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ABSTRACT

Wearable devices such as AI glasses are transforming voice assistants into always-
available, hands-free collaborators that integrate seamlessly with daily life, but
they also introduce challenges like egocentric audio affected by motion and noise,
rapid micro-interactions, and the need to distinguish device-directed speech from
background conversations. Existing benchmarks largely overlook these complexi-
ties, focusing instead on clean or generic conversational audio. To bridge this gap,
we present WearVox, the first benchmark designed to rigorously evaluate voice as-
sistants in realistic wearable scenarios. WearVox comprises 3,842 multi-channel,
egocentric audio recordings collected via AI glasses across five diverse tasks in-
cluding Search-Grounded QA, Closed-Book QA, Side-Talk Rejection, Tool Call-
ing, and Speech Translation, spanning a wide range of indoor and outdoor environ-
ments and acoustic conditions. Each recording is accompanied by rich metadata,
enabling nuanced analysis of model performance under real-world constraints. We
benchmark leading proprietary and open-source speech Large Language Models
(SLLMs) and find that most real-time SLLMs achieve accuracies on WearVox
ranging from 29% to 59%, with substantial performance degradation on noisy
outdoor audio, underscoring the difficulty and realism of the benchmark. Addi-
tionally, we conduct a case study with two new SLLMs that perform inference
with single-channel and multi-channel audio, demonstrating that multi-channel
audio inputs significantly enhance model robustness to environmental noise and
improve discrimination between device-directed and background speech. Our re-
sults highlight the critical importance of spatial audio cues for context-aware voice
assistants and establish WearVox 1 as a comprehensive testbed for advancing wear-
able voice AI research.

1 INTRODUCTION

Wearable devices, such as AI glasses, are transforming voice assistants from handheld tools into
always-available, body-worn collaborators. Unlike phones and smart speakers where interactions are
episodic, hands-free only by choice, and typically occur in acoustically stable environments, wear-
ables operate at the edge of our attention, seamlessly integrating with daily activities like walking,
commuting, and socializing. While this convenience unlocks new possibilities, it also introduces
unique challenges: egocentric audio affected by motion and wind noise, rapid micro-interactions
constrained by strict latency requirements, and the need to distinguish device-directed requests from
side speech and background noise. Yet, existing benchmarks such as VoiceBench (Chen et al.,
2024), Spoken-CoQA (You et al., 2022), and Spoken-SQuAD (Lee et al., 2018) focus primarily on
clean audio or generic conversational scenarios, overlooking the specific complexities inherent to
wearable interactions.

To bridge this critical gap, we introduce WearVox, the first wearable-specific voice assistant bench-
mark designed to rigorously evaluate state-of-the-art speech Large Language Models (SLLMs) in re-
alistic wearable scenarios. WearVox comprises a comprehensive collection of 3,842 multi-channel,
egocentric audio recordings, spanning 5 different tasks that reflect practical situations encountered
by users of wearable devices such as AI glasses, both indoors and outdoors. WearVox is distin-
guished by several valuable features:

1https://github.com/WearVox/release
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Meta Confidential and Proprietary

     What’s the score of the Warriors game?

             Warrior game score…
             Warriors 110, Lakers 99, ten minutes left

Search 
grounded 
QA

4

          Oh wait, yes! I will be right there!

                                     Hurry up! We are late!

              (Silence…)

       Look up my vet appointment.

Tool 
calling              {'name': calendar_lookup, 'params': {...}}

Side talk
rejection

      Quali sono alcuni posti popolari per uscire 

la sera in questa città?

          There is a famous street in the city 

center that is always bustling.

     Questo sembra interessante. Mi può dire 

di più sulla via e che tipo di atmosfera ha?                          

Bidirectional 
speech translation

      What are some popular places to go out at 

night in this city?

           C'è una strada famosa nel centro 

           della città che è sempre animata. 

       That sounds interesting. Can you tell me 
more about the street and what kind of 
atmosphere it has?

         Where can I watch Warriors game in person?

             Chase Center in San Francisco, CaliforniaClosedbook 
QA

Figure 1: Examples of tasks from the WearVox dataset. The audio queries are recorded with AI
glasses (transcribed in blue). The ground truth for each task is provided in text format.

1. Ego-centric, multi-channel audio: All recordings in WearVox are captured from a first-
person perspective using AI glasses equipped with multiple microphones, simulating the
audio input typical of wearable devices. The dataset is designed to reflect the complexity
of real-world interactions, featuring a variety of speaker roles including the primary glasses
wearer, conversational partners, and bystanders who positioned at different angles and dis-
tances. This setup enables the modeling of realistic conversational dynamics, such as direct
queries, interruptions, side-talk, and non-assistant-directed speech, which are essential for
robust and context-aware voice assistant performance.

2. Comprehensive environmental and acoustic coverage: WearVox covers a wide range
of indoor and outdoor environments, including office spaces, cafés, cars, as well as streets,
parks, and construction zones. Approximately 31% of the dialogues were recorded indoors,
while 63% took place outdoors. Recordings were conducted under both quiet and noisy
conditions, with 58% of the data collected in noisy environments and 42% in quiet settings.
The dataset features 13 different noise types, such as rustling leaves and construction noise,
carefully selected to represent real-world scenarios. Each audio sample is accompanied by
detailed metadata describing participant positions, distances, and environmental context,
ensuring that the dataset captures the nuanced challenges inherent to wearable audio.

3. Diverse and realistic wearable assistant tasks: The benchmark encompasses a broad
array of wearable assistant tasks, including Search-Grounded Question Answering (QA),
Closed-Book QA, Side-Talk Rejection, Tool Calling, and Speech Translation. The dataset
is meticulously curated to reflect the functionalities expected of next-generation wearable
assistants, ensuring that models are evaluated across a wide spectrum of practical and chal-
lenging scenarios.

Building on the WearVox benchmark, we conduct comprehensive experiments to evaluate the per-
formance of state-of-the-art open-source and proprietary SLLMs in realistic wearable scenarios. Our
evaluation includes leading models such as GPT-4o (Hurst et al., 2024) and Gemini 2.5-flash (Co-
manici et al., 2025), as well as open-source models like Qwen-2.5 omni (Xu et al., 2025), Gemma
3n (Team, 2025a), Phi-4 multimodal (Abouelenin et al., 2025), and Kimi-Audio (Ding et al., 2025).
For a robust comparison, we also include a two-stage pipeline combining Whisper ASR (Radford
et al., 2023) with a text LLMs GPT-5 (OpenAI, 2025). This diverse set of models allows us to
systematically analyze the strengths and limitations of current SLLMs when faced with the unique
challenges posed by egocentric, multi-channel wearable audio. The experimental results show that
most real-time SLLMs achieve accuracies on WearVox ranging from 29% to 59%, with substan-
tial performance degradation on noisy outdoor audio, underscoring the difficulty and realism of the
benchmark.
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Benchmark Egocentric
Audio

Multi-channel
Audio

Conversational
Dynamics

Domain
Diversity

Dataset
Size

Audio
Source

Spoken-SQuAD × × × × 42K TTS
Spoken-CoQA × × × ✓ 40K TTS
HeySQuAD × × × × 173K TTS/recording
LibriSQA × × × ✓ 214K LibriSpeech
AudioBench × × × ✓ 5.5K LibriSpeech/Clotho
MMAU × × × ✓ 10K Diverse public audio
VoiceBench × × × ✓ 5.8K TTS/recording
CAVA × × partial ✓ 6K STOP
FDX-Bench × × ✓ × <1K Candor/TTS
WearVox ✓ ✓ ✓ ✓ 3.8K Consumer wearables

Table 1: Comparison of WearVox to existing voice assistant benchmarks.

To assess the impact of multi-channel audio signal in wearable scenarios, we conduct a case study
with two new SLLMs: one utilizing single-channel audio and another leveraging a multi-channel
approach built on the Llama 4 Scout (Team, 2025b) architecture. Our findings reveal that incor-
porating multi-channel audio inputs greatly improves model resilience to environmental noise and
enhances the ability to differentiate between device-directed speech, side conversations, and back-
ground noise. Specifically, side talk rejection accuracy increased from 85.6% to 93.9%, while overall
accuracy improved from 61.9% to 66.4%. These results highlight the critical importance of spatial
audio cues for enabling context-aware voice assistants in wearable applications.

2 RELATED WORK

Voice Assistant Benchmarks. The trajectory of voice assitant benchmarking has evolved from
ASR-dependent comprehension tasks to comprehensive, end-to-end evaluation of speech LLMs.
Early datasets such as Spoken-SQuAD (Lee et al., 2018) and Spoken-CoQA (You et al., 2022)
extended SQuAD and CoQA into the spoken domain by generating speech with TTS. Subse-
quent benchmarks, including HeySQuAD (Wu et al., 2023) and LibriSQA (Zhao et al., 2024),
improved realism by incorporating large-scale human-spoken recordings, reducing reliance on syn-
thetic speech. More recent efforts—AudioBench (Wang et al., 2025), MMAU (Sakshi et al., 2024),
VoiceBench (Chen et al., 2024), and CAVA (Held et al., 2025)—broaden the scope beyond QA
to include speech instruction following, paralinguistic understanding, acoustic scene perception,
and even music reasoning, reflecting the expanding capabilities of Audio-LLMs. Finally, the latest
benchmarks such as CAVA (Held et al., 2025) and FDX-bench (Lin et al., 2025) emphasize real-time
conversational aspects, explicitly evaluating turn-taking, latency, and duplex interaction—crucial
properties for practical voice assistants. In contrast, WearVox is the first voice benchmark designed
specifically for wearable computing, leveraging egocentric multi-channel audio and a diverse range
of real-world environments to capture conversational dynamics (such as side talk and non-assistant-
directed speech) that are critical for advancing next-generation voice assistants. A more detailed
comparison between WearVox and existing voice assistant benchmarks is provided in Table 1.

Speech LLMs. Modern speech LLMs push beyond ASR-LLM-TTS pipelines toward end-to-end,
streaming “omni” assistants. GPT-4o (Hurst et al., 2024) integrates audio understanding and gen-
eration with real-time performance, catalyzing speech-first UX in production systems. Gemini
2.5 Flash (Comanici et al., 2025) adds native audio support and controllable “thinking” budgets,
balancing latency and reasoning for live dialog. In the open-weights space, Qwen2.5-Omni (Xu
et al., 2025), Kimi-Audio (Ding et al., 2025), GLM4-Voice (Zeng et al., 2024) and Phi-4 Mul-
timodal (Abouelenin et al., 2025) provide unified speech-text modeling with competitive audio-
reasoning performance. Gemma 3n (Team, 2025a) extends this trend to mobile-scale audio under-
standing. Full-duplex LLMs such as Moshi (Défossez et al., 2024), SALMONN-omni (Yu et al.,
2024), and SyncLLM (Veluri et al., 2024) enable listen and speak at the same time without strict
turn-taking. As a complement, we introduce a multichannel SLLM and share findings on the role of
spatial audio, offering insights beyond the single-channel focus of existing speech LLMs.

3
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3 WearVox DATASET

3.1 PROBLEM DEFINITION

The WearVox dataset is developed to benchmark and advance the capabilities of wearable voice
assistants in real-world, egocentric audio environments. It provides a comprehensive suite of tasks
(as illustrated in Figure 1), diverse speaker roles, and varied acoustic conditions to facilitate robust
evaluation and development of next-generation voice assistant systems.

3.1.1 TASKS FORMULATION

WearVox encompasses five core tasks that reflect both common and challenging scenarios for wear-
able voice assistants. All tasks are formulated as a Text In, Speech In, Text Out problem, defined
as:

f(TI , SI) → TO

where TI is the input text prompt, SI is the input speech signal, and TO is the output text. Each task
has a distinct fine-grained composition, as detailed below:

1. Search-Grounded QA. Many daily queries to wearable assistants (e.g., financial news,
sports scores) require up-to-date, external information. In this task, the assistant must pro-
vide factual answers based on search results.

• TI : Task description and external search results
• SI : Wearer request in speech
• TO: Answer in text

2. Closed-Book QA. The assistant responds to general knowledge questions without access
to external resources, relying solely on its internal knowledge.

• TI : Task description
• SI : Wearer request in speech
• TO: Answer in text

3. Tool Calling. The assistant is required to invoke specific tools or APIs (e.g., music player,
reminders) based on wearer requests.

• TI : Task description and tool/function definitions (including tool name, tool descrip-
tion, and parameters)

• SI : Wearer request in speech
• TO: Tool call in JSON format

4. Side Talk Rejection. The system must accurately distinguish and ignore non-device-
directed speech, such as background conversations and bystander chatter.

• TI : Task description
• SI : Side talk speech, triggered by either the wearer, conversational partner, or by-

standers
• TO: Special control token (e.g., [Mute]) to suppress downstream components (such as

TTS)

5. Bidirectional Speech Translation. The assistant facilitates translation between the wearer
and a conversational partner who speak different languages. In this task, the assistant must
perform both speaker diarization and speech translation simultaneously. We focus on of-
fline, whole-dialog translation rather than simultaneous translation, simplifying the evalu-
ation protocol under the assumption that performance in both settings is highly correlated.

• TI : Task description
• SI : Bilingual, multi-turn dialogue between two the wearer and conversational partner
• TO: Diarized, translated dialogue in text

4
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3.1.2 SPEAKER ROLES

WearVox simulates realistic, multi-party interactions by involving three distinct speaker roles:

• Wearer: The primary user of the wearable device, who initiates most device-directed
queries and commands. In Search-Grounded QA, Closed-Book QA, and Tool Calling tasks,
the wearer is typically the source of the spoken input (SI ), issuing questions or requests
to the assistant. In Side Talk Rejection, the wearer may also produce non-device-directed
speech, testing the assistant’s ability to distinguish between intentional and incidental in-
put. For Bidirectional Speech Translation, the wearer participates as one of the two parties
in the bilingual conversation, requiring the assistant to correctly identify and translate their
utterances.

• Conversational Partner: An individual actively engaged in dialogue with the wearer. This
role is especially prominent in the Bidirectional Speech Translation task, where the con-
versational partner speaks a different language and participates in multi-turn exchanges
with the wearer. The assistant must perform speaker diarization to attribute each utterance
correctly and provide accurate translations for both parties.

• Bystander: A third-party speaker who may contribute incidental or background speech,
simulating real-world distractions. The bystander’s role is most critical in the Side Talk
Rejection task, where their speech serves as a test for the assistant’s ability to filter out non-
device-directed input. Bystanders may also be present in other tasks, adding complexity
to the audio environment and challenging the assistant’s speaker identification and intent
recognition capabilities.

3.1.3 ACOUSTIC CONDITIONS

The dataset includes recordings from a wide variety of environments, to capture the full spectrum of
acoustic conditions encountered by wearable voice assistants.

Indoor Environments: Recordings are conducted in rooms of varying sizes (small, medium, and
large), offices, and busy hallways. These settings introduce a range of reverberation levels, back-
ground conversations, and ambient noises such as air conditioning or office equipment. Such condi-
tions are particularly relevant for tasks like Search-Grounded QA and Closed-Book QA, where the
assistant must accurately process user queries despite potential acoustic interference.

Outdoor and Mobile Scenarios: Sessions take place in parks, picnic areas, parking lots, cars,
and near construction zones. These environments introduce dynamic background noises, including
wind, traffic, and construction sounds, which can mask or distort wearer speech.

Noise Diversity and Signal-to-Noise Ratios: The dataset systematically varies the signal-to-noise
ratio (SNR) by including both quiet scenarios (e.g., soft whispers, rustling leaves) and high-noise
situations (e.g., vacuum cleaners, subways, buses, motorcycles). This diversity ensures that the as-
sistant’s performance can be evaluated across a continuum from controlled, low-noise environments
to highly challenging, real-world auditory scenes.

3.2 DATA COLLECTION

The process comprises three key stages: script collection, egocentric audio recording, and ground
truth annotation. Each stage is carefully structured to maximize the realism, utility and reliability of
the resulting dataset.

Script Collection The central objective in script collection is to ensure that the dataset authenti-
cally represents real-world use cases. For spoken QA, we curate questions from the CRAG (Yang
et al., 2024) and Head-to-tail (Sun et al., 2024) datasets, categorizing them into popular, static fac-
tual questions for closed-book QA, and long-tail, rapidly changing factual questions for search-
grounded QA. For the remaining three tasks, we first design several representative scenarios for
each, then employ annotators to expand and construct multi-turn conversations based on these sce-
narios. For example, in the bidirectional speech translation task, seed scenarios typically involve a

5
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foreigner approaching a local to ask questions on topics such as finding locations, accommodations,
transportation, and reservations. In the tool calling task, we provide 8 predefined tools including
calendar, web search, local search, music player etc. Annotators, with the assistance of LLMs (e.g.,
Llama 3.3 70B), create multi-turn conversations based on these scenarios and domains.

Egocentric Audio Recording With the scripts prepared, the next step involves capturing egocen-
tric multichannel audio data from glasses. To this end, we recruit a diverse group of native speakers:
for the speech translation task, we hire native speakers of Italian, Spanish, Portuguese, German, and
French who also understand English scripts; for the other tasks, we engage native English speakers.
For each session, 2–3 individuals collaborate to simulate realistic interactions based on the provided
scripts. Importantly, scripts serve as references during audio recording to enhance data quality;
speakers are encouraged to follow the script loosely to ensure that the recorded speech sounds natu-
ral and conversational, rather than read verbatim. Details are available in Appendix A.3

Ground Truth Annotation After data collection, we instructed our annotators to generate ground
truth annotations for each dialogue. For the speech translation task, annotators transcribe the audio
and provide corresponding translations based on the scripts and recordings. For the tool invocation
task, annotators specify the appropriate API calls for each interaction. For spoken QA, we primarily
reuse labels from the original CRAG and Head-to-Tail datasets. For non-device-directed speech
samples, we assign a special [Mute] token to indicate that these queries should be ignored as invalid.

3.3 DATASET STATISTICS

We collected 3,842 dialogues with egocentric multichannel audio recordings, comprising 547
Search-Grounded QA, 588 Closed-Book QA, 1,082 Side-Talk 2, 1,125 Tool Calling, and 1,000
Translation tasks. Approximately 3 31% of the recordings took place indoors, while 63% were
recorded outdoors. In terms of noise conditions, 58% of the recordings were made in noisy envi-
ronments, and 42% in quiet settings. A more detailed breakdown of environment and noise type
distributions is provided in Appendix A.4.

4 BENCHMARKING

In this section, we systematically evaluate state-of-the-art SLLMs on the WearVox benchmark to
assess their capabilities and limitations in addressing the unique challenges of wearable contexts.

4.1 EXPERIMENTAL SETUP

4.1.1 BASELINES

We consider both proprietary and open-source models models in our evaluation.

• Open-Source Models: Gemma 3n (Team, 2025a), Kimi-Audio (Ding et al., 2025),
Qwen2.5-Omni (Xu et al., 2025)

• Proprietary Models: GPT-4o Audio 4 (Hurst et al., 2024), Gemini 2.5 Flash (Comanici
et al., 2025), GPT-5 w/ Whisper (OpenAI, 2025)

Since the existing state-of-the-art SLLMs are trained on single-channel audio, we follow previous
work (Lin et al., 2024; Xie et al., 2025) applying beamforming to convert the multichannel record-
ings into a single channel for evaluating single-channel SLLM performance.

4.1.2 EVALUATION SETTINGS

To facilitate comprehensive and consistent evaluation across diverse tasks, we divide our assessment
into two settings: turn-based and session-based evaluation.

2The Side Talk Rejection task contains 582 side talk and 500 valid queries that duplicated from tool-calling
tasks.

3Speech translation samples are excluded from this statistic due to missing audio metadata.
4https://platform.openai.com/docs/models/gpt-4o-audio-preview
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Baselines Search
Grouned QA

Closedbook
QA

Tool
Calling

Side Talk
Rejection

Turn-based
Micro-avg

Speech
Translation

Gemma 3n 29.4 20.4 5.7 59.9 29.7 14.8
Kimi-Audio 10.1 31.5 63 47.0 43.6 41.8
Qwen2.5-Omni 35.8 29.8 7.3 60.4 33.1 43.9

GPT-4o Audio 50.5 59.4 8.9 66.0 43.1 76.0
GPT-5 w/ Whisper 57.8 70.6 35.7 73.8 57.8 92.9*
Gemini 2.5 Flash 49.0 46.8 44.4 88.2 59.8 50.3
Gemini 2.5 Flash Thinking 48.8 61.4 68.1 91.4 71.3 70.1

Table 2: Benchmarking results for both open-source and proprietary SLLMs on four turn-based tasks
(including the micro-average across all turn-based tasks) and a session-based speech translation task.
*Note: For the GPT-5 with Whisper baseline in the speech translation task, due to Whisper’s context
limitations, dialogs are transcribed turn by turn using ground truth segmentation and diarization
labels.

Turn-based Evaluation Turn-based evaluation is applied to tasks such as Search Grounded QA,
Closed-book QA, Tool Calling, and Side Talk Rejection, where model answer accuracy is assessed
at each turn. For Search Grounded QA and Closed-book QA, we employ an LLM-based judge that
references annotated ground truth responses to evaluate answer quality. In the Tool Calling task,
we utilize Abstract Syntax Tree (AST) evaluation, following the methodology described in Patil
et al. (2024), to rigorously compare the structure and content of predicted tool calls. For Side Talk
Rejection, performance is measured using binary accuracy, indicating whether the model correctly
identifies and suppresses non-device-directed speech. Tool Calling and Side Talk task share the
same task prompt as shown in Appedix A.1. Thus, the model must generate a tool call for valid
requests and produce a special control token to handle side talk.

Session-based Evaluation Session-based evaluation is used for the speech translation task to as-
sess translation quality over entire dialog sessions. We provide ground truth translations and prompt
an LLM judge to score each turn based on the quality of speaker diarization and translation. The
final session score is computed by averaging the turn-level scores, with penalties applied for missing
or hallucinated turns. The LLM judge prompts and the session-level score aggregation function are
detailed in Appendix A.2.

LLM Judge Quality Validation The LLM-based judge for QA tasks was adapted from the auto-
evaluation of CRAG, which has demonstrated over 98% agreement with human evaluation. For the
translation task, we validated the judge on 200 randomly sampled examples and observed a strong
Pearson correlation (r = 0.89) between our judge’s scores and human ratings, with human raters
using the same scoring scale as the judge.

4.2 MAIN RESULTS

Table 2 reports the main results of WearVox, highlighting the substantial variability in performance
across tasks and models. Open-source baselines, including Gemma 3n, Kimi-Audio, and Qwen2.5-
Omni, generally underperform, particularly in search grounded QA and tool calling. This underper-
formance can be partially attributed to their relatively smaller model sizes (fewer than 8B param-
eters), which limits their reasoning capabilities across different modalities, such as user audio and
text context. In contrast, proprietary SLLMs demonstrate more balanced performance. Both GPT-
4o Audio and Gemini 2.5 Flash achieve overall scores above 40, with GPT-4o Audio excelling in
speech translation (76.0%) and Gemini 2.5 Flash exhibiting strong robustness to side-talk (88.2%).
However, we observe that GPT-4o Audio occasionally ignores the task prompt and generates direct
responses in the tool calling task, resulting in low tool calling accuracy (8.9%). We hypothesize
that GPT-4o Audio is specifically trained to handle audio input and output, and that structured text
output capability is not fully optimized. GPT-5 with Whisper achieves the best search grouned QA
(57.8%) and closed-book QA (70.6%), yielding a strong overall turn-based accuracy of 57.8%.

Enabling thinking mode in Gemini 2.5 Flash significantly improves performance on four out of
five tasks, increasing overall turn-based task accuracy from 59.8% to 71.3% and speech translation

7
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Task Gemini 2.5 Flash Gemini 2.5 Flash Thinking GPT-4o Audio

Closedbook QA 1368.69 2287.76 1220.22
Search Grounded QA 1526.56 9194.94 1867.66
Speech Translation 2138.11 11321.49 7523.24
Side Talk Rejection 1306.62 2176.97 1341.04
Tool Calling 1404.69 2084.19 1289.99

Table 3: Time to First Token (TTFT) breakdown per task for Gemini 2.5 Flash (with and without
thinking mode) and GPT-4o Audio. All values are reported in milliseconds (ms).

accuracy from 50.3% to 70.1%. However, it is important to note that thinking mode introduces sub-
stantial latency, as extensive reasoning tokens are generated prior to producing the actual response.

In our experiments, we observed a substantial increase in time to first (response) token (TTFT)
latency for Gemini 2.5 Flash in Thinking mode, averaging 5546 ms compared to 1592 ms in non-
Thinking mode. In Table 3 we report the per-task TTFT breakdown for Gemini 2.5 Flash with and
without thinking mode, as well as GPT-4o Audio. We observe that the thinking model exhibits sig-
nificantly higher latency compared to its non-thinking counterpart, primarily due to the overhead
of thinking token generation. GPT-4o Audio demonstrates comparable latency to Gemini 2.5 Flash
across most tasks, with the notable exception of speech translation, where the slower audio encoding
during prefill likely contributes to increased delay. Overall, the latency difference between thinking
and non-thinking model could significantly impact the user experience on wearable devices. Bal-
ancing the trade-off between real-time responsiveness and response quality remains an important
direction for future research.

4.3 CASE STUDY: MULTICHANNEL SLLMS

Beyond existing single-channel SLLMs, we present a case study in which we develop a multichannel
SLLM and compare its performance to its single-channel counterpart. Our primary research question
is: Does multichannel audio provide additional value over the beamformed audio channel in
real-world wearable voice assistant tasks?

We construct our SLLM by building on Llama-4-Scout-17B-16E (Team, 2025b) and a 1B parameter
Conformer (Gulati et al., 2020) speech encoder that pre-trained with BEST-RQ (Chiu et al., 2022) as
in Llama3 speech (Dubey et al., 2024). For training, we follow the speech alignment methodology
described in AudioChatLlama (Fathullah et al., 2024). We begin with automatic speech recognition
(ASR) data and prompt Llama-4-Scout-17B-16E to generate responses based on the corresponding
text transcripts. The original audio is then paired with these generated responses to create synthetic
speech QA data. Both the speech QA and ASR datasets are used to train LLM, along with an audio
feature projection layer, while keeping the speech encoder frozen. More implementation details are
avilable in Appendix A.6

To enable native multichannel audio processing, we convert all the original single-channel audio into
simulated five-channel recordings, based on the microphone array configuration of AI glasses (Meta,
2024). Room impulse responses (RIRs) from real environments are used to model spatial diversity.
We further augment the data by adding indoor noise from a diverse corpus at random signal-to-
noise ratios (SNRs) ranging from -5 dB to 40 dB. Additionally, we introduce varying overlap ratios
of bystander speech into the multichannel mixtures to simulate realistic acoustic conditions. We
use the beamformed single-channel audio to train a single-channel SLLM, which we refer to as
SC Wearllama (Single Channel Wearable Llama). In contrast, the model trained on multi-channel
audio is denoted as MC Wearllama. . As illustrated in Figure 2, unlike the SC Wearllama, which
processes only the beamformed audio channel (c x), the MC Wearllama processes both channel 0
(c 0), typically the channel with the highest SNR, and the beamformed channel in an interleaved
manner.

Table 4 compares SC Wearllama and MC Wearllama on the WearVox benchmark. MC Wearllama
shows a clear improvement in tool calling (63.9% vs. 58.5%) and side-talk rejection (93.9% vs.
85.4%), indicating that spatial audio cues help the model better separate user-directed speech from
background interference and execute device-control tasks more reliably. However, both models
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Figure 2: Illustration of SC Wearllama and MC Wearllama inference. SC Wearllama encodes
only the beamformed audio channel (c x), whereas MC Wearllama processes both channel 0
(c 0),typically the channel with the highest SNR, and the beamformed channel in an interleaved
manner.
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Figure 3: Effect of acoustic environment on SLLM performance in turn-based tasks.

exhibit nearly identical performance on the two QA tasks. We hypothesize that the advantages
of multichannel audio diminish when recordings are made primarily in quiet indoor environments.
Further discussion on the impact of acoustic environments can be found in Section 4.4.

4.4 IMPACT OF ACOUSTIC ENVIRONMENTS

Figure 3 compares model performance on turn-based tasks across different acoustic environments,
specifically contrasting indoor versus outdoor and quiet versus noisy conditions. The results reveal
a clear trend: most models exhibit degraded performance in outdoor and noisy environments. For
example, Gemma 3n, Qwen2.5-Omni, GPT-4o, Gemini 2.5 Flash, and GPT-5 w/Whisper all expe-
rience performance drops ranging from 3% to 15% in outdoor settings, with Gemma showing the
largest degradation, likely due to its smaller model size. In contrast, Kimi-Audio demonstrates sig-
nificantly higher accuracy in outdoor environments, which can likely be attributed to its pre-training
data (Ding et al., 2025) that includes a balanced mix of noisy and clean audio. Interestingly, the
reasoning model Gemini 2.5 Flash Thinking exhibits strong noise robustness, with its accuracy in
outdoor noisy conditions matching or even slightly surpassing its performance in indoor quiet en-
vironments. This suggests that reasoning-enhanced speech-language models are inherently more
robust to real-world noise. Similar trends are observed for both SC Wearllama and MC Wearllama,
which are trained with noise-augmented audio. Notably, MC Wearllama demonstrates significantly
greater robustness to outdoor noise, achieving approximately 5% higher accuracy in outdoor noisy
environments compared to SC Wearllama, while maintaining comparable performance in indoor
quiet conditions. These findings address the research question posed in Section 4.3, indicating that
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Baselines Search
Grouned QA

Closedbook
QA

Tool
Calling

Side Talk
Rejection

Turn-based
Micro-avg

SC Wearllama 43.3 42.5 58.5 85.4 61.9
MC Wearllama 43.3 42.2 63.9 93.9 66.4

Table 4: Evaluation results of SC Wearllama and MC Wearllama on turn-based tasks.

multichannel audio enhances the noise robustness of SLLMs in real-world wearable voice as-
sistant tasks.

5 CONCLUSION

In this work, we introduced WearVox, the first comprehensive benchmark specifically designed to
evaluate the performance of voice assistants in realistic wearable scenarios. Through a diverse set of
multi-channel, egocentric audio recordings collected via AI glasses, WearVox captures the unique
challenges posed by wearable devices, including environmental noise, motion artifacts, and the need
to distinguish device-directed speech from background conversations. Our benchmarking of state-
of-the-art proprietary and open-source SLLMs reveals that current real-time models struggle with
these challenges, particularly in noisy outdoor environments, highlighting the gap between existing
solutions and real-world requirements and point out an important research direction on he trade-off
between real-time responsiveness and response quality in reasoning SLLMs. Furthermore, our case
study demonstrates that leveraging multi-channel audio inputs can significantly improve model ro-
bustness to noise and enhance the ability to discriminate between device-directed and background
speech. These findings underscore the critical role of spatial audio cues in developing context-aware,
reliable voice assistants for wearable devices. We hope that WearVox will serve as a valuable re-
source for the research community, driving the development of more robust and intelligent wearable
AI systems that can seamlessly integrate into everyday life.

Future Work Several promising directions remain for extending WearVox. First, incorporating
recordings from diverse hardware platforms with varying microphone array geometries would en-
able evaluation of model transferability and reduce device-specific optimization concerns. Second,
extending the benchmark to include multimodal signals—such as visual data from cameras and mo-
tion information from IMU sensors—would better reflect real-world wearable computing. Visual
cues can aid speaker identification and object grounding, while IMU data can help disambiguate
device-directed speech through head orientation and gesture detection. Finally, expanding task cov-
erage to include simultaneous translation, proactive assistance, and multi-step planning would fur-
ther advance wearable AI capabilities. We believe these extensions will establish WearVox as an
evolving platform that continues to drive progress in context-aware voice assistants.
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6 ETHICS STATEMENT

The Wearvox benchmark dataset was commissioned and collected from consenting adult partic-
ipants. All participants provided informed consent prior to their involvement in the study. Ap-
proximately 100 participants, all over the age of 18, were recruited by a third-party vendor and
compensated for their participation. Personal identifying information was either obfuscated or not
collected, and any demographic data was aggregated and used solely for fairness analysis. The
dataset is intended for evaluation purposes only and must not be used for LLM training.
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A APPENDIX

A.1 TASK PROMPTS

Listing 1: Closedbook QA task prompt
You are given an audio question. Your task is to answer the question in

as few words as possible.

Listing 2: Search Grounded QA task prompt
You are given an audio question, which was asked at {query_time}. Your

task is to answer the question in as few words as possible. You are
also provided with the references below, which may or may not help
answer the question.

{search_result}

Listing 3: Speech Translation task prompt: English-German example

**Translate a Two-Person Conversation Audio**

You will be given an audio input of a conversation between two people, ‘
speaker0‘ and ‘speaker1‘. Translate their conversation in real-time
according to the following rules:

* ‘speaker0‘ speaks German. Translate their dialogue to **English**.
* ‘speaker1‘ speaks English. Translate their dialogue to **German**.

**Output Format:**

* Provide only the translated text.
* Retain the original speaker labels (‘speaker0‘, ‘speaker1‘).
* Use the following format:

‘speaker0: [Translated text in English]‘
‘speaker1: [Translated text in German]‘

**Example Translation:**

* **Audio Input:** ( Conversation between ‘speaker0‘ and ‘speaker1‘ )
‘speaker0: Hast du die Flugtickets gebucht?‘
‘speaker1: Yes, I have booked them for tomorrow.‘

* **Translated Output:**
‘speaker0: Have you booked the flight tickets?‘
‘speaker1: Ja, ich habe sie fur morgen gebucht.‘

Listing 4: Tool Calling and Side Talk Rejection task prompt
You are a friendly AI voice assistant on the smart glasses. Sometimes,

the user may need to interact with people around them or may no
longer want to engage in the conversation with the AI assistant. In
such cases, answer with ’[Mute]’. Otherwise, follow the instructions
below.

# Tools
You have access to the following tools. You might need to use one or more

functions/tools calls to fulfill the task. If none are needed, then
proceed to the response.

You can call tools using the syntax:
‘‘‘
<|TOOL|>[{"name": <tool_name_foo>, "parameters": {"<arg1>": ..., "<arg2

>": ...}}, {"name": <tool_name_bar>, "parameters": {"<arg1>": ..., "<
arg2>": ...}}]</|TOOL|>

‘‘‘

{tool_definitions}

# Info
Instruction: You are a helpful AI assistant designed to facilitate user

interaction with a wearable device.
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The current time is {current_time}
The user is currently in {current_location}

A.2 LLM JUDGE

We use Llama 3.3 70B as LLM judge, the QA and translation judge prompts are provided in Listing
5 and 6. For session-level score aggregation in translation task, given the list of LLM judge scores
per turn: {s1, s2, . . . , sN}, we compute the session based score S as:

S =

∑N
i=1 si

max(N,NGT)

Where N is the number of turns predicted by model and NGT is the number of turns from ground
truth annotation.

Listing 5: Prompt for speech translation LLM judge.

**Evaluating a Live Two-Way Translation Model with Time-Aware Scoring**

Your task is to assess the performance of a two-way live translation
model in translating conversations between two speakers, **Speaker0**
({lang_speaker0} translated {lang_speaker1}) and **Speaker1** ({

lang_speaker1} translated {lang_speaker0}). You will evaluate the
model’s translation quality for a specific ground truth turn,
considering the prior turns and the model’s output translations.

**Input Data**

You will receive the following input data:

1. Ground truth translations for each turn, including timestamps.
{translation_ground_truth}

2. The target ground truth turn to be evaluated, including timestamps
{target_turn_ground_truth}

3. Prior turns of the target ground truth turn from ground truth
translations, including timestamps.

{prior_turns_ground_truth}

4. Full translations from model’s output, without timestamps.
{model_output}

**Groundtruth Format**
The ground truth format appears to be a text file containing a

conversation between two speakers. The format is as follows:

[speaker ID] [timestamp] [utterance]

Where:

* ‘speaker ID‘: a number (0 or 1) indicating which speaker is speaking.
* ‘timestamp‘: a pair of numbers in square brackets, representing the

start and end times of the utterance in seconds (e.g.
‘[16.16,20.46]‘)

* ‘utterance‘: the text of what the speaker said. Speaker 0’s utterances
are ALWAYS in {lang_speaker1}, and Speaker 1’s utterances are ALWAYS
in {lang_speaker0}.

**Model Output Format**
The model output format appears to be a text file containing a

conversation between two speakers, with each line representing a
single turn in the conversation. The format is as follows:

‘speaker[ID]: [utterance]‘

Where:
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* ‘speaker[ID]‘: a string indicating which speaker is speaking, with ‘ID‘
being either 0 or 1.

* ‘utterance‘: the text of what the speaker said, which is a translation
of the original text. Speaker 0’s utterances SHOULD ALWAYS BE {
lang_speaker1}, and Speaker 1’s utterances SHOULD ALWAYS BE in {
lang_speaker0}.

**Evaluation Steps**

To evaluate the model’s performance, follow these steps:

**Step 1: Align the Model Output with the Ground Truth**

* Match the model output turns with the corresponding ground truth turns
based on the order, speaker label, prior turns, and ground truth
timestamps.

* Maintain the sequence from the ground truth timestamps.
* If the model output turn is missing in the ground truth or the speaker

label is incorrect, assign a score of **0.00**.

**Step 2: Fine-Grained Translation Quality Scoring**

Compare the aligned model output turn with the target ground truth turn:

1. **Speaker Check**: If the speaker label is incorrect, assign a score
of **0.00**.

2. **Language Check**: Speaker 0’s utterances should ALWAYS be in {
lang_speaker1}, and Speaker 1’s utterances should ALWAYS be in {
lang_speaker0}, If the language is incorrect, assign a score of
**0.00**.

3. **Meaning and Accuracy Evaluation**: Assess the model’s output
translation against the ground truth translation, considering:

* **Meaning preservation** (full semantic equivalence)
* **Completeness** (no omissions or unnecessary additions)
* **Tone/style** (formality, politeness, etc.)
* **Grammar & fluency**

4. **Time-Related Adjustments**: Use the ground truth duration to adjust
the score:

* **Long duration + overly short translation**: penalize for
under-translation

* **Short duration + overly long translation**: penalize for
possible hallucination

* If the translation is unrelated to the time-bound content,
assign a score of **0.00**

5. **Strict Fine-Grained Scoring Scale**: Assign a score between **0.00**
and **1.00**, in increments of **0.05**, based on the evaluation

criteria.

**Scoring Scale**

Use the following scoring scale:

* **1.00**: Perfect match in meaning, tone, grammar, and length
* **0.95**: Trivial synonym/word-order differences, perfect meaning
* **0.90**: Very minor rewording, full meaning intact
* **0.85**: Slightly less natural phrasing, meaning intact
* **0.80**: Minor grammar/style issues but meaning preserved
* **0.75-0.70**: Small meaning shifts or mild omissions
* **0.65-0.55**: Noticeable meaning loss or mistranslation of a detail
* **0.50-0.40**: Major omissions or additions, significant meaning loss
* **0.35-0.20**: Large distortion of meaning, wrong tense, or unrelated

info
* **0.15-0.05**: Almost completely wrong; only tiny fragments correct
* **0.00**: Wrong speaker, missing turn, totally unrelated, or

hallucinated content

**Important Notes**

* Be **strict**: even small meaning changes reduce the score.
* Missing turn or wrong speaker label **0.00**.
* Time-based penalties are applied for unrealistic translation length vs.

speech duration.
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* Prioritize **meaning fidelity and temporal alignment**.

**Output Format**
Strictly output only the following JSON format: No additional words or

sentences outside of {{ and }} of the json format since the output
will be parsed by a python script.

{{"translation_score": 0.00-1.00, "reason": "reason for score", "
aligned_turn_model_output": "aligned turn from model output without
timestamp", "target_turn_ground_truth_translation":"target turn from
ground truth translation without timestamp" }}

Listing 6: Prompt for QA LLM judge.
Assume you are a human expert in grading predictions given by a model.

You are given a question and a model prediction. Judge if the
prediction matches the ground truth answer by following these steps:

1: Take it as granted that the Ground Truth is always correct.
2: If the Prediction indicates it is not sure about the answer, "score"

should be "0"; otherwise, go the next step.
3: If the Prediction exactly matches the Ground Truth, "score" is 1.
4: If the Prediction does not exactly match the Ground Truth, go through

the following steps and likely give a score as 0.
5: If the Ground Truth is a number, "score" is 1 if and only if the

Prediction gives a number that almost exactly matches the ground
truth.

6: If the Prediction is self-contradictory, "score" must be 0.
7: If the prediction is not answering the question, "score" must be 0.
8: If the prediction is a concise and correct summary of the ground truth

, "score" is 1.
9: If ground truth contains a set of items, prediction must contain

exactly same items for the score to be 1.
10: Otherwise, "score" is 0.

### Output a JSON blob with an "explanation" field explaining your answer
as short as possible and an "score" field with value 1 or 0.

You should make the judgment based on provided examples.
Examples:
Question: "which company has higher eps, btu or cma?"
Ground Truth: "cma"
Prediction: "it is not possible to determine which company has a higher

eps."
Output: {"score": 0, "explanation": "The prediction is not sure about the

answer."}

{34 more examples}

Question: {query}
Ground truth: {ground_truth}
Prediction: {prediction}
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Set 
ID 
* 

Glasses Wearer Conversation 
Partner 

Does a bystander exist? Background 
Noise 

Room 
size 

Volume of 
Utterances 
INDOORS  

Volume of 
Utterances 
OUTDOORS 

1 Origin, facing to 0° [±60°,±30°,0°] with 
[1m, 1.5m] distance 

No Yes Medium 0 572 recording 

2 Origin, facing to 0° [±60°,±30°,0°] with 
[1m, 1.5m] distance 

No No Small  572 utterance 0 

3 Origin, facing to 0° [±60°,±30°,0°] with 
[1m, 1.5m] distance 

No No Medium 572 recording 0 

4 
Origin, facing to 0° 

None Yes, standing from [±150°, 
±120°,±90°,±60°,±30°], with 
[1m, 2m, 3m] distance 

Yes Large  0 572 recording 

Figure 4: Ego-centric audio recordings, with conversational partners positioned between −60◦ and
60◦. Bystanders may speak from any angle.
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[1m, 1.5m] distance 

No Yes Medium 0 572 recording 

2 Origin, facing to 0° [±60°,±30°,0°] with 
[1m, 1.5m] distance 

No No Small  572 utterance 0 

3 Origin, facing to 0° [±60°,±30°,0°] with 
[1m, 1.5m] distance 

No No Medium 572 recording 0 

4 
Origin, facing to 0° 

None Yes, standing from [±150°, 
±120°,±90°,±60°,±30°], with 
[1m, 2m, 3m] distance 

Yes Large  0 572 recording 

5 
Origin, facing to 0° 

None Yes, standing from [±150°, 
±120°,±90°,±60°,±30°], with 
[1m, 2m, 3m] distance 

No Large  572 recording  

6 Origin, facing to 0° [±60°,±30°,0°] with 
[1m, 1.5m] distance 

- - Outdoor 
street 

 572 recording 

7 Origin, facing to 0° None - - Shopping 
mall 

 572 recording 

Total recording = 4,004 1,716 recording  
 
(30% Indoors, 
in Quiet / No 
Background) 

2,288 recording  
 
(70% Outdoors 
in Noisy 
Environment )  

 
 

Figure 5: Audio Recording Distribution

A.3 WEARVOX AUDIO RECORDING

Participants are positioned in X different locations and X distinct environments, and speak aloud
using provided scripts (commands or queries) as references. As shown in Figure 4, the wearer dons
glasses equipped for audio recording, while the conversation partner and bystanders are placed at
various angles relative to the wearer. The distribution of recordings is illustrated in Figure 5.

A.4 DISTRIBUTION OF ACOUSTIC ENVIRONMENTS

Figure 6 and 7 illustrate the distribution of audio recording location and noise type. Speech transla-
tion samples are excluded from this statistic due to missing audio metadata.
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Figure 6: Audio Recording Location Type Distribution: Approximately 31% of the recordings took
place indoors, including various recording rooms, hallways, and cafes. The remaining 63% were
recorded outdoors, such as in parks, streets, and parking lots.
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Figure 7: Audio Recording Noise Type Distribution: Approximately 57% of the recordings were
made in noisy environments, featuring sounds such as vehicle noise, music, and bystander speech.
The remaining 43% were recorded in quiet settings, where background noise such as rustling leaves
was negligible.

A.5 MODEL PERFORMANCE BREAKDOWN PER ACOUSTIC ENVIRONMENT

We provide detailed per-noise-type breakdowns for all leading models in the Table 5. Wind noise
consistently degrades performance across all systems. GPT-4o, Gemini 2.5 Flash (non-thinking),
and SC Wearllama exhibit particularly severe degradation under construction noise, while Gemini
2.5 Flash Thinking and MC Wearllama demonstrate greater robustness.

A.6 SC AND MC WEARLLAMA IMPLEMENTATION

Model Architecture Both SC and MC WearLlama are built on Llama-4-Scout-17B-16E (Team,
2025b) and a 1B parameter Conformer (Gulati et al., 2020) speech encoder. Similar to Llama 3
Speech (Dubey et al., 2024), our audio encoder operates at a sampling rate of 12.5 Hz, converting
every 80ms of audio into one audio embedding. As illustrated in Figure 8, for MC WearLlama, the
same encoder is applied to both channel 0 and the beamformed channel, and the generated audio em-
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Noise Type GPT 4o
Audio

Gemini 2.5
Flash

Gemini 2.5
Flash Thinking

GPT 5
w/ Whisper

SC
WearLlama

MC
WearLlama #Samples

Construction Noise (15m) 36.9 47.2 74.0 52.0 58.9 70.1 358
Lawnmower (1m) 41.2 64.7 79.4 61.8 70.6 70.6 68
Loud Singing 45.0 67.5 80.0 60.0 72.5 82.5 40
Music 36.8 70.8 67.0 47.2 66.0 67.9 106
Normal Conversation (1m) 42.2 63.5 71.1 55.6 63.0 66.5 630
Other 37.1 66.5 72.5 55.1 68.3 75.4 167
Quiet Office 51.9 68.1 76.9 63.0 68.4 68.4 624
Quiet Whisper (1m) 28.1 56.1 77.2 45.6 61.4 64.9 57
Rustling Leaves 41.7 54.3 71.9 59.4 59.1 65.3 470
Vacuum Cleaning 38.0 49.3 70.4 50.7 62.0 69.0 71
Vehicles (15m) 40.3 62.9 73.9 61.9 64.9 69.9 402
Wind 35.7 28.6 40.5 57.1 23.8 33.3 42

Table 5: Per-noise-type breakdowns for all leading models. Wind noise consistently degrades per-
formance across all systems. GPT-4o, Gemini 2.5 Flash (non-thinking), and SC Wearllama exhibit
particularly severe degradation under construction noise, while Gemini 2.5 Flash Thinking and MC
Wearllama demonstrate greater robustness.
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Figure 8: Illustration of SC Wearllama and MC Wearllama inference. SC Wearllama encodes
only the beamformed audio channel (c x), whereas MC Wearllama processes both channel 0
(c 0),typically the channel with the highest SNR, and the beamformed channel in an interleaved
manner.

beddings are interleaved and input to the Llama-4-Scout decoder along with text embeddings. The
decoder is trained to generate text responses by conditioning on both audio and text representations.

Training Data Our training data is curated from multiple sources, including: (1) pseudo-labeled
ASR data as described in SeamlessM4T (Barrault et al., 2023); (2) Speech QA data generated from
ASR audio as described in AudioChatLlama (Fathullah et al., 2024); and (3) additional Speech
QA data converted from text instruction-following datasets (Lambert et al., 2024) using our in-
house TTS system. Both ASR and Speech QA data are formatted as Text In, Speech In, Text Out
problems following the formulation f(TI , SI) → TO, where TI is the system prompt, SI is the
audio input described in the previous section, and TO is the text output. For the ASR task, TO is
the transcript; for Speech QA, TO is the response. Note that no WearVox data samples are used in
model training.

Multichannel Audio Augmentation To train MC Wearllama, we convert all the single-channel
audio into simulated five-channel recordings, based on the microphone array configuration of AI
glasses (Meta, 2024). We simulate the multi-channel data by convolving with real-recorded room
impulse responses (RIRs), and adding noise and sidetalk at random signal-to-noise ratios (SNRs)
ranging from -5 dB to 40 dB. Formally, we have SI = s ⋆ h1 + n ⋆ h2 + x ⋆ h3, where s is the
user speech, n is the noise sampled from our in-house noise corpus, and x is the sidetalk. h1, h2,
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Experiment Setting LibriSpeech test-other WER

Train: cx; Test: cx 8.58%
Train: cx and c0; Test: c0 and c1 8.21%
Train: cx and c0; Test: cx and c1 8.16%
Train: cx and c0; Test: cx and c0 7.38%

Table 6: MC WearLlama microphone array generalization experiment. We tested different combina-
tions of simulated audio channels during inference on unseen channel combinations on the simulated
LibriSpeech test-other set.

h3 are the real-world multi-channel RIRs which are measured and collected from different rooms
by covering various distances and directions.

Training Objective We train the model using the standard next-token prediction objective. The
supervised fine-tuning loss is defined as:

LSFT = −
L∑

i=1

logP (tOi | TI , SI , t
O
<i; θ)

where L is the length of the output sequence TO = [tO1 , t
O
2 , ..., t

O
L ], t

O
i represents the i-th token

in the output text, tO<i denotes all preceding output tokens, and θ represents the model parameters.
The model is optimized to minimize the negative log-likelihood of the ground-truth output text
conditioned on both the input text prompt TI and the input speech signal SI .

A.7 TRANSFERABILITY OF MC WEARLLAMA ON DIFFERENT MICROPHONE LAYOUTS

Our MC WearLlama processes two channels: Channel 0 (highest SNR) and the beamformed chan-
nel. This design is relatively geometry-agnostic compared to approaches that explicitly model all
microphone positions. We tested different combinations of simulated audio 5 channels during in-
ference and found that while testing on unseen channel combinations leads to some performance
degradation, the multi-channel model still outperforms its single-channel counterpart.

5https://github.com/facebookresearch/MMCSG/tree/main/tools/MCAC simulator
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