ALG that are
given a binary prediction as input. We consider the algorithms 1 and 2, which were first introduced in
[47]. In both algorithms, the parameter λ indicates how much the prediction is trusted. Assuming
that the input prediction is accurate with a probability p = P(Q = 1(x ≥ b)), we show how to tune
λ in both algorithms to minimize their costs, and we upper bound their competitive ratios.

Algorithm 1: Deterministic algorithm with input binary prediction [47]
Input: cost b for buying, a prediction Q for 1(x ≥ b)

1 if Q = 1 then buy on the start of day ⌈λb⌉ ;
2 else buy on the start of day ⌈b/λ⌉ ;

Lemma 2.2. If the oracle Q delivers an accurate prediction with probability p ≥ 0.5, then by

choosing λ =
√

1−p
p , the algorithm achieves a competitive ratio of at most 1 + 2

√
p(1− p).

The optimal choice of λ gives therefore a competitive ratio that is always upper bounded by 2, which
is the optimal competitive ratio without prediction, and decreases to 1 when the accuracy of the oracle

4

0.5 0.6 0.7 0.8 0.9 1.0
Accuracy of the oracle p

1.0

1.2

1.4

1.6

1.8

2.0

Co
m

pe
tit

iv
e

ra
tio

Theoretical upper bound for the competitive ratio

Deterministic
Randomized (b=5)
Randomized (b=10)
Randomized (b=100)

Figure 1: Competitive ratios of Algorithms 1
and 2 with the optimal choice of λ, for p ∈
(0.5, 1) and b = 5, 10, 100

0 10 20 30 40 50
time t of querying the prediction

1.6

1.8

2.0

2.2

2.4

Co
m

pe
tit

iv
e

ra
tio

theoretical upper bound
Deterministic (b=50)
Deterministic (b=100)
Randomized (b=50)
Randomized (b=100)

Figure 2: Competive ratio obtained by renting
t days before querying a prediction, with pt =
0.95− 0.4 exp(−t/5) and b = 50, 100

is better. While Algorithm 1 is deterministic, the next algorithm we study is randomized, where
the day of buying is a random variable, drawn from a probability distribution that depends on the
prediction Q. We show again an optimal choice of λ for minimizing the competitive ratio.

Algorithm 2: Randomized algorithm with input binary prediction [47]
Input: cost b for buying, a prediction Q for 1(x ≥ b)

1 if Q = 1 then buy on the start of day d ∈ {1, . . . , ⌊λb⌋}, with probability ∝ (1− 1/b)⌊λb⌋−d ;
2 else buy on the start of day d ∈ {1, . . . , ⌈b/λ⌉}, with probability ∝ (1− 1/b)⌈b/λ⌉−d ;

Lemma 2.3. If the oracle Q delivers an accurate prediction with probability p ≥ 0.5, then with
λ = min

{
1, 1/b+

√
(e− 1)(1/p− 1)

}
, Algorithm 2 has a competitive ratio of at most{

1
e−1 + 2

√
p(1−p)
e−1 +

(
1− 1−1/b

e−1

)
p if p ≥

(
1 + (1−1/b)2

e−1

)−1

,
e

e−1 + 1−p
b−1 otherwise.

Figure 1 shows the competitive ratios of both algorithms depending on p when λ is chosen optimally.
The upper bound shown in Lemma 2.3 depends on b, this is why we test it with different values of b.
As expected, the randomized algorithm yields better guarantees than the deterministic one. However,
when p is very close to 1, Algorithm 1 is slightly better, because the randomized algorithm requires
having λ ≥ 1/b, and therefore in the limit where p = 1, the optimal choice is λ = 1/b, giving the
upper bound 1 + 1/b instead of 1 on the competitive ratio.

Now, assuming that the oracle is accurate with a known time-dependent probability pt, the previous
lemmas allow to optimally choose the time of querying the prediction when one of the two algorithms
we presented is used after the prediction is obtained. We only state the result for the case where
Algorithm 1 is used. The proof is immediate using Lemmas 2.1 and 2.2, and a similar result can be
shown using Lemmas 2.1 and 2.3 when Algorithm 2 is used instead.
Theorem 2.4. If the predictions delivered by the oracle are accurate with a probability pt that only
depends on the time, then renting until time t, then querying a prediction Qt and running Algorithm

1 with parameter λ =
√

1−pt

pt
, yields a competitive ratio of at most 1 + t/b+ 2

√
pt(1− pt).

We consider in Figure 2 an example where pt = 0.95 − 0.4 exp(−t/5), thus p0 = 0.55 and
limt→∞ pt = 0.95. The figure shows the competitive ratio of renting t days then using one of the
Algorithms 1 or 2, with b = 50, 100. We observe that this strategy can significantly improve the
competitive ratio if t is chosen correctly. Of course, this depends strongly on pt and b. In particular,
for the randomized algorithm, it is better to query the prediction at t = 0 when b = 50.

3 Secretary problem with B predictions

Assume that N applicants are observed sequentially in a uniformly random order (x1, . . . , xN), all
having distinct values. After an applicant is interviewed, the decision-maker has to either accept them

5

and halt the process, or refuse them irrevocably. We consider a setting where, when an applicant
xt is observed, and the budget is still not exhausted, the algorithm can request a binary prediction
Q(xt) indicating if there are better applicants coming in the future. We assume a maximal budget
of B predictions, where B is a constant independent of N . We assume first that the predictions are
error-free, and we give theoretical guarantees on Algorithm 3 in that case, and after that, we show
how it can be adapted to handle predictions that are accurate only with a probability p. In this section,
we say that an algorithm succeeded if the selected applicant is the best overall.

We consider first Algorithm 3, which rejects the first ⌈rBN⌉ applicants, where rB ∈ (0, 1) is a
threshold depending on B, and then queries a prediction for the first applicant xt better than all
of them. If the oracle predicts that there is a better candidate in the future (Q(xt) = 1) then the
algorithm is restarted with the inputs (xt+1, . . . , xN) and budget B − 1.

Algorithm 3: ADATHRESH Adaptive Threshold
Input: Budget B, sequence of applicants (x1, . . . , xN)

1 Reject the first ⌈rBN⌉ applicants;
2 for t = ⌈rBN⌉+ 1, . . . , N do
3 if xt > max{x1, . . . , xt−1} then
4 if B > 0 then
5 query a prediction Q(xt);
6 if Q(xt) = 0 then Return: t ;
7 else Return ADATHRESH(B − 1, (xt+1, . . . , xN));
8 else Return: t;

Theorem 3.1. Let (qB)B≥−1, (rB)B≥0 the sequences defined by q−1 = 0 and for B ≥ 0

qB = qB−1 + (1− qB−1) exp

(
− 1

1− qB−1

)
, rB = exp

(
− 1

1− qB−1

)
.

If the oracle Q delivers error-free predictions, then with the thresholds (rB)B , ADATHRESH with
budget B has a success probability of at least qB independently of the input size N .

Observe that, as B increases, the lower bound qB of the success probability of ADATHRESH converges
to 1 and the thresholds rB converge to zero, meaning that the higher the budget, the higher the risks:
there are fewer applicants in the first observation phase, thus the probability of selecting a future
sub-optimal one is higher (yet this risk is hedged by the predictions), but on the other hand, it
reduces the probability of naïvely disregarding the best applicant if it is among the first arriving
ones. Although ADATHRESH is a naive algorithm that does not make full use of past information, we
showed that adequately choosing the thresholds (rB)B guarantees a success probability that goes to 1
as the budget increases. We present in Appendix B.3 an improved version of ADATHRESH that keeps
in memory the maximum value M observed so far and that rejects all applicants having values below
M . We show numerically in Section 5 how this increases the success probability of the algorithm.

0 5 10 15 20
number of allowed predictions B

1/e

0.5

0.6

0.7

Su
cc

es
s p

ro
ba

bi
lit

y
q B

(p
)

p = 0.7

p = 0.8

p = 0.9

p = 0.95

p = 0.98

p = 1

Figure 3: (qB(p))B,p for p ∈
[0.5, 1] and B ≤ 20

Handling imperfect predictions If the predictions of the oracle
are imperfect, then one way of guaranteeing robustness, since the
objective is to maximize the success probability, is to use the 1/e-
rule with probability λ and Algorithm 3 with probability 1− λ. This
guarantees a success probability of at least λ/e if the predictions
are incorrect. On the other hand, given that the oracle’s predictions
are binary, it is reasonable to assume that each prediction is correct
with a probability p independent of all the observations, as explained
in the introduction. Based on this assumption, Algorithm 3 can be
modified to include the option of trusting or disregarding the oracle’s
prediction at each step. We show that it is advantageous to trust
the oracle when p is above a certain threshold and run the 1/e-rule
otherwise. This algorithm achieves a success probability of at least
1/e, with improving performance as p approaches 1. We show in
the appendix how this can be generalized when the accuracy of the
oracle is time-dependent.

6

Theorem 3.2. Assume that each oracle’s prediction is independently correct with probability p ≥(
1 + (e− 1) exp(− e

e−1)
)−1 ≈ 0.73, then there is an algorithm that achieves a success probability

of at least q0(p) = 1/e for B = 0, and qB(p) for B ≥ 1 defined as

qB(p) = pqB−1(p) + p(1− qB−1(p)) exp
(
− 1

1−qB−1(p)

)
.

If we denote W the Lambert function, i.e. the inverse of u 7→ ueu on (0,∞), then we have

lim
B→∞

qB(p) = 1− 1

1 +W
(

p
e(1−p)

) .

Moreover, the algorithm has a success probability of at least 1/e for any value of p ∈ [1/2, 1].

Optimal algorithm Assuming that the predictions are error-free, the problem is equivalent to the
multiple-choice secretary problem [26], where the algorithm is allowed to select k ≥ 1 applicants,
and it is successful if the best overall candidate is among them. Indeed, the algorithm is given
B + 1 attempts to identify the best applicant, and it halts if it finds it. This is analogous to choosing
k = B + 1 applicants, where following the selection of each one, the algorithm employs a selection
strategy as if the previous guesses were unsuccessful. The optimal algorithm for selecting k applicants
is a (ak, . . . , a1)-rule [26, 43], where at any step t, if the number of applicants already selected is
i ∈ {0, . . . , k}, then reject everyone until step min{t, ak−i}, and accept the first applicant after that
is the best observed so far. Although this family of algorithms has a simple structure, analyzing it is
difficult and hides many technical challenges. The optimal thresholds and the asymptotic success
probability are explicitly computed only up to k ≤ 5, and a recursive formula is proven, via a dynamic
programming approach, to compute the next thresholds. This formula is however difficult to exploit
even numerically, while the optimal thresholds and the success probability of ADATHRESH can be
computed very easily.

If the predictions are correct with a probability p, then the optimal algorithm must be a generalization
of the (ak, . . . , a1)-rule, and thus it is even harder to analyze. The algorithm we proposed is naive in
the sense that it does not take into account all the past information and only remembers the history
since the last prediction was queried. However, it illustrates how the limited budget of predictions
should be spent, and it presents good robustness and consistency guarantees with respect to p and
B, in the sense that it always has a success probability of at least 1/e, which is optimal without
predictions, and it has a success probability that converges to 1 as B and p increase.

4 Preemptive B-clairvoyant job scheduling

We consider the problem of scheduling multiple jobs on a single machine, with the objective of
minimizing the sum of their completion times. More particularly, we place ourselves in the preemptive
setting, where the jobs can be temporarily halted and resumed later, or equivalently that they can be
run in parallel with rates that sum at most to 1. Let N be the number of jobs and x1, . . . xN their
sizes. If the algorithm knows beforehand the sizes of the jobs, it is called clairvoyant, and the optimal
algorithm OPT is to run the shortest jobs first. An algorithm is non-clairvoyant if the size xj of any
job j is unknown until the job is completed. Motwani et al. [46] showed that no deterministic or
randomized algorithm can have a better competitive ratio than 2, which is achieved by round-robin
(RR), which is a deterministic algorithm. RR works as follows: at any time t, if n is the number of
remaining jobs, then RR runs them all in parallel with rates 1/n each.

An in-between setting, surprisingly not explored yet, is when the algorithm has only access to the
sizes of a limited number of jobs. We say that an algorithm is B-clairvoyant when it is allowed to
access the sizes of B jobs. We assume that it can query their true sizes, and not just noisy predictions.
We start with a negative result, stating that we need to have B = Ω(N) to achieve a better competitive
ratio than 2. Then, we give an algorithm with a competitive ratio of at most 2− (B/N)2.

Let us first remind a few classic notations in the scheduling problem. For any algorithm ALG, and
any instance J = {x1, . . . , xN}, the sum of the completion times obtained by ALG can be written as

ALG(J) =
N∑
i=1

xi +
∑
i<j

(
DALG(i, j) +DALG(j, i)

)
, (1)

7

where DALG(i, j) is the delay caused by job i to job j, i.e. the amount of job i executed before the
completion of job j. With this notation, we have for any i < j that DOPT(i, j) + DOPT(j, i) =
min{xi, xj} and DRR(i, j) = DRR(j, i) = min{xi, xj}. Thus, if x1 ≤ . . . ≤ xN we obtain

OPT(J) =
N∑
i=1

xi +

N∑
i=1

(N − i)xi , RR(J) =
N∑
i=1

xi + 2

N∑
i=1

(N − i)xi. (2)

4.1 Few hints are not enough

In opposite to other problems where it has been proved that a sublinear number of hints is enough
for improving the performance [13, 31], the following theorem demonstrates that, for the scheduling
problem, no algorithm can achieve a competitive ratio better than 2 when B = o(N).
Theorem 4.1. Any B-clairvoyant deterministic or random algorithm with B = o(N), has a competi-
tive ratio lower bounded by 2.

4.2 Parallel OPT-RR algorithm with adaptive processing rates

We assume in this section that the B = Ω(N). A first naive algorithm would run RR until there are
B jobs left, then query their sizes, and use OPT to finish. However, when all the jobs have the same
size, they terminate at the same time and no hint is queried. The output of the algorithm with this
instance is exactly the same as RR, which is twice the output of OPT asymptotically in N [46], and
therefore its competitive ratio is at least 2. More generally, any algorithm that runs RR waiting for a
certain number of jobs to finish before querying the sizes of B unfinished ones is no better than RR
for the same reasons. Alternatively, the algorithm can wait for a possibly random amount of time
T > 0, independent of the observed completion times, before querying the first hint. However, by
taking job sizes sampled from an exponential distribution with parameter µ such that their sum is
smaller than T with an arbitrarily high probability, the algorithm terminates with high probability
before requesting any hint and is no better than a non-clairvoyant algorithm on such input instances,
leading to a competitive ratio of at least 2. Therefore, the best moment to query the hints is at the
very beginning of the execution, and since the algorithm cannot differentiate between the jobs, it can
only query the sizes of B randomly chosen ones.

We propose a generic algorithm that queries the sizes of B randomly chosen jobs, then concurrently
runs OPT on them and RR on the others with respective rates α and 1− α, where α is a parameter
that can be adjusted throughout the course of the algorithm, depending on the information available at
each time, i.e the predicted job sizes, the number of the remaining jobs, and the sizes of finished jobs.

Algorithm 4: PAR Parallel algorithm with Adaptive processing Rate
Input: Budget B, N jobs with unknown sizes {x1, . . . , xN}

1 I ← Sample B jobs uniformly at random without replacement;
2 J ← {1, . . . , N} \ I ;
3 while there are still unfinished jobs do
4 Adjust α;
5 run for a time unit
6 with rate α: OPT on {xi}i∈I ;
7 with rate 1− α: RR on {xj}j∈J ;

In the following, for any algorithm ALG and for any subsets H,K of {1, . . . , N}, we denote
DALG(H,K) =

∑
i∈H

∑
j∈K\{i} D

ALG(i, j) the sum of all the delays caused by jobs in H to those
in K. We demonstrate first a generic upper bound for the output of PAR,
Lemma 4.2. For any update rule of α we have

E[PAR(J)] =
N∑
i=1

xi +
(
2− B

N

(
4− 3B−1

N−1

)) N∑
i=1

(N − i)xi +E[DPAR(I, J) +DPAR(J, I)].

This Lemma shows that the output of PAR depends only on the delays generated by jobs in I on
jobs in J and vice versa. The difficulty now is to choose an adequate update rule for the rate α, with
provable upper bounds on E[DPAR(I, J) +DPAR(J, I)].

8

5

4

3

2

1

5

4

3

2

5

4

3

5

4

5

5

4
5

4

5

4

5

4

5

1 2 3

Figure 4: In this example, N = 5, the job sizes are {x1 = 1, x2 = 3, x3 = 4, x4 = 5, x5 = 6.3},
and I = {1, 2, 3}. On the left we visualize a run of RR on this instance, and on the right a run of
PAR with the SRR update rule. The X-axis represents time and the Y-axis represents the processing
power allocated to each job.

4.3 Simulated round-robin update rule

We consider the Simulated Round-Robin (SRR) update rule, which adjusts α as follows. It simply
puts a global processing rate on It, the set of unfinished jobs in I , proportional to the cardinal of
IRR
t , the number of unfinished jobs in I had RR be run instead (this counterfactual quantity can be

computed at any time step as predictions are correct, see proof of Theorem 4.3) and similarly for J .
Formally, αRR

t = |IRR
t |/(|IRR

t |+ |JRR
t |). Figure 4 gives an illustration of the SRR update rule: to the

left, it shows a run of RR, where initially the 5 jobs run each with a processing rate 1/5 until job 1
terminates, then the remaining jobs run each with a processing rate of 1/4 until job 2 terminates, and
so on. To the right, the figure shows a run of PAR with SRR update rule, where the algorithm knows
the sizes of jobs 1,2 and 3. The total processing rate of these jobs during the run of the algorithm is
represented by the yellow area, and it is identical to their total processing rate during the run of RR.

Theorem 4.3. If PAR uses a processing rate αRR
t , then it is at most

(
2− B(B−1)

N(N−1)

)
-competitive.

The competitive ratio of PAR with processing rate (αRR
t)t≥0 decreases as B grows, going from 2 to

1, thus interpolating the non-clairvoyant and the clairvoyant settings.

5 Experiments

In this section, we test the performance of the algorithms we presented for the ski-rental, secretary,
and scheduling problems, supporting our theoretical results and giving further insight.

0.5 0.6 0.7 0.8 0.9 1.0
accuracy p of the oracle

1.2

1.4

1.6

1.8

2.0 DET
RAND

Figure 5: Competitive ratios of Algorithms 1
and 2, with an oracleQ accurate with probability
p ∈ [0.5, 1] and b = 50.

0 10 20 30 40 50
time t of querying the prediction

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Co
m

pe
tit

iv
e

ra
tio

Query at t then DET
Query at t then RAND

Figure 6: Competitive ratio of querying the pre-
diction at time t, then running Algorithm 1 or 2,
with pt = 0.95− 0.4 exp(−t/5) and b = 100.

For the ski-rental problem, we set a buying cost of b = 50 for Figure 5 and b = 100 for Figure 6, and
the number of snow days is sampled randomly from a uniform distribution in [1, 4b]. Each point in
both figures is computed over 105 simulations. The value of λ is chosen optimally with respect to p
as indicated in Lemmas 2.2 and 2.3.

The competitive ratios of both algorithms 1 and 2 when the prediction is given as input are shown
in Figure 5, as well as their theoretical upper bounds. The experimental ratio of the deterministic

9

algorithm in this particular scenario is significantly better than the theoretical upper bound, while
that of the randomized algorithm is close to the theoretical upper bound. In Figure 6, we consider
that the oracle is correct with a time-dependent probability pt = 0.95 − 0.4 exp(−t/5). We show
the competitive ratios obtained by renting until time t then querying a prediction and running the
deterministic or the randomized algorithm. The theoretical upper bounds are represented in dotted
lines. We observe that adequately choosing the time of querying the prediction can significantly
improve the competitive ratio, which proves our claims. This time strongly depends on the cost b and
on the evolution of the probability pt with time.

0 5 10 15 20
number of allowed predictions B

1/e

0.5

0.6

0.7

0.8

su
cc

es
s p

ro
ba

bi
lit

y

AdaThresh
lower bound qB

AdaThresh with memory

Figure 7: Success probability of ADATHRESH
compared to the lower bound qB , and compared
to the case with memory.

0 10 20 30 40 50
number of allowed predictions B

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Co
m

pe
tit

iv
e

ra
tio

i, xi = 1
i, xi (1)
i, xi U(0, 1)
i, xi Pareto(1.1)

Figure 8: Competitive ratio of PAR with SRR
update rule, tested with N = 50 and different
benchmark input instances.

In Figure 7, we test ADATHRESH with N = 1000, and we show how the success probability improves
with B. We also test a variant of the algorithm memorizing the value of the best-observed applicant
after restarting, which improves the success probability (See Appendix B.3 for a detailed description
of the algorithm). The success probability of ADATHRESH matches qB , therefore it is a tight lower
bound. We also observe that the success probability increases rapidly for the first values of B, but
then becomes slower. This is because whenever the algorithm is restarted, there is a new observation
phase, with a risk of missing the best applicant.

Secondly, we test the algorithm PAR with the SRR update rule on various benchmark inputs. We
test it with N = 50 and jobs having (i) identical sizes, (ii) sizes sampled from the exponential
distribution, (iii) uniform distribution, (iv) and Pareto distribution. (i) is a critical instance because it
is the worst-case input for RR. (ii) is a classical benchmark used in many variants of the scheduling
problem to prove lower bounds [46]. (iii) is a natural benchmark to test randomness. Finally, (iv)
is well-suited in practice for modeling the job size distributions [47, 29], and also it shows how
the algorithm behaves on instances with very high variance. Each point in the figure was obtained
by averaging over 10000 runs. we see that the competitive ratio of PAR is at most 2 − B/N for
all these benchmarks, which is better than the upper bound 2 − (B/N)2 proved in Theorem 4.3.
Therefore, PAR can be highly efficient in many cases, since the gain obtained with B known job
sizes is proportional to B as shown in the simulations.

6 Conclusion

We presented different settings where online algorithms operate under a restricted budget of pre-
dictions, that can be queried during their execution. We show that adequately using this budget
significantly improves upon the worst-case performance. Our results pave the way for investigating
more realistic and practical challenges within the learning-augmented paradigm, providing insights
that can be extended to various other problems in competitive analysis.

References
[1] Sara Ahmadian, Hossein Esfandiari, Vahab S Mirrokni, and Binghui Peng. Robust load

balancing with machine learned advice. In SODA, pages 20–34, 2022.

[2] Keerti Anand, Rong Ge, and Debmalya Panigrahi. Customizing ml predictions for online
algorithms. In International Conference on Machine Learning, pages 303–313. PMLR, 2020.

10

[3] Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online algorithms with multiple
predictions. In International Conference on Machine Learning, pages 582–598. PMLR, 2022.

[4] Alexandr Andoni and Daniel Beaglehole. Learning to hash robustly, guaranteed. In International
Conference on Machine Learning, pages 599–618. PMLR, 2022.

[5] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc Renault. Online
computation with untrusted advice. arXiv preprint arXiv:1905.05655, 2019.

[6] Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon.
Online metric algorithms with untrusted predictions. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research, pages 345–355. PMLR, 2020. URL
http://proceedings.mlr.press/v119/antoniadis20a.html.

[7] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online
matching problems with machine learned advice. Advances in Neural Information Processing
Systems, 33:7933–7944, 2020.

[8] Antonios Antoniadis, Joan Boyar, Marek Eliáš, Lene M Favrholdt, Ruben Hoeksma, Kim S
Larsen, Adam Polak, and Bertrand Simon. Paging with succinct predictions. arXiv preprint
arXiv:2210.02775, 2022.

[9] Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. Advances in Neural Information Processing Systems,
33:15350–15359, 2020.

[10] Evripidis Bampis, Bruno Escoffier, and Michalis Xefteris. Canadian traveller problem with
predictions. In Approximation and Online Algorithms: 20th International Workshop, WAOA
2022, Potsdam, Germany, September 8–9, 2022, Proceedings, pages 116–133. Springer, 2022.

[11] Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Learning-
augmented weighted paging. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 67–89. SIAM, 2022.

[12] Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jiri Sgall, and Leen Stougie.
Multiprocessor scheduling with rejection. SIAM Journal on Discrete Mathematics, 13(1):64–78,
2000.

[13] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Logarithmic regret from
sublinear hints. Advances in Neural Information Processing Systems, 34:28222–28232, 2021.

[14] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. cambridge
university press, 2005.

[15] Justin Chen, Sandeep Silwal, Ali Vakilian, and Fred Zhang. Faster fundamental graph algorithms
via learned predictions. In International Conference on Machine Learning, pages 3583–3602.
PMLR, 2022.

[16] TCE Cheng and CCS Sin. A state-of-the-art review of parallel-machine scheduling research.
European Journal of Operational Research, 47(3):271–292, 1990.

[17] Y.S. Chow, H.E. Robbins, H. Robbins, and D. Siegmund. Great Expectations: The Theory of
Optimal Stopping. Houghton Mifflin, 1971. ISBN 9780395053140. URL https://books.
google.fr/books?id=A6ELhyczVf4C.

[18] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and Nikos Zarifis. Learning
online algorithms with distributional advice. In International Conference on Machine Learning,
pages 2687–2696. PMLR, 2021.

[19] Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii.
Algorithms with prediction portfolios. arXiv preprint arXiv:2210.12438, 2022.

11

http://proceedings.mlr.press/v119/antoniadis20a.html
https://books.google.fr/books?id=A6ELhyczVf4C
https://books.google.fr/books?id=A6ELhyczVf4C

[20] Marina Drygala, Sai Ganesh Nagarajan, and Ola Svensson. Online algorithms with costly
predictions. In International Conference on Artificial Intelligence and Statistics, pages 8078–
8101. PMLR, 2023.

[21] Elbert Du, Franklyn Wang, and Michael Mitzenmacher. Putting the “learning" into learning-
augmented algorithms for frequency estimation. In International Conference on Machine
Learning, pages 2860–2869. PMLR, 2021.

[22] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with ad-
vice. In Proceedings of the 22nd ACM Conference on Economics and Computation, EC
’21, page 409–429, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450385541. doi: 10.1145/3465456.3467623. URL https://doi.org/10.1145/
3465456.3467623.

[23] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. On the performance of learned data
structures. Theoretical Computer Science, 871:107–120, 2021.

[24] Rudolf Fleischer. On the bahncard problem. Theoretical Computer Science, 268(1):161–174,
2001.

[25] Martin Gardner. Mathematical games. Scientific american, 222(6):132–140, 1970.

[26] John P. Gilbert and Frederick Mosteller. Recognizing the Maximum of a Sequence, pages
355–398. Springer New York, New York, NY, 2006. ISBN 978-0-387-44956-2. doi: 10.1007/
978-0-387-44956-2_22. URL https://doi.org/10.1007/978-0-387-44956-2_22.

[27] Sreenivas Gollapudi and Debmalya Panigrahi. Online algorithms for rent-or-buy with expert
advice. In International Conference on Machine Learning, pages 2319–2327. PMLR, 2019.

[28] Anupam Gupta, Debmalya Panigrahi, Bernardo Subercaseaux, and Kevin Sun. Augmenting
online algorithms with ϵ-accurate predictions. Advances in neural information processing
systems, 2022.

[29] Mor Harchol-Balter and Allen B Downey. Exploiting process lifetime distributions for dynamic
load balancing. ACM Transactions on Computer Systems (TOCS), 15(3):253–285, 1997.

[30] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. On-
line knapsack with frequency predictions. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 2733–2743, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
161c5c5ad51fcc884157890511b3c8b0-Abstract.html.

[31] Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Purohit. Parsimonious learning-augmented
caching. In International Conference on Machine Learning, pages 9588–9601. PMLR, 2022.

[32] Anna R Karlin, Mark S Manasse, Larry Rudolph, and Daniel D Sleator. Competitive snoopy
caching. Algorithmica, 3:79–119, 1988.

[33] Anna R. Karlin, Mark S. Manasse, Lyle A. McGeoch, and Susan Owicki. Competitive random-
ized algorithms for nonuniform problems. Algorithmica, 11(6):542–571, 1994.

[34] Misha Khodak, Maria-Florina F Balcan, Ameet Talwalkar, and Sergei Vassilvitskii. Learning
predictions for algorithms with predictions. Advances in Neural Information Processing Systems,
35:3542–3555, 2022.

[35] Rohan Kodialam. Optimal algorithms for ski rental with soft machine-learned predictions.
arXiv preprint arXiv:1903.00092, 2019.

[36] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 international conference on management of data,
pages 489–504, 2018.

12

https://doi.org/10.1145/3465456.3467623
https://doi.org/10.1145/3465456.3467623
https://doi.org/10.1007/978-0-387-44956-2_22
https://proceedings.neurips.cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html

[37] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1859–1877. SIAM, 2020.

[38] Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978.

[39] Honghao Lin, Tian Luo, and David Woodruff. Learning augmented binary search trees. In
International Conference on Machine Learning, pages 13431–13440. PMLR, 2022.

[40] Pinyan Lu, Xuandi Ren, Enze Sun, and Yubo Zhang. Generalized sorting with predictions. In
Symposium on Simplicity in Algorithms (SOSA), pages 111–117. SIAM, 2021.

[41] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
Journal of the ACM (JACM), 68(4):1–25, 2021.

[42] Charles Martel. Preemptive scheduling with release times, deadlines, and due times. Journal of
the ACM (JACM), 29(3):812–829, 1982.

[43] Tomomi Matsui and Katsunori Ano. Lower bounds for bruss’ odds problem with multiple
stoppings. Mathematics of Operations Research, 41(2):700–714, 2016.

[44] Adam Meyerson. The parking permit problem. In 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’05), pages 274–282. IEEE, 2005.

[45] Michael Mitzenmacher. Queues with small advice. In SIAM Conference on Applied and
Computational Discrete Algorithms (ACDA21), pages 1–12. SIAM, 2021.

[46] Rajeev Motwani, Steven Phillips, and Eric Torng. Nonclairvoyant scheduling. Theoretical
computer science, 130(1):17–47, 1994.

[47] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML pre-
dictions. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 9684–9693, 2018.

[48] Alexander Wei and Fred Zhang. Optimal robustness-consistency trade-offs for learning-
augmented online algorithms. Advances in Neural Information Processing Systems, 33:8042–
8053, 2020.

[49] Ali Zeynali, Bo Sun, Mohammad Hajiesmaili, and Adam Wierman. Data-driven competitive
algorithms for online knapsack and set cover. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 10833–10841, 2021.

13

Advice Querying under Budget Constraint for Online
Algorithms

Omitted proofs

A Ski-rental with time-dependent guarantees on the prediction

A.1 Proof of Lemma 2.1

Proof. In all the following, We denote A(I) the output of algorithm A when given an input instance
I . We will prove the claim of the lemma by treating separately the cases where x ≥ b and x < b.
Let us first observe that, if x ≥ t, then the cost of ALGt is t + ALG(x − t, b,Qt), because a unit
cost was paid during the first t days, and then ALG is called provided with a prediction Qt. The
number of remaining snow days at that time is x− t. We remind that, since we are in a minimization
problem, C(ALG, pt) is at least 1. Consider the case where x ≤ b, thus OPT(x, b) = x. If x ≤ t
then ALGt(x, b) = x = OPT(x, b), and if x > t then

E[ALGt(x, b)] = t+E[ALG(x− t, b,Qt)]

≤ t+ C(ALG, pt)OPT(x− t, b)

= t+ C(ALG, pt)(x− t)

= C(ALG, pt)x− (C(ALG, pt)− 1)t

≤ C(ALG, pt)x− (C(ALG, pt)− 1)
t

b
x

=

(
t

b
+
(
1− t

b

)
C(ALG, pt)

)
OPT(x, b)

≤
(
t

b
+ C(ALG, pt)

)
OPT(x, b).

Consider now that x > b, thus OPT(x, b) = b. If x ≤ t then

ALGt(x, b) = x ≤ t ≤
(
t

b
+ C(ALG, pt)

)
OPT(x, b).

On the other hand, if x > t then

E[ALGt(x, b)] ≤ t+ C(ALG, pt)OPT(x− t, b)

≤ t+ C(ALG, pt)b

=

(
t

b
+ C(ALG, pt)

)
OPT(x, b).

In all the cases we have E[ALGt(x, b)] ≤ (t/b+C(ALG, pt))OPT(x, b), which gives the result.

A.2 Proof of Lemma 2.2

Proof. Let us denote ALG(x, b,Q) the output of Algorithm 1 given an instance x, b and a prediction
Q, and OPT(x, b) = min{x, b} the cost of the optimal offline algorithm. Purohit et al. [47] prove
that, if the algorithm is given instead a prediction y of x, then sets Q = 1(y ≥ b) and behaves as
we described, then its competitive ratio is upper bounded by min

{
1 + 1

λ , (1 + λ) + |x−y|
(1−λ)OPT(x,b)

}
.

But in fact, it suffices to have x and y both larger or both smaller than b for the algorithm to
behave exactly as if x = y, therefore we retrieve the bound 1 + λ if the prediction Q is accurate.
This happens with probability p. Otherwise, when the prediction is incorrect, we always have that

1

ALG(x, b,Q) ≤ (1 + 1/λ)OPT. Therefore
E[ALG(x, b,Q)]

OPT(x, b)
≤ p(1 + λ) + (1− p)

(
1 +

1

λ

)
= 1 + pλ+

1− p

λ
,

the latter expression is minimized for λ =
√

1−p
p , which gives

E[ALG(x, b,Q)]
OPT(x, b)

≤ 1 + 2
√
p(1− p).

A.3 Proof of Lemma 2.3

Proof. Let λ ∈ (1/b, 1). It is shown in [47] that Algorithm 2 is
(

λ
1−e−λ

)
-consistent and(

1
1−e−(λ−1/b)

)
-robust. Even though the upper bound shown in [47] suggests that the consistency

bound is achieved only when given an exactly accurate prediction y of the number of snow days,
i.e. y = x, it suffices to have Q = 1(x ≥ b) for the algorithm to behave just the same. Therefore,
with probability p we have that the cost of the algorithm is at most

(
λ

1−e−λ

)
OPT(x, b), and with

probability 1− p it is at most
(

1
1−e−(λ−1/b)

)
OPT(x, b). With a simple function analysis, we have

that 1
1−e−u ≤ 1

e−1 + 1
u for any u ∈ (0, 1). Therefore

E[ALG(x, b,Q)] ≤ pλ

1− e−λ
+

1− p

1− e−(λ−1/b)

≤ pλ

(
1

e− 1
+

1

λ

)
+ (1− p)

(
1

e− 1
+

1

λ− 1/b

)
=

pλ

e− 1
+

1− p

λ− 1/b
+

1

e− 1
+

(
1− 1

e− 1

)
p

=
p(λ− 1/b)

e− 1
+

1− p

(λ− 1/b)
+

1

e− 1
+

(
1− 1− 1/b

e− 1

)
p,

The previous expression is minimized when λ satisfies p(λ−1/b)
e−1 = 1−p

(λ−1/b) , i.e. for λ⋆ = 1
b +√

(e− 1) 1−p
p . However, we are restrained to choose λ ∈ (1/b, 1), thus the optimal choice of λ is

min{1, λ⋆}. We have that

λ⋆ ≤ 1 ⇐⇒ p(λ− 1/b)

e− 1
=

1− p

(λ− 1/b)
≤ 1

⇐⇒ (e− 1)
1− p

p
≤
(
1− 1

b

)2

⇐⇒ 1

p
≤ 1 +

(1− 1/b)2

e− 1

⇐⇒ p ≥
(
1 +

(1− 1/b)2

e− 1

)−1

.

Therefore, if p ≥
(
1 + (1−1/b)2

e−1

)−1

, then with λ = λ⋆ we have

E[ALG(x, b,Q)] ≤
√

p(1− p)

e− 1
+

√
p(1− p)

e− 1
+ +

1

e− 1
+

(
1− 1− 1/b

e− 1

)
p

=
1

e− 1
+ 2

√
p(1− p)

e− 1
+

(
1− 1− 1/b

e− 1

)
p,

2

and if p <
(
1 + (1−1/b)2

e−1

)−1

, then with λ = 1 we obtain

E[ALG(x, b,Q)] ≤ p

e− 1
+

1− p

1− 1/b
+

1

e− 1
+

(
1− 1

e− 1

)
p

=
1

e− 1
+

1

1− 1/b
+

(
1− 1

1− 1/b

)
p

=
1

e− 1
+

b

b− 1
− 1

b− 1
p

=
1

e− 1
+

b− p

b− 1
.

B Secretary problem with B predictions

B.1 Proof of Theorem 3.1

Proof. Since the secretary problem is purely ordinal, and since the applicants arrive in a uniformly
random order, the success probability of ADATHRESH does not depend on the values x1, . . . , xN ,
but only on B and N . Therefore, we denote qN,B the success probability of ADATHRESH with a
budget B and an input sequence of size N , t⋆ the position of the best applicant, xs:t = (xs, . . . , xt)
for any s ≤ t, S(x1:N , B) the event that ADATHRESH with a budget B succeeds on the input x1:N ,
and RB = rBN . We define the random variable

τ = min
{
t ≥ ⌈rBN⌉+ 1 : xt > max{x1, . . . , xt−1}

}
.

We will prove the claim of the theorem by induction on B.

For B = 0, it is established that for r0 = 1/e, we have a success probability of at least q0 = 1/e. Let
B ≥ 1, and assume that the result is true for B − 1, we have

qN,B = P(S(x1:N , B)) =

N∑
t=RB

P(S(x1:N , B) and τ = t). (3)

For any t, since the oracle Q is error-free, then under τ = t, we have that Q(xt) = 0 is equivalent to
t⋆ = t, and Q(xt) = 0 is equivalent to t⋆ > t, thus we have

P(S(x1:N , B) and τ = t and Q(xt) = 0) = P(τ = t and t⋆ = t) =
1

N
P(τ = t | t⋆ = t) (4)

=
1

N
P(maxx1:RB

> maxxRB+1:t−1) (5)

=
1

N
× RB

t− 1
=

RB/N

t− 1
, (6)

where 4 is true because the event S(x1:N , B) is implied by τ = t⋆, the second equality because t⋆ is
a uniform random variable in {1, . . . , N}, and 5 because, conditionally to t⋆ = t, the event τ = t is
equivalent to not selecting any candidate in xRB+1:t−1, i.e all those candidates have smaller values
than maxx1:RB

, which is equivalent to saying that the maximum element in x1:t−1 is among the first
RB ones, and this is independent of the event t = t⋆. On the other hand, we have that

P(S(x1:N , B) and τ = t and Q(xt) = 1) = P(S(x1:N , B) | τ = t,Q(xt) = 1)

×P(τ = t and t⋆ > t).

Conditionally to {τ = t,Q(xt) = 1}, xt is the best candidate up to step t, and ADATHRESH used a
prediction to observe that t⋆ > t, The algorithm is therefore restarted with input xt+1,N and budget
B, and S(x1:N , B) = S(xt+1:N , B − 1), which is independent of the history up to step t, hence

P(S(x1:N , B) | τ = t,Q(xt) = 1) = P(S(xt+1:N , B − 1))

= qN−t,B−1 ≥ qB−1

3

by the induction hypothesis. Secondly, we have that the two following events are equivalent

{τ = t and t⋆ > t} = {maxxt+1:N > xt > maxx1:RB
> maxxRB+1:t−1},

and since the applicants are shuffled uniformly at random, the relative ranks inside any subset Y of
{x1, . . . , xN} are independent of how maxY compares to applicants outside Y , therefore

P(τ = t and t⋆ > t) = P(maxxt+1:N > xt > maxx1:RB
> maxxRB+1:t−1)

= P(maxx1:N ∈ xt+1:N)P(maxx1:t = xt)P(maxx1:t−1 ∈ x1:RB
)

=
N − t

N
× 1

t
× RB

t− 1
,

which gives

P(S(x1:N , B) and τ = t and Q(xt) = 1) ≥
(
1− t

N

)
RB

t(t− 1)
qB−1. (7)

Using 4 and 7 we deduce that

P(S(x1:N , B) and τ = t) ≥ RB/N

t− 1
+

(
1− t

N

)
RB

t(t− 1)
qB−1

= (1− qB−1)
RB/N

t− 1
+

qB−1RB

t(t− 1)

and substituting into 3 gives that

qN,B ≥ (1− qB−1)
RB

N

N∑
t=RB

1

t− 1
+ qB−1RB

N∑
t=RB

1

t(t− 1)

≥ (1− qB−1)
RB

N

∫ N

RB−1

du

u
+ qB−1RB

N∑
t=RB

(1

t− 1
− 1

t

)
= (1− qB−1)

RB

N
log

(
N

RB − 1

)
+ qB−1

(
RB

RB − 1
− RB

N

)
,

since RB < rBN + 1, we have that log(N/(RB − 1)) ≥ log(1/rB), and
RB

RB − 1
− RB

N
≥
(
1 +

1

RB − 1

)
−
(
rB +

1

N

)
≥ 1− rB .

It follows that
qN,B ≥ (1− qB−1)rB log(1/rB) + qB−1(1− rB) (8)

The left term of this inequality is maximal for rB = exp
(
− 1

1−qB−1

)
, and we obtain that

qN,B ≥ (1− qB−1)rB ×
1

1− qB−1
+ qB−1(1− rB)

= rB + qB−1(1− rB)

= qB−1 + (1− qB−1)rB = qB ,

which concludes the proof.

B.2 Proof of Theorem 3.2

The algorithm Consider a simple adaptation of ADATHRESH, where the predictions are not always
blindly trusted. If the conditions t ≥ rBN and xt > max{x1, . . . , xt−1} are met, then with
probability 1− λ the algorithm chooses to query a prediction and trust it, and with probability λ it
chooses to select the candidate xt without querying a prediction.

We will prove Theorem 3.2 using two lemmas. In the first one, we show the lower bound on the
success probability of the algorithm we presented, and in the second one, we compute the limit of
this lower bound when B → ∞. We define the function f : [0, 1] → (0,∞) by f(1) = 1 and for
x ∈ (0, 1)

f(x) = x+ (1− x) exp

(
− 1

1− x

)
.

4

Lemma B.1. The adapted ADATHRESH with budget B has a success probability at least qB(p),
where q0(p) = 1/e and for any B ≥ 1

qB(p) = max{1/e, pf(qB−1(p))}.

Moreover, if p ≤ (ef(1/e))−1 then for any B we have qB(p) = 1/e, and otherwise qB(p) =
pf(qB−1(p)) for any B ≥ 1.

Proof. The success probability when B = 0 is lower bounded by 1/e. Let B ≥ 1 and assume that
the success probability of this algorithm given a budget B − 1 is lower bounded by some constant
qB−1(p) that is independent of N , if the algorithm chooses to trust the prediction, then if it inaccurate
the algorithm fails with probability 1, and if it is accurate, which happens with a probability p, then
similarly to (8) in the proof of Theorem 3.1, the success probability is lower bounded by

(1− qB−1(p))rB log(1/rB) + qB−1(p)(1− rB).

On the other hand, if the algorithm chooses not to trust the prediction, then its success probability is
lower bounded by 1/e. Therefore, if we denote qN,B(p, λ) the success probability of the algorithm
on an instance of size N , given a budget B of predictions that are each accurate with an independent
probability p, then we have

qN,B(p, λ) ≥
λ

e
+ p(1− λ) ((1− qB−1(p))rB log(1/rB) + qB−1(p)(1− rB))

The left term is maximized for rB = exp
(
− 1

1−qB−1(p)

)
, and it gives

qN,B(p, λ) ≥
λ

e
+ (1− λ)p

(
qB−1(p) + (1− qB−1(p)) exp

(
− 1

1−qB−1(p)

))
,

this is a linear function of λ, and it is maximized for

λ = 1
(
1/e > pqB−1(p) + p(1− qB−1(p)) exp

(
− 1

1−qB−1(p)

))
.

With this choice of λ, we have that the success probability qN,B(p, λ) is lower bounded by the
constant qB(p) defined by

qB(p) = max

{
1

e
, pqB−1(p) + p(1− qB−1(p)) exp

(
− 1

1−qB−1(p)

)}
= max

{
1

e
, pf(qB−1(p))

}
.

Before showing the second claim of the lemma, let us first prove that f is increasing. We do this
simply by computing its derivative

f ′(x) = 1−
(

1

1− x
+ 1

)
exp

(
− 1

1− x

)
which is positive because exp(u) > u+ 1 for any u > 1, in particular for u = 1/(1− x).

Now, if pf(1/e) ≤ 1/e, i.e. p ≤ (ef(1/e))−1 =
(
1 + (e− 1) exp(− e

e−1)
)−1

, since f is increasing,
we have by induction for any B ≥ 0 that qB(p) = 1/e. In fact, it is true for B = 0, and if
qB−1(p) = 1/e then pf(qB−1(p)) = pf(1/e) ≤ 1/e, thus qB(p) = 1/e.

On the other hand, if pf(1/e) > 1/e, then for any B ≥ 1 we have that pf(qB−1(p)) > 1/e and
thus qB(p) = pf(qB−1(p)). In fact, the property is true for B = 1, and if it is true for some B ≥ 1
then qB(p) = pf(qB−1(p)) > 1/e, thus pf(qB(p)) ≥ pf(1/e) > 1/e, the property remains true for
B + 1, which concludes the induction.

Lemma B.2. If p > (ef(1/e))−1, then the sequence qB(p) is increasing and

lim
B→∞

qB(p) = 1− 1

1 +W
(

p
e(1−p)

) ,
where W is the inverse of u→ ueu on [0,∞), called the W-Lambert function .

5

Proof. Assume that p > (ef(1/e))−1, let us prove by induction over B ≥ 1 that qB(p) > qB−1(p).
For B = 1 we have that q1(p) = pf(1/e) > 1/e = q0(p) by the assumption on p. Now, let B ≥ 1
and assume that qB(p) > qB−1(p). Since f is an increasing function on [0, 1], we have that

qB+1(p) = pf(qB(p)) > pf(qB−1(p)) = qB(p).

The sequence (qB(p))B≥0 is therefore increasing and it is upper bounded by 1 since it is a lower
bound on a probability. We deduce that it converges to some limit ℓ that depends on p. Since f is
continuous we have that ℓ = pf(ℓ), solving this equation gives

ℓ = pf(ℓ) ⇐⇒ ℓ = pℓ+ p(1− ℓ) exp

(
− 1

1− ℓ

)
⇐⇒ (1− p)

ℓ

1− ℓ
= p exp

(
− 1

1− ℓ

)
⇐⇒ (1− p)

(
1

1− ℓ
− 1

)
=

p

e
exp

(
1− 1

1− ℓ

)
⇐⇒

(
1

1− ℓ
− 1

)
exp

(
1

1− ℓ
− 1

)
=

p

e(1− p)

⇐⇒ 1

1− ℓ
− 1 = W

(
p

e(1− p)

)
⇐⇒ ℓ = 1− 1

1 +W
(

p
e(1−p)

) .

Thereofore limB→∞ qB(p) = 1− 1

1+W
(

p
e(1−p)

) .

Observe that the algorithm we presented can also be adapted to the case where the accuracy p of the
oracle is not constant and might depend on the time or even on the input sequence. In fact, as long
as the accuracy of the oracle is known to the algorithm, it can trust the oracle if it is correct with a
probability larger than (ef(1/e)−1, and ignore if otherwise. This gives a success probability always
lower bounded by 1/e, with better guarantees depending on the accuracy of the oracle at times when
it is queried.

B.3 ADATHRESH with memory

We present now an improved version of ADATHRESH that keeps in memory the best observed value
so far, and that rejects all applicants below this value.

Algorithm 5: ADATHRESH with memory
Input: Budget B, sequence of applicants (x1, . . . , xN), largest previously observed value M

1 Reject the first ⌈rBN⌉ applicants;
2 for t = ⌈rBN⌉+ 1, . . . , N do
3 if xt > M and xt > max{x1, . . . , xt−1} then
4 if B > 0 then
5 query a prediction Q(xt);
6 if Q(xt) = 0 then Return: t ;
7 else Return ADATHRESH(B − 1, (xt+1, . . . , xN), xt);
8 else Return: t;

Initially, the algorithm is launched with M = −∞. While we do not give theoretical guarantees on
the success probability of Algorithm 5, we show experimentally how it compares to Algorithm 3 in
Section 5.

6

C Preemptive B-clairvoyant job scheduling

C.1 Proof of Theorem 4.1

Proof. Let ALG be any non-clairvoyant algorithm that can query up to B job sizes for instances
of N jobs. It is shown in Theorem 2.8 in [46] that by choosing an input instance En of n job sizes
sampled independently from the exponential distribution, any algorithm A verifies

E[A(En)] ≥ (2− 4/n)E[OPT(En)],
with E[OPT(En)] = n+ n(n+ 1)/4. Let us consider in particular the algorithm AN which, when
given an instance J of n ≤ N jobs, samples N − n positive numbers z1, . . . , zN−n from the
exponential distribution, then runs ALG with the input J ∪{zi}N−n

i=1 . Let us denote AN (J |{zi}N−n
i=1)

the output of AN conditionally to {zi}N−n
i=1 . Now, let E be an instance of N job sizes chosen from

the exponential distribution to be given as input for ALG. During its execution, ALG will query a
number b ≤ B of sizes for jobs in some subset I of {1, . . . , N}. Denoting J = {1, . . . , N} \ I , we
have by Equation 1 that

ALG(E) ≥
∑
i∈J

xi +
∑

i<j∈J

(
DALG(i, j) +DALG(j, i)

)
= AN

(
{xj}j∈J |{xi}i∈I

)
.

In expectation, using that |J | ≥ N −B = N − o(N) with probability 1, we obtain

E[ALG(E)] ≥ E
[
E[AN

(
{xj}j∈J |{xi}i∈I

)
| n = |J |]

]
≥ E

[
|J |2/2 + 3|J |/2− 5

]
=

N2

2
+O(N).

Using again that E[OPT(E)] = N +N(N − 1)/4 = N2/4 +O(N), we deduce that E[ALG(E)]
E[OPT(E)] ≥

2 + o(1), which shows that the competitive ratio of ALG is at least 2.

C.2 Intermediate Lemma and notation

Notations In all the following, we fix an instance J of job sizes x1 ≤ . . . ≤ xN , and we denote
σ a uniformly random permutation of {1, . . . , N}, I = {σ(i)}Bi=1 and J = {σ(j)}Nj=B+1. This is
equivalent to choosing a set I of B jobs uniformly at random without replacement. We also denote It
and Jt respectively the sets of unfinished jobs in I and J at time t of a run of PAR.

The next lemma gives a simple computational result that we will use in further proofs.

Lemma C.1. For any i ̸= j we have E[min{xσ(i), xσ(j)}] = 2
N(N−1)

∑N
k=1(N − k)xk.

Proof. Since σ is a random permutation, we only need to demonstrate the result for i, j = 1, 2. Since
we assume that x1 ≤ . . . , xN , then for any k ≤ N we have

P(min{xσ(1), xσ(2)} = xk) = P(min{σ(1), σ(2)} = k)

= 2P(σ(1) = k and σ(2) > k)

= 2P(σ(1) = k)P(σ(2) > k | σ(1) = k)

=
2(N − k)

N(N − 1)
.

It follows that

E[min{xσ(1), xσ(2)}] =
N∑

k=1

P(min{xσ(1), xσ(2)} = xk)xk

=
2

N(N − 1)

N∑
k=1

(N − k)xk.

7

C.3 Proof of Lemma 4.2

Proof. Let us fix some update rule for α. In the execution of PAR, OPT is run on I and RR on
J , and both sets are disjoint, therefore we have DPAR(i, j) = DOPT(i, j) for any i ̸= j ∈ I , and
DPAR(i, j) = DRR(i, j) for any i ̸= j ∈ J , we can write

PAR(J) =
N∑
i=1

xi +DPAR(I, I) +DPAR(J, J) +DPAR(I, J) +DPAR(J, I)

=

N∑
i=1

xi +DOPT(I, I) +DRR(J, J) +DPAR(I, J) +DPAR(J, I). (9)

Using Equation 2 and Lemma C.1, we have that

E[DOPT(I, I)] =
∑

1≤i<j≤B

E[min{xσ(i), xσ(j)}]

=
∑

1≤i<j≤B

2

N(N − 1)

N∑
k=1

(N − k)xk

=
B(B − 1)

N(N − 1)

N∑
k=1

(N − k)xk,

and in the same way

E[DRR(J, J)] =
∑

B<i<j≤N

2E[min{xσ(i), xσ(j)}]

=
2(N −B)(N −B − 1)

N(N − 1)

N∑
k=1

(N − k)xk

=

(
2− 2B(2N −B − 1)

N(N − 1)

) N∑
k=1

(N − k)xk.

Summing these two equations gives

E[DOPT(I, I)] +E[DRR(J, J)] =

(
2 +

B(B − 1)− 2B(2N −B − 1)

N(N − 1)

) N∑
k=1

(N − k)xk

=

(
2− B

N

(
4− 3

B − 1

N − 1

)) N∑
k=1

(N − k)xk,

and taking the expectation in Equation 9 concludes the proof.

C.4 Proof of Theorem 4.3

We use here the same notations as in Section 4.3. Before demonstrating the theorem, let us justify
why (αRR

t)t can be computed online, i.e for any t > 0, αRR
t can be computed knowing only the

events that occurred up to time t.

For any subset K of {1, . . . , N}, we denote RR(K) the algorithm that runs RR on {xi}i∈K and
ignores the other jobs. Running RR on all the input instance is equivalent to running concurrently
RR(I) and RR(J) with respective rates (αRR

t)t and (1−αRR
t)t. In fact, for any t > 0, the processing

rate of any unfinished job in I is αRR
t

|IRR
t | =

1
|IRR

t |+|JRR
t | , and we have the same for jobs in J .

Consider running RR on {x1, . . . , xN}. We denote tRR
i the completion time of job 1 ≤ i ≤ N . For

any t > 0, the amount of RR(I) executed until time t is
∫ t

0
αRR
u du. Therefore if we denote TRR

i (I)
the completion time of job i ∈ I when running RR(I), then we have

TRR
i (I) =

∫ tRR
i (I)

0

αRR
u du.

8

Knowing the sizes of jobs in I , TRR
i (I) can be computed as

TRR
i (I) = xi +

∑
j∈I
j ̸=i

DRR(j, i) = xi +
∑
j∈I

xj≤xi

xj +
∑
j∈I

xj>xi

xi.

We deduce that PAR with SRR update rule can be implemented running concurrently OPT(I) and
RR(J) with respective rates αRR and 1−αRR, where the processing rate updates as follows: initialize
c(I) = B, c(J) = N −B and αRR = c(I)

c(I)+c(J) =
B
N , and for any t > 0,

(i) if a job in J terminates, then c(J)← c(J)− 1,

(ii) if TRR
i (I) =

∫ t

0
αRR
u du for some i ∈ I , then c(I)← c(I)− 1,

and in both cases update αRR = c(I)
c(I)+c(J) .

Proof of Theorem 4.3. Using the processing rate (αRR
t)t>0, the delays generated by I on J are

exactly the same as if RR was running, and the delays by J on I are smaller than RR’s, because
OPT(I) runs with the same processing rate as RR(I) but all the jobs finish earlier, thus using Lemma
C.1 we deduce that

E[DPAR(I, J) +DPAR(J, I)] ≤ 2

B∑
i=1

N∑
j=B+1

E[min{xσ(i), xσ(j)}]

=
4B(N −B)

N(N − 1)

N∑
k=1

(N − k)xk.

Using Lemma 4.2 then Equation 2 we obtain

E[PAR(J)] ≤
N∑
i=1

xi +
(
2− B

N

(
4− 3B−1

N−1

)
+ 4B(N−B)

N(N−1)

) N∑
k=1

(N − k)xk

=

N∑
i=1

xi +
(
2− B(B−1)

N(N−1)

) N∑
k=1

(N − k)xk

≤
(
2− B(B−1)

N(N−1)

)(N∑
i=1

xi +

N∑
k=1

(N − k)xk

)
=
(
2− B(B−1)

N(N−1)

)
OPT(J).

Which proves the theorem.

9

	Introduction
	Organization and contributions
	Related work

	Ski-rental with time-dependent guarantees on the prediction
	Secretary problem with B predictions
	Preemptive B-clairvoyant job scheduling
	Few hints are not enough
	Parallel OPT-RR algorithm with adaptive processing rates
	Simulated round-robin update rule

	Experiments
	Conclusion
	Ski-rental with time-dependent guarantees on the prediction
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3

	Secretary problem with B predictions
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	AdaThresh with memory

	Preemptive B-clairvoyant job scheduling
	Proof of Theorem 4.1
	Intermediate Lemma and notation
	Proof of Lemma 4.2
	Proof of Theorem 4.3

