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Abstract

Tokenization is a crucial but under-evaluated step in large language models (LLMs).
The standard metric, fertility (the average number of tokens per word) captures com-
pression efficiency but obscures how vocabularies are allocated across languages
and domains. We analyze six widely used tokenizers across seven languages and
two domains, finding stable fertility for English, high fertility for Chinese, and little
domain sensitivity. To address fertility’s blind spots, we propose the Single Token
Retention Rate (STRR), which measures the proportion of words preserved as
single tokens. STRR reveals systematic prioritization of English, strong support for
Chinese, and fragmentation in Hindi, offering an interpretable view of cross-lingual
fairness. Our results show that STRR complements fertility and provides practical

guidance for designing more equitable multilingual tokenizers.”

1 Introduction

Tokenization is a foundational step in large language models (LLMs), shaping how text is split
into model-readable units, yet its evaluation remains under-examined and constrained by a lack of
interpretable metrics [Bostrom and Durrett, 2020]. Existing metrics often prioritize compression
efficiency, with fertility (the average number of subword tokens generated per word) serving as a
standard diagnostic [Rust et al., 2021, Ali et al., 2024] (see §2 and §B for other possible evaluation
metrics). High fertility scores typically signal inefficiency, since more tokens are required to represent
the same semantic content. Despite its wide adoption, fertility has important blind spots: as a
token-level average, it obscures how vocabulary is allocated across languages, domains, and usage
contexts, and its link to downstream LLM performance remains unclear [Bostrom and Durrett, 2020].
Yet, as Table 1 suggests, fertility compresses behavior into a narrow numeric band and offers little
diagnostic guidance about where vocabulary capacity is misallocated.

These limitations are consequential: tokenization governs how capacity is allocated, affecting down-
stream efficiency, fairness, and representation quality in LLMs. A tokenizer that fragments words
in some languages more than others implicitly biases model capacity, inflating training and infer-
ence costs for those languages and amplifying performance disparities [Bostrom and Durrett, 2020].
Moreover, evaluation centered solely on fertility obscures challenges that arise in multilingual and
code-mixed scenarios, where speakers fluidly switch across linguistic boundaries [Mabule, 2015].
Such settings expose weaknesses in current tokenizers, particularly when English, functioning as a
global lingua franca, interacts with diverse native languages [Jenkins, 2009].
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Despite advances in multilingual pretraining, tokenizers still struggle to balance two competing goals:
preserving coverage across diverse languages, and scripts, while minimizing fragmentation. We argue
that existing evaluation practices are insufficient to guide tokenizer design toward this balance.

To address this gap, we contribute in two ways. First, we present a cross-lingual evaluation of six
LLM tokenizers across seven languages and two domains (formal and informal) (§4). Second, we
introduce the Single Token Retention Rate (STRR), a novel metric that measures the proportion of
words preserved as single tokens across languages. Unlike fertility, STRR better captures tokenizers’
vocabulary allocation and provides an interpretable diagnostic for fairness and efficiency (§5).
Together, these analyses shed light on how contemporary tokenizers implicitly prioritize certain
languages and suggest directions for equitable and efficient multilingual tokenizer design (§6).

2 Related Work

Most tokenizer evaluations rely on fertility (the average number of tokens per word) valued for its
simplicity but limited in scope [Rust et al., 2021]. Other measures such as vocabulary coverage,
subword entropy, compression rates, or character-to-token ratios have been proposed [Goldman
et al., 2024, Zouhar et al., 2023, Libovicky and Helcl, 2024, Signoroni and Rychly, 2022, Lotz et al.,
2025], yet none have become standard practice. Linguistically motivated metrics also exist [Arnett
et al., 2025, Beinborn and Pinter, 2023, Asgari et al., 2025], but they are often language-specific and
difficult to interpret across diverse scripts.

These approaches emphasize compression efficiency but rarely reveal how vocabulary is distributed
across languages or domains, nor do they consistently correlate with downstream model perfor-
mance [Bostrom and Durrett, 2020, Ali et al., 2024]. Prior work highlights the consequences of
uneven token allocation: inflated inference costs for some languages [Ahia et al., 2023], reduced
cross-domain robustness [Dagan et al., 2024], and misalignment with linguistic boundaries [Yin et al.,
2024, Bogin et al., 2022]. Together, these studies underscore the need for standardized, interpretable
metrics that capture both efficiency and fairness in multilingual settings.

3 Experimental Setup

Tokenizers: We selected six widely used LLLM tokenizers: GPT-40, Aya-Expanse-32B [Dang et al.,

20241, Mistral—Sma11—24B3, Llama-3.1-7@B [Dubey et al., 2024], Qwen2.5-72B [Qwen-Team
et al., 2025], and DeepSeek-V3 [DeepSeek-Al et al., 2024].

Datasets: For fertility and related metrics we use formal text (XL-Sum news; Hasan et al. 2021)
and informal text (MultilingualSentiment; clapAI 2024). For STRR, we build a multilingual wordlist

from 1O®®MostCommonWords4, aligning 1,000 translation pairs (e.g., English—French) per language
to ensure cross-lingual comparability and reflect high-frequency vocabulary.

Languages: We consider several languages (English, German, French, Spanish, Italian, Hindi, and
Chinese) selected because they are (i) officially supported by the evaluated LLMs and (ii) included

in widely used multilingual benchmarks (e.g., MMMLUS). For the fertility analyses, we restrict to
English, French, Spanish, and Chinese to ensure uniform data availability across both formal and
informal domains in the chosen datasets.

4 Fertility Analysis

Table 1 reports fertility scores across languages and tokenizers. Additional metrics, subword entropy
and characters-per-token (defined in §B), are shown in Table B, and display trends consistent with
the fertility results. English shows striking consistency across both formal and informal domains,
reflecting its dominance in pretraining corpora [Dubey et al., 2024, DeepSeek-Al et al., 2024] and
relatively simple morphology [Bentz et al., 2016].

3https ://mistral.ai/en/news/mistral-small-3
4https ://1000mostcommonwords. com
5https ://huggingface.co/datasets/openai/MMMLU
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but cannot distinguish necessary linguistic segmentation from suboptimal allocation.

While informative, fertility, subword entropy, and characters-per-token each have blind spots that
limit their usefulness for equitable multilingual tokenizer design. Fertility collapses behavior into
average tokens per word, masking over-fragmentation. Subword entropy summarizes distributional
balance but remains abstract and hard to localize. Characters-per-token highlights script differences
but reduces quality to mean token length, ignoring whether frequent words remain intact.

S Single Token Retention Rate (STRR)

We propose the Single-Token Retention Rate (STRR), which measures the proportion of words
preserved as single tokens. STRR serves two goals: (i) probing vocabulary construction by quantifying
whole-word retention in each language, and (ii) revealing how tokenizers allocate limited vocabulary
across languages. It highlights inequities directly and points to actionable remedies, such as expanding
coverage for under-represented high-frequency words. Unlike fertility, subword entropy, or characters-
per-token—which are computed on text corpora and averaged over tokenized outputs; STRR is defined
on a reference wordlist. It checks, for each word, whether the tokenizer has allocated a single token,
making it a type-level rather than token-level diagnostic. This design makes STRR interpretable,
fairness-sensitive, and tied to practical interventions.

5.1 Definition

Given a set of words W = {w, ..., w,} and a tokenizer T, we define
n

1
STRR(T; W) = = 1(|T(w;)| = 1) x 100;
i=1
STRR thus measures the percentage of words encoded as a single token.

5.2 Results

As illustrated in Figure 1, across all tokenizers, English words in translation pairs are overwhelm-
ingly retained as single tokens. This supports the hypothesis that tokenizers allocate significant
vocabulary space to English representations, reinforcing findings that even limited multilingual
exposure enhances LLM multilingual capabilities [Shaham et al., 2024], as models primarily learn
direct mappings from English tokens to multilingual equivalents, reducing reliance on extensive
multilingual pretraining.

Our STRR analysis reveals that all LLMs explicitly integrate Chinese vocabulary into their tok-
enization strategies to reduce segmentation artifacts as observed in Table 1. Notably, Qwen2.5-72B
and DeepSeek-V3 exhibit the highest STRR for Chinese, suggesting enhanced language-specific
support for whole-word representations.

Hindi exhibits the lowest STRR across all evaluated tokenizers, revealing pronounced fragmentation
and suboptimal vocabulary allocation. Crucially, STRR quantifies this inefficiency with a direct,
interpretable measure, rather than simply echoing prior fertility-based findings [Ahia et al., 2023],
offering clear guidance for targeted vocabulary expansion in under-served languages (§6).

6 Discussion & Recommendations

Identifying Core Vocabulary via the Pareto Principle: The Pareto Principle, or “80/20 rule,”
posits that a small fraction of the lexicon accounts for most language use [Sanders, 1987]. In English,
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Figure 1: Single Token Retention Rate (STRR) across six LLM tokenizers for different language
pairs. Each pair (e.g., English-French) represents 1,000 parallel words in both languages, allowing us
to examine whether LLM tokenizers prioritize the English versions of words over their multilingual
counterparts. A high STRR for English suggests that tokenizers allocate more vocabulary space to
English, while differences in STRR across languages indicate varying degrees of support.

the General Service List (GSL) of roughly 2,000 words covers 80—85% of standard written text [West,
1953]. We thus advocate that multilingual tokenizer developers identify an analogous core vocabulary
in each language (namely, the highest-frequency words that dominate token counts) and ensure they
are encoded as single tokens. Prioritizing this compact set minimizes subword fragmentation and
maximizes encoding efficiency without unnecessarily expanding the overall vocabulary.

End-to-End Vocabulary Expansion Pipeline: We propose a practical four-stage pipeline for
enhancing multilingual tokenizers, feasible even in low-resource settings or without large pretraining
corpora. As a shared baseline, we release curated lists of the 1,000 most frequent words in seven
major languages.

1. Core Vocabulary Identification: Select the highest-frequency words in each target language
using our curated lists or extend them as needed.

2. Vocabulary Injection: Add identified words to the tokenizer’s vocabulary as single tokens.
Use STRR to check which are already represented and which require injection (§5).

3. Corpus Pretraining: Continue pretraining or fine-tuning the base multilingual LLM on pub-
licly available multilingual text [Ustiin et al., 2024], incorporating the expanded vocabulary
to learn robust embeddings.

4. Multilingual Instruction Tuning: Instruction-tune the model on multilingual instruc-
tion—response datasets [Singh et al., 2024] to validate and reinforce the expanded vocabulary
in downstream tasks.

This pipeline can reduce subword fragmentation, facilitate faster adaptation, and potentially improve
consistency across diverse languages.

7 Conclusion

We introduced STRR, a simple interpretable metric that complements fertility by capturing whole-
word preservation in multilingual tokenization. Our analysis across tokenizers shows that STRR
reveals biases, favoring English and Chinese while fragmenting languages like Hindi, that fertility
alone cannot. By releasing high-frequency word lists, providing code, and outlining a vocabulary-
expansion pipeline, we offer actionable steps toward more efficient and equitable tokenizer design.

6https ://1000mostcommonwords.com/languages/
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A  Model Details

Models Vocab Size Model ID

GPT-40 200,019 Link
Aya-Expanse-32B (Dang et al. [2024]) 255,029 HF Link
Mistral-Small-24B 131,072 HF Link

Llama-3.1-70B (Dubey et al. [2024]) 128,256 HF Link
Qwen2.5-72B (Qwen-Team et al. [2025]) 151,665 HF Link
DeepSeek-V3 (DeepSeek-Al et al. [2024]) 128,815 HF Link
Table 2: Details of the models used in our experiments, including total vocabulary size (with added
tokens) for each model. "HF Link" refers to the corresponding Hugging Face model IDs.

B Tokenization Metrics: Definitions and Limitations
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across text.

vs. uniformity). High
entropy = fairer, bal-
anced allocation.

Metric Definition What it Captures How STRR Differs
Fertility Avg. number of tokens | Measures  sequence | STRR is type-level:
per word (compression | length efficiency; | counts % of whole
proxy). high fertility = more | words preserved.
fragmentation. Fertility hides where
fragmentation occurs,
STRR pinpoints cross-

lingual allocation.

Subword  En- | Entropy of token | Captures balance of vo- | STRR measures whole-
tropy frequency distribution | cabulary usage (skew | word retention per lan-

guage, not distribution
balance. Entropy flags
global skew; STRR
identifies which lan-
guages’ words are frag-
mented.

Char-to-Token
Ratio

Avg. number of charac-
ters per token.

Captures average to-
ken length; highlights
script differences (e.g.,
Chinese vs. English).

STRR does not av-
erage token lengths,
but directly counts in-
tact words. Differenti-
ates many slightly split
words from severe frag-
mentation of core vo-
cabulary.

STRR (Single
Token Retention
Rate)

Percentage of words
preserved as single to-
kens.

Captures vocabulary al-
location fairness and
whole-word coverage
across languages.

Provides actionable, in-
terpretable diagnostic:
directly shows which
languages and words
are under-served and
can guide vocabulary
expansion.

Table 3: Comparison of tokenization evaluation metrics. Fertility and char-to-token ratio measure
compression/fragmentation averages; subword entropy measures distributional balance; STRR high-
lights cross-lingual fairness by directly quantifying whole-word retention.



GPT-40 Aya-Expanse-32B Mistral-Small-24B Llama-3.1-70B Qwen2.5-72B DeepSeek-V3
Fert. Ent. Chars/Tok Fert. Ent. Chars/Tok Fert. Ent. Chars/Tok Fert. Ent. Chars/Tok Fert. Ent. Chars/Tok Fert. Ent. Chars/Tok

Language Domain

Enelish Formal 122 945 3.88 1.24 930 3.80 1.27 940 372 123 943 3.84 125 936 3.77 9.44 3.83
nels Informal 122 9.59 376 125 9.49 3.67 127 961 3.59 125 959 3.66 126 957 3.64 9.61 365
Frenct Formal 142 975 3.60 142 944 3.60 143 9.70 3.58 1.67  9.70 3.06 1.68  9.67 3.06 9.73 3.18
rench Informal 137  9.92 3.54 142 974 343 141 993 345 158 985 3.06 158 985 3.08 9.85 3.09
Spanish Formal 136 9.64 373 133 955 382 142 9.64 3.60 1.61  9.67 3.16 1.61  9.65 3.16 9.66 3.29
panis Informal  1.32  9.32 3.50 136 9.30 3.39 144 933 322 1.53 932 3.01 1.53 932 3.02 9.31 3.01
Chinese ~ Formal 189 0.02 090 182 7.56 093 221 814 077 189 9.29 0.89 240 825 071 6.64 0.87
a Informal 1.86 8.55 0.84 1.96 7.03 0.80 230  7.68 0.68 1.92 878 0.82 240 7.89 0.65 6.30 0.80

Table 4: Complete results: fertility (tokens/word), entropy (bits), and characters per token across
languages, domains, and models.
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