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Abstract

We propose a method to protect the privacy001
of search engine users by decomposing the002
queries using semantically related and unre-003
lated distractor terms. Instead of a single004
query, the search engine receives multiple005
decomposed query terms. Next, we recon-006
struct the search results relevant to the original007
query term by aggregating the search results008
retrieved for the decomposed query terms. We009
show that the word embeddings learnt using a010
distributed representation learning method can011
be used to find semantically related and dis-012
tractor query terms. We derive the relation-013
ship between the obfuscity achieved through014
the proposed query anonymisation method and015
the reconstructability of the original search016
results using the decomposed queries. We017
analytically study the risk of discovering the018
search engine users’ information intents un-019
der the proposed query obfuscation method,020
and empirically evaluate its robustness against021
clustering-based attacks. Our experimental re-022
sults show that the proposed method can ac-023
curately reconstruct the search results for user024
queries, without compromising the privacy of025
the search engine users.026

1 Introduction027

As web search engine users, we are left with two028

options regarding our privacy. First, we can trust029

the search engine not to disclose the keywords that030

we use in a search session to third parties, or even031

to use for any other purpose other than providing032

search results to the users who issued the queries.033

However, the user agreements in most web search034

engines do not allow such user rights. Although035

search engines pledge to protect the privacy of their036

users by encrypting queries and search results1, the037

encryption is between the user and the search en-038

gine – the original non-encrypted queries are still039

available to the search engine. The keywords issued040

1https://goo.gl/JSBvpK

by the users are a vital source of information for 041

improving the relevancy of the search engine and 042

displaying relevant adverts to the users. For exam- 043

ple, in learning to rank (He et al., 2008), keywords 044

issued by a user and the documents clicked by that 045

user are recorded by the search engine to learn the 046

optimal dynamic ranking of the search results. user 047

interests and extract attributes related to frequently 048

searched entities (Pasca, 2014; Sadikov et al., 2010; 049

Santos et al., 2010; Richardson, 2008; Pasca, 2007). 050

Considering the fact that placing advertisements 051

for the highly bid keywords is one of the main rev- 052

enue sources for search engines, there are obvious 053

commercial motivations for the search engines to 054

exploit the user queries beyond simply providing 055

relevant search results to their users. For example, 056

it has been reported that advertisements contribute 057

to 96% of Google’s revenue2. Therefore, it would 058

be unrealistic to assume that the user queries will 059

not be exploited in a manner unintended by the 060

users. 061

As an alternative approach that does not rely on 062

the goodwill of the search engine companies, we 063

propose a method (shown in Figure 1), where we 064

disguise the queries that are sent to a search en- 065

gine such that it is difficult for the search engine 066

to guess the real information need of the user by 067

looking at the keywords, yet it is somehow possible 068

for the users to reconstruct the search results rele- 069

vant for them from what is returned by the search 070

engine. The proposed method does not require any 071

encryption or blindly trusting the search engine 072

companies or any third-party mediators. However, 073

this is a non-trivial task because a search engine 074

must be able to recognise the information need of a 075

user in order to provide relevant results in the first 076

place. Therefore, query obfuscation and relevance 077

of search results are at a direct trade-off. 078

Specifically, given a user query A, our proposed 079

2https://www.wordstream.com/articles/
google-earnings
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Figure 1: Overview of the proposed method. The orig-
inal query A is decomposed into a set of relevant (X)
and distractor (Y ) terms at the user-end. The search
engine returns documents relevant for both X and Y ,
denoted by D(X) ∪D(Y ). We will ignore D(Y ) and
reconstruct the search results for A using D(X).

method first finds a set of n noisy relevant terms080

X1, X2, . . . , Xn (denoted by the set {Xi}ni=1) and081

m distractor terms Y1, Y2, . . . , Ym (denoted by the082

set {Yj}nj=1) for A to obfuscate the user query. We083

use pre-trained word embeddings for identifying084

the noisy-relevant and distractor terms. We add085

Gaussian noise to the relevant terms such that it086

becomes difficult for the search engine to discover087

A using {Xi}ni=1. However, {Xi}ni=1 is derived088

using A, so there is a risk that the search engine089

will perform some form of de-noising to unveil A090

from {Xi}ni=1. Therefore, using {Xi}ni=1 alone as091

the keywords does not guarantee obfuscity. To mit-092

igate this risk, we generate a set of distractor terms093

{Yj}nj=1 separately for each user query. We then094

issue X1, X2, . . . , Xn, Y1, Y2, . . . , Ym in random095

order to the search engine to retrieve the corre-096

sponding search results. We then reconstruct the097

search results for A using the search results we re-098

trieve from the noisy-relevant terms and discard the099

search results retrieved from the distractor terms.100

It is noteworthy that during any stage of the pro-101

posed method, we do not issue A as a standalone102

query nor in conjunction with any other terms to103

the search engine. Moreover, we do not require104

access to the search index, which is typically not105

shared by the search engine companies with the106

outside world.107

We do not collect, process or release any per-108

sonal data with ethical considerations in this work.109

Our contributions in this paper can be summarised110

as follows:111

• We propose a method to obfuscate user112

queries sent to a search engine by semantic113

decomposition to protect the privacy of the114

search engine users. Our proposed method115

uses pre-trained word embeddings.116

• We introduce the concepts of obfuscity (i.e.,117

how difficult it is to guess the original user118

query by looking at the auxiliary queries sent 119

to the search engine?), and reconstructability 120

(i.e. how easy it is to reconstruct the search 121

results for the original query from the search 122

results for the auxiliary queries?), and propose 123

methods to estimate their values. 124

• We theoretically derive the relationship be- 125

tween obfuscity and reconstructability using 126

known properties of distributed word repre- 127

sentations. 128

• We evaluate the robustness of the proposed 129

query obfuscation method against clustering- 130

based attacks, where a search engine would 131

cluster the keywords it receives within a single 132

session to filter out distractors and predict the 133

original query from the induced clusters. Our 134

experimental results show that by selecting 135

appropriate distractor terms, it is possible to 136

guarantee query obfuscity, while reconstruct- 137

ing the relevant search results. 138

2 Query Obfuscation via Semantic 139

Decomposition 140

2.1 Finding Noisy-Related Terms 141

Expanding a user query using related 142

terms (Carpineto and Romano, 2012) is a 143

popular technique in information retrieval to 144

address sparse results. Although query expansion 145

is motivated as a technique for improving recall, 146

we take a different perspective in this paper – 147

we consider query expansion as a method for 148

obfuscating (Gervais et al., 2014) the search 149

intent of a user. Numerous methods have been 150

proposed in prior work on query expansion to 151

find good candidate terms for expanding a given 152

user query such as using pre-compiled thesauri 153

containing related terms and query logs (Carpineto 154

and Romano, 2012). We note that any method that 155

can find related terms for a given user query A can 156

be used for our purpose given that the following 157

requirements are satisfied: 158

1. The user query A must never be sent to the 159

search engine when retrieving related terms 160

for A because this would obviously compro- 161

mise the obfuscation goal. 162

2. Repeated queries to the search engine must be 163

minimised in order to reduce the burden on 164

the search engine. We assume that the query 165
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obfuscation process to take place outside of166

the search engine using a publicly available167

search API. Although modern Web search en-168

gines would gracefully scale with the num-169

ber of users/queries, obfuscation methods that170

send excessively large numbers of queries are171

likely to be banned by the search engines be-172

cause of the processing overhead. Therefore,173

it is important that we limit the search queries174

that we issue to the search engine when com-175

puting the related terms.176

3. No information regarding the distribution of177

documents nor the search index must be178

required by the related term identification179

method. If we had access to the index of180

the search engine, then we could easily find181

the terms that are co-occurring with the user182

query, thereby identifying related terms. How-183

ever, we assume that the query obfuscation184

process happens outside of the search engine.185

None of the major commercial web search186

engines such as Google, Bing or Baidu pro-187

vide direct access to their search indices due188

to security concerns. Therefore, it is realistic189

to assume that we will not have access to the190

search index during anytime of the obfusca-191

tion process, including the step where we find192

related terms to a given user query.193

4. The related terms must not be too similar to194

the original user query A because that would195

enable the search engine to guess A via the196

related terms it receives. For this purpose, we197

would add noise to the user query A and find198

noisy related neighbours that are less similar199

to A.200

We propose a method that uses pre-trained word201

embeddings to find related terms for a user query202

that satisfy all of the above-mentioned require-203

ments. Context-independent word embedding204

methods such as word2vec (Mikolov et al., 2013)205

and GloVe (Pennington et al., 2014) can repre-206

sent the meanings of words using low dimensional207

dense vectors. Using word embeddings is also208

computationally attractive because they are low di-209

mensional (typically 100−600 dimensions are suf-210

ficient), consuming less memory and faster when211

computing similarity scores. Although we focus212

on single word queries for the ease of discussion,213

we note that by using context-sensitive phrase em-214

beddings such as Elmo (Peters et al., 2018) and215

BERT (Devlin et al., 2019) we can obtain vectors 216

representing multi-word queries, which we defer 217

to future work. 218

We denote the pretrained word embedding of a 219

term A by v(A). To perturbate word embeddings, 220

we add a vector, θ ∈ Rd, sampled independently 221

for each A from the d-dimensional Gaussian with 222

a zero mean and a unit variance, and measure the 223

cosine similarity between v(A)+θ and each of the 224

words Xi ∈ V in a predefined and fixed vocabulary 225

V , using their word embeddings v(Xi). We then 226

select the top most similar words {Xi}ni=1 as the 227

noisy related terms of A. 228

Let us denote the set of documents retrieved 229

using a query A by D(A). If we use a sufficiently 230

large number of related terms Xi to A, we will be 231

able to retrieve D(A) exactly using 232

D′(A) =
n⋃

i=1

D(Xi). (1) 233

However, in practice we are limited to using a trun- 234

cated list of n related terms because of computa- 235

tional efficiency and to limit the number of queries 236

sent to the search engine. Therefore, in practice 237

D′(A) will not be exactly equal to D(A). Nonethe- 238

less, we assume the equality to hold in (1), and later 239

in the theoretical proofs given in the supplementary 240

material discuss the approximation error. To model 241

the effect of ranking, we consider only the top-ζ 242

ranked documents as D(Xi) and set ζ = 100 in 243

our experiments. 244

2.2 Obfuscation via Distractor Terms 245

Searching using noisy related terms Xi alone of 246

a user query A, does not guarantee the obfuscity. 247

The probability of predicting the original user query 248

increases with the number of related terms used. 249

Therefore, we require further mechanisms to ensure 250

that it will be difficult for the search engine to 251

predict A from the queries it has seen. For this 252

purpose, we select a set of unrelated terms {Yj}nj=1, 253

which we refer to as the distractor terms. 254

Several techniques can be used to find the dis- 255

tractor terms for a given query A. For example, we 256

can randomly select terms from the vocabulary V 257

as the distractor terms. However, such randomly se- 258

lected distractor terms are unlikely to be coherent, 259

and could be easily singled-out from the related 260

terms by the search engine. If we know the seman- 261

tic category of A (e.g. A is a person or a location 262

etc.), then we can limit the distractor terms to the 263
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same semantic category as A. This will guaran-264

tee that both related terms as well as distractor265

terms are semantically related in the sense that they266

both represent the same category. Therefore, it267

will be difficult for the search engine to discrim-268

inate between related terms and distractor terms.269

Information about the semantic categories of terms270

can be obtained through different ways such as271

Wikipedia category pages, taxonomies such as the272

WordNet (Miller, 1995) or by named entity recogni-273

tion (NER) tools. Moreover, we consider distractor274

terms Yj that have similar average frequency as the275

original query A and the noisy related terms Xi276

so that it will be difficult to differentiate between277

distractor terms and noisy related terms based on278

frequency information.279

We propose a method to find distractor terms Yj280

for each query A using pre-trained word embed-281

dings as illustrated in Figure 2. Let us consider282

a set of candidate terms C from which we must283

select the distractor terms. For example, C could284

be a randomly selected subset from the vocabu-285

lary of the corpus used to train word embeddings.286

First, we select a random hyperplane (represented287

by the normal vector h ∈ Rd to the hyperplane) in288

the embedding space that passes through the point289

corresponding to A. Next, we split C into two mu-290

tually exclusive sets C+ = {x : x ∈ C,x>h ≥ 0}291

and C− = {x : x ∈ C,x>h < 0} depending292

on which side of the hyperplane the word is lo-293

cated. Let us define Cmax and Cmin to be respec-294

tively the larger and smaller of the two sets C+295

and C− (i.e. Cmax = argmaxS∈{C+,C−} |C| and296

Cmin = argminS∈{C+,C−} |C|) Next, we remove297

the top 10% of the similar words in Cmax to the298

original query A. We then use this reduced Cmax as299

C (i.e. C ← Cmax) and repeat this process until we300

are left with the desired number of distractor terms301

in C. Intuitively, we are partitioning the candidate302

set into two groups in each iteration considering303

some attribute (dimension) of the word embedding304

of the query (possibly representing some latent305

meaning of the query), and removing similar terms306

in that subspace.307

2.3 Reconstructing Search Results308

Once we have identified a set of noisy related terms,309

{Xi}ni=1, and a set of distractor terms, {Yj}nj=1, we310

issue those terms as queries to the search engine311

and retrieve the relevant search results for each312

individual term. We issue related terms and dis-313

Figure 2: Selecting distractor terms for a given query
A. We first compute the noise (θ) added vector A′ for
A, and then search for terms Yj that are located inside a
cone that forms an angle ω withA′. This would ensure
that distractor terms are sufficiently similar to the noise
component, therefore difficult to distinguish from A.

tractor terms in a random sequence, and ignore the 314

results returned by the search engine for the distrac- 315

tor terms. Finally, we can reconstruct the search 316

results for A using (1). 317

3 Obfuscity vs. Reconstructability 318

Our proposed query decomposition method strikes 319

a fine balance between two factors (a) the diffi- 320

culty for the search engine to guess the original 321

user query A, from the set of terms that it receives 322

Q(A) = {X1, X2, . . . , Xn, Y1, Y2, . . . , Ym}, and 323

(b) the difficulty to reconstruct the search results, 324

D(A), for the original user query, A, using the 325

search results for the noisy related terms following 326

(1). We refer to (a) as the obfuscity, and (b) as the 327

reconstructability of the proposed query decompo- 328

sition process. 329

3.1 Obfuscity 330

We define obfuscity, α, as the ease to guess the user 331

queryA, from the terms issued to the search engine 332

and compute it as follows: 333

α = 1− 1

|Q(A)|
∑

q∈Q(A)

sim(v(A), v(q)) (2) 334

Specifically, we measure the average cosine simi- 335

larity between the word embedding, v(A), for the 336

original user query A, and the word embeddings 337

v(q) for each of q ∈ Q(A) search terms. If the 338

similarity is higher, then it becomes easier for the 339

search engine to guess A from the search terms. 340

The difference between this average similarity and 341
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1 (i.e. the maximum value for the average similar-342

ity) is considered as a measure of obfuscity we can343

guarantee through the proposed query decomposi-344

tion process. Even if we are not exactly sending345

A to the search engine as a keyword, the search346

engine will be able to figure out A from Q(A). By347

using word embeddings to measure the similarity348

between the original query A and the keywords349

Q(A) sent to the search engine, we are able to con-350

sider not only exact matches but semantically sim-351

ilar keywords, which can be seen as a soft match352

between words. The definition of obfuscity given353

by (2) is based on this intuition.354

3.2 Reconstructability355

We reconstruct the search results for A using the356

search results for the queries {Xi}ni=1 following357

(1). We define reconstructability, ρ as a measure358

of the accuracy of this reconstruction process and359

is defined as follows:360

ρ =
|D(A) ∩ D′(A)|
|D(A)|

(3)361

A document retrieved and ranked at top-ζ by only362

a single noisy related term might not be relevant363

to the original user query A. A more robust recon-364

struction procedure would be to consider a docu-365

ment as relevant if it has been retrieved by at least366

l different noisy related terms. If a user query A367

can be represented by a set of documents where,368

each document is retrieved by at least l < n dif-369

ferent noisy related terms, then we say A to be370

l-reconstructable. In fact, the reconstruction pro-371

cess defined in (1) corresponds to the special case372

where l = 1. Increasing the value of l would de-373

crease the number of relevant documents retrieved374

for the original user query A, but it is likely to in-375

crease the relevance of the retrieval process. In the376

supplementary material, we prove that the trade-off377

relationship (18) holds between ρ and α.378

Theorem 1. Given a query A, represented by d-379

dimensional embedding, v(A), let us obfuscate it380

with n distractor terms and use all (i.e. n = l) dis-381

tractor terms to reconstruct the search results for382

A. The obfuscity α and the reconstructability ρ is383

in the inverse (trade-off) relationship given by (18),384

where c and Z are query independent constants.385

log ρ =
cl

2d
(c+ 2(1− α) ||v(A)||2)− logZ

(4)

386

3.3 Extension to Multi-word Expressions 387

The anonymisation method and its theoretical anal- 388

ysis described in the paper so far can be easily 389

generalised to handle multi-word queries. Specif- 390

ically, in the case of multi-word queries we must 391

embed not only unigrams but phrasal n-grams. Di- 392

rectly modelling n-gram co-occurrences is chal- 393

lenging for higher-order n-grams because of data 394

sparseness issues (Turney and Pantel, 2010). 395

Compositional approaches (Cordeiro et al., 2016; 396

Hashimoto and Tsuruoka, 2016; Poliak et al., 2017; 397

Yu and Dredze, 2015) have been proposed to over- 398

come this problem, where unigram, subword, or 399

character level embeddings are iteratively com- 400

bined to create representations for longer phrasal 401

queries. These methods can compute length- 402

invariant vector representations for n-grams, which 403

can then be used in the same manner as described 404

in Section 2.1 for finding noisy-related terms and 405

in Section 2.3 for finding distractor terms. 406

3.4 Effect of Ranking 407

If the number of documents containing q, |D(q)|, 408

is less than ζ for all q ∈ Q(A), we will be able 409

to retrieve all documents containing the related 410

and distractor terms. However, when this condi- 411

tion does not hold for one or more terms in Q(A), 412

the reconstruction process is not guaranteed to per- 413

fectly reconstructD(A), depending on the accuracy 414

of the ranking method used in the search engine. 415

Note that due to the relatedness between the terms 416

{Xi}ni=1, even though a particular relevant docu- 417

ment d ∈ D(A) is not retrieved by a termXi due to 418

the truncation by ranking, it could still be retrieved 419

by a different Xj (j 6= i) term. Moreover, in prac- 420

tice, the number of relevant documents for a query 421

is significantly smaller than ζ and modern search 422

engines have accurate ranking models that return 423

relevant results among top-ζ, thus mitigating this 424

risk of truncation. 425

4 Experiments 426

4.1 Effect of Noise and Distractor Terms 427

To evaluate the proposed method we create a 428

dataset where we select 50 popular queries from 429

Wikipedia query logs and associate them with the 430

relevant Wikipedia articles. We use the December 431

2015 dump of English Wikipedia for this purpose 432

and build a keyword-based inverted search index. 433

We use 300 dimensional pretrained GloVe (Pen- 434

nington et al., 2014) embeddings trained from a 435
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Figure 3: Relationship between obfuscity and reconstructability under different levels of added noise and no dis-
tractor terms (left: no-noise, middle: medium-level of noise, and right: high-level of noise). Base reconstructability
scores for no noise and no distractor terms are super imposed in black boxes.

Figure 4: Hit rates for the k-means clustering attacks for increasing number of clusters (k) and distractor terms.
(left: no distractors, middle: 20 distractors, and right: 40 distractors). In each figure, we show results for three
levels of added noise.

42 billion token Web crawled corpus3. Figure 3436

and show the obfuscity and the natural (base e)437

log-reconstructability to values for the 50 queries438

in our dataset at different levels of noise. Specifi-439

cally, we add Gaussian noise with zero-mean and440

standard deviations of 0.6 and 1.0 respectively to441

stimulate medium and high levels of noise, whereas442

the no-noise case corresponds to not perturbing443

the word embeddings. (trend with distractor terms444

are shown in Appendix Figure 6) Distractor terms445

that have similar average frequency to the original446

query and the noisy relevant terms are randomly447

selected from Wikipedia articles that belong to the448

same Wikipedia category tag as the article for the449

original query.450

We see a negative correlation between obfuscity451

and reconstructability in all plots as predicted by452

(18). Addition of noise affects the selection of re-453

lated terms but not the selection of distractor terms.454

However, related terms influence both obfuscity455

as well as reconstructability. Because Gaussian456

noise is added to the word embedding of the origi-457

3https://nlp.stanford.edu/projects/
glove/

nal query, and the nearest neighbours to this noise 458

added embedding are selected as the related terms, 459

this process would help us to increase obfuscity. 460

On the other hand, the search results obtained us- 461

ing noisy related terms will be less relevant to the 462

original user query. Therefore, reconstructing the 463

search results for the original user query using the 464

search results for the noisy related terms will be- 465

come more difficult, resulting in decreasing the 466

reconstructability. The overall effect of increas- 467

ing obfuscity and decreasing reconstructability is 468

shown by the increased negative gradient of the 469

line of best fit in the figures. 470

4.2 Robustness against Attacks 471

An important aspect of a query obfuscation method 472

is its robustness against attacks. Given that the pro- 473

posed method sends two groups of terms (relevant 474

and distractor) to a search engine, a natural line of 475

attack is to cluster the received terms to filter out 476

distractor terms and then guess the user query from 477

the relevant terms. We call such attacks as cluster- 478

ing attacks. As a concrete example, we simulate a 479

clustering attacker who applies k-means clustering 480
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to the received terms. The similarity between terms481

for the purpose of clustering is computed using482

the cosine similarity between the corresponding483

word embeddings. Any clustering algorithm can be484

used for this purpose. We use k-means clustering485

because of its simplicity. Next, the attacker must486

identify a single cluster that is likely to contain the487

relevant terms. For this purpose, we measure the488

coherence, µ(C), of a cluster C given by (5).489

µ(C) = 2

|C|(|C| − 1)

∑
u,v∈C,u6=v

sim(u, v) (5)490

Here, u, v ∈ C are two distinct terms in C. Because491

a cluster containing relevant terms will be more492

coherent than a cluster containing distractor terms,493

the attacker selects the cluster with the highest co-494

herence as the relevant cluster. Finally, we find the495

term from the entire vocabulary that is closest to496

the centroid of the cluster as the guess Â of the497

original user query A. We define hit rate to be the498

proportion of the queries that we disclose via the499

clustering attack. Figure 4 shows the hit rates for500

the clustering attacks under different numbers of501

distractor terms.502

From Figure 4 left we see that the hit rate is503

high when we do not use any distractor terms. In504

this case, the set of candidate terms consists purely505

of related terms Xi. We see that if we cluster all506

the related terms into one cluster (k = 1) we can507

easily pick the original query A by measuring the508

similarity to the centroid of the cluster. The hit rate509

drops when we add noise to the word embeddings,510

but even with the highest level of noise, we see511

that it is possible to discover the original query512

in 19% of the time. However, the hit rate drops513

significantly for all levels of noise when we add514

distractor terms as shown in the middle and right515

plots in Figure 4.516

Hit rate is maximum when we set k = 2, which517

is an ideal choice for the number of clusters consid-518

ering the fact that we have two groups of terms (re-519

lated terms and distractors) among the candidates.520

Increasing k also increases the possibility of fur-521

ther splitting the related terms into multiple clusters522

thereby decreasing the probability of discovering523

the original query from a single cluster. We see524

that hit rates under no or medium levels of noise525

drops when we increase the number of distractor526

terms from 20 to 40, but the effect on high-level527

noise added candidates is less prominent. This re-528

sult suggests that we could increase the number of529

distractor terms while keeping the level of noise 530

to a minimum. Examples of terms discovered by 531

clustering attacks are shown in Appendix B, and 532

the trade-off between reconstructability and hit rate 533

is investigated in Appendix C. 534

5 Human Evaluation 535

To empirically evaluate the difficulty, not only for 536

a search engine as done in previous sections, but 537

even also for human attackers to predict the orig- 538

inal query given the related and distractor terms, 539

we devise a query prediction game, where a group 540

of human attackers are required to predict the orig- 541

inal query from the related and distractor terms 542

suggested by the proposed method. A group of 63 543

graduate students (all native English speakers) par- 544

ticipated in this experiment. The query prediction 545

game is conducted in two stages. In the first stage, 546

we randomly shuffle the related and distractor term 547

sets extracted by the proposed method for a hidden 548

query. Human attackers are unaware as to which 549

of the terms are related to the original user-query 550

and which are distractors. A human attacker has 551

a single guess to predict the user-query and wins 552

only if the original query is correctly predicted. If 553

the human attacker fails at this first step, then we 554

remove all distractor terms and display only the re- 555

lated terms to the human attacker. This is expected 556

to significantly simplify the prediction task because 557

now the candidate set is smaller, does not contain 558

distractor terms and the human attacker has already 559

had a shot at the prediction. The human attacker 560

then has a second chance to predict the original 561

query from the related set of terms. If the human 562

attacker correctly predicts the original query in the 563

second stage, we consider it to be a winning case. 564

Otherwise, the current round of the game is termi- 565

nated and the next set of terms are shown to the 566

human attacker. Winning rate is defined as the num- 567

ber of games won by the human attackers, where 568

the original user query was correctly predicted. 569

Figure 5 shows the winning rates for the first and 570

second stages of the query prediction game against 571

the obfuscity of the queries. All queries selected for 572

the prediction game have reconstructability scores 573

greater than 0.3, which indicates that the search 574

results for the original query can be accurately re- 575

constructed from the related terms shown to the 576

human attackers. From Figure 5, we see that the 577

winning rate for the first stage is lower than that 578

for the second stage, indicating that it is easier for 579
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Figure 5: Winning rate vs. obfuscity for the first and
second stages of the query prediction game

humans to guess the original query when the dis-580

tractor terms are removed. Moreover, we see a581

gradual negative correlation between hit rate and582

obfuscity. This shows that more obfuscatory the583

terms are, it becomes difficult even for the human584

attackers to predict the original query, which is a585

desirable property for a query obfuscation method.586

6 Related Work587

One of the early incidents of query logs leaking588

private information in the public domain is the589

AOL’s release of query log data in 2006.4 Fol-590

lowing this incident various methods have been591

proposed to obfuscate user queries such as token-592

based hashing (Kumar et al., 2007) and query-log593

bundling (Jones et al., 2008). However, in these594

approaches obfuscation happens only at the Web595

search engine’s side without any intervention by596

the users, and the users must trust the good inten-597

tions of the search engine with respect to the user598

privacy. Moreover, (Kumar et al., 2007) showed599

that hashing alone does not guarantee user privacy.600

Accessing Web search engines via an601

anonymised proxy server such as the onion602

routing (Goldschlang et al., 1999), TOR (Dingle-603

dine et al., 2004), Dissent (Corrigan-Gibbs and604

Ford, 2010) or RAC (Mokhtar et al., 2013) is605

a popular strategy employed by common users.606

The goal is to prevent the search engine link the607

queries issues by a user to his or her user profile.608

Anonymised search engines such as duckduckgo,609

Qwant, Swisscows provide privacy-oriented610

alternatives to Web users where the IP addresses,611

search profiles, location information etc. related612

to the users are kept anonymised. On the other613

hand, the query obfuscation method we propose614

in this paper can be used in conjunction with615

other anonymisation techniques in existing616

private-browsing browser plug-ins/add-ons and617

4https://tinyurl.com/y9qx9ufz

search portals to further increase the level of 618

privacy. 619

Obfuscation-based private web search (Balsa 620

et al., 2012) includes dummy keywords to pre- 621

vent search engines from guessing users’ query 622

intent. Several browser add-ons that automati- 623

cally append unrelated fake terms have been de- 624

veloped such as TrackMetNot (Howe and Nis- 625

senbaum, 2009), OptimiseGoogle, Google Privacy, 626

Private Web Search tool (Saint-Jean et al., 2007) 627

and GooPIR (Domingo-Ferrer et al., 2009). Al- 628

though this approach is similar to our proposal to 629

append user queries with distractor terms, those 630

prior proposals have relied on pre-compiled on- 631

tologies (Petit et al., 2014) such as the WordNet 632

or queries issued by other users shared via a peer 633

network. Such approaches have scalability issues 634

because most named entities that appear in search 635

queries do not appear in the WordNet and it is 636

unlikely that users would openly share their key- 637

words to be used by their peers. Recently, outside 638

IR, obfuscation has been applied successfully for 639

anonymising users in social media platforms (Ma- 640

sood et al., 2018; Papadopoulos et al., 2013). 641

The goal in Private Information Re- 642

trieval (Yekhanin, 2010) is to retrieve data 643

from a database without revealing the query but 644

only some encrypted or obfuscated version of 645

it (Ostrovsky and Skeith, 2007; Chor et al., 1997). 646

For example, in hompmophic encryption-based 647

methods the user (client) submits encrypted 648

keywords and the search engine (server) performs 649

a blinded lookup and returns the results again in an 650

encrypted form, which can then be decrypted by 651

the user. Embellishing queries with decoy terms 652

further protects the privacy of the users. PIR has 653

been applied in recommender systems (Gupta 654

et al., 2016) and public data (Wang et al., 2017). 655

However, unlike our proposed method, PIR 656

methods assume search engines to accommodate 657

the client side encryption methods, which is a 658

critical limitation because modern commercial 659

Web search engines do not allow this. 660

7 Conclusion 661

We proposed a method to obfuscate queries sent 662

to a Web search engine by decomposing the query 663

into a set of related terms and a set of distractor 664

terms. We empirically showed that the proposed 665

query obfuscation method is robust against a k- 666

means clustering attack. 667
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Appendix668

A Proof of Theorem 1669

In this section, we derive the relationship between670

obfuscity and reconstructability. Because obfuscity671

can be increased arbitrarily by increasing the dis-672

tractor terms, in this analysis, we ignore distractor673

terms. This can be seen as a lower-bound for the674

obfuscity that can be obtained, without using any675

distractor terms. We first discuss the case where676

we have only one related term (i.e. n = l = 1) and677

then consider l > 1 reconstructability case.678

A.1 n = l = 1 case679

Let us consider the case where n = 1. Here, for a680

given query A, we have only a single related term681

X = X1. In this case, l = 1, and we consider all682

documents retrieved using X as relevant for A. We683

first note that reconstructability, ρ, can be written684

as,685

ρ =
|D(A) ∩ D′(A)|
|D(A)|

(6)686

from the definition of reconstructability.687

Because we have a single noisy related term X ,688

we have D′(A) = D(X). By substituting this in689

(6), we get690

ρ =
|D(A) ∩ D(X)|
|D(A)|

. (7)691

If we consider the co-occurrence context of two692

terms to be the document in which they co-occur,693

and divide the numerator and denominator in (7)694

by the total number of documents indexed by the695

search engine, then (7) can be written as a condi-696

tional probability as in (8).697

ρ =
p(A,X)

p(A)
= p(X|A) (8)698

Theorem 2.2 in (Arora et al., 2016) provides699

a useful connection between the probability of a700

word (or the joint probability of two words) and701

their word representations, which we summarise702

below.703

log p(A,X) =
||v(A) + v(X)||22

2d
− 2 logZ ± ε

(9)

704

log p(A) =
||v(A)||22

2d
− logZ ± ε (10)705

Here, Z is the partition function and ε is the ap- 706

proximation error. (10) shows the relationship be- 707

tween the norm of the embedding of a word and 708

the frequency of that word in a corpus, whereas 709

(9) shows the relationship between the norm of the 710

addition of the embeddings of two words and the 711

co-occurrence frequency of those two words in a 712

corpus. Both these relations are proved by Arora 713

et al. (2016) and we would like to direct the inter- 714

ested readers to the original paper for the detailed 715

proofs. 716

Next, by taking the logarithm of both sides in (8) 717

we obtain, 718

log ρ = log p(A,X)− log p(A) 719

=
||v(X)||22 + 2v(X)>v(A)

2d
− logZ (11) 720

Obfuscity for a single query term X can be com- 721

puted using the cosine similarity as follows: 722

α = 1− v(A)>v(X)

||v(A)||2 ||v(X)||2
(12) 723

By substituting (12) in (11) we get, 724

log ρ =
||v(X)||22

2d
+

(1− α) ||v(A)||2 ||v(X)||2
d

− logZ.

(13)

725

Because A is a given query, v(A) is a constant. 726

Moreover, if we assume that different related terms 727

Xi have similar norms, (from (10) it follows that 728

such related terms must have similar frequencies 729

of occurrence in the corpus), then from (13) we 730

see that there exists a linear inverse relationship 731

between log ρ and α. Because logarithm function 732

is monotonically increasing, (13) implies an inverse 733

relationship between ρ and α. 734

A.2 n = l > 1 case 735

Let us now extend the relationship given by (13) 736

to the case where we consider a document to be 737

relevant if it can be retrieved from all of the n 738

related terms. In other words, we have l = n 739

reconstructability in this case. Because each search 740

result is retrieved by all l terms, we have 741

D′(A) = ∩li=1D(Xi). (14) 742

Reconstructability can be computed in this case 743
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as follows:744

ρ =
p(A,X1, X2, . . . , Xk)

p(A)
745

= p(X1, X2, . . . , Xl|A)746

≈
l∏

i=1

p(Xi|A) (15)747

In (15) we have assumed that the related terms are748

mutually independent given the query A.749

Let us take the logarithm on both sides of (15),750

and use (9) and (10) in the same manner as we did751

in Section A.1 to derive the relationship given by752

(16).753

log ρ =
1

2d

l∑
i=1

||v(Xi)||22+754

1

d

l∑
i=1

v(A)>v(Xi)− logZ (16)755

In the n = l case, obfuscity can be computed as756

follows:757

α = 1− 1

l

l∑
i=1

v(A)>v(Xi)

||v(A)||2 ||v(Xi)||2
(17)758

Let us further assume that all related terms759

X1, X2, . . . , Xl occur approximately the same760

number of times in the corpus. From (10) it then761

follows that ||v(Xi)||2 = c for i = 1, 2, . . . , l for762

some c ∈ R. By plugging (17) in (16), and using763

the approximation ||v(Xi)||2 = c we arrive at the764

relationship between ρ, α, and l given by (18).765

log ρ =
cl

2d
(c+ 2(1− α) ||v(A)||2)− logZ

(18)

766

767

A.3 General Case768

In the general case of l-reconstructability, we will769

have a subset of l ≤ n related terms retrieving each770

document. Exact analysis of this case is hard, and771

the reconstructability given by (18) must be consid-772

ered as a lower-bound for this general case because773

we will still be able to reconstruct the search results774

using
(
n
l

)
subsets of l related terms selected from a775

set of n related terms. Obfuscity can be arbitrarily776

increased without affecting the reconstructability777

by simply increasing the number of distractor terms.778

However, doing so would increase the burden on779

the search engine and is not recommended. In our 780

experiments, we find that 20-40 distractor terms 781

to be adequate to provide a good balance between 782

obfuscity and efficiency. 783

The theoretical analysis presented in Section A 784

depends on the relationships given by (9) and (10) 785

for joint and marginal probabilities of unigram 786

co-occurrences, originally proved by Arora et al. 787

(2016). However, these relationships were later 788

extended to cover co-occurrences of higher-order 789

n-grams by Bollegala et al. (2018), who showed 790

that the squared sum of embeddings of constituent 791

unigrams in an n-gram phrase is proportional to the 792

logarithm of the joint probability of those unigrams. 793

On the other hand, Arora et al. (2017) showed that 794

the inverse frequency-weighted average of unigram 795

embeddings to be a competitive alternative to word- 796

order sensitive supervised recurrent models for the 797

purpose of creating phrase embeddings. Therefore, 798

the relationship given in (18) still holds both theo- 799

retically and empirically in the case of multi-word 800

queries, enabling us to extend the proposed method 801

to multi-word phrasal queries. 802

B Terms discovered in clustering attacks 803

We show the terms discovered by clustering attacks 804

for two example queries, Hitler (Table 1) and mass 805

murder (Table 2) using a relatively small (< 10) 806

distractor terms. We see terms that are related to the 807

original queries can be accurately identified from 808

the word embeddings. Moreover, by adding a high- 809

level of noise to the embeddings, we can generate 810

distractor terms that are sufficiently further from 811

the original queries. Consequently, we see that both 812

obfuscity and reconstructability are relatively high 813

for these examples. Interestingly, the clustering 814

attack is unable to discover the original queries, 815

irrespective of the number of clusters produced. 816

C Trade-off between Reconstructability 817

and the Hit Rate in Clustering Attacks 818

If the terms sent to the search engine are related 819

to the original query, we will be able to accurately 820

reconstruct the search results. However, this in- 821

creases the risk of an adversary correctly guessing 822

the query. Hit rate was defined as the fraction of 823

the user queries correctly predicted by the cluster- 824

ing attack and is a measure of the robustness of 825

the proposed method. Therefore, a natural ques- 826

tion is what is the relationship between the recon- 827

structability and the hit rate. 828
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Figure 6: Relationship between obfuscity and reconstructability under different levels of added noise and with
20 distractor terms (left: no-noise, middle: medium-level of noise, and right: high-level of noise). Base recon-
structability scores for no noise and no distractor terms are super imposed in black boxes.

Figure 7: Hit-rate shown against reconstructability for k-means attacks with 0 (left), 60 (middle) and 120 (right)
distractor terms.

Query Hitler

noise high-level
related terms nazi, führer, gun, wehrmacht,

guns, nra, pistol, bullets
obfuscity 0.867
reconstructability 0.831

Clustering Attack Revealed Query
k=1 motagomery
k=2 albany, george
k=3 smith, albany
k=4 smith, fresno
k=5 rifle, albany

Table 1: Terms revealed by the clustering attacks for the
query Hitler. Clustering attack with different number
of clusters (k) does not reveal the original query.

To empirically study this relationship, we ran-829

domly select 109 user-queries and add Gaussian830

noise with zero-mean and standard deviations 0 (no831

noise), 0.6, 1.0, 1.4 and 1.8. In each case, we vary832

the number of distractor terms 0-120 and apply k-833

means clustering attacks with k = 1, 2, 3, 4 and 5.5834

To conduct a conservative evaluation, we consider835

the terms in the vocabulary closest to the respec-836

5In total, for a fixed k-value and the number of distractor
terms, we have 545 clustering attacks.

Query mass murder

noise high-level
related terms terrorism, killed, wrath, full-

grown
obfuscity 0.789
reconstructability 0.747

Clustering Attack Revealed Query
k=1 richmond
k=2 fremont, death
k=4 pasadena, words
k=4 pasadena, words
k=5 pasadena, anderson

Table 2: Terms revealed by the clustering attacks for
the query mass murder. We see that the query nor its
two tokens are revealed by the clustering attacks with
different k values.

tive centroids in all clusters and not only the most 837

coherent one as in Section 4.2. If the original query 838

matches any of those k terms, we consider it to be 839

a hit (e.g. to be revealing the original query). We 840

randomly sample data points from even intervals 841

of reconstructability values and plot in Figure 7. 842

We see a positive relationship between the re- 843

constructability and the hit rate in all figures. This 844

indicates a trade-off between the reconstructabil- 845
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ity and the hit rate, which shows that if we try to846

increase the reconstructability by selecting more847

relevant keywords to the original user-query, then848

it simultaneously increases the risk of the search849

engine discovering the query via a clustering at-850

tack. Moreover, we see that when we increase the851

number of distractor terms the hit rate drops for the852

same value of reconstructability. This result shows853

that in order to overcome the trade off between the854

reconstructability and the hit rate we can simply855

increase the number of distractor terms, thereby856

making the query obfuscation method more robust857

against clustering attacks. Moreover, the drop due858

to distractor terms is more prominent for the k = 1859

attacks when we have distractor terms compared860

to that when we do not have distractor terms. This861

is because both related and distractor terms will862

be contained in this single cluster from which it863

is difficult to guess the original user-query. There-864

fore, multiple clusters are required for a successful865

k-means clustering attack.866

Overall, the hit rate drops in the order k = 5,867

k = 3 and k = 2 when we increase the number868

of distractor terms. This result suggests that if one869

wants to increase the hit rate, then an effective strat-870

egy is to increase the number of clusters because871

we consider it to be a hit if the user-query is found872

via any of the clusters. Intuitively, if we form more873

clusters and pick all terms from the vocabulary874

closest to any one of the centroids, then the likeli-875

hood of predicting the original user-query increases876

with the number of clusters formed. However, in877

practice, we will need to further select one term878

from all the clusters. Nevertheless, we can consider879

the hit rate obtained in this manner to be a more880

conservative estimate, whereas in reality it will be881

less and therefore be more robust against attacks.882
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