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Abstract

Quantization-aware training (QAT) is a leading technique for improving the accu-
racy of quantized neural networks. Previous work has shown that decomposing
training into a full-precision (FP) phase followed by a QAT phase yields superior
accuracy compared to QAT alone. However, the optimal allocation of compute be-
tween the FP and QAT phases remains unclear. We conduct extensive experiments
with various compute budgets, QAT bit widths, and model sizes from 86.0M to
2.2B to investigate how different QAT durations impact final performance. We
demonstrate that, contrary to previous findings, the loss-optimal ratio of QAT to
FP training increases with the total amount of compute. Moreover, the optimal
fraction can be accurately predicted for a wide range of model sizes and quan-
tization widths using the tokens-per-parameter-byte statistic. From experimental
data, we derive a loss scaling law that predicts both optimal QAT ratios and final
model performance across different QAT/FP compute allocation strategies and
QAT bit widths. We use the scaling law to make further predictions, which we
verify experimentally, including which QAT bit width is optimal under a given
memory constraint and how QAT accuracy with different bit widths compares to
full-precision model accuracy. Additionally, we propose a novel cooldown and
QAT fusion approach that performs learning rate decay jointly with quantization-
aware training, eliminating redundant full-precision model updates and achieving
significant compute savings. These findings provide practical insights into efficient
QAT planning and enable the training of higher-quality quantized models with the
same compute budget.

1 Introduction

As Large Language Models (LLMs) grow in size and on-device applications gain traction (Wahab &
Adda, 2025), significant attention has been devoted to reducing inference costs via model compression
(Frantar et al., 2022; Lin et al., 2024; Ma et al., 2023). One state-of-the-art method is quantization-
aware training (QAT) (Chen et al., 2025a; Lin et al., 2024; Liu et al., 2025; Jacob et al., 2018).
To adapt the model to the loss of numerical precision, QAT incorporates quantization directly into
the model training process. It has been shown that QAT outperforms post-training quantization
(PTQ) (Xiao et al., 2023; Banner et al., 2019), where quantization is applied after training is
completed. Moreover, Liu et al. (2025) demonstrated that the best accuracy is achieved when a QAT
phase follows a full-precision (FP) training phase.

For models designed for on-device use, the QAT stage is an important part of the training process and
is usually planned in advance. As model sizes grow and deployment constraints tighten, practitioners
face a critical resource allocation problem: given a fixed compute budget, how should training time
be divided between full-precision pretraining and quantization-aware training? This decision
directly impacts both model quality and deployment efficiency, yet existing guidelines assume fixed
allocation ratios regardless of scale. As motivation, we note that Kumar et al. (2025) demonstrated
that the error introduced by post-training quantization grows with the size of the pretraining data,
which can actually make additional pretraining harmful. Intuitively, analogous to PTQ, having a
longer full-precision stage should make subsequent QAT more difficult. While Liu et al. (2025)
showed that spending 10% of the training steps on QAT is optimal for some setups, the authors did
not explore how this proportion varies across different training lengths and model sizes.

In this work, we show that previous conclusions about optimal QAT length do not hold with an
increased compute budget. Through a series of experiments with different model sizes and token
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counts, we demonstrate that the optimal fraction of QAT compared to the total training length
increases with the total compute budget. This optimum can be accurately predicted for a wide range
of setups using the tokens-per-parameter-byte statistic. Additionally, we propose a loss scaling
law as a function of model parameter count (𝑁), token count spent on full-precision training (𝐷fp),
token count spent on QAT (𝐷qat), and QAT bit-width (𝐵). The fitted law accurately captures the
growth of the optimal QAT fraction with compute scale. The key contributions of this study are:

• Unlike previously assumed, we find that the optimal fraction allocated for QAT in-
creases with the growth of the tokens-per-parameter-byte statistic. This finding allows
higher-quality quantized models to be achieved with the same initial compute budget (fig-
ure 1 (Left)).

• We propose a loss scaling law that captures the optimal QAT fraction phenomenon and
models the final expected loss of the FP and QAT pipeline (figure 1 (Right)). We use the
scaling law to make further predictions, including which QAT bit-width is optimal under
a given memory constraint and how QAT accuracy with different bit-widths compares to
full-precision model accuracy.

• We propose a novel approach: cooldown & QAT fusion—a scheme where learning rate
decay is performed jointly with quantization-aware training, eliminating redundant full-
precision updates and achieving better accuracy for the same token count.
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Figure 1: On the left, experimental and predicted optimal QAT fractions as a function of tokens-
per-parameter-byte are shown. Different colors represent models of varying sizes, while point sizes
indicate final perplexity normalized across experiments with identical total token counts for each
model size. Results span multiple QAT bit-widths, and optimal QAT fraction values for endpoints
are displayed. The plot demonstrates that the optimal QAT fraction increases with the full training
tokens-per-parameter-byte statistic. On the right, loss scaling law predictions for a 4-bit QAT 396M
parameter model across varying QAT and FP training lengths. Both experimental and theoretical
optima are shown. The optimal QAT fraction predicted by the loss scaling law for each total token
count closely matches the experimentally observed fraction.

2 Related Work

Quantization of LLMs. Quantization is a method for reducing both the memory footprint and
the computational requirements of neural networks by lowering the precision used in the network.
By reducing the bit-width of the weights, activations, or both, quantization enables models to run
faster, consume less power, and use less memory, which is particularly beneficial for deployment on
resource-constrained devices. There are different quantization techniques, including post-training
quantization (PTQ) (Xiao et al., 2023; Banner et al., 2019) — methods that transform a model after
training has been completed and usually require minimal additional computational usage. Another
group of methods is quantization-aware training (QAT) (Chen et al., 2025a; Lin et al., 2024; Liu
et al., 2025; Jacob et al., 2018), which quantizes a model during training, allowing the model to better
adapt to precision loss. As quantization operations are non-differentiable, training relies on gradient
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approximations such as the straight-through estimator (Bengio et al., 2013). In contrast to PTQ, QAT
requires more computation, as effectively the full model is trained with added quantization-related
operations. In this work, we focus on QAT, as it is the method most commonly used in practice to
obtain high-quality quantized models.

Loss scaling laws. Multiple works have previously addressed the problem of predicting final model
loss (𝐿) as a function of parameter count (𝑁) and consumed tokens (𝐷) (Bi et al., 2024; Hoffmann
et al., 2022b; Kaplan et al., 2020). The Chinchilla (Hoffmann et al., 2022b) loss model is one of the
most commonly used: 𝐿 (𝑁, 𝐷) = 𝐸+𝐴𝑁−𝛼+𝐶𝐷−𝛽 , where 𝐴, 𝐶, 𝛼, 𝛽, and 𝐸 are fitted parameters.
Bi et al. (2024) expand on this idea, fitting accuracy as a function of used non-embedding FLOPs
(FLOP estimation of model inference without embedding layer calculations), showing that such an
approach works better across different model sizes. Additionally, they show that scaling laws are
greatly influenced by data quality.

QAT loss scaling laws. Chen et al. (2025b) proposed scaling law modeling specifically for QAT
loss, adding a QAT-related penalty to the Chinchilla loss model:

𝐿 (𝑁, 𝐷, 𝐺) = 𝐸 + 𝐴

𝑁𝛼
+ 𝐶

𝐷𝛽︸             ︷︷             ︸
Chinchilla loss

+
𝑘 · 𝐷𝛾𝐷 · (log2 𝐺)𝛾𝐺

𝑁𝛾𝑁︸                      ︷︷                      ︸
QAT error

, (1)

where 𝐺 is the quantization granularity (number of elements in each quantization group), 𝑘 , 𝛾𝐷 , 𝛾𝐺 ,
and 𝛾𝑁 are fitted parameters, and the Chinchilla loss parameters are fixed from the non-quantized
model fit. Therefore, this approach effectively models QAT error relative to the full-precision
model for the same token and parameter count. However, formulas are fitted exclusively for each
quantization bit width, which complicates analysis of the relationship between different bit widths.
Kumar et al. (2025) propose precision-aware scaling laws for training and inference, predicting loss
from low-precision training and PTQ or QAT.

While the Kumar et al. (2025); Chen et al. (2025b) laws are useful for understanding the final accuracy
of a model trained with QAT from scratch, they overlook the fact that QAT is typically resumed from
full-precision training to achieve better accuracy (Liu et al., 2025; Zhou et al., 2025a). Our work
addresses this issue and presents a novel loss scaling law that explicitly handles the case when QAT
is started from a full-precision checkpoint and works across different bit widths.

3 Experimental Setup

We use a decoder-only transformer (Zhang et al., 2021) identical to Llama 2 (Touvron et al., 2023).
The architecture incorporates SwiGLU activations (Shazeer, 2020), RoPE (Su et al., 2024), RM-
SNorm (Zhang & Sennrich, 2019), alternating attention and feed-forward layers, and tied embedding
and language-modeling head weights. We use the Adam optimizer (𝛽1 = 0.9, 𝛽2 = 0.99, 𝜀 = 10−8)
with decoupled weight decay of 0.01 (Loshchilov & Hutter, 2017; Dereich et al., 2024) for all pa-
rameters outside the embedding and normalization layers. All experiments are trained with bfloat16
automatic mixed precision (Liu et al., 2021). Training is conducted on the DCLM dataset (Li et al.,
2024), tokenized with the Llama 2 tokenizer with a 32,000-token vocabulary. We merge all tokenized
documents into a single sequence with appropriate delimiting tokens and take chunks of 1024 tokens
(used sequence length) for the batch—an approach also known as “concat-and-chunk” (Pouransari
et al., 2024). The dataset is split into training and validation sets, and validation perplexity is used for
evaluation. For QAT algorithms, we rely on ParetoQ (Liu et al., 2025) for our setups, as this method
achieves state-of-the-art accuracy across different bit widths by combining different approaches.
Additional information on the training procedure is provided in appendix A.

4 Optimal QAT Compute

To study how loss changes for different combinations of QAT/FP training length, we train models of
different sizes, different FP stage token counts (𝐷fp), QAT token counts (𝐷qat), and different QAT bit
widths 𝐵. For the smallest model (86.0M parameters), we conduct experiments from 2.3B to 1.4T
total tokens, while for the largest model (759.0M parameters), we conduct experiments from 8.5B to
669.2B total tokens. We focus primarily on 1-, 2-, 4-, and 6-bit quantization widths. Token counts

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

and QAT fractions for our experiments are reported in appendix M. We also verify that the obtained
post-QAT models maintain reasonable accuracy and present a comparison to full-precision models
in appendix N. Specifically, our 4- and 6-bit setups achieve quality close to that of the full-precision
model for the same total token count, and the drop in quality for 1- and 2-bit is reasonable.

The main objective of this study is to determine the optimal QAT fraction 𝑓 ∗—the fraction of the
token count that should be dedicated to QAT for a given total token count. This can be formalized
as the following minimization problem:

𝐷∗
qat (𝑁, 𝐷total, 𝐵) = arg min

𝐷qat∈N,
𝐷qat+𝐷fp=𝐷total

𝐿 (𝑁, 𝐷fp, 𝐷qat, 𝐵), 𝑓 ∗ (𝑁, 𝐷total, 𝐵) =
𝐷∗

qat (𝑁, 𝐷total, 𝐵)
𝐷total

,

where 𝐿 (𝑁, 𝐷fp, 𝐷qat, 𝐵) is the final loss of the setup with 𝐷fp tokens dedicated to FP training and
𝐷qat tokens dedicated to 𝐵-bit QAT. Intuitively, 𝑓 ∗ expresses a trade-off. On one hand, too few QAT
steps do not allow the quantized model to adapt to reduced precision. On the other hand, too many
QAT steps (at the expense of fewer FP steps) should also lead to worse loss since QAT is trained with
gradient approximations for quantization operators, which introduces biased and noisier gradients.
Naturally, a trade-off emerges, suggesting that such 𝑓 ∗ should be well-defined.

4.1 Predicting the Optimal QAT Fraction
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Figure 2: On the top, QAT optima for 396M
model plotted in token coordinates. Different op-
tima for the same total token count and different
QAT bit widths can be observed. On the bottom,
QAT optima for 396M model plotted in tokens-
per-parameter-byte coordinates. With byte ad-
justment, different bit widths lie on the proposed
fit line better.

In this section, we focus on fitting the opti-
mal QAT fractions directly. To account for
different QAT bit widths used, we introduce
the tokens-per-parameter-byte statistic. This
choice was made based on several observations:
larger models are generally easier to quantize,
models trained for longer are harder to quan-
tize, and smaller QAT bit widths are harder to
quantize as well. While being intuitive from a
QAT accuracy perspective, it can also predict
the optimal fraction with high precision. Fig-
ure 2 provides a comparison between the two
approaches. It is clearly seen that using tokens-
per-parameter-byte provides an interpretable ad-
justment, facilitating a better fit.

For optimal QAT fraction prediction, we fit a
function of the form

𝑓̂ (𝐷total, 𝑁, 𝐵) =
exp

(
log 𝑆total − 𝑎

log 𝑆total

)
𝑆total

,

𝑆total =
𝐷total

𝑁 · 𝐵
8
,

where 𝑓̂ is the predicted optimal QAT fraction
for the total tokens-per-parameter-byte count
𝑆total, and 𝑎 is a fitted parameter. This func-
tion choice was made due to the observed al-
most linear dependency in log-log coordinates
(figure 1 (Left)) but with the added constraint
that 𝐷qat ≤ 𝐷total. The optimal fit in our setup
yields 𝑎 = 6.7297.

Optimal QAT fraction fit results. We fit the proposed equation directly using Huber loss (Huber,
1964) and gradient descent optimization. The approach achieves 0.091 MAE in fraction prediction
across all model sizes and experiments. We also verify that the error remains low if we remove the
largest tested model from the training and evaluate accuracy only on it. The results are displayed in
figure 1 (Left). Optimal points lie close to the predicted optimal fraction. We can make the following
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high-level observations: the optimal QAT fraction grows faster with 𝐷total for lower bit widths,
the optimal QAT fraction decreases with model size 𝑁 increase and fixed 𝐷total. One limitation
of the fit is that it is subject to the granularity of the selected experiments—the set of QAT fractions
being tested. Also, as we fit only optimal points, we do not use a substantial amount of non-optimal
data points, which also contain valuable information about loss behavior. One way to utilize all
available data is to model the loss scaling law explicitly and infer optimal QAT fractions from it. We
focus on this in section 4.2.

4.2 Loss Scaling Law

As described in section 2, Chen et al. (2025b) were able to fit a loss scaling law for QAT started from
scratch (𝐷fp = 0). We extend this idea by making the loss scaling law dependent not only on 𝐷total
but also on 𝐷fp, 𝐷qat, and 𝐵, essentially modeling loss for different QAT fractions and bit-widths.
However, we do not follow the same functional form as that proposed by Chen et al. (2025b). This
is because in equation 1, the QAT penalty overtakes the Chinchilla loss term at some point with
the growth of token count, which causes the limit of the whole expression to approach infinity as
𝐷total → ∞. This does not align with the expected loss decrease as token count grows and will
hinder making any predictions from the scaling law in the future. We propose a loss model in the
form of

𝐿 (𝑁, 𝐷qat, 𝐷fp, 𝐵) = 𝛼 + 𝛽

𝐷
𝛾

total
+ 𝜁

𝑁 𝜂︸               ︷︷               ︸
Chinchilla-like loss

+ 𝛿(𝑁, 𝐷qat, 𝐷fp, 𝐵)︸                 ︷︷                 ︸
QAT fraction-aware penalty

,

𝛿(𝑁, 𝐷qat, 𝐷fp, 𝐵) = 𝜃 · 2−𝜅 ·𝐵︸    ︷︷    ︸
Irreducible QAT error

+ 𝜙 · 2−𝜒·𝐵

𝑁𝜓 · 𝑆𝜔
qat︸     ︷︷     ︸

Pure QAT penalty

+ 𝜆 · 2−𝜇·𝐵

𝑁𝜈 · 𝑆 𝜉

fp · 𝑆
𝜌

qat︸           ︷︷           ︸
FP / QAT interaction

,

(2)

where all lowercase Greek letters are fitted parameters and 𝑆qat =
𝐷qat

𝑁 · 𝐵8
, 𝑆fp =

𝐷fp

𝑁 · 𝐵8
are the corre-

sponding tokens-per-parameter-byte. This choice of 𝛿(𝑁, 𝐷qat, 𝐷fp, 𝐵) is motivated by the depen-
dence of the optimal QAT fraction on tokens-per-parameter-byte as discussed in section 4.1; specific
motivation for each term is described in equation 2.

Loss scaling law fit results. We fit the proposed equation for 757 total QAT experiments directly
using Huber loss (Huber, 1964) and gradient descent optimization—a setup consistent with that of
Hoffmann et al. (2022b); Chen et al. (2025b). The results are highly dependent on initialization;
therefore, we select the best fit out of many random initializations. We achieve similar fit quality
across different bit-widths: 𝑅2 = 0.982 for 1-bit QAT and 𝑅2 = 0.991 for 6-bit QAT, where 𝑅2 is the
coefficient of determination. Full fit metrics are presented in table 1. We present the fitted formula
and its visualizations in appendix D and plot the 3D loss scaling law surface for fixed model size
in figure 3. Also, in appendix F we fit formulas independently for each bit-width 𝐵 as a baseline
and verify that the unified formula achieves similar fit metrics. Additional scaling law fit notes are
provided in appendix E, and appendix J verifies that optimal QAT fraction prediction generalizes to
larger model sizes (2.2B).

Table 1: Fit metrics for the loss scaling law. We report both the metrics of the loss fit and of the
optimal QAT fraction prediction inferred from the loss scaling law. It is seen that the proposed
formula in equation 2 provides a good fit of loss as well as of the optimal QAT fraction.

𝑩 MAE, loss fit 𝑹2, loss fit MAE, optimal QAT fraction fit
1 0.026 0.982 0.081
2 0.023 0.981 0.102
4 0.021 0.983 0.074
6 0.018 0.991 0.09

The fitted formulas are analytically sound: with an increase of either 𝐷fp or 𝐷qat while the other
is fixed, the total loss decreases. Additionally, the proposed form effectively captures the optimal
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QAT fraction. From experimental results and the fitted loss function, we observe that low-bit
QAT is more sensitive to the QAT fraction being optimal. Loss increase for sub-optimal QAT is
higher for 1-bit than for 6-bit. Therefore, selecting the optimal QAT fraction is especially important
in low-bit settings. To assess the generality of our formulation, we reproduce our findings with
different pre-training and QAT hyperparameters and the SlimPajama (Soboleva et al., 2023) dataset
in appendix I.

Quantifying sub-optimality. After obtaining loss scaling laws, we can analyze how the optimal
QAT setup compares to a sub-optimal one. To do so, we calculate wasted token count—the
number of tokens that are effectively wasted by a sub-optimal QAT fraction. Wasted token count is
summarized in figure 4 for different bit widths and token counts; we use 10% QAT as the reference
for the sub-optimal setup. Two factors influence the wasted token magnitude: closeness of 10% to
the optimal QAT fraction and the overall flatness of the loss scaling law for high token counts. If the
predicted loss is generally flat for some token count, then even high deviation from optimality will
yield minor wasted token count. In the extreme case, for 1-bit QAT, the same loss can be achieved
with just around 50% of compute if the optimal QAT fraction is used. This effect is still present
for 2–4-bit QAT but becomes relatively small for 6-bit.

10.0
10.5

11.0
11.5

12.0 log 10(
𝑫 fp

)10
11

12
log10 (𝑫qat)

2.6

2.7

2.8

Lo
ss

Loss Scaling Law

Figure 3: Visualization of fitted loss scaling
law for 759M model, 1-bit QAT, and differ-
ent 𝐷qat, 𝐷fp. Orange lines represent constant
𝐷total = 𝐷qat+𝐷fp levels, and stars represent loss
minima for each such level. It is clearly seen that
the loss structure yields an optimal QAT fraction
for a specific 𝐷total. The overall phenomenon is
consistent with what was discussed in section 4.1.
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Figure 4: Comparison of sub-optimal QAT setup
with fixed 10% QAT fraction and optimal QAT
setup for 1B parameter model. Wasted token
count is the number of tokens effectively wasted
by not utilizing an optimal QAT fraction setup.
That is, if the wasted token count is 𝑛%, then the
same loss can be achieved with (100−𝑛)% tokens
and optimal QAT fraction. While results vary for
different bit widths, the general relationship is
similar, revealing high potential savings.

Note on compute budget / token budget duality. So far, we have considered token count to be
identical to compute budget as compute scales linearly with training token count. However, one
may argue that since QAT employs additional operations, its complexity is higher than FP training.
As QAT overhead depends only on model size, it becomes negligible with sufficiently large batch
size and sequence length (appendix K). Still, in setups where QAT overhead is substantial, one can
obtain compute-based optimal QAT fraction from the token-based approach by making a substitution
𝐷qat =

1
𝑟
·𝐷′

qat, where 𝑟 > 1 is the QAT overhead factor in the specific setup and 𝐷′
qat is the overhead-

aware QAT token count. This will make QAT steps “more expensive” from a loss minimization
perspective. In this setup, 𝐷fp + 𝐷′

qat = 𝑐𝑜𝑛𝑠𝑡 represents not iso-token levels, but rather iso-flop
levels. Therefore, the inferred optimal QAT fraction will be adjusted to account for the overhead.
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5 When does QAT restore FP model accuracy?

An interesting question to analyze is how QAT loss relates to FP model loss for the same total
token count. Specifically, a practically significant question is “when does QAT restore FP model
accuracy?” To answer this question, we plot the difference in perplexities between QAT and FP
models for each total token count; appendix E describes how we obtain the full-precision model loss
scaling law. Figure 5 presents such a plot for models of two different sizes.

FP Accuracy Reproduction. The practical observation that larger-parameter models can tolerate
lower-bit QAT is clearly observed. A second perspective from which to consider figure 5 is that of
optimal QAT bit width. Specifically, for a given total token count, there exists a minimum bit width
that matches FP model loss. Therefore, there is no incentive to train higher-bit QAT, as this will not
result in better accuracy but only in higher memory usage.
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Figure 5: Difference in perplexity between FP loss scaling law and QAT loss scaling law for two
model sizes. For QAT, the loss corresponding to the optimal QAT fraction is used. Values below
0 correspond to QAT performing better than the FP model. It is clearly observed that the ability
of QAT to match FP loss is greatly influenced by model size and token count. In particular, larger
models are able to tolerate lower QAT precision for higher total token count budgets. Additional plot
information is present in appendix G.

6 Parameter–precision trade-off
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Figure 6: Optimal QAT bit width for different
memory budgets and total training budgets. We
use the loss corresponding to the optimal QAT
fraction. For training FLOPs, we use the estima-
tion 𝐶 ∼ 6𝑁𝐷. The white area corresponds to
𝐷 < 𝑁 , which is not practically important.

An interesting question to analyze is “for a fixed
model memory requirement, how should one
select QAT precision and parameter count?”.
That is, to fit a specified memory constraint,
one can choose high precision at the expense
of lower parameter count or vice versa. This
question is practically important as LLM infer-
ence is largely bottlenecked by memory band-
width (Davies et al., 2025; Recasens et al., 2025;
Dao et al., 2022). We can derive such optimal-
ity from the fitted loss scaling law. The results
are presented in figure 6. It is clearly seen that
for a fixed memory budget, optimal QAT preci-
sion decreases with training FLOP growth. This
suggests that for achieving an optimal quantized
model within some memory and training com-
pute budget, one should select parameter count
in advance accordingly. We believe this find-
ing to be important for practitioners trying to
achieve the best-accuracy model within memory
constraints. Figure 6 is verified experimentally
in appendix H.
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7 Cooldown & QAT Fusion

Section 4 revealed the importance of advance planning for QAT, accounting for the optimal fraction.
This is possible only when one controls the entire pretraining process: both QAT and FP. In this
context, it may be worth adjusting the training procedure to make QAT more efficient. Specifically,
in this section we focus on modifications to learning rate scheduling techniques. Currently, a classic
way of training models is to perform full FP training with learning rate cooldown, and then start
QAT with learning rate re-warmup. We used such a setup for the scaling law in section 4 as it is
universally adopted. However, a more optimal scheme may exist.

QAT & learning rate cooldown fusion. Wen et al. (2024) show that re-initializing WSD from a
post-cooldown checkpoint rather than from a constant stage yields better results. However, we believe
the behavior might be different when resuming training from a checkpoint with QAT. We propose a
novel idea for QAT: QAT & learning rate cooldown fusion. Motivated by the idea that learning
rate cooldown performs low-magnitude adjustments to weights, we speculate that a substantial part
of updates during learning rate cooldown gets destroyed by QAT initialization, which, in essence,
discards high-precision information. Therefore, we analyze a setup where QAT is started directly
from the learning rate constant stage and learning rate cooldown is performed jointly with QAT. A
schematic representation of the two schemes is presented in figure 7.
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0

25

50

75

100

Le
ar

ni
ng

ra
te

,m
ax

lr
%

Classic QAT Scheme

FP training
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Cooldown & QAT Fusion Scheme

Figure 7: Comparison between two different QAT schemes. In both setups, the QAT fraction is 40%.
Red-shaded areas indicate zones with lowered learning rate, which we expect to correspond to minor
weight updates that get effectively ignored by QAT initialization. On the left, classic QAT scheme
visualization: QAT follows fully completed FP training that ends with 20% (of FP training length)
learning rate decay. For QAT, the learning rate follows a cosine shape with 5% re-warmup phase. On
the right, the cooldown & QAT fusion scheme is displayed. QAT starts directly from the constant
learning rate stage with small re-warmup, effectively resuming the FP learning rate scheduler as if
QAT was not present at all. QAT ends with 20% cooldown (of total training length). As QAT
follows the classic FP learning rate recipe with usual cooldown, we call this approach cooldown &
QAT fusion.

We run experiments for different model sizes and 4-bit QAT with the described cooldown & QAT
fusion scheme, taking experiments with the classic QAT scheme and optimal QAT fraction as
baselines. The results are displayed in table 2. In addition to perplexity, we report loss change in
“wasted tokens” units. This is the total token distance between corresponding loss points in the
scaling law for an optimal QAT fraction. Such a metric is reported for better impact understanding,
as small perplexity differences are harder to achieve with high overall token counts. We achieve
improvements across all model sizes for 4- and 6-bit widths and all token counts. Results differ
for 1- and 2-bit settings; we believe this is due to the large optimal QAT fraction, which makes the
FP fraction small and, consequently, the impact of cooldown & QAT fusion lower. Full results are
available in appendix L. While perplexity differences may seem small, judging the difference from
the perspective of token count difference is significant. This implies substantial improvements in
terms of training cost.
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Table 2: Accuracy comparison between the classic QAT scheme and the cooldown & QAT fusion
training scheme. The loss difference is reported in “wasted tokens”—the difference in total token
count between optimal QAT fraction loss points in the loss scaling law. Substantial improvements
are noticeable across different model sizes and token counts.

Perplexity Wasted tokens
Unfused Fused Unfused total tokens, %

𝑩 Model size Total tokens
4 74 1.4T 16.26 16.25-0.06% 2.2%

163 901.3B 13.51 13.49-0.15% 9.2%
425 10.5B 16.3 16.02-1.72% 9.6%

31.8B 13.9 13.76-1.01% 10.4%
96.0B 12.62 12.54-0.63% 13.6%

816 281.9B 11.07 11.02-0.45% 13.2%

8 Conclusion

This work addresses a resource allocation problem in quantization-aware training: how to opti-
mally divide compute between full-precision pretraining and quantization-aware training. Through
extensive experiments across model sizes, compute budgets, and quantization bit widths, we chal-
lenge existing assumptions and provide practical guidelines for efficient QAT planning. Our key
contributions are:

• Discovery of compute-dependent optimal QAT fractions. Through extensive experi-
ments across different model sizes, compute budgets, and QAT bit widths, we demonstrate
that previous assumptions about optimal QAT allocation do not hold as compute budgets
increase. Our findings reveal that the optimal QAT fraction is not a fixed percentage but
rather increases with the total compute budget, specifically with the tokens-per-parameter-
byte statistic. This challenges the previous conclusion that 10% is universally optimal for
QAT length relative to total training length. We demonstrate that using suboptimal QAT
fractions can result in substantial compute waste, with extreme cases showing that the same
loss can be achieved with just around 50% of the compute when optimal QAT fractions are
used, particularly for low-bit quantization scenarios.

• Comprehensive loss scaling law. We derive a comprehensive loss scaling law that models
the final expected loss of the full-precision and quantization-aware training pipeline as a
function of QAT bit width, model parameter count, and token counts for both training
phases. This scaling law not only captures the optimal QAT fraction phenomenon but also
enables prediction of final model loss across different QAT/FP allocation strategies. From
the scaling law, we infer which QAT bit width is optimal under a given memory constraint
and how QAT accuracy compares to FP model accuracy.

• Cooldown and QAT fusion technique. We introduce a novel approach that performs
learning rate decay jointly with quantization-aware training, eliminating redundant full-
precision updates and achieving significant compute savings.

Limitations. While we performed experiments with different datasets and hyperparameters, our
work still focuses on a specific LLM architecture, and exact results may differ for different model
types. However, we expect the overall observed phenomena to be consistent across different archi-
tectures.

Future work. We identify several research directions worth exploring. First, the relationship
between the optimal QAT fraction and pretraining precision remains unknown. This direction is
especially interesting with the emergence of 8-bit floating-point training (Peng et al., 2023) and
even 4-bit training (Zhou et al., 2025b; Wang et al., 2025). Second, we are interested in how
the observed phenomena are preserved across different training stages. Specifically, how does the
optimal QAT fraction change when the full-precision training stage incorporates additional stages
such as Supervised Fine-Tuning (SFT) (Lee, 2024), Reinforcement Learning (RL) (Rafailov et al.,
2023; Chen et al., 2023), or multimodal training? We speculate on these questions in appendix O.
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Reproducibility statement. We report exact hyperparameters and training approaches used in
section 3. Additional experimental information that should facilitate reproduction is summarized in
appendix B, C, and M.

Ethics statement: LLM use disclosure. LLMs such as Anthropic (2025); Mistral AI (2025) were
used in the preparation of this paper exclusively for improving grammar and wording.
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Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Michael Davies, Neal Clayton Crago, Karthikeyan Sankaralingam, and Christos Kozyrakis. Ef-
ficient LLM inference: Bandwidth, compute, synchronization, and capacity are all you need.
CoRR, abs/2507.14397, 2025. doi: 10.48550/ARXIV.2507.14397. URL https://doi.org/
10.48550/arXiv.2507.14397.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. CoRR, abs/2501.12948, 2025. doi:
10.48550/ARXIV.2501.12948. URL https://doi.org/10.48550/arXiv.2501.12948.

Steffen Dereich, Robin Graeber, and Arnulf Jentzen. Non-convergence of adam and other adap-
tive stochastic gradient descent optimization methods for non-vanishing learning rates. CoRR,
abs/2407.08100, 2024. doi: 10.48550/ARXIV.2407.08100. URL https://doi.org/10.
48550/arXiv.2407.08100.
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Passerini, Ivan Pavlov, Auguste Poiroux, Kaustubh Ponkshe, Nathan Ranchin, Javi Rando, Mathieu
Sauser, Jakhongir Saydaliev, Muhammad Ali Sayfiddinov, Marian Schneider, Stefano Schuppli,
Marco Scialanga, Andrei Semenov, Kumar Shridhar, Raghav Singhal, Anna Sotnikova, Alexander
Sternfeld, Ayush Kumar Tarun, Paul Teiletche, Jannis Vamvas, Xiaozhe Yao, Hao Zhao Alexan-
der Ilic, Ana Klimovic, Andreas Krause, Caglar Gulcehre, David Rosenthal, Elliott Ash, Florian
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A Training Setup

In this section, we provide additional information about our training setup that was discussed in
section 3.

A.1 Full-Precision Training

The choice of learning-rate scheduler is an important aspect of our work. While cosine learning-rate
scheduling is widely used, achieving optimal model loss for a specific token count requires matching
the training duration to the cosine scheduler length (Hoffmann et al., 2022a). To obtain comparable
experiments, we would need to train models from scratch for each specific final token count, which
is computationally wasteful. Therefore, we train full-precision models with the warmup–stable–
decay (WSD) learning-rate scheduler (Hägele et al., 2024; Hu et al., 2024). The main advantage
of WSD is the ability to obtain models for any desired total token count without needing to train
from scratch; this can be achieved by resuming training from the constant-stage checkpoint and
performing a learning-rate cooldown to achieve the needed token count. Hägele et al. (2024) showed
that WSD accuracy closely follows that of cosine, making it an optimal choice for our setup, where
many checkpoints for different token counts are needed. In our experiments, we follow the optimal
setup from Hägele et al. (2024); Dremov et al. (2025): we perform 1,000 steps of warmup and a 20%
cooldown stage with a 1 - sqrt learning-rate cooldown shape.

For different model parameter counts, we vary the number of layers and hidden dimensions, using
Hoffmann et al. (2022b) as a reference. Our configurations and parameter counts are reported
in appendix B. For learning rate and batch size selection, we follow the scaling law proposed by
Bi et al. (2024). We choose the optimal batch size and learning rate corresponding to the average
token count of the conducted experiments for each model size. Since the achieved loss is stable for
wide ranges around the optimal batch size and learning rate (Bi et al., 2024; Zhou et al., 2025a), we
remain close to the optimal learning hyperparameters for all our experiments. We report our settings
for each model size in appendix C.

A.2 Quantization

We rely on ParetoQ (Liu et al., 2025) for our quantization setups, as this paper achieves state-of-
the-art accuracy across bit widths. Specifically, we use different algorithms for different bit widths:
Elastic Binarization (Liu et al., 2022) for 1-bit quantization; LSQ (Mei et al., 2023) for 3-bit and
higher quantization; and SEQ for 2-bit quantization (Liu et al., 2025). Additionally, this approach
makes our results generalizable to different QAT algorithms. Each setup employs per-output-feature
quantization scales. While it is common not to quantize embeddings and the language modeling
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head (LM head), the ParetoQ approach shows negligible accuracy drop when quantizing embeddings
and the LM head to 4 bits. Since embeddings constitute a substantial portion of parameters for small
models, we quantize embeddings as well, but not to fewer than 4 bits in all setups. That is, we
quantize embeddings to 6 bits for 6-bit QAT, but to 4 bits for 4-, 2-, and 1-bit QAT experiments.

A.3 QAT

For QAT, we follow the same setup as for full-precision training, except for the learning rate schedule.
At the start of QAT, we restore data readers from the full-precision checkpoint, which makes QAT
and FP training data mutually exclusive for each experiment. Since we do not need QAT checkpoints
at different token counts, we use cosine learning rate decay with 5% warmup and decay the learning
rate to zero. The quantized model is initialized from an appropriate post-cooldown full-precision
model, with quantization scale initialization as described by Mei et al. (2023); Liu et al. (2025; 2022)
(appendix A.4). We disable weight decay for quantization scales.

A.4 QAT Algorithms

As described in appendix A.2, we use different quantization algorithms for different 𝐵. In this
section, we summarize them for the reader’s convenience.

Typically, QAT algorithms employ a version of the uniform quantization function:

𝑊 𝑖
𝑅
= ⌊

𝑊 𝑖
𝑅
− 𝛽

𝛼
⌉,

𝑊 𝑖
𝑄 = 𝛼𝑊 𝑖

𝑅
+ 𝛽,

where𝑊𝑅 is the original floating-point-valued weight,𝑊𝑅 is the quantized integer-valued weight,𝑊𝑄

is the quantized-dequantized floating-point-valued weight, and 𝛼, 𝛽 are parameters specific to the 𝑖-th
quantization group. In our work, we use per-output-feature quantization groups. During training,
𝑊𝑄 is used to conduct calculations, and during inference, the model is stored as integer-valued
weights 𝑊𝑅. Below, we present details about the different algorithms we used.

Elastic Binarization (1-bit). Liu et al. (2022; 2025) propose such a quantization scheme for 𝑊𝑅

taking values from {−1, 1}:

𝑊𝑅 = Sign(𝑊 𝑖
𝑅),

𝑊 𝑖
𝑄 = 𝛼𝑊𝑅,

where initially 𝛼 =
∥𝑊 𝑖

𝑅
∥𝑙1

𝑛
𝑊𝑖

𝑅

, and such straight-through (Bengio et al., 2013) estimator gradient

estimations are used:

𝜕𝑊 𝑖
𝑄

𝜕𝑊 𝑖
𝑅

≈ 1
|
𝑊𝑖

𝑅
𝛼

|<1
,

𝜕𝑊 𝑖
𝑄

𝛼
≈ Sign(𝑊 𝑖

𝑅).

Stretched Elastic Quantization (2-bit). Liu et al. (2025) propose the following quantization
scheme for 2-bit 𝑊𝑅:

𝑊𝑅 = ⌊Clip(
𝑊 𝑖

𝑅

𝛼
,−1, 1) × 2 − 1

2
⌉,

𝑊 𝑖
𝑄 =

𝛼

2
(𝑊𝑅 + 1

2
),
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where initially 𝛼 = max( |𝑊 𝑖
𝑅
|), and such gradient estimations are used:

𝜕𝑊 𝑖
𝑄

𝜕𝑊 𝑖
𝑅

≈ 1
|
𝑊𝑖

𝑅
𝛼

|<1
,

𝜕𝑊 𝑖
𝑄

𝛼
≈ 𝑊 𝑖

𝑅
−
𝑊 𝑖

𝑅

𝛼
· 1

|
𝑊𝑖

𝑅
𝛼

|<1
.

Learned Step Size Quantization (3-bit and higher). Mei et al. (2023) propose the following
quantization scheme for 𝑊𝑄, which is a standard quantization scheme with 𝛽 = 0:

𝑊𝑅 = ⌊Clip(
𝑊 𝑖

𝑅

𝛼
,−2𝐵−1, 2𝐵−1 − 1)⌉,

𝑊 𝑖
𝑄 = 𝛼𝑊𝑅,

where initially 𝛼 = max( |𝑊 𝑖
𝑅
|), and such gradient estimations are used:

𝜕𝑊 𝑖
𝑄

𝜕𝑊 𝑖
𝑅

≈ 1
−2𝐵−1<

𝑊𝑖
𝑅
𝛼

<2𝐵−1−1
,

𝜕𝑊 𝑖
𝑄

𝛼
≈ 𝑊 𝑖

𝑅
−
𝑊 𝑖

𝑅

𝛼
· 1

−2𝐵−1<
𝑊𝑖

𝑅
𝛼

<2𝐵−1−1
.

B Model Configurations

Table 3 summarizes the different transformer model configurations used. As noted, we use the
number of layers and hidden dimensions from the configurations table of Hoffmann et al. (2022b).

Table 3: Transformer hyperparameters used across experiments. Parameter counts are also reported.

𝒅model ffnsize kvsize 𝒏heads 𝒏layers 𝑵 (M) 𝑁no emb (M)
640 2,560 64 10 10 86 65
768 3,072 64 12 18 194 169

1,280 5,120 128 10 18 396 355
1,536 6,144 128 12 25 759 709
2,176 8,704 128 17 28 2,191 2,121

C Training Hyperparameters

As noted in appendix A.1, for learning rate and batch size selection, we follow the scaling law
proposed by Bi et al. (2024). Table 4 describes the chosen hyperparameters for each model size.

Table 4: Main hyperparameters used during training. Learning rate and batch size selection follow
those of Bi et al. (2024).

Model size (M) Learning rate Global batch size (tokens)
86 9.54e-04 1,097,728
194 8.93e-04 1,302,528
396 7.33e-04 1,572,864
759 7.29e-04 2,129,920
2,191 6.72e-04 2,490,368

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D Fitted Loss Scaling Law Formula

In figure 8, we present the loss scaling law fitted to all our experiments. For simplicity, we substitute:
𝑆qat =

𝐷qat

𝑁 · 𝐵8
, 𝑆fp =

𝐷fp

𝑁 · 𝐵8
. Additionally, we plot experimental data and loss scaling law heatmaps in

figure 9.

𝐿 (𝑁, 𝐷qat, 𝐷fp, 𝐵) = 1.598 + 2477.0
𝐷0.4089

total
+ 57.64

𝑁0.2148 + 0.4297 · 2−1.41·𝐵 + 1091.0 · 2−1.212·𝐵

𝑁0.4004 · 𝑆0.076
qat

+

138.8 · 2−0.0833·𝐵

𝑁0.2135 · 𝑆0.4819
fp · 𝑆0.1903

qat

Figure 8: Fitted loss scaling law formula. This is a unified scaling law that predicts QAT loss for
various 𝑁 , 𝐷qat, 𝐷fp, and 𝐵.
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(a) The loss fit metrics are: 𝑅2 = 0.982, MAE = 0.026, MAPE = 0.895%. Inferred from loss QAT optimum
fraction prediction metrics: MAE = 0.081.
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(b) The loss fit metrics are: 𝑅2 = 0.981, MAE = 0.023, MAPE = 0.817%. Inferred from loss QAT optimum
fraction prediction metrics: MAE = 0.102.
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(c) The loss fit metrics are: 𝑅2 = 0.983, MAE = 0.021, MAPE = 0.796%. Inferred from loss QAT optimum
fraction prediction metrics: MAE = 0.074.
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(d) The loss fit metrics are: 𝑅2 = 0.991, MAE = 0.018, MAPE = 0.661%. Inferred from loss QAT optimum
fraction prediction metrics: MAE = 0.09.

Figure 9: Visualizations of fitted loss scaling laws for different QAT bit-widths. Experimental data
are plotted with point sizes corresponding to loss relative to the group of experiments with the same
𝐷total. Orange stars correspond to theoretical optima; purple stars represent experimental optima.

E Scaling Law Fit Notes

In this section, we summarize methods implemented to achieve better loss scaling law fits. As noted
in the main text, we use Huber loss (Huber, 1964) and gradient descent optimization. The Huber loss
choice is consistent with the setup of Hoffmann et al. (2022b); Chen et al. (2025b). Additionally,
we verified that simple MSE achieves worse generalization. We attribute this phenomenon to the
presence of outliers in our experiments—this can be seen from the appendix D figures. Specifically,
one can notice both outliers for optimal experimental QAT fraction and disproportionate dot sizes.
Also, to facilitate generalization over different bit-widths, we re-weight each sample loss contribution
proportionally to the corresponding 𝐵 inverse frequency.

Another important trick is the addition of full-precision loss regularization. This is done based on the
expectation that for high 𝐵, the final loss should be indistinguishable from the full-precision model
loss. Therefore, we add 374 full-precision model evaluation results to the fit, assigning 𝐵 = 16
to them, which brings the total fit data size to 1131 experiments. For 𝐷fp, 𝐷qat assignment, we
notice that only the FP/QAT interaction term of 𝛿(𝑁, 𝐷qat, 𝐷fp, 𝐵) (equation 2) makes a noticeable
contribution with high 𝐵. Therefore, we assign such 𝐷fp, 𝐷qat : 𝐷fp+𝐷qat = 𝐷total that minimize the
FP/QAT interaction term only. This way, the obtained QAT loss scaling law fit not only predicts
QAT loss, but also predicts full-precision loss by using 𝐵 = 16. The fit achieves 𝑅2 = 0.989,
𝑀𝐴𝑃𝐸 = 0.8%, 𝑀𝐴𝐸 = 0.022 fit metrics for all obtained full-precision checkpoints.
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F Fitted Loss Scaling Law Formulas (Specific Bit-Width)

In figures 10a, 10b, 10c and 10d, we present loss scaling laws fitted to our experiments for each
specific bit-width separately and the corresponding fit accuracies. For simplicity, we substitute:
𝑆qat =

𝐷qat

𝑁 · 𝐵8
, 𝑆fp =

𝐷fp

𝑁 · 𝐵8
. Additionally, table 5 showcases fit metrics of the unified scaling law

(section 4.2) and per-bit-width scaling laws (this section). The fit quality is overall comparable, with
fits for each bit-width being slightly better. However, we prioritize the unified scaling law due to its
higher practical utility and as a way to reduce fit variance.

1.931 + 2605.0
𝐷0.7155

total
+ 233.6

𝑁0.2921 + 366.8
𝑁0.367 · 𝑆0.187

qat
+ 970.4

𝑁0.2338 · 𝑆0.5702
fp · 𝑆0.2388

qat

(a) Fitted loss scaling law for 1 bits QAT bit-width. The loss fit metrics are: 𝑅2 = 0.99, MAE = 0.02,
MAPE = 0.676%. Inferred from loss QAT optimum fraction prediction metrics: MAE = 0.06.

1.885 + 2321.0
𝐷0.4258

total
+ 368.2

𝑁0.3434 + 33.01
𝑁0.2426 · 𝑆0.0269

qat
+ 115.9

𝑁0.1763 · 𝑆0.455
fp · 𝑆0.2636

qat

(b) Fitted loss scaling law for 2 bits QAT bit-width. The loss fit metrics are: 𝑅2 = 0.989, MAE = 0.019,
MAPE = 0.695%. Inferred from loss QAT optimum fraction prediction metrics: MAE = 0.061.

1.923 + 2388.0
𝐷0.3917

total
+ 401.3

𝑁0.3389 + 983.4
𝑁0.6453 · 𝑆0.1001

qat
+ 54.46

𝑁0.1323 · 𝑆0.7778
fp · 𝑆0.2755

qat

(c) Fitted loss scaling law for 4 bits QAT bit-width. The loss fit metrics are: 𝑅2 = 0.982, MAE = 0.02,
MAPE = 0.735%. Inferred from loss QAT optimum fraction prediction metrics: MAE = 0.075.

1.829 + 1546.0
𝐷0.3826

total
+ 301.4

𝑁0.444 + 148.5
𝑁0.2853 · 𝑆0.0004

qat
+ 28.33

𝑁0.1381 · 𝑆0.5881
fp · 𝑆0.1595

qat

(d) Fitted loss scaling law for 6 bits QAT bit-width. The loss fit metrics are: 𝑅2 = 0.992, MAE = 0.017,
MAPE = 0.604%. Inferred from loss QAT optimum fraction prediction metrics: MAE = 0.049.

Figure 10: Fitted loss scaling law formulas, fitted for each QAT bit-width separately.

Table 5: Comparison between unified QAT loss scaling law (section 4.2) and separate loss scaling
laws for each bit-width. The fit quality is overall similar, with separate scaling laws achieving slightly
better fits.

MAE, loss fit 𝑹2, loss fit MAE, optimal QAT fraction fit
𝑩 Unified Separate Unified Separate Unified Separate
1 0.026 0.02 0.982 0.99 0.081 0.06
2 0.023 0.019 0.981 0.989 0.102 0.061
4 0.021 0.02 0.983 0.982 0.074 0.075
6 0.018 0.017 0.991 0.992 0.09 0.049
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G QAT and FP Loss Scaling Laws Interplay

As discussed in appendix E, we fit the QAT scaling law such that 𝐵 = 16 substitution approximates
full-precision model loss, so we use this setup to estimate full-precision model accuracy in the
section 5 analysis.

Points of interest in figure 5 are where lines cross 𝑦 = 0. Such a point represents the maximum 𝐷total
for which the corresponding QAT can reproduce FP loss. In tables 6 and 7, we show such values for
models from figure 5. We consider a 0.5% QAT/FP perplexity difference to be minor and calculate
zero-crossing accounting for this margin. As expected, larger models can maintain FP quality for
lower bit-widths and higher total token counts.

Table 6: Token count for figure 5 (Left) lines’
zero-crossing. This represents the maximum to-
tal token count for the 500.0M model when QAT
of the corresponding bit-width can restore FP
model quality. “N/A” means that for any token
count, the bit-width cannot achieve accuracy sim-
ilar to the full-precision model.

𝑩 Max FP restore tokens count
1 N/A
2 N/A
3 N/A
4 83.6B
5 1.1T
6 > 100 T

Table 7: Token count for figure 5 (Right) lines’
zero-crossing. This represents the maximum to-
tal token count for the 16.0B model when QAT of
the corresponding bit-width can restore FP model
quality.

𝑩 Max FP restore tokens count
1 80.3B
2 212.1B
3 633.2B
4 2.8T
5 > 100 T
6 > 100 T

H Optimal QAT Bit-Width Verification

Section 6 analyzes which 𝐵 is optimal within specific memory and training compute budgets. We
verify the presented plot in figure 11. To do so, we linearly interpolate information from conducted
experiments. While such interpolation yields some artifacts, the general structure is consistent with
the predicted one. Additionally, we plot loss levels of the optimal QAT selection in figure 12. Results
reveal that loss levels closely follow the predicted ones.
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Figure 11: Comparison of predicted optimal QAT bit-width and experimental optima. On the left,
we reproduce figure 11 but with a reduced set of bit-widths corresponding to the set of bit-widths used
in the conducted experiments (1, 2, 4, 6). On the right, we show optimal QAT bit-widths obtained
from real experimental data. We take experiments with optimal QAT fraction and interpolate the grid
into them. The white area represents the range of values where we do not have experimental data.
It is clearly seen that the general structure of predicted optima corresponds to the real experimental
one.
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Figure 12: Comparison of predicted optimal QAT bit-width loss levels and experimental ones. The
presented figures show loss levels of corresponding optimal QAT configurations from figure 11.
We use the same color mapping and normalization for both plots. On the left, we show loss
levels of figure 11 (Left). On the right, we show optimal QAT configuration loss levels obtained
from real experimental data. The white area represents the range of values where we do not have
experimental data. It is clearly seen that predicted loss levels closely follow the true optimal loss
levels. Note that the experimental plot incorporates experiments of different bit-widths as displayed
in figure 11 (Right).

I Dataset & Hyperparameter Impact

To ensure that the observed phenomenon is not dataset- or hyperparameter-induced, we conduct
small-scale 4-bit QAT experiments, pretraining the model on the SlimPajama (Soboleva et al., 2023)
dataset with different pretraining batch sizes and learning rate selections (table 8). The results are
presented in figure 13; we plot the DCLM-based best fraction prediction fit that was used in the main
text. It is clearly seen that the same optimal fraction growth phenomenon is observed, and except for
several outliers, the fit is quite accurate. Even with dataset and hyperparameter substitution and no
additional fitting, the optimal fraction fit achieves 0.111 MAE. This shows that the conclusions made
in the main text are minimally influenced by the exact hyperparameters and dataset choice we made.
However, we expect the loss scaling law fit to differ more due to the dependence on data quality as
reported by Bi et al. (2024). The optimal QAT fraction inferred from the loss scaling law error is
0.129 MAE.

Table 8: Hyperparameters used during the SlimPajama-based experiment reproduction. We pur-
posefully changed hyperparameters to test how robust the observed phenomenon is.

Pretrain QAT
Model size, M Batch size Learning rate Batch size Learning rate

86 417,792 2.0e-04 208,896 1.0e-04
194 483,328 2.0e-04 245,760 1.0e-04
396 573,440 2.0e-04 204,800 1.0e-04
759 655,360 2.0e-04 262,144 1.0e-04
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Figure 13: Optimal QAT fraction for SlimPajama-based experiment reproduction. It is clearly seen
that the optimal fractions also increase with the total tokens-per-parameter-byte statistic. The fit from
the main text (DCLM-based fit) is also plotted for reference. Even without additional re-fitting, the
optimal fraction fit achieves 0.111 MAE. This indicates that the observed phenomenon is not dataset-
or hyperparameter-induced.

J 2.2B Model Optimal QAT Fraction Prediction

In this section, we verify the scalability of the obtained results. To do so, we train a 2.2B model
with QAT using several different QAT fractions, including the predicted optimal QAT fraction. We
verify that the predicted optimal QAT fraction from the loss scaling law generalizes to the 2.2B
model, which is 2.9 times larger than the largest model in the loss scaling law fit data. The results
are presented in table 9. We show that indeed, the proposed scaling law generalizes to larger models.

Table 9: Experiments for the 2.2B parameter model. We select the middle fraction to be close to
the predicted optimal one and two additional fractions: one smaller than optimal and one larger. We
present the corresponding perplexities and the difference between the minimum perplexity and the
perplexity corresponding to the predicted optimal QAT fraction (𝐿*). It is seen that in most cases the
predicted QAT fraction is optimal, and in some cases it deviates from the optimum insignificantly—
we expect this to be noise.

Tested Fractions Perplexities |𝑳min−𝑳* |
𝑳min

, %
𝑩 𝑫total

1 49.3B 10.0%, 38.3%, 53.3% 13.502, 13.017, 13.092 0.00%
109.5B 10.0%, 40.9%, 55.9% 12.563, 12.187, 12.25 0.00%

2 22.2B 10.0%, 39.2%, 54.2% 13.95, 13.828, 13.734 0.68%
49.3B 10.0%, 40.3%, 55.3% 12.335, 12.068, 12.084 0.00%

4 22.2B 10.0%, 26.5%, 41.5% 13.017, 13.049, 13.198 0.24%
49.3B 10.0%, 26.7%, 41.7% 11.515, 11.515, 11.545 0.00%

6 20.6B 2.9%, 17.9%, 32.9% 13.149, 13.114, 13.21 0.00%

K QAT Overhead

In this section, we show results of our benchmarks that measure the slowdown between QAT and
FP training. In our benchmarks, we select the maximum batch size that fits within GPU memory
constraints and perform multiple measurements to reduce the variance of our results. We do not
observe significant slowdown for all model sizes we have tested. Figure 14 summarizes our findings.
It is important to note that ensuring that PyTorch (Paszke et al., 2019) compile optimization processed
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quantization operators correctly and without slow fallbacks was crucial to achieving almost zero
overhead.
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Figure 14: Measured overhead of QAT versus FP training. It is clearly seen that the slowdown
fraction fluctuates around 1.0 and no significant slowdown is noticeable.
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L Cooldown & QAT Fusion: Extended Results

In this section, we show results of cooldown & QAT fusion for all bit widths (table 10). As discussed
in section 7, the proposed approach shows consistent improvements for 4- and 6-bit QAT. For 1- and
2-bit experiments, improvements in some settings are present but less prominent than for 4- and 6-bit
QAT. We explain this by the large optimal QAT fraction for lower bits, which minimizes the impact
of cooldown & QAT fusion.

Table 10: Accuracy comparison between the classic QAT scheme and the cooldown & QAT fusion
training scheme. The loss difference is reported in “wasted tokens”—the difference in total token
count between optimal QAT fraction loss points in the loss scaling law. Substantial improvements
are noticeable across different model sizes and token counts for 4-bit and higher. For 1- and 2-bit
experiments, improvements in some settings are present but less prominent. We explain this by the
large optimal QAT fraction for lower bits, which minimizes the impact of cooldown & QAT fusion.

Perplexity Wasted tokens
Unfused Fused Unfused total tokens, %

𝑩 Model size Total tokens

1 74 70.4B 23.82 24.14+1.34% -19.5%
163 17.0B 20.95 21.06+0.53% -5.3%
425 11.1B 18.53 18.43-0.54% 4.4%

33.5B 16.33 16.41+0.49% -8.1%
305.8B 14.73 14.83+0.68% -26.8%

816 22.2B 16.3 16.17-0.80% 7.3%
52.8B 14.83 14.9+0.47% -6.9%

2 74 15.3B 21.36 21.32-0.19% 2.1%
70.4B 19.54 19.62+0.41% -7.1%
323.6B 18.66 18.74+0.43% -12.4%

163 17.0B 18.28 18.17-0.60% 5.6%
65.0B 16.36 16.39+0.18% -2.3%

425 11.1B 17.01 16.69-1.88% 13.3%
33.5B 14.59 14.51-0.55% 7.8%
101.3B 13.38 13.37-0.07% 2.1%
305.8B 12.65 12.66+0.08% -5.9%

816 52.8B 13.35 13.27-0.60% 6.5%
297.5B 11.77 11.78+0.08% -0.8%

4 74 1.4T 16.26 16.25-0.06% 2.2%
163 901.3B 13.51 13.49-0.15% 9.2%
425 10.5B 16.3 16.02-1.72% 9.6%

31.8B 13.9 13.76-1.01% 10.4%
96.0B 12.62 12.54-0.63% 13.6%

816 281.9B 11.07 11.02-0.45% 13.2%
6 74 306.6B 16.45 16.41-0.24% 9.1%

1.4T 15.85 15.82-0.19% 14.3%
163 61.6B 14.92 14.83-0.60% 9.5%

901.3B 13.21 13.18-0.23% 27.9%
425 31.8B 13.72 13.59-0.95% 10.4%

96.0B 12.44 12.36-0.64% 15.5%
289.7B 11.63 11.58-0.43% 38.8%

816 118.7B 11.59 11.51-0.69% 11.4%
281.9B 10.92 10.85-0.64% 16.6%
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M Experiment Token Counts

Table 11 summarizes the total token counts used throughout the experiments. For each token count,
several 𝐷fp / 𝐷qat ratios were tested. Selected ratios for different setups are displayed in tables 12,
13, 14 and 15. In addition to the reported structured experiments, we conducted experiments with
extreme QAT fractions (close to 1% and close to 100%) to improve loss scaling law fitting across
the range of different values.

Table 11: List of total token counts analyzed for different model sizes.

Model Size (M) Total Tokens
86 2.3B, 2.4B, 2.6B, 3.0B, 3.1B, 3.3B, 5.9B, 10.5B, 13.2B, 13.9B, 14.5B, 14.8B,

15.3B, 27.0B, 41.8B, 60.6B, 61.7B, 64.0B, 66.7B, 70.4B, 123.9B, 171.3B,
274.4B, 278.7B, 294.2B, 306.6B, 323.6B, 569.3B, 1.2T, 1.3T, 1.4T

194 3.2B, 3.3B, 4.0B, 4.2B, 4.4B, 6.5B, 9.5B, 14.6B, 15.5B, 16.1B, 17.0B, 24.9B,
36.3B, 56.0B, 59.1B, 61.6B, 65.0B, 95.2B, 138.8B, 182.6B, 214.2B, 226.1B,
235.6B, 248.7B, 364.2B, 530.8B, 698.3B, 819.4B, 901.3B

396 4.3B, 8.2B, 9.6B, 9.7B, 10.5B, 11.1B, 12.8B, 24.6B, 28.9B, 30.5B, 31.8B,
33.5B, 56.5B, 84.4B, 87.2B, 92.1B, 96.0B, 101.3B, 170.6B, 263.4B, 289.7B,
305.8B, 515.2B, 874.8B

759 8.5B, 21.1B, 22.2B, 48.0B, 50.0B, 52.8B, 113.9B, 118.7B, 125.3B, 281.8B,
297.5B, 536.7B, 669.2B

Table 12: List of different QAT fractions analyzed for the 86M parameter model and different total
token counts.

𝑫total 𝑫qat/𝑫total
Model Size (M) 𝑩

86 1 3.3B 10.0%, 20.0%, 30.6%
1 15.3B 10.0%, 20.0%, 37.3%, 41.7%, 49.7%, 63.3%, 85.0%
1 70.4B 10.0%, 20.0%, 41.7%, 42.9%, 63.3%, 66.6%, 85.0%
1 323.6B 10.0%, 20.0%, 41.7%, 47.6%, 63.3%, 85.0%
2 3.1B 4.6%, 10.0%, 20.0%, 23.3%, 26.3%, 40.0%
2 14.5B 5.0%, 6.3%, 10.0%, 20.0%, 23.3%, 33.5%, 41.7%, 45.7%,

60.0%, 63.3%, 78.0%, 85.0%
2 66.7B 5.0%, 8.5%, 10.0%, 20.0%, 23.3%, 39.6%, 41.7%, 56.9%,

60.0%, 63.3%, 78.0%, 85.0%
2 306.6B 5.0%, 10.0%, 11.4%, 20.0%, 23.3%, 41.7%, 44.7%, 60.0%,

63.3%, 71.3%, 78.0%, 85.0%
2 1.4T 5.0%, 10.0%, 15.0%, 23.3%, 41.7%, 60.0%, 78.0%, 83.2%
4 3.0B 1.0%, 4.6%, 10.0%, 23.3%, 26.7%
4 13.9B 1.0%, 5.0%, 6.3%, 10.0%, 23.3%, 29.7%, 41.7%, 60.0%
4 64.0B 1.0%, 5.0%, 8.5%, 10.0%, 23.3%, 36.8%, 41.7%, 60.0%
4 123.9B 1.0%, 50.0%, 90.8%
4 274.4B 1.0%, 50.0%, 79.7%
4 294.2B 1.0%, 5.0%, 10.0%, 11.4%, 23.3%, 41.7%, 49.2%, 60.0%
4 569.3B 1.0%, 50.0%, 57.9%
4 1.2T 1.0%, 10.5%
4 1.4T 5.0%, 10.0%, 15.0%, 23.3%, 41.7%, 60.0%, 65.0%
6 3.1B 4.6%, 5.0%, 10.0%, 17.0%, 20.0%, 23.3%, 23.4%
6 14.5B 5.0%, 6.3%, 10.0%, 20.8%, 23.3%, 28.6%, 41.7%, 60.0%
6 66.7B 5.0%, 8.5%, 10.0%, 23.0%, 23.3%, 38.0%, 41.7%, 60.0%
6 171.3B 1.0%, 50.0%, 87.3%
6 306.6B 5.0%, 10.0%, 11.4%, 23.3%, 29.0%, 41.7%, 45.3%, 60.0%
6 1.4T 5.0%, 10.0%, 15.0%, 23.3%, 40.7%, 41.7%, 60.0%
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Table 13: List of different QAT fractions analyzed for the 194M parameter model and different total
token counts.

𝑫total 𝑫qat/𝑫total
Model Size (M) 𝑩

194 1 4.4B 10.0%, 20.0%, 28.1%
1 17.0B 10.0%, 20.0%, 34.3%, 41.7%, 43.9%, 63.3%
1 65.0B 10.0%, 20.0%, 39.7%, 41.7%, 56.4%, 63.3%, 85.0%
1 248.7B 10.0%, 20.0%, 41.7%, 44.4%, 63.3%, 85.0%
2 4.2B 5.0%, 10.0%, 20.0%, 23.3%, 23.6%, 38.8%
2 16.1B 5.0%, 7.7%, 10.0%, 20.0%, 23.3%, 30.3%, 41.7%, 42.5%,

60.0%, 63.3%, 78.0%
2 61.6B 5.0%, 10.0%, 20.0%, 23.3%, 36.1%, 41.7%, 49.7%, 60.0%,

63.3%, 78.0%, 85.0%
2 235.6B 5.0%, 10.0%, 12.8%, 20.0%, 23.3%, 41.1%, 41.7%, 60.0%,

61.0%, 63.3%, 78.0%, 85.0%
2 901.3B 5.0%, 10.0%, 16.4%, 23.3%, 41.7%, 78.0%
4 4.0B 1.0%, 5.0%, 10.0%, 23.3%
4 15.5B 1.0%, 5.0%, 7.7%, 10.0%, 23.3%, 27.9%, 41.7%, 60.0%
4 56.0B 1.0%, 50.0%, 93.5%
4 59.1B 1.0%, 5.0%, 10.0%, 23.3%, 32.0%, 41.7%, 60.0%
4 95.2B 1.0%, 50.0%, 89.0%
4 138.8B 1.0%, 84.0%
4 182.6B 1.0%, 50.0%, 78.9%
4 214.2B 1.0%, 50.0%, 75.2%
4 226.1B 1.0%, 5.0%, 10.0%, 12.8%, 23.3%, 39.9%, 41.7%, 60.0%
4 364.2B 1.0%, 50.0%, 57.9%
4 530.8B 1.0%, 38.6%
4 901.3B 5.0%, 10.0%, 16.4%, 23.3%, 41.7%, 51.9%, 60.0%
6 4.2B 5.0%, 10.0%, 12.6%, 23.3%
6 16.1B 5.0%, 7.7%, 10.0%, 20.3%, 23.3%, 41.7%, 60.0%
6 61.6B 5.0%, 10.0%, 21.6%, 23.3%, 32.8%, 41.7%, 60.0%
6 235.6B 5.0%, 10.0%, 12.8%, 23.3%, 24.4%, 40.3%, 41.7%, 60.0%
6 901.3B 5.0%, 10.0%, 16.4%, 23.3%, 41.7%, 60.0%
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Table 14: List of different QAT fractions analyzed for the 396M parameter model and different total
token counts.

𝑫total 𝑫qat/𝑫total
Model Size (M) 𝑩

396 1 11.1B 10.0%, 20.0%, 29.1%, 37.9%, 41.7%, 63.3%
1 33.5B 10.0%, 20.0%, 34.2%, 41.7%, 43.6%, 63.3%, 85.0%
1 101.3B 10.0%, 20.0%, 38.7%, 41.7%, 53.5%, 63.3%, 85.0%
1 305.8B 10.0%, 20.0%, 41.7%, 42.7%, 63.3%, 65.9%, 85.0%
2 10.5B 5.0%, 8.5%, 10.0%, 20.0%, 23.3%, 24.7%, 39.3%, 41.7%,

60.0%, 63.3%
2 31.8B 5.0%, 10.0%, 20.0%, 23.3%, 30.1%, 41.7%, 42.3%, 60.0%,

63.3%, 78.0%, 85.0%
2 96.0B 5.0%, 10.0%, 12.9%, 20.0%, 23.3%, 35.0%, 41.7%, 47.9%,

60.0%, 63.3%, 78.0%, 85.0%
2 289.7B 5.0%, 10.0%, 15.8%, 20.0%, 23.3%, 39.3%, 41.7%, 56.4%,

60.0%, 63.3%, 78.0%, 85.0%
2 874.8B 5.0%, 10.0%, 19.2%, 41.7%, 60.0%
4 10.5B 5.0%, 8.5%, 10.0%, 23.3%, 26.3%, 41.7%, 60.0%
4 31.8B 5.0%, 10.0%, 23.3%, 27.9%, 41.7%, 60.0%
4 96.0B 5.0%, 10.0%, 12.9%, 23.3%, 31.0%, 41.7%, 60.0%
4 170.6B 1.0%, 50.0%, 79.7%
4 263.4B 1.0%, 50.0%, 68.6%
4 289.7B 5.0%, 10.0%, 15.8%, 23.3%, 36.3%, 41.7%, 60.0%
4 515.2B 1.0%, 38.6%
4 874.8B 5.0%, 10.0%, 19.2%, 23.3%, 41.7%, 60.0%
6 10.5B 5.0%, 8.5%, 10.0%, 14.3%, 19.8%, 23.3%, 41.7%, 60.0%
6 31.8B 5.0%, 10.0%, 20.3%, 23.2%, 23.3%, 41.7%, 60.0%
6 96.0B 5.0%, 10.0%, 12.9%, 21.1%, 23.3%, 31.0%, 41.7%, 60.0%
6 289.7B 5.0%, 10.0%, 15.8%, 22.9%, 23.3%, 41.7%, 60.0%
6 874.8B 5.0%, 10.0%, 19.2%, 23.3%, 41.7%
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Table 15: List of different QAT fractions analyzed for the 759M parameter model and different total
token counts.

𝑫total 𝑫qat/𝑫total
Model Size (M) 𝑩

759 1 22.2B 10.0%, 20.0%, 29.3%, 38.0%, 41.7%, 63.3%
1 52.8B 10.0%, 20.0%, 33.3%, 41.7%, 42.3%, 63.3%, 85.0%
1 125.3B 10.0%, 20.0%, 37.0%, 41.7%, 63.3%, 85.0%
1 297.5B 10.0%, 20.0%, 40.3%, 41.7%, 58.1%, 63.3%, 85.0%
2 21.1B 5.0%, 10.0%, 11.1%, 20.0%, 23.3%, 24.9%, 39.4%, 41.7%,

63.3%, 78.0%
2 50.0B 5.0%, 10.0%, 13.0%, 20.0%, 23.3%, 29.2%, 41.6%, 41.7%,

60.0%, 63.3%, 78.0%, 85.0%
2 118.7B 5.0%, 10.0%, 20.0%, 33.2%, 41.7%, 45.4%, 63.3%, 85.0%
2 297.5B 10.0%, 20.0%, 36.8%, 41.7%, 50.9%, 63.3%, 85.0%
4 21.1B 5.0%, 10.0%, 11.1%, 23.3%, 26.3%, 41.7%, 60.0%
4 50.0B 5.0%, 10.0%, 13.0%, 23.3%, 27.6%, 41.7%, 60.0%
4 118.7B 5.0%, 10.0%, 15.2%, 23.3%, 29.5%, 41.7%, 60.0%
4 281.8B 5.0%, 10.0%, 17.7%, 23.3%, 32.7%, 41.7%, 60.0%
4 536.7B 1.0%, 16.4%
4 669.2B 5.0%, 10.0%, 20.6%, 23.3%, 37.6%, 41.7%, 60.0%
6 21.1B 5.0%, 10.0%, 11.1%, 19.8%, 23.3%, 41.7%, 60.0%
6 50.0B 5.0%, 10.0%, 13.0%, 20.2%, 23.3%, 41.7%, 60.0%
6 118.7B 5.0%, 10.0%, 15.2%, 20.6%, 23.3%, 41.7%, 60.0%
6 281.8B 5.0%, 10.0%, 17.7%, 21.6%, 23.3%, 41.7%, 60.0%
6 669.2B 5.0%, 10.0%, 20.6%, 23.3%, 41.7%

N QAT Accuracy

In figures 15a, 15b, 15c and 15d, we plot how optimal QAT fraction experiments compare to the
full-precision model with the same total token count. Results reveal that the optimal QAT fraction
in 4-bit and 6-bit settings achieves loss close to the full-precision counterpart.
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(a) Final loss plots for 1-bit QAT.
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(b) Final loss plots for 2-bit QAT.
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(d) Final loss plots for 6-bit QAT.

Figure 15: Final loss of QAT compared to the full-precision post-cooldown model for the same
total token count. For QAT, we plot the best loss for the total token count (optimal QAT fraction
experiments). Additionally, we plot the loss predicted for the optimal QAT fraction from the
appropriate loss scaling law, and confidence bands correspond to the predicted range of QAT loss
for the 5–95% range of QAT fraction.

O Future Work

In this section, we speculate on possible results for the future work directions proposed in the paper
(section 8).

O.1 Pretrain Precision & QAT Precision Interaction

The question of interest is “How do QAT scaling laws change when pretrain precision is re-
duced?” Specifically, a practically important question is how optimal QAT compute allocation
changes. Kumar et al. (2025) analyze this question in the context of post-training quantization.
While QAT and PTQ yield significant differences in accuracy (especially for lower bits (Liu et al.,
2025)), we expect general trends to be similar.

Kumar et al. (2025) report that “overall, models trained in lower precision are more robust to post-
training quantization in the sense of incurring lower degradation.” We expect the same phenomenon
in the context of QAT. Therefore, one may expect the optimal QAT fraction to be smaller when a
model is pretrained in lower floating-point precisions (fp4, fp8) than in high precision (fp16, bf16,
fp32). Still, we expect the optimal QAT fraction to grow with increasing total compute.

O.2 QAT Scaling Law for Multi-Stage Pretraining

Current state-of-the-art chat models commonly incorporate multiple training stages. Commonly,
after general cross-entropy pretraining, additional supervised fine-tuning (SFT) and reinforcement
learning stages are performed (DeepSeek-AI et al., 2025; OLMo et al., 2025; Hernández-Cano et al.,
2025; Lee, 2024; Allal et al., 2025; Rafailov et al., 2023; Chen et al., 2023; Zhou et al., 2025a). This
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raises not only the question of how much compute to allocate for QAT but also how to distribute this
compute among different stages.

A possible solution is to conduct all post-pretraining stages over the QAT model. Usually, post-
training constitutes a minor percentage of compute when compared to pretraining (DeepSeek-AI
et al., 2025; Allal et al., 2025; OLMo et al., 2025; Hernández-Cano et al., 2025). Therefore, it is
natural to expect the optimal QAT fraction to be larger than the entire post-pretraining stage. This
means that it is possible to start QAT during pretraining and finish QAT with post-pretraining tuning.
Such methodology is also motivated by the fact that QAT incurs representation changes, especially
in the case of small QAT bit-widths (Liu et al., 2025). Therefore, we believe it is beneficial not to
postpone this process of representation change until after post-pretraining stages.
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