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ABSTRACT

How to best integrate linguistic and perceptual processing in multimodal tasks is
an important open problem. In this work we argue that the common technique
of using language to direct visual attention over high-level visual features may
not be optimal. Using language throughout the bottom-up visual pathway, going
from pixels to high-level features, may be necessary. Our experiments on several
English referring expression datasets show significant improvements when lan-
guage is used to control the filters for bottom-up visual processing in addition to
top-down attention.

1 INTRODUCTION

As human beings, we can easily understand the surrounding environment with our visual system
and interact with each other using language. Since the work of [Winograd| (1972), developing a
system that understands human language in a situated environment is one of the long-standing goals
of artificial intelligence. Recent successes of deep learning studies in both language and vision
domains have increased the interest in tasks that combine language and vision (Antol et al., 2015}
Xu et al., 2015} [Krishna et al.,[2016; Suhr et al., 2017; /Anderson et al.,|2018b; Hudson & Manning],
2019). However, how to best integrate linguistic and perceptual processing is still an important open
problem. In this work we investigate whether language should be used to control the filters for
bottom-up visual processing as well as top-down attention.

In the human visual system, attention is driven by both “top-down” cognitive processes (e.g. focus-
ing on target’s color or location) and “bottom-up” salient, behaviourally relevant stimuli (e.g. fast
moving objects) (Corbetta & Shulman, 20025 Connor et al.,[2004} Theeuwes, |2010). Studies on em-
bodied language explore the link between linguistic and perceptual representations (Pulvermiiller,
1999; |Vigliocco et al., [2004; (Gallese & Lakoff] |2005) and it is often assumed that language has
a high-level effect on perception and drives the “top-down” visual attention (Bloom) 2002; |Jack-
endoff & Jackendoff], 2002} Dessalegn & Landaul 2008). However, recent studies from cognitive
science point out that language comprehension also affects low-level visual processing (Meteyard
et al., 2007; |Boutonnet & Lupyan,2015). Motivated by this, we propose a modeﬂ that can modulate
either or both of “bottom-up” and “top-down” visual processing with language conditional filters.

Current deep learning systems for language-vision tasks typically start with low-level image pro-
cessing that is not conditioned on language, then connect the language representation with high
level visual features to control the visual focus. To integrate both modalities, concatenation (Ma-
linowski et al} [2015), element-wise multiplication (Malinowski et al., 2015} [Lu et al.| [2016; [Kim
et al., 2016) or attention from language to vision (Xu et al.,|2015; |Xu & Saenko, [2016; Yang et al.,
2016; ILu et al.l [2017; |Anderson et al., |2018a}; Zellers et al., 2019) may be used. Specifically they
do not condition low-level visual features on language. One exception is [De Vries et al.| (2017)
which proposes conditioning the ResNet (He et al., 2016) image processing network with language
conditioned batch normalization parameters at every stage. Our model differs from these architec-
tures by having explicit “bottom-up” and “top-down” branches and allowing us to experiment with
modulating one or both branches with language generated kernels.

"We will release our code and pre-trained models along with a reproducible environment after the blind
review process.
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We evaluate our proposed model on the task of image segmentation from referring expressions where
given an image and a natural language description, the model returns a segmentation mask that
marks the object(s) described. We can contrast this with purely image based object detection (Gir-
shick, 2015} |Ren et al., |2017) and semantic segmentation (Long et al.| 2015; Ronneberger et al.,
20155 |Chen et al., [2017) tasks which are limited to predefined semantic classes. Our task gives
users more flexibility to interact with the system by allowing them to describe objects of interest in
free form language. The language input may contain various visual attributes (e.g., color, shape),
spatial information (e.g., “on the right”, “in front of’), actions (e.g., “running”, “sitting”) and inter-
actions/relations between different objects (e.g., “arm of the chair that the cat is sitting in”). This
makes the task both more challenging and suitable for comparing different strategies of language
control.

The perceptual module of our model is based on the U-Net image segmentation architecture (Ron-
neberger et al., |2015). This architecture has clearly separated bottom-up and top-down branches
which allows us to easily vary what parts are conditioned on language. The bottom-up branch starts
from low level visual features and applies a sequence of contracting filters that result in successively
higher level feature maps with lower spatial resolution. Following this is a top-down branch which
takes the final low resolution feature map and applies a sequence of expanding filters that even-
tually result in a segmentation mask at the original image resolution. Information flows between
branches through skip connections between contracting and expanding filters at the same level. We
experiment with conditioning one or both of these branches with language.

To make visual processing conditional on language, we add language-conditional filters at each
level of the architecture, similar to Misra et al.| (2018). Our baseline only applies language-
conditional filters on the top-down branch. Modulating only the top-down/expanding branch with
language means the high level features extracted by the bottom-up/contracting branch cannot be
language-conditional. Our model expands on this baseline by modulating both branches with
language-conditional filters. Empirically, we find that adding language modulation to the bottom-
up/contracting branch has a significant positive improvement on the baseline model. Our proposed
model achieves state-of-the art performance on three different English referring expression datasets.

2 RELATED WORK

In this section, we review related work in several related areas: Semantic segmentation classifies the
object category of each pixel in an image without language input. Referring expression comprehen-
sion locates a bounding box for the object(s) described in the language input. Image segmentation
from referring expressions generates a segmentation mask for the object(s) described in the language
input. We also cover work on language-conditional (dynamic) filters and studies that use them to
modulate deep-learning models with language.

2.1 SEMANTIC SEGMENTATION

Primitive semantic segmentation models are based on Fully Convolutional Networks (FCN) (Long
et al., 2015). DeepLab (Chen et al., 2017) and U-Net (Ronneberger et al., 2015)) are the most
notable state-of-the-art semantic segmentation models related to our work. DeepLab replaces regular
convolutions with atrous (dilated) convolutions in the last residual block of ResNets (He et al., 2016)
and implements Atrous Spatial Pyramid Pooling (ASPP) which fuses multi-scale visual information.
The U-Net architecture (Ronneberger et al.| [2015) improves over the standard FCN by connecting
contracting (bottom-up) and expanding (top-down) paths at the same resolution: the output of the
encoder layer at each level is passed to the decoder at the same level.

2.2 REFERRING EXPRESSION COMPREHENSION

Early models for this task were typically built using a hybrid LSTM-CNN architecture (Hu et al.,
2016b; Mao et al.,[2016). Newer models (Hu et al., 2017 [Yu et al., 2016} [2018}; |Wang et al., [2019))
use an Region-based CNN (R-CNN) variant (Girshick et al.,2014; Ren et al.,2017; He et al.,[2017)
as a sub-component to generate object proposals. [Nagaraja et al.| (2016)) proposes a solution based
on multiple instance learning. [Cirik et al.|(2018)) implements a model based on Neural Module Net-
works (NMN) by using syntax information. Among the literature, Compositional Modular Network
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(CMN) (Hu et al .| 2017), Modular Attention Network (MAttNet) (Yu et al.,2018)) and Neural Mod-
ule Tree Networks (NMTree) (Liu et al.,2019) are the most notable state-of-the-art methods, and all
of them are based on NMN (Andreas et al., 2016).

2.3 IMAGE SEGMENTATION FROM REFERRING EXPRESSIONS

Notable models for this task include Recurrent Multimodal Interaction (RMI) model (Liu et al.,
2017), Recurrent Refinement Networks (RRN) (Li et al., 2018)), Dynamic Multimodal Network
(DMN) (Margffoy-Tuay et al.,2018), Convolutional RNN with See-through-Text Embedding Pixel-
wise heatmaps (Step-ConvRNN or ConvRNN-STEM) (Chen et al., 2019a), Caption-aware Consis-
tent Segmentation Model (CAC) (Chen et al., 2019b)), Bi-directional Relationship Inferring Network
(BRINet) |Hu et al.[(2020) and Linguistic Structure guided Context Modelling (LSCM) module |Hui
et al. (2020). RRN which has a structure similar to U-Net, is built on top of a Convolutional LSTM
(ConvLSTM) (SHI et al, 2015) network. Unlike our model, ConvLSTM filters are not generated
from language representation and the multi-modal representation is used only in the initial time step.
DMN generates 1 x 1 language-conditional filters for language representation of each word. It per-
forms convolution operation on visual representation with language-conditional filters to generate
multi-modal representation for each word. Like RMI, word-level multi-modal representations are
fed as input to a multi-modal RRN to obtain multi-modal representation for image/language pairs.
Step-ConvRNN starts with a visual-textual co-embedding and uses a ConvRNN to iteratively re-
fine a heatmap for image segmentation. Step-ConvRNN uses a bottom-up and top-down approach
similar to this work, however, our model uses spatial language generated kernels within a simpler
architecture. CAC also generates 1 x 1 language-conditional dynamic filters. Unlike our model,
CAC applies these dynamic filters to single resolution / single feature map and additionally gen-
erates location-specific dynamic filters (e.g. left, bottom) to capture relations between the objects
exist at the different parts of the image. BRINet implements two different attention mechanisms:
language-guided visual attention and vision-guided linguistic attention. LSCM implements a depen-
dency parsing guided bottom-up attention mechanism to predict masks.

2.4 LANGUAGE-CONDITIONAL FILTERS

To control a deep learning model with language, early work such as Modulated ResNet (MOD-
ERN) (De Vries et al.| 2017) and Feature-wise Linear Modulation (FiLM) (Perez et al., 2018)) used
conditional batch normalization layers with only language-conditioned coefficients rather than cus-
tomized filters. [Finn et al.[(2016) generates action-conditioned dynamic filters. L1 et al.|(2017) is the
first work which generates dynamic language-conditional filters. |Gao et al.| (2018) proposes a VQA
solution method which has a group convolutional layer whose filters are generated from the question
input. |Gavrilyuk et al.|(2018) introduces a new task called as actor and action segmentation and to
solve this task, proposes an architecture which uses dynamic filters for multiple resolutions. Similar
to our work, [Misra et al.[(2018)) adds language conditional filters to a U-Net based architecture for
the task of mapping instructions to actions in virtual environments. ? also uses an architecture based
on U-Net and Misra et al.|(2018)) to solve a navigation and spatial reasoning problem. Those models
only modulate top-down visual processing with language.

Referring expression models that incorporate language-conditional filters into the architecture in-
clude (Chen et all [2019b; Margffoy-Tuay et al., 2018). Margffoy-Tuay et al.| (2018)) generates
language-conditional filters for words individually rather than whole sentence. |Chen et al.| (2019b)
generates 1 x 1 language-conditional filters from expressions. To make 1 x 1 language-conditional
filters spatially aware, different filters are generated for different image regions (e.g. top, left, right,
bottom).

Our main contribution in this work is an explicit evaluation of language conditional filters for
bottom-up visual processing in comparison to only using language for top-down attention control.

3 MODEL

Figure [I|shows an overview of our proposed architecture. For a given referring expression .S and an
input image I, the task is predicting a segmentation mask M that covers the object(s) referred to.
First, the model extracts a 64 x 64 x 1024 tensor of low-level features using a backbone convolutional
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neural network and encodes the referring expression .S to a vector representation 7 using a long short-
term memory (LSTM) network (Hochreiter & Schmidhuber;, |1997). Starting with the visual feature
tensor, the model generates feature maps in a contracting and an expanding path where the final map
represents the segmentation mask, similar to U-Net (Ronneberger et al., [2015). 3x3 convolutional
filters generated from the language representation r (language kernels) are used to modulate both the
contracting and the expanding paths. Our experiments show that modulating both paths improves
the performance dramatically.

Referring expression S

a red vase that is to the right of two other similar red vase
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Figure 1: Overview of our model.
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3.1 LOW-LEVEL IMAGE FEATURES

Given an input image I, we extract visual features from the fourth layer of the DeepLab ResNet101-
v2 network (Chen et al., [2017) pre-trained on the Pascal VOC dataset (Everingham et al., [2010).
We set W = H = 512 as the image size for our experiments. Thus, the output of the fourth
convolutional layer of DeepLab ResNet101-v2 produces a feature map with the size of (64,64) and
1024 channels for this setup. We concatenate 8-D location features to this feature map following
previous work (Hu et al.l 2016b; [Liu et al.| [2017; [Ye et al.| |2019; |Chen et al.l 2019a). The final
representation, Iy, has 1032 channels, and the spatial dimensions are (64, 64).

3.2 LANGUAGE REPRESENTATION

Consider a referring expression S = [w1, w3, ..., w,]| where w; represents the i’th word. In this
work, each word w; is represented with a 300-dimensional GloVe embedding (Pennington et al.,
2014), i.e. w; € R3%. We map the referring expression S to hidden states using a long short-term
memory network (Hochreiter & Schmidhuber, 1997) as h; = LSTM (h;—1,w;). We use the final
hidden state of the LSTM as the textual representation, » = h,,. We set the size of hidden states to
256, i.e. h; € R2%6,



Under review as a conference paper at ICLR 2021

3.3 SEGMENTATION MODEL

After generating image (/o) and language (r) representations, our model generates a segmentation
Mask M. We take the U-Net (Ronneberger et al., |2015) image segmentation model as the visual
processing backbone. Our model extends the U-Net by conditioning both contracting and expanding
branches on language using spatial language kernels.

Our model applies m convolutional modules to the image representation I. Each module, F}, takes
the concatenation of the previously generated feature map (Down;_1) and its convolved version with
a 3 x 3 language kernel K ;4 and produces an output feature map (Down;). Each F; has a 2D convo-
lution layer followed by batch normalization (Ioffe & Szegedyl 2015)) and ReL U activation function
(Maas et al.,[2013)). The convolution layers have 5 x 5 filters with stride = 2 and padding = 2
halving the spatial resolution, and they all have the same number of output channels.

Following Misra et al.| (2018)), we split the textual representation r to m equal parts (¢;) to generate
language-conditional filters (language kernels). We use each ¢; to generate a language-conditional
kernel (K;4):

K;q = AFFINE,;(DROPOUT(t;)) (1

Each AFFINE; is an affine transformation followed by normalizing and reshaping to convert the
output to a convolutional filter. DROPOUT is the dropout regularization (Srivastava et al.l [2014).
After obtaining the kernel, we convolve it over the feature map obtained from the previous module
to relate expressions to image features:

G;q = CONVOLVE(K,4, Down,;_1) 2)

Then, the concatenation of the resulting text-modulated features (G;4) and the previously generated
features (Down;_1) is fed into module F; for the next step.

In the expanding branch, we generate m feature maps starting from the final output of the contracting
branch as follows:

G . = CONVOLVE(Kj,, I;) <
Upm = H(Ginu) -
Upj = Hj(Gmu © Upj-1) ©

Similar to the bottom-up phase, G j,, is the modulated feature map with language-conditional kernels
generated as follows:

K, = AFFINE; (DROPOUT!(%)) ©)

where AFFINE; is again an affine transformation followed by normalizing and reshaping. Here,
we convolve the kernel (K;,,) over the feature maps from the contracting branch (Down;). Each
upsampling module H,, gets the concatenation (&) of the text related features and the feature map
(Up;) generated from the previous module. Only the first module operates on just convolved fea-
tures. Each H; consists of a 2D deconvolution layer followed by a batch normalization and ReLU
activation function. The deconvolution layers have 5 x 5 filters with stride = 2 and padding = 2
doubling the spatial resolution, and they all have the same number of output channels.

After generating the final feature map Up;, we apply a stack of layers (Dy, Do, ..., D,,) to map
Up; to the exact image size. Similar to upsampling modules, each Dy, is a 2D deconvolution layer
followed by batch normalization and the ReL U activation. The deconvolutional layer has 5 x 5 filters
with stride = 2 and padding = 2 to double the spatial sizes of the input. Each Dy, preserves the
number of channels except for the last one which maps the features to a single channel for the mask
prediction. There is no batch norm operation and the ReLU activation for the final module, instead
we apply a sigmoid function to turn the final features into probabilities (P € RH*W),

3.4 LEARNING

Given the probabilities (P € RH¥*W) for each pixel belonging to the target object(s), and the
ground-truth mask G € R *"W | the main training objective is the pixel-wise Binary-Cross-Entropy
(BCE) loss:
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Table 1: Ablation results and comparison with the previous works on the val set of UNC dataset
with prec@X and IoU metrics.

Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 IoU
Top-Down Modulation w/ FiLM layers 60.97 53.19 43.71 31.62 10.57 54.21
Top-Down Modulation w/ 1x1 filters 63.00 54.20 44.71 32.01 10.74 55.04
Top-Down Modulation w/ 3x3 filters 64.29 55.26 46.29 32.96 11.78 56.13
Bottom-Up Modulation (disconnected) w/ 3x3 filters 69.92 62.84 52.16 32.70 7.18 58.77
Bottom-Up Modulation w/ 3x3 filters 72.13 65.92 57.93 43.80 17.49 60.73
Dual Modulation w/ 1x1 filters 71.76 65.77 58.19 44.80 17.05 60.75
Dual Modulation w/ 3x3 filters (full model) 73.53 67.53 60.00 46.96 18.80 61.95
LSCM (Hui et al.[[2020) 70.84 63.82 53.67 38.69 12.06 61.54
BRINet (Hu et al.|[2020) 71.83 65.05 55.64 39.36 11.21 61.35
Step-ConvRNN (Chen et al.|[2019a) 70.15 63.37 53.15 36.53 10.45 59.13
CMSA (Ye et al.[[2019) 66.44 59.70 50.77 35.52 10.96 58.32
RRN (Li et al.[[2018) 61.66 52.5 424 28.13 8.51 55.33
DMN (Margtfoy-Tuay et al.|2018) 65.83 57.82 46.80 27.64 5.12 54.83
RMI (Liu et al.|2017) 42.99 33.24 22.75 12.11 2.23 45.18
1 H W
= WZZG”@ )+ (1 = Gij)log(1 — Pyj) (7)
z J

4 EXPERIMENTS

In this section we first give the details of the datasets and our experimental configurations (Section
[.1). A detailed analysis of the contribution of our idea and the different parts of the architecture is
given in Section f.2] Then we present our main results and compare our model with the state-of-
the-art (Section[4.3). Finally, Section[4.4]shows some qualitative results.

4.1 DATASETS AND EXPERIMENT SETUP

Datasets: We evaluate our model on and Referlt (130.5k expressions, 19.9k images), UNC (142k
expressions, 20k images), UNC+ (141.5k expressions, 20k images) (Yu et al.|2016) and Google-Ref
(G-Ref) (104.5k expressions, 26.7k images) (Mao et al., 2016) (Kazemzadeh et al.l 2014)) datasets.
Unlike UNC, location-specific expressions are excluded in UNC+ through enforcing annotators to
describe objects by their appearance. Referlt, UNC, UNC+ datasets are collected through a two-
player game (Kazemzadeh et al., [2014) and have short expressions (avg. 4 words). G-Ref have
longer and richer expressions, since its expressions are collected from Amazon Mechanical Turk
instead of a two-player game. Referlt images are collected from IAPR Tc-12 dataset (Escalante
et al.,[2010) and the others use images present in MS COCO dataset (Lin et al., 2014).

Evaluation Metrics: Following the previous work (Liu et al., 2017; |Margffoy-Tuay et al.| 2018} Ye
et al., [2019; |Chen et al.| [2019a), we use overall intersection-over-union (loU) and precision@X
as evaluation metrics. Given the predicted segmentation mask and the ground truth, the loU
metric is the ratio between the intersection and the union of the two. The overall loU calculates
the total intersection over total union score. The second metric, precision@X, calculates the
percentage of test examples that have loU score higher than the threshold X. In experiments,
X €{0.5,0.6,0.7,0.8,0.9}.

Implementation Details: As (Liu et al.| 2017; Margffoy-Tuay et al., 2018} |Ye et al., 2019} Chen
et al., |2019a)), we limit the maximum length of expressions to 20. In all convolutional layers, we
set the filter size, stride, and number of filters (ch) as (5, 5), 2, and 96, respectively. The depth is
4 in the U-Net part of the network. We set the dropout probability to 0.2 throughout the network.
We use Adam optimizer (Kingma & Ba, [2014) with default parameters. We freeze the DeepLab
ResNet101-v2 weights. There are 60 examples in each minibatch. We train our model for 15 epochs
on a Tesla V100 GPU and each epoch takes at most two hours depending on the dataset.
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Table 2: Comparison with the previous works on four datasets. Evaluation metric is the overall loU
and higher is better. Bold scores indicate the state-of-the-art performances. ”-” indicates that the
model has not been evaluated on the dataset. n/a” indicates that splits are not same.

UNC UNC+ G-Ref | Referlt
Method val testA  testB val testA  testB val test
CNN+LSTM (Hu et al.|[2016a) - - - - - - 28.14 | 48.03
RMI (Liu et al.|2017) 45.18 45.69 4557 | 29.86  30.48 29.5 | 34.52 | 58.73
DMN (Margtfoy-Tuay et al.;2018) | 49.78 54.83 45.13 | 38.88 4422 3229 | 36.76 | 52.81
DynamicFilters (Li et al.[[2017) - - - - - - - 54.30
KWA (Shi et al.|[2018) - - - - - - 36.92 | 59.09
RRN (L1 et al.[[2018) 5533 57.26 5393 | 39.75 42.15 36.11 | 36.45 | 63.63
CMSA (Ye et al.||2019) 5832 60.61 55.09 | 43.76  47.6 37.89 | 39.98 | 63.80
CAC (Chen et al.|[2019b) 5890 61.77 53.81 - - - 44.32 -
Step-ConvRNN (Chen et al.|[2019a) | 60.04 63.46 57.97 | 48.19 5233 4041 | 464 64.13
BRINet (Hu et al.[[2020) 61.35 6337 59.57 | 48.57 52.87 42.13 | 48.04 | 63.46
LSCM (Hui et al.}[2020) 61.47 6499 59.55 | 49.34 53.12 43.50 | 48.05 | 66.57
MAttNet (Yu et al.[[2018) 56.51 6237 51.70 | 46.67 5239 40.08 n/a -
NMTree (Liu et al.|[2019) 56.59 63.02 52.06 | 4740 53.01 41.56 n/a -
Our Model 61.95 63.85 58.14 | 5042 54.16 42.15 | 49.76 | 64.63

4.2 ABLATION RESULTS

We performed ablation studies to better understand the contributions of the different parts of our
model. Table [I] shows the performances of the different architectures on the UNC validation split
with prec@X and overall JoU metrics. Unless otherwise specified, 3 x 3 language-conditional filters
are used in our models.

Modulating both top-down and bottom-up visual processing: We implemented three models,
Top-down Modulation, Bottom-Up Modulation and Dual Modulation, to show the effect of mod-
ulating language in expanding and contracting visual branches. Since language information leaks
through cross-connections between visual branches, we also experimented with a bottom-up modu-
lation model which has no connection between visual branches. Bottom-up Modulation outperforms
Top-down Modulation with 4.6 IoU improvement. Modulating language in both visual branches
yields the best results by improving Bottom-up Modulation model with ~1.2 IoU score.

Language-conditional Spatial Filters: When we compare the performances of Top-Down Modula-
tion w/ 1 x 1 filters and Top-Down Modulation models, we see that the usage of language-conditional
spatial filters brings additional improvement over the base model. Similarly, if we use 1 x 1 filters
in our full model, the performance of the model decreases significantly. We performed the same
experiment on G-Ref dataset and observed ~1.3 IoU difference again.

FilLM layers vs. Language-conditional Filters: Another method for modulating language is using
conditional batch normalization De Vries et al.| (2017) or its successor, FiLM layers. Thus, we also
replaced language-conditional filters with FiLM layers in Top-Down Modulation w/ 1x1 model and
observed ~0.8 IoU improvement. Morever, since we can take advantage of language-conditional
spatial filters, Top-Down Modulation w/ 3x3 model baseline outperforms its FILM variation with
~1.9 ToU improvement.

4.3 QUANTITATIVE RESULTS

Table [2] shows the comparison of our model with the previous work. Our model outperforms all
previous models on all datasets. When we compare our model with the previous state-of-the-art
model, Step-ConvRNN, the most significant improvement is on the G-Ref dataset.

We also compare our model with MAttNet and NMTree which are referring expression comprehen-
sion models. Since they present segmentation results after they predict bounding boxes for objects,
they are comparable with our work. Our model is significantly better than MAttNet, NMTree which
depends on an explicit object proposal network that is trained on more COCO images. This result
shows the ability of our model to detect object regions and relate them with expressions.
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Expression: longer banana shorter banana  banana over the heart bottom banana

Expression: bag on left  second bag from left second bag from right bag on right

Expression: sandwich sandwich in front white bowl sandwich next to
white bowl

Expression: batter catcher man behind the catcher man sitting

Expression: man man squatting man standing ~ man in red coat

Figure 2: Some correct predictions of our model on UNC validation set. First column shows the
input images and others show the predictions for the given referring expressions.

Table [T] presents the comparison of our model with the state-of-the-art in terms of prec@X scores.
The difference between our model and the state-of-the-art increases when the threshold increases.
This indicates that our model is better at both finding and segmenting the referred objects.

4.4 QUALITATIVE RESULTS

In this section, we visualize some of the segmentation predictions of our model to gain better insights
about the trained model.

Figure [2 shows some of the cases that our model segments correctly. These examples demonstrate
that our model can learn a variety of language and visual reasoning patterns. For example, the first
two examples of the first row show that our model learns to relate superlative adjectives (e.g., longer,
shorter) with visual comparison. Examples include spatial prepositions (e.g., on right, on left, next
to, behind, over, bottom) demonstrate the spatial reasoning ability of the model. We also see that
the model can learn a domain-specific nomenclature (catcher, batter) that is present in the dataset.
Lastly, we can see that the model can distinguish the different actions (e.g., standing, squatting,
sitting).

Figure [3] shows some of the incorrect segmentation predictions from our model on the UNC vali-
dation dataset. In the figure, each group shows one of the observed patterns within the examples.
One of them (a) is that our model tends to combine similar objects or their parts when they are
hard to distinguish. Another reason for the errors is that some of the expressions are ambiguous (b),
where there are multiple objects that could be the correspondence of the expression. And the model
segments both possible objects. Some of the examples (d) are hard to segment completely due to
the lack of light or objects that mask the referred objects. Finally, some of the annotations contain
incorrect or incomplete ground-truth mask (c).
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Original Image  Ground Truth Prediction , Original Image  Ground Truth Prediction

left white chair half filled wine glass

upper most left side apple L d) front guy red and white shirt

Figure 3: Some incorrect predictions of our model on UNC validation set. Each group (a-d) shows
one pattern we observed within the predictions. In each group, the first column shows the original
image, the second one is the ground truth mask and the third one is the prediction of our model.

5 CONCLUSION

We showed that modulating not only top-down but also bottom-up visual processing with language
input improves the performance significantly. Our experiments showed that the proposed model
achieves state-of-the-art results on 4 different benchmarks and performs significantly (= 6 IoU)
better than a baseline which uses language only to direct top-down attention. Our future work will
focus on using it as a sub-component to solve a far more language-vision task like mapping natural
language instructions to sequences of actions.
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Figure 4: Incremental segmentation result of our model on UNC test split instance.

A APPENDIX

A.1 INCREMENTAL SEGMENTATION

We also analyzed the behaviour of our model with respect to incrementally given language input in
Figure[d In the initial step, our model only sees an unknown word token. In the second step, our
model sees only the first word of the expression. In every step, our model starts to see a new word in
addition to the previous ones. Figure ] shows that our model can capture ambiguities in input image
and expressions pairs. For unknown token input, our model captures all salient objects since there
is no restriction. When the man word is fed, the model discards unrelated objects like umbrella and
wheel. Additionally, when our model starts to see color words for coat, it initially focuses on both
men, since both coats has black color. When it sees the final expression, it shifts its focus to the
correct object.
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