
Leveraging Locality to Boost Sample Efficiency in
Robotic Manipulation

Tong Zhang1,2,3 Yingdong Hu1,2,3 Jiacheng You1 Yang Gao1,2,3∗
1Tsinghua University 2Shanghai Qi Zhi Institute 3Shanghai Artificial Intelligence Laboratory
{zhangton20,huyd21,yjc23}@mails.tsinghua.edu.cn, gaoyangiiis@mail.tsinghua.edu.cn

Abstract: Given the high cost of collecting robotic data in the real world, sam-
ple efficiency is a consistently compelling pursuit in robotics. In this paper, we
introduce SGRv2, an imitation learning framework that enhances sample effi-
ciency through improved visual and action representations. Central to the de-
sign of SGRv2 is the incorporation of a critical inductive bias—action locality,
which posits that robot’s actions are predominantly influenced by the target object
and its interactions with the local environment. Extensive experiments in both
simulated and real-world settings demonstrate that action locality is essential for
boosting sample efficiency. SGRv2 excels in RLBench tasks with keyframe con-
trol using merely 5 demonstrations and surpasses the RVT baseline in 23 of 26
tasks. Furthermore, when evaluated on ManiSkill2 and MimicGen using dense
control, SGRv2’s success rate is 2.54 times that of SGR. In real-world environ-
ments, with only eight demonstrations, SGRv2 can perform a variety of tasks at
a markedly higher success rate compared to baseline models. Project website:
sgrv2-robot.github.io.

Keywords: Robotic Manipulation, Sample Efficiency

1 Introduction

The creation of a versatile, general-purpose robot has long captivated the robotics community. Re-
cent advances in imitation learning (IL) [1, 2, 3] have enabled robots to exhibit increasingly complex
manipulation skills in unstructured environments. However, prevailing imitation learning techniques
frequently require an abundance of high-quality demonstrations, the acquisition of which incurs sub-
stantial costs. This contrasts markedly with disciplines such as computer vision (CV) and natural
language processing (NLP), wherein vast repositories of internet data are readily available for uti-
lization. In this paper, we investigate methods to boost sample efficiency in robotic manipulation
by developing improved visual and action representations.

In machine learning, introducing inductive bias is a standard strategy to enhance sample efficiency.
For instance, CNNs [4, 5] inherently embed spatial hierarchies and translation equivariance in each
layer, while RNNs [6] and LSTMs [7] incorporate temporal dependencies in their architecture.
In the realm of robotic manipulation, a critical inductive bias is action locality, which posits that
a robot’s actions are predominantly determined by the target object and its relationship with the
surrounding local environment. However, previous studies on representation learning for robotic
manipulation have not effectively leveraged this bias. Typically, these studies [8, 9, 10, 11] aim to
develop a global representation that encapsulates the entire scene, which is then directly employed
to predict robot actions. These approaches have demonstrated notably low sample efficiency. As
depicted in Figure 1, reducing the number of demonstrations from 100 to 5 leads to a substantial
decrease in the performance of previous works such as SGR [10], which seeks to capture both
semantic and geometric information in a global vector.

∗Corresponding author

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

sgrv2-robot.github.io

100 50 20 10 5
Number of Demonstrations

25

30

35

40

45

50

55

60

65

Av
g.

 S
uc

ce
ss

 R
at

e
(%

) 10.1% decrease

24.2% decrease

26 tasks

SGRv2
SGR

 RLBench

0

20

40

60
26 tasks

R3
M

4.7

Po
in

tN
eX

t25.3

Pe
rA

ct

22.3

SG
R

23.6

RV
T

40.4

SG
Rv

2

53.2

RLBench

0

20

40

60
4 tasks

Po
in

tN
eX

t16.8

SG
R

14.9

SG
Rv

2

55.8

ManiSkill2

0

20

40

7 tasks

Po
in

tN
eX

t13.6

SG
R

14.2

SG
Rv

2

26.0

MimicGen

Figure 1: Left: Sample efficiency of SGRv2. We evaluate SGR and SGRv2 on 26 RLBench tasks, with
demonstration numbers ranging from 100 to 5. Results indicate that, owing to the locality of SGRv2, it exhibits
exceptional sample efficiency, with its success rate declining by only about 10%. Top Right: Overview of
simulation results. We test SGRv2 on 3 benchmarks, consistently outperforming the baselines. Bottom Right:
Tasks of the 3 simulation benchmarks.

To effectively utilize the inductive bias of action locality, we introduce SGRv2, a systematic frame-
work of visuomotor policy that considers both visual and action representations. As shown in Fig-
ure 2, SGRv2 builds on the foundation of SGR but integrates action locality throughout the en-
tire framework. SGRv2 demonstrates exceptional sample efficiency and consistently outperforms
its predecessor across various demonstration sizes, achieving remarkable results with as few as 5
demonstrations, compared to SGR’s performance with 100 demonstrations. The key algorithmic
designs that lead to this achievement include: (i) an encoder-decoder architecture for extracting
point-wise features, (ii) a strategy for predicting the relative target position to ensure translation
equivariance, (iii) the application of point-wise weights to highlight critical local regions, and (iv)
dense supervision to enhance learning efficiency.

We conduct an extensive evaluation of SGRv2 through behavior cloning across three benchmarks:
RLBench [12], where keyframe control is utilized, and ManiSkill2 [13] and MimicGen [14], where
dense control is applied (refer to Section 3.1 for an discussion on keyframe versus dense control).
SGRv2 significantly surpasses both SGR [10] and PointNeXt [15] across these benchmarks and
consistently outperforms baselines, including R3M [9], PerAct [16], and RVT [17] on RLBench. To
confirm the necessity of our locality design, we conduct a series of ablation studies. Additionally,
real-world experiments with Franka Emika Panda robot demonstrate SGRv2’s capability to complete
complex long-horizon tasks across 10 sub-tasks, validating its effectiveness. Further experiments on
real-world generalization underscore SGRv2’s remarkable ability to generalize.

2 Related Work

Semantic Representation Learning for Robotics. Numerous studies have focused on learning
visual representations from in-domain data, tailored specifically to the relevant environment and
task [18, 19, 20, 21, 22, 23, 24]. However, the efficacy of these methods is limited by the availability
of robot data. Consequently, various efforts have been made to pre-train on large-scale out-of-
domain data for visuo-motor control [25, 26, 27, 8, 28, 29, 30, 31, 32]. Notably, R3M [9] has
demonstrated that models pre-trained on human video data can serve as a frozen perception module,
facilitating downstream policy learning. Nonetheless, these approaches predominantly prioritize the
pre-training of 2D visual representations, thus overlooking critical 3D geometric information, which
is essential for enhancing spatial manipulation skills in robotics.

3D Representation Learning for Robotics. Recent works have increasingly explored the 3D rep-
resentations in robotics. Studies such as C2F-ARM [33], PerAct [16], and GNFactor [34] employ
voxelized observations to derive representations. However, the creation and reasoning over voxels
entail a high computational burden. In contrast, RVT [17] and some researches [35, 36, 37] lever-
age projection techniques to generate multi-view images, extracting representation in 2D spaces

2

and thereby reducing computational demands. Nevertheless, these methods do not incorporate 3D
geometry in the process of representation extraction, consequently limiting their capacity for 3D
spatial reasoning. Point-based models, such as PointNet++ [38] and PointNeXt [15], efficiently
conserve computational resources while directly processing 3D information. These models serve
as the foundation for numerous robotics studies [39, 40, 41, 42, 43, 44, 45, 46, 47]. Specifically,
SGR [10] utilizes point-based models to extract 3D geometric information and employs 2D founda-
tional models for semantic understanding, integrating both to enrich representations for downstream
tasks. However, the approach of SGR to extract actions from a global vector does not effectively
harness locality information, thereby leading to suboptimal sample efficiency.

Incorporating Inductive Biases into Robot Learning. Incorporating inductive biases is an essen-
tial strategy for enhancing sample efficiency in neural network designs. Several studies have sought
to improve sample efficiency by designing networks that adhere to equivariance properties. For
example, Act3D [45] employs a translation-equivariant neural network architecture, while USEEK
[48] utilizes an SE(3)-equivariant keypoint detector for one-shot imitation learning. However, these
approaches are based on global equivariance [49], which may not be effective when there are rela-
tive movements between the object and the environment, which is prevalent in robot manipulation.
To tackle this issue, NDFs [50] and EquivAct [51] segment the manipulated object before utiliz-
ing the equivariant models. However, given their reliance on a well-segmented point cloud, these
methods are ineffective when the object is required to interact with its surroundings.

Some studies integrate locality into their models. L-NDF [52] incorporates locality through voxel
partitioning, EDFs [49] and RiEMann [53] achieves both equivariance and locality via local
message-passing mechanisms in SE(3)-Transformers [54]. Nonetheless, these methods require
some hyperparameters to specify a proper size of receptive field, which limits their flexibility and
extensibility. It also incurs a tradeoff between locality and expressiveness. Another line of work,
such as Transporter [55], PerAct [16], and RVT [17], integrates locality by modeling action as the
maximizer of scores on a predefined grid of locations. However, these designs render a voluminous
action representation and suffer from quantization artifacts [56]. In contrast, our approach not only
satisfies translation equivariance without relying on highly non-local centroid subtraction [50, 57]
but also adaptively determines the local scope required for the task through a learnable weight,
without sacrificing expressiveness or introducing a grid.

3 Method

In this section, we present a detailed description of the methodologies employed in SGRv2. Initially,
we present an overview of SGR, keyframe and dense control, along with the problem formulation,
as outlined in Section 3.1. Subsequently, we explore how to leverage the inductive bias of locality
to enhance sample efficiency in robotic manipulation learning, as discussed in Section 3.2. Finally,
we describe the training approaches under different control modes, detailed in Section 3.3.

3.1 Background

Semantic-Geometric Representation (SGR) [10]. SGR is composed of the semantic branch,
geometric branch and fusion network. In the semantic branch, the RGB part of RGB-D images are
fed into a CLIP [58] image encoder, and the resulting semantic features are then back-projected onto
the 3D points. The geometric branch and fusion network split a PointNeXt encoder into two stages,
with semantic features injected at the interface between them. SGR models the action by solely
relying on the global features extracted by the PointNeXt [15] encoder, without utilizing locality.
Refer to Appendix B.2 for more details.

Keyframe and Dense Control. In the field of robotic manipulation, keyframe control [33, 16, 59]
and dense control [13, 60] are two prevalent control modes. Keyframe control outputs a few sparse
target poses, which are then executed through a motion planner. It exhibits reduced compounding
errors [59], and enhanced suitability for visuomotor tasks that leverage visual priors [33, 16, 17]
at the cost of inferior flexibility and expressiveness. Dense control, on the other hand, generates a

3

Encoder (SGR)

3D Point Cloud

2D Images

Semantic
Branch

Decoder

high weight

low weight

𝑎!"#
𝑎$"%
𝑎"!&'
…

Feature Map & Point-wise Prediction

Fusion
Network

Geometric
Branch

target position

relative prediction

Figure 2: SGRv2 Architecture. Built upon SGR, SGRv2 integrates locality into its framework through four
primary designs: an encoder-decoder architecture for point-wise features, a strategy for predicting relative
target position, a weighted average for focusing on critical local regions, and a dense supervision strategy (not
shown in the figure). This illustration specifically represents the water plants task. For simplicity in the
visualization, we omit the proprioceptive data that is concatenated with the RGB of the point cloud before
being fed into the geometric branch.

dense sequence with hundreds of actions to control the robot directly. It is applicable across a wide
range of robotic scenarios but faces significant challenges with compounding errors. Given that the
two models are complementary, it is highly compelling to construct a framework that supports both
simultaneously. However, previous research has predominantly focused on a single control mode
[16, 17, 61]. In contrast, our framework can support both modes seamlessly.

Problem Formulation. We frame our task as a vision-based robot manipulation problem. At
each timestep, the robot receives an observation O comprising single or multi-view RGB-D im-
ages {Ik}Kk=1 and proprioceptive data z. For keyframe control, following the setup in PerAct [16],
an action consists of the position, rotation, gripper open state, and collision indicator: akeyframe =
{apos, arot, aopen, acollide}. For dense actions, as illustrated in ManiSkill2 [13] and robosuite[60], an
action consists of the delta position, delta rotation, and gripper open state [13, 60, 14]: adense =
{a∆pos, a∆rot, aopen}. We assume we are given N expert demonstration trajectories D = {τi}Ni=1.
Each trajectory τi is a sequence of observation-action pairs (o1, a1, . . . , aT−1, oT). The robot is
then trained using the Behavioral Cloning (BC) algorithm with these demonstrations.

3.2 Locality Aware Action Modeling

To develop a sample-efficient framework for robotic manipulation that is effective in both keyframe
and dense control scenarios, we capitalize on the inductive bias that actions exhibit locality proper-
ties and build our locality aware action modeling on the top of SGR. In SGRv2, we achieve locality
through 4 primary designs: (1) an encoder-decoder architecture, (2) a strategy for predicting point-
wise relative position formulation with (3) a learned weight, and (4) a dense supervision strategy.
Refer to Figure 2 for an overview of our designs, Table 3 for ablation studies, and Appendix B.1 for
architecture details.

Encoder-Decoder Architecture. In contrast to the encoder-only architecture used by SGR [10],
we employ the encoder-decoder architecture of PointNeXt [15], which is a U-Net like architecture
that excels in dense prediction tasks (e.g. segmentation). This architecture can yield a feature
enriched with both global and local information for each point, namely fi ∈ RC for the i-th point,
where C is the dimension of the feature. Note that as designed in PointNeXt [15], the output
features are solely dependent on relative coordinates, ensuring that the point-wise features fi remain
invariant to translational transformations of the input coordinates. This point-wise features serve as
the cornerstone of our locality aware action modeling.

Relative Position Predictions. With the point-wise features, we can predict an action at each point.
Our key insight is that the end-effector usually moves towards a target close to a specific object
within each execution stage. Thus, it is natural to predict the displacement of the target relative to
each point. Driven by this insight, for keyframe, we represent the position component of a keyframe
action apos by pi+∆p(fi) for the i-th point, where pi and fi are the coordinate and point-wise feature
of the i-th point respectively, and ∆p is a Multilayer Perceptrons (MLP). For dense control, we can

4

predict the delta position component a∆pos of a dense action by modeling its direction (towards a
target) and magnitude separately. Concretely, we predict the direction a∆pos

||a∆pos||2 by pi+∆p(fi)
||pi+∆p(fi)||2 and

the magnitude ||a∆pos||2 by m(fi), where m is another MLP. In dense control, given that we employ
the end-effector coordinate frame for the point cloud input2, pi + ∆p(fi) can be interpreted as the
target position relative to the end-effector. Consequently, pi+∆p(fi)

||pi+∆p(fi)||2 can represent the direction
of movement. The utilization of relative position leverages the locality information and achieves
translation equivariance without depending on the extensive non-local centroid subtraction [50, 57].
This greatly aids in enhancing sample efficiency.

For other action components, we directly predict rotation by r(fi), gripper open state by o(fi) and
collision indicator by c(fi), where r, o, c are MLPs.

Weighted Average Actions. After obtaining the point-wise action predictions, we need to integrate
these predictions into an aggregated action prediction. We adopt a simple yet effective strategy,
namely weighted average. For each component, including position (which is broken down into
direction and magnitude in dense control), rotation, gripper open state, and collision indicators, we
employ a learned weight w∗(fi) for each point. Here, w∗ denotes separate MLPs (softmax is applied
for normalization) for each component. The motivation behind this design is that only a few regions
within the point cloud are crucial for accomplishing the task. For instance, in tasks such as picking
up a cube, points located on the cube itself are more informative than those on the surrounding table.
By learning these weights, we enable the aggregated prediction to concentrate on the most predictive
local regions, thereby enhancing both the overall accuracy and sample efficiency.

Dense Supervision. To enhance the learning efficiency of local features, we adopt a dense super-
vision strategy. This approach integrates both aggregated action predictions and point-wise action
predictions into the loss function, expressed as L* = Laggregated

* + Lpoints
* . To compute Laggregated

* and
Lpoints

* , we adopt the same loss formulation with the same ground-truth labels. Dense supervision
provides feedback for all points, enabling models to learn local features more efficiently.

3.3 Training

Smoothness Regularization for Dense Control. As illustrated in point-wise relative predictions,
we predict the direction and the magnitude of the delta position component a∆pos separately. Thus,
the position loss is accordingly decomposed into Ldir and Lmag, i.e. Lpos = Ldir + Lmag. We predict
the direction by pi+∆p(fi)

||pi+∆p(fi)||2 , which poses an underdetermined problem and allows ∆p to output
spuriously large values. To mitigate this issue, we incorporate a smoothness regularization loss
Lreg = 1

N2

∑
i,j ∥(pi + ∆p(fi)) − (pj + ∆p(fj))∥22. This loss enforces the consistency between

pi +∆p(fi) and pj +∆p(fj) for any two points i and j.

Overview of Losses. In keyframe control, following SGR [10], position is represented by a contin-
uous 3D vector: apos ∈ R3. For rotations, the ground-truth action is represented as a one-hot vector
per rotation axis with R rotation bins: arot ∈ R(360/R)×3 (R = 5 degrees in our implementation).
Open and collide actions are binary one-hot vectors: aopen ∈ R2, acollide ∈ R2. In this way, our loss
objective is as follows:

Lkeyframe = α1Lpos + α2Lrot + α3Lopen + α4Lcollide, (1)

where Lpos is L1 loss, and Lrot, Lopen, and Lcollide are cross-entropy losses.

In dense control, following ManiSkill2 [13] and robosuite [60], both delta position and delta rotation
(in the form of axis-angle coordinates) are represented by continuous 3D vectors: a∆pos ∈ R3,
a∆rot ∈ R3, while open actions are still binary one-hot vectors: aopen ∈ R2. Our loss objective is:

Ldense = β1(Ldir + Lmag) + β2Lrot + β3Lopen + β4Lreg, (2)

where Ldir, Lmag and Lrot are MSE losses, Lopen is cross-entropy loss, and Lreg is smoothness regu-
larization loss. For more training details, we refer to Appendix B.3.

2Motivated by FrameMiner [44], in dense control, we transform the point coordinates into the end-effector
frame, positioning the end-effector at the origin of coordinates for easier computation and performance benefit.

5

Avg. Avg. Open Open Water Toilet Phone Put Take Out Open Open Slide Sweep To Meat Off
Method Success ↑ Rank ↓ Microwave Door Plants Seat Up On Base Books Umbrella Fridge Drawer Block Dustpan Grill
R3M 4.7 5.8 0.9 36.4 2.9 15.5 0.0 0.5 5.2 3.2 0.0 24.0 0.4 0.1
PointNeXt 25.3 3.4 7.1 60.9 5.6 49.9 46.4 57.5 37.5 9.2 21.7 59.5 42.0 59.9
PerAct 22.3 4.1 4.3 59.6 28.5 69.3 0.0 25.1 75.9 3.1 56.4 47.5 2.8 85.9
SGR 23.6 4.1 6.4 55.3 24.9 30.7 47.2 29.3 36.3 7.1 31.9 72.0 43.6 52.7
RVT 40.4 2.2 18.3 71.2 34.8 47.6 62.3 46.5 85.3 24.0 75.1 85.1 19.6 90.5
SGRv2 (ours) 53.2 1.2 27.2 76.8 38.0 89.6 84.1 63.7 74.5 13.2 81.3 100.0 61.5 96.5

Turn Put In Close Drag Stack Screw Put In Place Put In Sort Push Insert Stack Place
Method Tap Drawer Jar Stick Blocks Bulb Safe Wine Cupboard Shape Buttons Peg Cups Cups
R3M 26.1 0.0 0.0 0.3 0.0 0.0 0.3 0.4 0.0 0.0 6.8 0.0 0.0 0.0
PointNeXt 48.7 17.1 36.0 18.5 1.9 4.1 12.1 31.5 3.3 0.4 22.0 0.1 4.4 0.4
PerAct 8.0 0.1 0.5 10.3 1.7 4.4 0.9 8.7 0.4 0.4 83.1 1.9 0.1 0.7
SGR 34.4 8.3 13.3 64.4 0.0 0.9 16.9 24.7 0.1 0.1 12.0 0.1 0.0 1.1
RVT 38.4 19.6 25.2 45.7 8.8 24.0 30.7 92.7 5.6 1.6 90.4 4.0 3.1 1.2
SGRv2 (ours) 87.9 75.9 25.6 94.9 17.5 24.1 55.6 53.1 20.3 1.9 93.2 4.1 21.3 1.6

Table 1: Performance on RLBench with 5 Demonstrations. All numbers represent percentage success rates
averaged over 3 seeds. See Appendix F for standard deviation. SGRv2 outperforms the most competitive
baseline RVT on 23/26 tasks, with an average improvement of 1.32×.

4 Experiments

Our experiments are designed to answer the following questions: (1) How does SGRv2 perform
when locality is incorporated into designs, especially in data-limited scenarios, compared to various
2D and 3D representations? (2) Can SGRv2 consistently demonstrate advantages across different
control modes? (3) What are the contributions of the key components of SGRv2’s locality design to
its overall performance? (4) How does SGRv2 perform in real-robot tasks, and does it possess the
ability to generalize in the real world?

4.1 Simulation Setup

Environment and Tasks. The simulation experiments are conducted on 3 robot learning bench-
marks: RLBench [12], ManiSkill2 [13], and MimicGen [14]. RLBench is a large-scale benchmark
designed for vision-guided manipulation. Following previous works [33, 16, 17] we use keyframe
control on RLBench. ManiSkill2 is a comprehensive benchmark for manipulation skills, enhancing
diversity with object-level variations. MimicGen generates large-scale robot learning datasets from
human demonstrations. On ManiSkill2 and MimicGen, following prior works [61, 14], we use
dense control. On RLBench, we use 4 RGB-D cameras positioned at the front, left shoulder, right
shoulder, and wrist of a Franka Emika Panda, while on ManiSkill2 and MimicGen, we use a front-
view and a wrist-view RGB-D camera. We use 26 RLBench tasks with 5 demonstrations per task,
and 4 ManiSkill2 tasks and 7 MimicGen tasks with 50 demonstrations per task (except for PickSing-
leYCB, where 50 demonstrations per object are used). On MimicGen, we use D1 initial distribution,
which presents a broader and more challenging range. See Appendix A for more details.

Evaluation. The evaluation approach is designed to minimize variance in our results. On RLBench,
we train an agent for 20,000 iterations and save checkpoints every 800 iterations, while in ManiSkill2
and MimicGen, we train for 100,000 iterations and save checkpoints every 4,000 iterations. Then
we evaluate the last 5 checkpoints for 50 episodes and get the average success rates 3. Finally, we
conduct the experiments with 3 seeds and report the average results.

Baselines. We compare SGRv2 against the following baselines: (1) R3M [9] is a 2D visual represen-
tation designed for robotic manipulation, which is pre-trained on large-scale human video datasets.
For fair comparisons, we utilize frozen R3M to process RGB images, employ a separate 2D CNN
to process depth images, and subsequently fuse the two resulting features. (2) PointNeXt [15] is
an enhanced version of the classic PointNet++ architecture for point cloud processing. We employ
the encoder of PointNeXt to obtain the 3D representation. (3) PerAct [16] is a 3D representation
that voxelizes the workspace and utilizes a Perceiver Transformer [62] to process voxelized observa-
tions. (4) SGR [10] is a representation that integrates both high-level 2D semantic understanding and
low-level 3D spatial reasoning. (5) RVT [17] is a 3D representation that utilizes a multi-view trans-
former to predict actions and integrates these predictions into a 3D space through back-projection
from multiple viewpoints.

3MimicGen [14] reports maximum results across different checkpoints, while we provide average results,
offering a more robust and realistic measure of model performance.

6

Method Avg. Success ↑ Avg. Rank ↓ LiftCube PickCube StackCube PickSingleYCB
PointNeXt 16.8 2.5 50.8 4.7 10.6 1.1
SGR 14.9 2.5 26.9 12.2 3.5 17.0
SGRv2 (ours) 55.8 1.0 80.5 72.9 27.7 42.2

Method Avg. Success ↑ Avg. Rank ↓ Stack StackThree Square Threading Coffee HammerCleanup MugCleanup
PointNeXt 13.6 2.9 56.1 3.7 0.9 3.6 12.0 11.7 7.1
SGR 14.2 2.0 50.8 5.6 1.3 4.0 14.1 14.1 9.7
SGRv2 (ours) 26.0 1.0 81.2 37.9 2.8 6.7 27.9 16.1 9.7

Table 2: Performance on ManiSkill2 (top) and MimicGen (bottom) with 50 Demonstrations. We report
success rates averaged over 3 seeds. See Appendix F for standard deviation. We observe that SGRv2 consis-
tently outperforms baselines like SGR and PointNeXt.

4.2 Simulation Results

RLBench Performance. Figure 1 depicts the performance of SGR and SGRv2 across differing
number of demonstrations. Initially, as the availability of data decreases, we note a significant de-
cline in SGR’s performance compared to SGRv2, highlighting the difficulties in maintaining model
performances without the inductive bias towards locality awareness. Additionally, Table 1 provides
a comparison of success rates obtained with only 5 demonstrations using various representations.
We observe that the absence of 3D geometric information, as demonstrated by R3M using a 2D
representation, results in markedly low performance, highlighting the critical role of 3D priors in
robotic manipulation under data-constrained scenarios. Finally, SGRv2 is demonstrated to be the
superior representation, achieving 53.2% average success rate with merely 5 demonstrations and
significantly outperforming the most competitive baseline, RVT, with an average improvement fac-
tor of 1.32× and achieving enhanced performance in 23 out of 26 tasks. The results underscore the
advantages of incorporating 3D geometry and well-designed locality to enhance sample efficiency.

ManiSkill2 and MimicGen Performance. To evaluate the performance of SGRv2 in dense con-
trol scenarios, we conduct comparisons with several baselines on ManiSkill2 and MimicGen. Our
experimental results, summarized in Table 2, demonstrate that SGRv2 significantly outperforms the
baselines. In particular, thanks to our tailored approach for dense control, SGRv2 exhibits supe-
rior performance in tasks where the object’s location consistently aligns with the direction of the
delta actions, such as Pick Cube and Stack Three. These findings confirm that SGRv2 acts as a
sample-efficient, universal representation adept at handling both keyframe and dense control scenar-
ios. See Appendix D for results on different numbers of demonstrations and additional baselines.

Method Avg. success

SGRv2 53.2
SGRv2 w/o decoder 21.3
SGRv2 w/ absolute pos prediction 21.0
SGRv2 w/ uniform point weight 44.2
SGRv2 w/o dense supervision 40.1

Table 3: Ablations. Average success rate of 26
RLBench tasks with 5 demonstrations after ablat-
ing key components of locality design.

Ablations. As shown in Table 3, we conduct abla-
tions to assess the locality design choices of SGRv2.
(1) Decoder architecture is the cornerstone of our
locality designs. Omitting the decoder from the
SGRv2 would prevent the application of other local-
ity designs, forcing us to rely solely on the global
representation from the encoder. This would lead to
a significant decrease in performance. (2) Predict-
ing absolute positions, results in markedly poorer
performance. This underscores that relative position
predictions are the key insight of the locality design. (3) Substituting point-wise weights with uni-
form weights reduces performance, confirming the role of point-wise weighting in focusing on pre-
dictive local regions. (4) Eliminating dense supervision leads to a decline in overall performance,
illustrating that dense supervision enhances the model’s learning efficacy.

Emergent Capabilities. In our study, we visualize the point-wise weights of SGRv2 detailed in
Section 3.2. As depicted in Figure 3, we sequentially visualize point clouds with RGB and point-
wise weights. Surprisingly, the results consistently demonstrate an alignment between points with
higher weights (in red) and the object affordances, which denote the functional areas of objects. This
observation highlights the capability of SGRv2 to precisely identify and emphasize critical local
regions on objects. Motivated by this, we conduct experiments on visual distractors in Appendix E.

7

Figure 3: Emergent Capabilities. We visualize the point-specific weights and find that the points with high
weights (in red) align with the object’s affordances. Left: toilet seat up. Right: open microwave.

Task Sub-task PerAct RVT SGRv2

Tidy Up the Table

Put trash in trash can 50 50 80
Put socks in box 60 80 90
Put marker in pen holder 10 10 30
Open drawer 20 40 60
Put lollipop in drawer 10 10 30
Close drawer 40 60 80

Make Coffee

Turn on coffee machine 100 100 100
Put funnel onto carafe 0 20 80
Pour powder into funnel 0 10 10
Pour water 10 30 70

Avg. Success Rate 30 41 63

Figure 4: Left: Real-robot long-horizon tasks. Right: Success rate (%) of multi-task agents on real-robot
tasks. We collect 8 demonstrations and evaluate 10 episodes for each task.

4.3 Real-Robot Results

To evaluate the effectiveness of SGRv2 in a real-robot setting, we conduct experiments using the
Franka Emika Panda across two long-horizon tasks (a total of 10 sub-tasks), and a generalization
task. Refer to Appendix C for more details on robot setup, task designs and failure cases discussions.

Long-horizon Tasks. We collect 8 demonstrations per task and train multi-task agents. Each sub-
task is tested across 10 episodes. We present comparative results between PerAct, RVT, and SGRv2
in Figure 4, where SGRv2 demonstrates a substantial performance advantage. A common issue with
PerAct is that it tends to bias towards occupied voxels, frequently causing collisions. For RVT, typi-
cal failures stem from large position errors along the camera’s viewing direction, potentially caused
from the inaccuracies in the virtual images rendered orthogonal to the real camera’s perspective.

Method Seen Unseen

PerAct 100 10
RVT 100 5
SGRv2 w/o sem. 100 0
SGRv2 100 70

Generalization Task. We assess the generalization capability of SGRv2
by employing 6 cups of different colors. Each scene involves one target
cup and two distractor cups of different colors. We collect 5 demonstra-
tions for each of the 4 colors and test the model on both 4 seen and 2
unseen scenarios. Each color is tested across 10 episodes. As indicated
in the right table, compared with PerAct and RVT, SGRv2 exhibits the ability to generalize across
color variations. The results show SGRv2 without the semantic branch achieves zero performance
on unseen colors, underlining the critical role of semantic awareness in enhancing generalization.

5 Discussion

Limitations. Our models are currently trained using a vanilla BC objective. A promising direction
involves integrating the Diffusion Policy [2], which excels in dealing with multimodal and hetero-
geneous trajectories, with our locality framework to further enhance performance in real world.
Additionally, due to our focus on sample efficiency, the evaluations on generalization are currently
insufficient. We are eager to expand this work to include a broader range of generalization aspects,
such as object shapes, camera positions, and background textures.

Conclusion. We present SGRv2, a systematic framework of visuomotor policy that considers both
visual and action representations. Built upon the SGR, SGRv2 integrates action locality across its
entire framework. Through comprehensive evaluations across a diverse range of tasks in multi-
ple simulated and real-world environments with limited data availability, SGRv2 exhibits superior
performance and outstanding sample efficiency.

8

Acknowledgments

We thank Haoxu Huang and Fanqi Lin for their assistance in conducting real-robot experiments.
This work is supported by the Ministry of Science and Technology of the People’s Republic of
China, the 2030 Innovation Megaprojects “Program on New Generation Artificial Intelligence”
(Grant No. 2021AAA0150000). This work is also supported by the National Key R&D Program of
China (2022ZD0161700).

References
[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from

demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

[2] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[3] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[4] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–
551, 1989.

[5] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
11976–11986, 2022.

[6] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[7] A. Graves and A. Graves. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pages 37–45, 2012.

[8] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang. Vip: Towards
universal visual reward and representation via value-implicit pre-training. arXiv preprint
arXiv:2210.00030, 2022.

[9] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[10] T. Zhang, Y. Hu, H. Cui, H. Zhao, and Y. Gao. A universal semantic-geometric representation
for robotic manipulation. In Conference on Robot Learning, pages 3342–3363. PMLR, 2023.

[11] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy. arXiv preprint
arXiv:2403.03954, 2024.

[12] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters, 5(2):3019–3026, 2020.

[13] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei, Y. Yao, et al. Maniskill2:
A unified benchmark for generalizable manipulation skills. arXiv preprint arXiv:2302.04659,
2023.

[14] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox.
Mimicgen: A data generation system for scalable robot learning using human demonstrations.
arXiv preprint arXiv:2310.17596, 2023.

[15] G. Qian, Y. Li, H. Peng, J. Mai, H. A. A. K. Hammoud, M. Elhoseiny, and B. Ghanem.
Pointnext: Revisiting pointnet++ with improved training and scaling strategies. arXiv preprint
arXiv:2206.04670, 2022.

9

[16] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. arXiv preprint arXiv:2209.05451, 2022.

[17] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer
for 3d object manipulation. In Conference on Robot Learning, pages 694–710. PMLR, 2023.

[18] M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, pages 5639–5650.
PMLR, 2020.

[19] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas. Reinforcement learning
with augmented data. Advances in neural information processing systems, 33:19884–19895,
2020.

[20] I. Kostrikov, D. Yarats, and R. Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[21] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare. Deepmdp: Learning
continuous latent space models for representation learning. In International Conference on
Machine Learning, pages 2170–2179. PMLR, 2019.

[22] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2019.

[23] R. Jonschkowski and O. Brock. Learning state representations with robotic priors. Autonomous
Robots, 39:407–428, 2015.

[24] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine. Learning invariant representations
for reinforcement learning without reconstruction. arXiv preprint arXiv:2006.10742, 2020.

[25] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot
learning with masked visual pre-training. arXiv preprint arXiv:2210.03109, 2022.

[26] A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges,
P. Abbeel, J. Malik, et al. Where are we in the search for an artificial visual cortex for embodied
intelligence? arXiv preprint arXiv:2303.18240, 2023.

[27] Y. Hu, R. Wang, L. E. Li, and Y. Gao. For pre-trained vision models in motor control, not all
policy learning methods are created equal. arXiv preprint arXiv:2304.04591, 2023.

[28] R. Shah and V. Kumar. Rrl: Resnet as representation for reinforcement learning. arXiv preprint
arXiv:2107.03380, 2021.

[29] C. Wen, X. Lin, J. So, K. Chen, Q. Dou, Y. Gao, and P. Abbeel. Any-point trajectory modeling
for policy learning. arXiv preprint arXiv:2401.00025, 2023.

[30] Z. Yuan, Z. Xue, B. Yuan, X. Wang, Y. Wu, Y. Gao, and H. Xu. Pre-trained image encoder for
generalizable visual reinforcement learning. arXiv preprint arXiv:2212.08860, 2022.

[31] T. Xiao, I. Radosavovic, T. Darrell, and J. Malik. Masked visual pre-training for motor control.
arXiv preprint arXiv:2203.06173, 2022.

[32] S. Parisi, A. Rajeswaran, S. Purushwalkam, and A. Gupta. The unsurprising effectiveness
of pre-trained vision models for control. In International Conference on Machine Learning,
pages 17359–17371. PMLR, 2022.

[33] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning
for visual robotic manipulation via discretisation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13739–13748, 2022.

10

[34] Y. Ze, G. Yan, Y.-H. Wu, A. Macaluso, Y. Ge, J. Ye, N. Hansen, L. E. Li, and X. Wang.
Gnfactor: Multi-task real robot learning with generalizable neural feature fields. In Conference
on Robot Learning, pages 284–301. PMLR, 2023.

[35] H. Liu, L. Lee, K. Lee, and P. Abbeel. Instruction-following agents with jointly pre-trained
vision-language models. arXiv preprint arXiv:2210.13431, 2022.

[36] P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-driven
history-aware policies for robotic manipulations. arXiv preprint arXiv:2209.04899, 2022.

[37] Y. Seo, J. Kim, S. James, K. Lee, J. Shin, and P. Abbeel. Multi-view masked world models for
visual robotic manipulation. arXiv preprint arXiv:2302.02408, 2023.

[38] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[39] H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark for
general object grasping. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11444–11453, 2020.

[40] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 13438–13444. IEEE, 2021.

[41] W. Huang, I. Mordatch, P. Abbeel, and D. Pathak. Generalization in dexterous manipulation
via geometry-aware multi-task learning. arXiv preprint arXiv:2111.03062, 2021.

[42] Y.-H. Wu, J. Wang, and X. Wang. Learning generalizable dexterous manipulation from human
grasp affordance. arXiv preprint arXiv:2204.02320, 2022.

[43] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang. Dexpoint: Generalizable point cloud rein-
forcement learning for sim-to-real dexterous manipulation. arXiv preprint arXiv:2211.09423,
2022.

[44] M. Liu, X. Li, Z. Ling, Y. Li, and H. Su. Frame mining: a free lunch for learning robotic
manipulation from 3d point clouds. arXiv preprint arXiv:2210.07442, 2022.

[45] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragkiadaki. Act3d: 3d feature field transformers
for multi-task robotic manipulation. In 7th Annual Conference on Robot Learning, 2023.

[46] S. Chen, R. Garcia, I. Laptev, and C. Schmid. Sugar: Pre-training 3d visual representations for
robotics. arXiv preprint arXiv:2404.01491, 2024.

[47] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene
representations. arXiv preprint arXiv:2402.10885, 2024.

[48] Z. Xue, Z. Yuan, J. Wang, X. Wang, Y. Gao, and H. Xu. Useek: Unsupervised se (3)-
equivariant 3d keypoints for generalizable manipulation. In 2023 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1715–1722. IEEE, 2023.

[49] H. Ryu, H.-i. Lee, J.-H. Lee, and J. Choi. Equivariant descriptor fields: Se (3)-equivariant
energy-based models for end-to-end visual robotic manipulation learning. arXiv preprint
arXiv:2206.08321, 2022.

[50] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural descriptor fields: Se (3)-equivariant object representations for manipulation. In
2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400. IEEE,
2022.

11

[51] J. Yang, C. Deng, J. Wu, R. Antonova, L. Guibas, and J. Bohg. Equivact: Sim (3)-equivariant
visuomotor policies beyond rigid object manipulation. arXiv preprint arXiv:2310.16050, 2023.

[52] E. Chun, Y. Du, A. Simeonov, T. Lozano-Perez, and L. Kaelbling. Local neural descriptor
fields: Locally conditioned object representations for manipulation. In 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1830–1836. IEEE, 2023.

[53] C. Gao, Z. Xue, S. Deng, T. Liang, S. Yang, L. Shao, and H. Xu. Riemann: Near real-
time se (3)-equivariant robot manipulation without point cloud segmentation. arXiv preprint
arXiv:2403.19460, 2024.

[54] F. Fuchs, D. Worrall, V. Fischer, and M. Welling. Se (3)-transformers: 3d roto-translation
equivariant attention networks. Advances in neural information processing systems, 33:1970–
1981, 2020.

[55] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien, M. Attarian, T. Armstrong, I. Krasin,
D. Duong, V. Sindhwani, et al. Transporter networks: Rearranging the visual world for robotic
manipulation. In Conference on Robot Learning, pages 726–747. PMLR, 2021.

[56] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652–660, 2017.

[57] A. Simeonov, Y. Du, Y.-C. Lin, A. R. Garcia, L. P. Kaelbling, T. Lozano-Pérez, and P. Agrawal.
Se (3)-equivariant relational rearrangement with neural descriptor fields. In Conference on
Robot Learning, pages 835–846. PMLR, 2023.

[58] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[59] L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn. Waypoint-based imitation learning for robotic
manipulation. In Conference on Robot Learning, pages 2195–2209. PMLR, 2023.

[60] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiriany, and Y. Zhu. ro-
bosuite: A modular simulation framework and benchmark for robot learning. arXiv preprint
arXiv:2009.12293, 2020.

[61] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

[62] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu, D. Ding, S. Koppula, D. Zoran,
A. Brock, E. Shelhamer, et al. Perceiver io: A general architecture for structured inputs &
outputs. arXiv preprint arXiv:2107.14795, 2021.

[63] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and
model set: Towards common benchmarks for manipulation research. In 2015 international
conference on advanced robotics (ICAR), pages 510–517. IEEE, 2015.

[64] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martı́n-Martı́n. What matters in learning from offline human demonstrations
for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

12

A Simulation Task Details

Open Microwave Open Door Water Plants Toilet Seat Up Phone On Base Put Books

Take Out Umbrella Open Fridge Open Drawer Slide Block Sweep To Dustpan Meat Off Grill

Turn Tap Put in Drawer Close Jar Drag Stick Stack Blocks Screw Bulb

Put In Safe Place Wine Place In Cupboard Sort Shape Push Buttons Insert Peg

Stack Cups Place Cups Lift Cube Pick Cube Stack Cube Pick Singe YCB (002)

Pick Singe YCB (004) Pick Singe YCB (005) Pick Singe YCB (006) Pick Singe YCB (007) Pick Singe YCB (008) Pick Singe YCB (010)

Pick Singe YCB (011) Stack Stack Three Square Threading Coffee

Hammer Cleanup Mug Cleanup

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(13) (14) (15) (16) (17) (18)

(19) (20) (21) (22) (23) (24)

(25) (26) (27) (28) (29) (30)

(31) (32) (33) (34) (35) (36)

(37) (38) (39) (40) (41) (42)

(43) (44)

Figure 5: Simulation Tasks. Our simulation experiments encompass 26 tasks (1-26) from RL-
Bench, 4 tasks (27-37, where 30-37 are 8 different YCB [63] objects of task Pick Single YCB)
from ManiSkill2, and 7 tasks (38-44) from MimicGen.

Our simulation experiments are conducted on 3 robot learning benchmarks: RLBench [12], Man-
iSkill2 [13], and MimicGen [14]. See Figure 5 for an overview of the simulation tasks. In these

13

simulations, all cameras have a resolution of 128× 128. In the following, we will provide a detailed
examination of tasks from the three benchmarks.

A.1 RLBench Tasks

We utilize 26 RLBench tasks, including 8 tasks used in SGR [10] and 18 tasks used in PerAct [16]
and RVT [17]. For tasks with multiple variations, we use the first variation. In RLBench, we use
5 demonstrations per task, unless specified otherwise. Given that SGR and PerAct provide detailed
descriptions of these RLBench tasks, we omit these details here for simplicity.

A.2 ManiSkill2 Tasks

We utilize 4 ManiSkill2 tasks, each described in detail as follows. (1) Lift Cube: Pick up a red cube
and lift it to a specified height. (2) Pick Cube: Pick up a red cube and move it to a target position. (3)
Stack Cube: Pick up a red cube and place it onto a green cube. (4) Pick Single YCB: Pick up a YCB
[63] object and move it to the target position. In our experiments, we use 8 YCB objects (excluding
those that are too difficult to pick up): 002 master chef can, 004 sugar box, 005 tomato soup can,
006 mustard bottle, 007 tuna fish can, 008 pudding box, 010 potted meat can, 011 banana. For
the first three tasks, we utilize 50 demonstrations per task, while for the last one (Pick Single

YCB), we employ 50 demonstrations per YCB object.

A.3 MimicGen Tasks

We utilize 7 MimicGen tasks with 50 demonstrations per task, all employing the initial distribution
D1, which presents a broader and more challenging range. The details are as follows: (1) Stack:
Stack a red block on a green one. (2) Stack Three: Similar to Stack, but with an additional step of
stacking a blue block on the red one. (3) Square: Pick up a square nut and place it on a peg. (4)
Threading: Pick up a needle and thread it through a hole in a tripod. (5) Coffee: Pick up a coffee
pod, insert it into the coffee machine, and close the machine hinge. (6) Hammer Cleanup: Open a
drawer, pick up a hammer, place it back into the drawer, and close the drawer. (7) Mug Cleanup:
Similar to Hammer Cleanup, but with a mug.

B SGRv2 Details

B.1 Architecture Details

Input Data. The SGRv2 model takes as input RGB images {Ik}Kk=1 of size H×W and correspond-
ing depth images of the same size from multiple camera views. Point clouds are generated from these
depth images using known camera extrinsics and intrinsics. A crucial aspect is the alignment of the
RGB images with the point clouds, ensuring a precise one-to-one correspondence between elements
in the two data forms. For keyframe control, the point cloud is represented in the robot’s base frame.
In contrast, for dense control—inspired by FrameMiner [44]—the point cloud is transformed into
the end-effector frame to simplify computation and enhance performance.

For keyframe control, the model additionally receives proprioceptive data z, which includes four
scalar values: gripper open state, left finger joint position, right finger joint position, and action
sequence timestep. In dense control, proprioceptive data is not utilized. Additionally, following
SGR [10], if a task comes with language instruction S, this also forms part of the model’s input.

Other Details. Following SGR [10], we use CLIP-ResNet-50 as the image encoder for the seman-
tic branch. For the 3D encoder-decoder, we employ PointNeXt-XL. The output from the encoder-
decoder is a point-wise feature, denoted as f raw

i ∈ RC for the i-th point, where the feature dimension
C is 64. We apply a linear layer followed by a ReLU activation to produce a processed point-wise
feature fi, increasing the feature dimension to 256. We then predict the relative position ∆p(fi),
magnitude m(fi) (for dense control), rotation r(fi), gripper open state o(fi), and collision indicator
c(fi) (for keyframe control) of the i-th point, where ∆p,m, r, o, c are 3-layer MLPs. Note that when

14

representing the ground-truth actions as one-hot vectors—such as rotation, gripper open state, and
collision indicators in keyframe control—the action predictions correspond to the output probabil-
ities following the softmax layer. Finally, for each action component, we assign a learned weight
w∗(fi) to each point, where w∗ represents separate 3-layer MLPs with softmax normalization across
the points dimension.

B.2 SGR Details

SGRv2 is built upon SGR [10], which we briefly introduced in Section 3.1. Here, we provide a
detailed description of SGR’s three components: semantic branch, geometric branch, and fusion
network.

Semantic Branch. Using a collection of RGB images {Ik}Kk=1 from K calibrated cameras, they
initially apply a frozen pre-trained 2D model G, such as CLIP’s visual encoder, to extract multi-view
image features {G(Ik)}Kk=1. When a language instruction S accompanies a task, they utilize a pre-
trained language model H, like CLIP’s language encoder, to generate the language features H(S).
They align these image features G(Ik) with the language features H(S) using a visual grounding
module, producing {Mk}Kk=1. Subsequently, they rescale the visual or aligned feature maps to the
dimensions of the original images through bilinear interpolation and reduce their channels by 1× 1
convolution, generating a set of features {Fk}Kk=1, where each Fk ∈ RH×W×C1 . These high-level
semantic features are then back-projected into 3D space to form point-wise features for the point
cloud, expressed as Fsem ∈ RN×C1 , where N = K ×H ×W .

Geometric Branch. They construct the initial point cloud coordinates P = {pi}Ni=1 ∈ RN×3

and RGB features Fc ∈ RN×3 using multi-view RGB-D images and camera parameters (i.e., cam-
era intrinsics and extrinsics). Optionally, they append a D-dimensional vector, derived from robot
proprioceptive data z via a linear layer, to each point feature. They then process the point cloud coor-
dinates P and features Fc through a hierarchical PointNeXt encoder, extracting compact geometric
coordinates P ′ ∈ RM×3 and features F ′

c ∈ RM×C2 (M < N).

Fusion Network. To merge the two complementary branches, they first subsample the point-wise
semantic features Fsem using the same point subsampling procedure as in the geometric branch,
resulting in F ′

sem ∈ RM×C1. They then perform a channel-wise concatenation of the semantic and
geometric features to form Ffuse = Concat(F ′

sem, F
′
c) ∈ RM×(C1+C2). Finally, the fused features

are processed through several set abstraction blocks [38, 15], enabling a cohesive modeling of the
cross-modal interaction between 2D semantics and 3D geometric information.

B.3 Training Details

Losses. As illustrated in Section 3.3, in keyframe control, our loss objective is as follows:

Lkeyframe = α1Lpos + α2Lrot + α3Lopen + α4Lcollide, (3)

where Lpos is L1 loss, and Lrot, Lopen, and Lcollide are cross-entropy losses. In our experiments, we
set α1 = 300 and α2 = α3 = α4 = 1.

In dense control, our loss objective is:

Ldense = β1(Ldir + Lmag) + β2Lrot + β3Lopen + β4Lreg, (4)

where Ldir, Lmag and Lrot are MSE losses, Lopen is cross-entropy loss, and Lreg is smoothness regu-
larization loss. In our experiments, we set β1 = 10, β2 = β3 = 1 and β4 = 0.3.

Data Augmentation. (1) Translation and rotation perturbations: in keyframe control, the train-
ing samples is augmented with ±0.125 m translation perturbations and ±45◦ yaw rotation pertur-
bations. (2) Color drop is to randomly replace colors with zero values. This technique serves as a
powerful augmentation for PointNeXt [15], leading to significant enhancements in the performance
of tasks where color information is available. (3) Feature drop: Color drop randomly replaces
colors with zero values, which results in both the RGB and semantic features becoming constant.

15

However, there are certain tasks where colors play a crucial role, and disregarding color informa-
tion in these tasks would make them unsolvable. To address this issue, we propose feature drop.
Specifically, this involves randomly replacing the semantic features with zero values, while keeping
the RGB values unchanged. (4) Point resampling is a widely used technique in point cloud data
processing that adjusts the density of the point cloud. It involves selecting a subset of points from the
original dataset to create a new dataset with a modified density. Firstly, we filter out points outside
the workspace. Then in keyframe control, we resample 4096 points from the point cloud using far-
thest point sampling (FPS), while in dense control, we resample 1200 points using the same method.
(5) Demo augmentation [33] [16], used in keyframe control, captures transitions from intermediate
points along a trajectory to keyframe states, rather than from the initial state to the keyframe state.
This approach significantly increases the volume of the training data.

Hyperparameters. The configuration of hyperparameters applied in our studies are shown in Ta-
ble 4. For each task, the experiments are conducted on a single NVIDIA GeForce RTX 3090 GPU.

Table 4: Hyper-parameters used in our simulation experiments.
Config Keyframe Control Dense Control

Training iterations 20, 000 100, 000
Leraning rate 0.003 0.0003
Batch size 16 16
Optimizer AdamW AdamW
Lr Scheduler Cosine Cosine
Warmup step 200 0
Weight decay 1× 10−6 1× 10−6

Color drop 0.4 0
Feature drop 0 0.4
Number of input points 4096 1200

B.4 Training and Inference Speed

We test the training and inference speed of SGRv2 on a NVIDIA 3090 GPU. For keyframe control,
training takes approximately 5 hours for 20k steps, with an inference speed of 10 FPS. For dense
control, training requires around 7 hours for 100k steps, with an inference speed of 30 FPS.

C Real-Robot Details

C.1 Real-Robot Setup

For our real-robot experiments, we use a Franka Emika Panda manipulator equipped with a parallel
gripper. We utilize keyframe control, and the motion planning is executed through MoveIt 4. Per-
ception is achieved through an Intel RealSense L515 camera, positioned in front of the scene. The
camera generates RGB-D images with a resolution of 1280×720. We leverage the realsense-ros5

to align depth images with color images. The extrinsic calibration between the camera frame and
robot base frame is carried out using the MoveIt calibration package.

When preprocessing the RGB-D images, we resize the 1280 × 720 images to 256 × 256 using
nearest-neighbor interpolation. We choose this interpolation method instead of others, like bilinear
interpolation, because the latter can introduce artifacts into the depth map, resulting in a noisy point
cloud. Following these steps enables us to process RGB-D images as we do in our simulation
experiments. It is essential to adjust the camera’s intrinsic parameters appropriately after resizing
the images. We train SGRv2 for 40,000 training steps and use the final checkpoint for evaluation.

16

Figure 6: Real-robot generalization task.

C.2 Real-Robot Tasks

Our real-robot experiments involve three tasks: Tidy Up the Table, Make Coffee, and Move Color
Cup to Target. The first two are long-horizon tasks, while the last is a generalization task. We
provide details of the task design as follows.

Tidy Up the Table (as shown in Figure 4 Top Left) is to place the clutter on the table in its appropri-
ate locations. The task consists of 6 sub-tasks, each detailed as follows: (1) Put trash in trash

can: Pick up the trash and place it in the trash can. (2) Put socks in box: Pick up the socks
and place them in the box. (3) Put marker in pen holder: Pick up the marker and place it in
the pen holder. (4) Open drawer: Grasp the drawer handle and pull it open. (5) Put lollipop

in drawer: Pick up the lollipop and place it into the drawer. (6) Close drawer: Push the drawer
closed.

Make Coffee (as shown in Figure 4 Bottom Left) is to make pour-over coffee. This task is composed
of 4 sub-tasks, each described in detail as follows: (1) Turn on coffee machine: Press the button
on the coffee machine to activate it. (2) Put funnel onto carafe: Pick up the funnel and place it
onto the carafe. (3) Pour powder into funnel: Pick up the powder holder and pour the powder
into the funnel. (4) Pour water: Pick up the kettle and pour the water onto the powder in the
funnel.

Move Color Cup to Target (as shown in Figure 6) is to select the target color cup from three cups
and move it to the white area. The target color is indicated through language instructions. We have
6 cups of different colors: white, red, yellow, orange, black, and green. Each scenario involves one
target cup and two distractor cups of different colors. We collect five demonstrations for each of the
first 4 colors and test the model on both 4 seen and 2 unseen scenarios.

C.3 Discussions of Failure Cases

In the real-robot experiments, the primary failure cases of SGRv2 include: (1) For smaller objects
like lollipops, the model sometimes struggles to detect them, especially when they are farther away
from the camera. (2) For tasks that are sensitive to grasping position or angle, such as grasping
markers or funnels, slight deviations can lead to unsuccessful attempts or cause the object to slip.
(3) In keyframe control, where a few sparse target poses are output and then executed through a
motion planner, failures can occur due to collisions during the motion planning phase.

D Additional Results

Our primary objective of Section 4 is to demonstrate the sample efficiency of SGRv2. This is why we
initially choose to evaluate our method using only 5% of the data employed in the baselines’ original
settings. However, to make our experiments more complete, we conduct additional experiments to
provide a more comprehensive evaluation on more different numbers of demonstrations and more
baselines. Note that all our results are the average success rates of the last 5 checkpoints.

4https://moveit.ros.org
5https://github.com/IntelRealSense/realsense-ros

17

https://moveit.ros.org
https://github.com/IntelRealSense/realsense-ros

Avg. Open Open Water Toilet Phone Put Take Out Open
Method Success ↑ Microwave Door Plants Seat Up On Base Books Umbrella Fridge
PointNeXt 33.1 13.6 61.6 14.8 64.4 57.2 48.0 83.6 16.4
PerAct 36.7 9.2 78.0 12.0 83.6 0.0 18.8 91.6 14.4
SGR 47.8 46.0 76.8 24.4 59.6 82.8 92.0 90.0 26.4
RVT 52.1 19.2 79.2 11.2 62.0 78.4 63.6 97.2 18.4
SGRv2 (ours) 63.3 68.4 86.0 17.6 69.2 85.6 69.2 95.6 19.2

Open Slide Sweep To Meat Off Turn Put In Close Drag Stack
Method Drawer Block Dustpan Grill Tap Drawer Jar Stick Blocks
PointNeXt 63.6 83.6 52.4 0.0 84.8 1.6 35.6 0.0 8.8
PerAct 89.8 97.3 32.9 98.2 5.5 4.4 23.2 75.3 43.4
SGR 75.6 89.2 63.2 93.6 94.8 22.8 36.4 80.8 0.0
RVT 70.0 71.2 18.0 92.0 73.6 84.4 35.2 100.0 18.8
SGRv2 (ours) 92.8 94.4 64.4 97.6 95.2 80.8 32.4 94.8 52.0

Screw Put In Place Put In Sort Push Insert Stack Place
Method Bulb Safe Wine Cupboard Shape Buttons Peg Cups Cups
PointNeXt 21.6 7.2 13.6 18.0 2.8 100.0 1.2 6.0 0.0
PerAct 18.2 7.9 39.7 7.9 2.2 82.0 8.9 7.7 1.2
SGR 17.6 27.6 35.6 12.4 2.8 84.8 2.0 6.0 0.8
RVT 43.2 67.2 92.0 17.6 6.4 100.0 12.8 22.8 0.4
SGRv2 (ours) 68.4 59.2 68.0 50.4 6.4 99.2 8.0 70.4 0.8

Table 5: Performance on RLBench with 100 demonstrations.

#Demonstrations 100 50 20 10 5

RVT 52.1 46.3 43.3 42.3 40.4
SGRv2 (ours) 63.3 62.4 61.9 56.0 53.2

Table 6: Average performance of 26 RLBench tasks with varying number of demonstrations.

RLBench with 100 Demonstrations. We test SGRv2 and the baseline methods (RVT, SGR, PerAct,
and PointNeXt) using 100 demonstrations. Refer to Table 5 for the results.

RVT with Varying Demonstrations. We test RVT (the most competitive baseline in RLBench) on
26 RLBench tasks, with demonstration numbers ranging from 100 to 5. Table 6 shows the average
results of 26 tasks compared with results of SGRv2.

MimicGen with 1000 Demonstrations. We evaluate SGRv2 against SGR, PointNeXt, 2D BC-
RNN (used in MimicGen [14] and robomimic [64]), and 2D BC (used in robomimic [64]). The
latter two baselines are trained and tested using the official codes of MimicGen 6 and robomimic 7,
but with different evaluation metrics-we report the average results of the last 5 checkpoints instead
of the maximum of 30 checkpoints, as explained in Section 4.1. Table 7 shows the results.

More Baselines in MimicGen with 50 Demonstrations. In addition to the baselines included
in the Table 2, we evaluated SGRv2 against the 2D BC-RNN (used in MimicGen [14] and
robomimic [64]), 2D BC (used in robomimic [64]), and R3M [9] baselines with 50 demonstrations.
Table 8 shows the results.

MimicGen with 200 Demonstrations. We further compared SGRv2 against 2D BC-RNN (used in
MimicGen [14] and robomimic [64]) and 2D BC (used in robomimic [64]) using 200 demonstra-
tions. Table 9 shows the results.

The results from these extended experiments show that SGRv2 consistently outperforms the base-
lines across all settings. While it’s noteworthy that BC-RNN achieves comparable performance to
SGRv2 when trained on 1000 demonstrations, it falls short when the number of demonstrations is
reduced to 50 or 200. This highlights the superior sample efficiency of SGRv2. Additionally, we

6https://github.com/NVlabs/mimicgen
7https://github.com/ARISE-Initiative/robomimic

18

https://github.com/NVlabs/mimicgen
https://github.com/ARISE-Initiative/robomimic

Method Avg. Success ↑ Stack StackThree Square Threading Coffee HammerCleanup MugCleanup
SGR 42.1 84.4 54.0 26.4 11.6 41.6 38.4 38.4
PointNeXt 42.3 90.4 72.4 12.4 12.8 36.4 33.6 38.0
2D BC 32.3 84.4 54.8 35.6 13.2 6.8 26.8 4.8
2D BC-RNN 63.2 96.0 74.4 56.8 34.8 82.8 46.0 51.6
SGRv2 (ours) 66.2 96.4 84.2 56.4 56.0 86.0 46.2 38.4

Table 7: Performance on MimicGen with 1000 demonstrations.

Method Avg. Success ↑ Stack StackThree Square Threading Coffee HammerCleanup MugCleanup
R3M 5.3 34.5 0.3 0.0 0.5 1.2 0.3 0.0
2D BC 10.6 31.2 3.6 0.4 4.4 22.8 8.0 3.6
2D BC-RNN 10.0 30.0 3.2 0.0 0.8 24.0 4.0 8.0
SGRv2 (ours) 26.0 81.2 37.9 2.8 6.7 27.9 16.1 9.7

Table 8: Performance of additional baselines on MimicGen with 50 demonstrations.

recognize that SGRv2 and methods like BC-RNN, which model temporal dependencies, are com-
plementary. Integrating temporal dependencies into SGRv2 presents a promising avenue for future
research.

E Robustness to Visual Distractors

As illustrated in Section 4.2, the predicted per-point weights of SGRv2 effectively focus on locations
that align well with object affordances. This raises the question: does this emergent capability make
the model robust to distractors in the scene that it has never seen before? In Section 4.3, we present
experiments involving distractor cups of different colors; nonetheless, it remains to be seen how
SGRv2 performs in the presence of completely unseen objects and whether it will disregard them.

To address this question, we conduct additional experiments where we randomly introduce task-
irrelevant objects (such as YCB [63] objects, basketballs, etc.) as visual distractors into the RL-
Bench environments for 3 tasks (meat off grill, phone on base, and push buttons). Refer
to Figure 7 for a visualization. We then test the SGRv2 and RVT models, which were previously
trained on data without distractors, in these modified environments. The results, as shown in Ta-
ble 10, indicate that SGRv2 is more robust to these distractors compared to RVT. This suggests that
SGRv2 can effectively focus on relevant areas even in the presence of unseen objects, demonstrating
robustness to visual distractors.

Figure 7: RLBench tasks with visual distractors.

F Detailed Results

For our simulation experiments using the SGRv2 on RLBench with 5 demonstrations (mentioned
in Table 1) and on ManiSkill2 and MimicGen with 50 demonstrations (mentioned in Table 2), we
employed 3 random seeds to ensure the reliability of our results. In the main body of the paper, we
present averaged results for clarity. Here we include both the mean and standard deviation derived
from our simulation results. The results for RLBench are shown in Table 11, and the results for
ManiSkill2 and MimicGen are presented in Table 12.

We also report the ablations mentioned in Table 3 for each task in Table 13.

19

Method Avg. Success ↑ Stack StackThree Square Threading Coffee HammerCleanup MugCleanup
2D BC 21.9 62.8 23.6 14.8 14.4 4.8 24.8 8.4
2D BC-RNN 41.1 84.0 51.6 15.2 16.8 69.6 22.4 28.4
SGRv2 (ours) 55.8 95.2 80.4 32.4 42.2 74.4 38.0 28.2

Table 9: Performance on MimicGen with 200 demonstrations.

Meat Off Grill Phone On Base Push Buttons

RVT on env w/o distractors 90.5 62.3 90.4
RVT on env w/ distractors 65.0 2.5 67.5
SGRv2 on env w/o distractors 96.5 84.1 93.2
SGRv2 on env w/ distractors 92.4 80.4 81.7

Table 10: Performance evaluation in environments with and without visual distractors.

Avg. Open Open Water Toilet Phone Put Take Out Open
Method Success ↑ Microwave Door Plants Seat Up On Base Books Umbrella Fridge
R3M 4.7 0.9 ± 0.6 36.4 ± 3.7 2.9 ± 3.7 15.5 ± 2.1 0.0 ± 0.0 0.5 ± 0.9 5.2 ± 8.7 3.2 ± 1.4
PointNeXt 25.3 7.1 ± 6.3 60.9 ± 5.2 5.6 ± 4.6 49.9 ± 14.7 46.4 ± 4.9 57.5 ± 8.2 37.5 ± 2.3 9.2 ± 4.0
PerAct 22.3 4.3 ± 7.0 59.6 ± 16.0 28.5 ± 3.1 69.3 ± 11.1 0.0 ± 0.0 25.1 ± 4.4 75.9 ± 7.0 3.1 ± 1.3
SGR 23.6 6.4 ± 2.2 55.3 ± 3.7 24.9 ± 8.2 30.7 ± 9.2 47.2 ± 1.4 29.3 ± 5.2 36.3 ± 6.4 7.1 ± 1.5
RVT 40.4 18.3 ± 1.8 71.2 ± 2.8 34.8 ± 3.3 47.6 ± 6.7 62.3 ± 1.4 46.5 ± 10.9 85.3 ± 4.5 24.0 ± 4.2
SGRv2 (ours) 53.2 27.2 ± 2.0 76.8 ± 8.0 38.0 ± 1.7 89.6 ± 2.8 84.1 ± 4.5 63.7 ± 11.8 74.5 ± 5.5 13.2 ± 3.4

Open Slide Sweep To Meat Off Turn Put In Close Drag Stack
Method Drawer Block Dustpan Grill Tap Drawer Jar Stick Blocks
R3M 0.0 ± 0.0 24.0 ± 8.8 0.4 ± 0.4 0.1 ± 0.2 26.1 ± 7.2 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 0.0 ± 0.0
PointNeXt 21.7 ± 20.4 59.5 ± 22.1 42.0 ± 34.7 59.9 ± 17.8 48.7 ± 13.4 17.1 ± 27.8 36.0 ± 4.6 18.5 ± 32.1 1.9 ± 1.6
PerAct 56.4 ± 18.0 47.5 ± 24.3 2.8 ± 0.4 85.9 ± 6.9 8.0 ± 7.5 0.1 ± 0.2 0.5 ± 0.6 10.3 ± 6.4 1.7 ± 0.6
SGR 31.9 ± 6.2 72.0 ± 27.1 43.6 ± 8.4 52.7 ± 5.1 34.4 ± 7.4 8.3 ± 9.2 13.3 ± 5.6 64.4 ± 11.4 0.0 ± 0.0
RVT 75.1 ± 2.6 85.1 ± 2.2 19.6 ± 17.4 90.5 ± 2.2 38.4 ± 5.4 19.6 ± 5.5 25.2 ± 3.6 45.7 ± 10.9 8.8 ± 4.2
SGRv2 (ours) 81.3 ± 3.1 100.0 ± 0.0 61.5 ± 7.2 96.5 ± 3.9 87.9 ± 6.9 75.9 ± 3.6 25.6 ± 2.2 94.9 ± 0.6 17.5 ± 3.0

Screw Put In Place Put In Sort Push Insert Stack Place
Method Bulb Safe Wine Cupboard Shape Buttons Peg Cups Cups
R3M 0.0 ± 0.0 0.3 ± 0.2 0.4 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 6.8 ± 3.7 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
PointNeXt 4.1 ± 1.5 12.1 ± 4.2 31.5 ± 4.5 3.3 ± 0.6 0.4 ± 0.4 22.0 ± 38.1 0.1 ± 0.2 4.4 ± 3.8 0.4 ± 0.4
PerAct 4.4 ± 5.2 0.9 ± 0.9 8.7 ± 1.7 0.4 ± 0.0 0.4 ± 0.4 83.1 ± 5.3 1.9 ± 1.2 0.1 ± 0.2 0.7 ± 0.6
SGR 0.9 ± 0.8 16.9 ± 2.2 24.7 ± 5.8 0.1 ± 0.2 0.1 ± 0.2 12.0 ± 1.4 0.1 ± 0.2 0.0 ± 0.0 1.1 ± 0.9
RVT 24.0 ± 3.8 30.7 ± 4.9 92.7 ± 0.6 5.6 ± 2.1 1.6 ± 0.7 90.4 ± 2.9 4.0 ± 0.0 3.1 ± 0.6 1.2 ± 0.7
SGRv2 (ours) 24.1 ± 0.6 55.6 ± 8.0 53.1 ± 7.4 20.3 ± 9.2 1.9 ± 0.6 93.2 ± 5.3 4.1 ± 1.4 21.3 ± 11.8 1.6 ± 0.7

Table 11: RLBench results (%) on 5 demonstrations with mean and standard deviation.

Method Avg. Success ↑ Avg. Rank ↓ LiftCube PickCube StackCube PickSingleYCB
PointNeXt 16.8 2.5 50.8 ± 15.2 4.7 ± 0.4 10.6 ± 4.3 1.1 ± 0.1
SGR 14.9 2.5 26.9 ± 4.0 12.2 ± 3.1 3.5 ± 2.2 17.0 ± 0.2
SGRv2 (ours) 55.8 1.0 80.5 ± 7.3 72.9 ± 4.1 27.7 ± 4.3 42.2 ± 2.3
Method Avg. Success ↑ Avg. Rank ↓ Stack StackThree Square Threading Coffee HammerCleanup MugCleanup
PointNeXt 13.6 2.9 56.1 ± 6.4 3.7 ± 1.4 0.9 ± 0.5 3.6 ± 2.2 12.0 ± 5.2 11.7 ± 2.8 7.1 ± 0.9
SGR 14.2 2.0 50.8 ± 7.7 5.6 ± 1.7 1.3 ± 0.5 4.0 ± 0.8 14.1 ± 2.0 14.1 ± 1.7 9.7 ± 2.4
SGRv2 (ours) 26.0 1.0 81.2 ± 4.4 37.9 ± 1.5 2.8 ± 0.7 6.7 ± 2.0 27.9 ± 7.0 16.1 ± 3.9 9.7 ± 2.7

Table 12: ManiSkill2 and MimicGen results (%) on 50 demonstrations with mean and standard
deviation.

20

Avg. Open Open Water Toilet Phone Put Take Out Open
Method Success ↑ Microwave Door Plants Seat Up On Base Books Umbrella Fridge
SGRv2 53.2 27.2 76.8 38.0 89.6 84.1 63.7 74.5 13.2
SGRv2 w/o decoder 21.3 4.4 68.4 12.4 38.8 32.8 27.2 35.6 6.8
SGRv2 w/ absolute pos prediction 21.0 8.0 57.6 21.2 17.2 14.8 21.2 44.4 4.4
SGRv2 w/ uniform point weight 44.2 21.6 82.4 28.8 32.0 60.4 68.0 44.0 14.0
SGRv2 w/o dense supervision 40.1 6.4 59.2 6.8 54.4 78.4 60.8 68.0 6.0

Open Slide Sweep To Meat Off Turn Put In Close Drag Stack
Method Drawer Block Dustpan Grill Tap Drawer Jar Stick Blocks
SGRv2 81.3 100.0 61.5 96.5 87.9 75.9 25.6 94.9 17.5
SGRv2 w/o decoder 14.0 78.8 15.6 40.8 46.8 4.0 18.8 0.8 0.0
SGRv2 w/ absolute pos prediction 20.4 99.2 50.8 10.8 68.8 4.0 6.4 54.8 1.2
SGRv2 w/ uniform point weight 92.8 100.0 72.8 90.8 67.6 74.0 43.6 97.6 1.6
SGRv2 w/o dense supervision 75.2 92.8 19.2 72.0 84.0 42.0 28.8 59.6 43.2

Screw Put In Place Put In Sort Push Insert Stack Place
Method Bulb Safe Wine Cupboard Shape Buttons Peg Cups Cups
SGRv2 24.1 55.6 53.1 20.3 1.9 93.2 4.1 21.3 1.6
SGRv2 w/o decoder 3.2 16.4 27.6 0.0 0.0 56.8 0.4 0.8 1.6
SGRv2 w/ absolute pos prediction 0.4 1.6 3.2 0.0 0.0 35.2 1.6 0.0 0.0
SGRv2 w/ uniform point weight 1.6 32.8 50.4 1.2 0.8 64.4 0.0 5.2 0.8
SGRv2 w/o dense supervision 0.0 30.4 52.0 0.4 0.0 100.0 0.0 0.0 2.4

Table 13: Ablations results (%) for SGRv2 on RLBench with metrics for each task.

21

	Introduction
	Related Work
	Method
	Background
	Locality Aware Action Modeling
	Training

	Experiments
	Simulation Setup
	Simulation Results
	Real-Robot Results

	Discussion
	Simulation Task Details
	RLBench Tasks
	ManiSkill2 Tasks
	MimicGen Tasks

	SGRv2 Details
	Architecture Details
	SGR Details
	Training Details
	Training and Inference Speed

	Real-Robot Details
	Real-Robot Setup
	Real-Robot Tasks
	Discussions of Failure Cases

	Additional Results
	Robustness to Visual Distractors
	Detailed Results

