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Abstract

External knowledge, e.g., entities and entity de-001
scriptions, can help humans understand texts.002
Many works have been explored to include003
external knowledge in the pre-trained models.004
These methods, generally, design pre-training005
tasks and implicitly introduce knowledge by006
updating model weights, alternatively, use it007
straightforwardly together with the original text.008
Though effective, there are some limitations.009
On the one hand, it is implicit and only model010
weights are paid attention to, the pre-trained011
entity embeddings are ignored. On the other012
hand, entity descriptions may be lengthy, and013
inputting into the model together with the orig-014
inal text may distract the model’s attention.015
This paper aims to explicitly include both en-016
tities and entity descriptions in the fine-tuning017
stage. First, the pre-trained entity embeddings018
are fused with the original text representation019
and updated by the backbone model layer by020
layer. Second, descriptions are represented by021
the knowledge module outside the backbone022
model, and each knowledge layer is selectively023
connected to one backbone layer for fusing.024
Third, two knowledge-related auxiliary tasks,025
i.e., entity/description enhancement and entity026
enhancement/pollution task, are designed to027
smooth the semantic gaps among evolved rep-028
resentations. We conducted experiments on029
four knowledge-oriented tasks and two com-030
mon tasks, and the results achieved a new state-031
of-the-art on several datasets. Besides, we con-032
duct an ablation study to show that each module033
in our method is necessary.034

1 Introduction035

Pre-trained language models (PLMs), including036

BERT (Devlin et al., 2019) and RoBERTa (Liu037

et al., 2019b), have achieved state-of-the-art038

(SOTA) performances on various natural language039

processing (NLP) tasks. These PLMs can learn040

rich linguistic knowledge from unlabeled text (Liu041

et al., 2019a). However, they capture some kinds042

Text The British Information Commissioner ’s
Office invites Web users to locate its
address using Google Maps .

Mention Information Commissioner ’s Office
Span (12, 46)
Entity Information Commissioner’s Office
Description British data protection authority

Table 1: An example of a text and its associated entities
and descriptions, extracted from Open Entity dataset.

of statistical co-occurrence and cannot sufficiently 043

capture fact or commonsense knowledge (Petroni 044

et al., 2019; Liétard et al., 2021). They always have 045

better representation on popular token instead of 046

tail token (Orr et al., 2020a). 047

Entities and its associated descriptions in knowl- 048

edge graphs (KGs), e.g., ConceptNet (Speer et al., 049

2017), WordNet (Miller, 1995), Wikidata (Vran- 050

dečić and Krötzsch, 2014) and DBpedia (Brümmer 051

et al., 2016), just to name a few, contain extensive 052

information. Table 1 shows an example of a given 053

text and its associated entities and entity descrip- 054

tions (only one is shown in the table), obviously, 055

the description can help understand. Some works 056

have focused on incorporating entities or entity de- 057

scriptions into PLMs (Xiong et al., 2019; Peters 058

et al., 2019; Levine et al., 2020; Zhao et al., 2022; 059

Zhang et al., 2019; Yamada et al., 2020; Wang et al., 060

2021b; Xu et al., 2021b; Wang et al., 2021a; Xu 061

et al., 2021a). Usually, they design knowledge- 062

related pre-training tasks, e.g., entity prediction 063

and entity relation prediction tasks, to continue pre- 064

training the models on a large-scale corpus. Exter- 065

nal knowledge is therefore implicitly introduced 066

by updating the models’ parameters. Alternatively, 067

they directly append the text of entities or descrip- 068

tions to the original input text, treating entities or 069

descriptions as additional text to enrich the orig- 070

inal entry. Although these methods have yielded 071

promising results, we argue that they have the fol- 072

lowing shortcomings. Firstly, when entities and de- 073
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scriptions are involved in continuing pre-training,074

the knowledge is only implicitly injected by up-075

dating the model parameters. Moreover, during076

this process, the entity embeddings pre-trained by077

these pre-training tasks, which cost many compu-078

tation resources and are of great value, are wasted.079

Secondly, when the entities and descriptions are080

appended directly to the original text, it will leads081

to huge costs of computing resources and a diver-082

sion of the model’s attention, as the descriptions083

are always long texts.084

To alleviate the above issues, we propose Ered,085

where both entities and entity descriptions are ex-086

plicitly included to enhance the representation of087

the original text. Firstly, the pre-trained entity em-088

beddings are explicitly fused with the original input089

representations, and then updated during the train-090

ing, that is, the output of the current layer is fed to091

the next layer. Secondly, description texts are rep-092

resented by the knowledge module, which is a light093

model outside the backbone model, and aims to rep-094

resent the long description text separately. More-095

over, each knowledge layer is selectively connected096

to one backbone layer, to enhance corresponding097

text representation. Note that, the description rep-098

resentations are updated by the knowledge module099

layer by layer, but kept fixed when feed to the back-100

bone layer. Finally, two entity/description-related101

auxiliary tasks, namely entity/description enhance-102

ment and entity enhancement/pollution task, are103

designed to narrow the semantic gaps among the104

representations of texts, entities and descriptions.105

We conduct experiments on two entity-related tasks,106

i.e., entity typing and relation classification, and107

two common NLP tasks, i.e., sentiment analysis108

and extended exact match. The experimental re-109

sults show that Ered significantly outperforms the110

baseline models and gets SOTA on several datasets.111

2 Related Work112

Some works have explored injecting entity or en-113

tity description into the pre-trained language mod-114

els. Some of them include knowledge in the115

pre-training stage by designing pre-training tasks,116

while others introduce knowledge directly in the117

fine-tuning stage.118

In the pre-training stage. ERNIE-THU (Zhang119

et al., 2019) uses static entity embeddings sepa-120

rately learned from KGs. It first obtains all entity121

embeddings by TransE (Bordes et al., 2013), links122

the named entity mentions in the text to entities in123

KGs, and adds the linked entity embeddings to the 124

corresponding mention positions. Besides, it de- 125

signs pre-training objectives by randomly masking 126

some of the named entity alignments and asking 127

the model to select appropriate entities from KGs 128

to complete the alignments. Same to ERNIE-THU, 129

KnowBert (Peters et al., 2019) incorporates an inte- 130

grated entity linker in their model and adopts end- 131

to-end training. KEPLER (Wang et al., 2021b) en- 132

codes entity descriptions by PLMs as the represen- 133

tations of entities and trains these entity representa- 134

tions by conventional knowledge embedding meth- 135

ods. The model is pre-trained by MLM and this 136

KE objective. In addition to the masked language 137

model (MLM) (Devlin et al., 2019), LUKE (Ya- 138

mada et al., 2020) randomly masks tokens and 139

entities and then recover them by training the 140

RoBERTa to predict the tokens and the original 141

form of the masked entities in KGs. It provides 142

entity identifier “[MASK]” as additional input, and 143

designs entity-aware self-attention to better use the 144

entity identifier embedding. WKLM (Xiong et al., 145

2019) designs a pre-training task, which randomly 146

replaces some of the entity names in the input text 147

and asks the model to predict whether an entity 148

name is replaced. K-Adapter (Wang et al., 2021a) 149

designs two adapters as a plug-in, which is pre- 150

trained by relation classification and dependency 151

relation prediction task. 152

In the fine-tuning stage KT-attn (Xu et al., 153

2021a) appends entities and entity descriptions di- 154

rectly to the original input text in the fine-tuning 155

stage and designs an attention matrix to avoid com- 156

putation resource costs induced by descriptions. It 157

also compares with knowledge as text and knowl- 158

edge as embedding methods. 159

Our work is different from the works mentioned 160

above. Firstly, both entities and entity descriptions 161

are explicitly introduced to the fine-tuning stage. 162

Secondly, descriptions are processed by the knowl- 163

edge module, a lighter model, to avoid the impacts 164

induced by these long texts. Besides, the backbone 165

and knowledge module is connected layer-to-layer. 166

Although it appears similar but is different from 167

(Wang et al., 2021a), where hidden states flow from 168

the backbone to the pre-trained adapters. It is natu- 169

rally a method of knowledge introduction by updat- 170

ing the weights of the models, whereas, the hidden 171

states of Ered flow from the knowledge module to 172

the backbone model for enhancement. 173
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Figure 1: Overview of Ered (L = 5,K = 3, the con-
nected layer is 1, 2, 5).

3 Our Method174

In this section, we present the overall framework175

of Ered, as shown in Figure 1. It is composed of176

an input layer converting input items to vectors177

(Section 3.1), a backbone model processing text178

(Section 3.2), a knowledge module processing de-179

scriptions (Section 3.3), a fusion module builds180

layer-wise connections between the layers of the181

backbone and knowledge module (Section 3.4),182

and a prediction layer computing the probability183

distribution of target classes (Section 3.5).184

3.1 Input Layer185

The input of Ered includes the original text, entities,186

and descriptions. The text is fed into the embedding187

layer of the backbone model, where token embed-188

ding, position embedding, and segment embedding189

are added together. The embeddings of entities are190

lookup from the entity embeddings table, which191

is pre-trained by entity-related pre-training tasks.192

The description is tokenized and then fed into the193

embedding layer of the knowledge module (K-194

module). To be specific, given the input sentence S,195

we recognize all the entities by entity linker, it will196

output the mention span in the input and the enti-197

ties in the Wikidata, and then we associate each en-198

tity with its description. After that, we tokenize S199

into subword sequence X = {x1, . . . , xm}, where 200

m is the maximum sequence length of the text1. 201

Then, we get its embeddings X = {x1, . . . ,xm} 202

by the backbone embedding layer. For each de- 203

scription D, we tokenize it into subword sequence 204

U = {u1, . . . un}, where n is the maximum se- 205

quence length of the descriptions. Then, we get its 206

embedding U = {u1, . . .un} by the knowledge 207

module embedding layer. Besides, entity embed- 208

dings e are obtained from the entity embedding ta- 209

ble v ∈ R|V |×d1 , where |V | is the entity vocabulary 210

size, d1 is the dimension size of entity embeddings. 211

3.2 Backbone Model 212

The backbone model is responsible for capturing 213

semantic representation from the original input 214

tokens. It is a prevalent PLMs, e.g., BERT and 215

RoBERTa, stacking L backbone layers, and we 216

exclude a comprehensive description of this mod- 217

ule and refer readers to (Devlin et al., 2019) and 218

(Liu et al., 2019b) for details. In our setting, Trans- 219

former (Vaswani et al., 2017) encoder is used, it 220

takes the embeddings X = {x1, . . . ,xm} as in- 221

put and computes layer-wise representation. The 222

output of current layer is fed into the next layer, 223

hi = Transformeri(hi−1), (1) 224

where hi ∈ Rm×d2 , i ∈ N+, i ∈ [1, L] is the repre- 225

sentation of the text in the i-th backbone layer, and 226

h0 = X. Transformeri refers to the i-th layer, d2 227

is the dimension size of the backbone model. 228

3.3 Knowledge Module 229

The knowledge module is responsible for captur- 230

ing the knowledge-related representations of entity 231

descriptions. It is a light PLMs, that stacks K 232

knowledge layers, outside the backbone model as 233

an external plugin to process the long text. In our 234

setting, the pre-trained DistilBERT (Sanh et al., 235

2019) is used, and its parameters are frozen. The 236

knowledge module takes the embeddings of entity 237

descriptions as input, and it updates the hidden 238

states of the descriptions layer by layer, 239

zk = Knowledgek(zk−1), (2) 240

where zk ∈ Rn×d3 , k ∈ N+, k ∈ [1,K] is the 241

representation of the description text in the k-th 242

knowledge layer, and z0 = U. Knowledgek refers 243

to the k-th layer of the knowledge module, d3 is 244

the dimension size of the knowledge module. 245

1We pad zeros to keep the dimension.
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3.4 Fusion Module246

Since different models produce the text, entities247

and descriptions embeddings with different seman-248

tic spaces. The fusion module is responsible for249

narrowing the semantic gaps, fusing the knowledge-250

related information into the input representation,251

and outputting an entity/description enhanced text252

representation. Motivated by (Yang et al., 2021),253

instead of fusing the final hidden state, we build a254

layer-wise connection between the backbone and255

knowledge layers, to achieve deeper integration.256

It takes the text representation h, entity embed-257

ding e and description representation z as input.258

Since the number layer K of the knowledge mod-259

ule is always less than the number layer L of the260

backbone layer, some of the backbone layers are261

connected while others are not. Therefore, an align-262

ment is needed to determine which backbone layer263

is connected. For connected layers, both entity264

embedding and corresponding layer-wise represen-265

tation of descriptions are concatenated to the text266

representation, and then fed to the next backbone267

layer for enhanced text representation. Note that,268

zk is only used to enhance h. Formally,269

h′
i−1 = hi−1 || ei−1 || f(z(0)k−1),

hi, ei, _ = Transformeri(h′
i−1),

zk = Knowledgek(zk−1),

(3)270

where f is a linear function to align dimension, z(0)k271

is the vector in the first position of description, i.e.,272

“[CLS]”, output by the k-th knowledge layer. For273

layers without connection, the entity embedding is274

concatenated to the text representation, and then275

fed to the next backbone layer for enhancement,276

h′
i−1 = hi−1 || ei−1,

hi, ei = Transformeri(h′
i−1).

(4)277

For example, as depicted in Figure 1, the backbone278

model has five layers and the knowledge module279

has three layers. The shown alignment is that the280

knowledge layer is connected to the first, second,281

and fifth backbone layer.282

3.5 Prediction Layer283

The prediction layer comprises linear layers to map284

the representation over probability distributions.285

Main task. The vector of entity identifier h(I)
L286

(detailed in Section 4) is used as the final repre-287

sentation to compute the probability distribution,288

p̂ = W1 · h(I)
L + b1 . With the given probabilities, 289

cross-entropy loss function is adopted to compute 290

the loss of the main task, 291

Lm = − 1

Y

∑
y∈Y

y · log(p̂). (5) 292

Auxiliary tasks. Since the vectors of entities, 293

texts and descriptions are obtained from differ- 294

ent models, there have different semantic gaps. 295

To shrink these gaps, motivated by (Zhao et al., 296

2022), where sentiment words are used to con- 297

struct enhanced and polluted sentence represen- 298

tation, we design two auxiliary tasks. The first 299

auxiliary task is entity/description enhancement 300

task, which is pretty similar to the main task, ex- 301

cept that the vector h(E)
L of target entity or sentence 302

is enhanced with the knowledge representations, 303

h(a) = h
(E)
L + e

(p)
L + z

(0)
K . Then, is is used as the 304

final representation to compute the probability dis- 305

tribution over the target classes, p̂ = W2 ·h(a)+ b2. 306

Therefore, the loss of the first auxiliary task is, 307

La = − 1

Y

∑
y∈Y

y · log(p̂). (6) 308

The second auxiliary task is entity enhance- 309

ment/pollution task, where the text representa- 310

tion is enhanced by the representation of its associ- 311

ated entity, i.e., g(a) = e
(p)
L + h

(E)
L or polluted by 312

randomly sampled ones, i.e., g(p) = e
(n)
L + h

(E)
L , 313

and the model is asked to distinguish them ĉ = 314

W3 · (g(a) || g(p)) + b3. Therefore, the loss of the 315

second auxiliary task is, 316

Lap = − 1

C

∑
c∈C

c · log(ĉ), (7) 317

where || refers to concatenation operation. Y is 318

the label set of the main task, and C is the label 319

set indicating the position index of the positive en- 320

tity. W1, b1,W2, b2,W3, b3 are model parameters, 321

e
(p)
L , e

(n)
L refer to the representation of the positive 322

and negative entities, respectively. z(0)K is the vec- 323

tor in the first position of the last knowledge layer. 324

h
(I)
L and h

(E)
L is the vector in the position (I), (E) 325

of the last backbone layer, and (I), (E) index the 326

position of the entity identifier and entity special 327

token, respectively. It will be detailed in Section 4. 328

The total loss is a weighted sum of the above 329

three losses, L = Lm + α ∗ La + β ∗ Lap, where 330

α > 0 and β > 0 are loss coefficients. 331
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4 Experiments332

This section presents the implementation details333

and the results of several NLP tasks. The statis-334

tics of these datasets are shown in Table 2. We335

use LUKE (Yamada et al., 2020) as the backbone336

model and DistilBERT as the knowledge module.337

LUKE is based on the large version of RoBERTa338

(L = 24, d2 = 1024) and DistilBERT is a distilled339

BERT with K = 6, d1 = 768. We extract descrip-340

tions from Wikidata2, and entity embedding table341

from the pre-trained LUKE checkpoints3, which342

contains 500,000 entities. Positive entities are rec-343

ognized by the entity linker, while negative entities344

are randomly sampled from entity vocabulary. Both345

baselines and our method share the same training346

parameter for fairness. Note that, we run the exper-347

iments several times and report the average results348

except for FIGER dataset. Please refer to the Ap-349

pendix A.1 for more implementation details. The350

source code is available at XXX (we will release351

all the code when the paper is accepted).352

Dataset Train Dev Test #Types
Open Entity 1,998 1,998 1,998 9
FIGER 2,000,000 10,000 563 113
FewRel 8,000 16,000 16,000 80
TACRED 68,124 22631 15,509 42
SST 67,349 872 – 2
EEM 405,482 101,370 – 2

Table 2: The statistics of Open Entity, FIGER, FewRel,
TACRED, SST and EEM datasets.

4.1 Knowledge-orientated Tasks353

We first conduct experiments on knowledge-354

oriented tasks, i.e., entity typing and relation clas-355

sification. Baselines are described in section 2.356

4.1.1 Entity Typing357

Entity typing is the task of predicting the types of358

an entity given its sentence context. Here we use359

Open Entity (Choi et al., 2018) and FIGER (Ling360

et al., 2015) datasets, following the split setting361

as (Zhang et al., 2019; Wang et al., 2021a). To362

fine-tune our models for entity typing, following363

the setting of (Yamada et al., 2020), we modify the364

input token sequence by adding the special token365

“[ENTITY]” before and after a certain entity, and366

providing entity identifier “[MASK]” along with367

2https://www.wikidata.org/w/api.php
3https://huggingface.co/studio-ousia/

luke-large

Model Prec. Rec. Mi-F1
BERTbase 76.4 71.0 73.6
ERNIE-THU (Zhang et al., 2019) 78.4 72.9 75.6
KnowBERT (Peters et al., 2019) 78.6 73.7 76.1
RoBERTalarge 77.6 75.0 76.2
K-Adapter (Wang et al., 2021a) 79.0 76.3 77.6
LUKE (Yamada et al., 2020) 79.9 76.6 78.2
RoBERTa∗large 78.3 74.4 76.3
K-Adapter∗ 78.0 76.3 77.0
LUKE∗ 80.8 74.7 77.6
LUKE+Adapter 78.3 76.1 77.4
Ered 80.3 75.9 78.1

Table 3: Results of entity typing on the Open En-
tity dataset. ∗ refers to reproduced results.

Model Acc Ma-F1 Mi-F1
BERTbase 52.0 75.2 71.6
ERNIE-THU (Zhang et al., 2019) 57.2 75.6 73.4
WKLM (Xiong et al., 2019) 60.2 82.0 77.00
RoBERTalarge 56.3 82.4 77.8
K-Adapter (Wang et al., 2021a) 61.8 84.9 80.5
RoBERTa∗large 54.9 81.6 77.1
LUKE∗ 57.4 82.1 78.1
Ered 60.6 77.7 78.8

Table 4: Results of entity typing on the FIGER dataset
(maximum sequence length is reduced from 256 to 128).

the input. The representation of entity identifier 368

“[MASK]” is adopted to perform classification, and 369

the first “[ENTITY]” special token representation 370

is used as text representation. It is treated as a 371

multiple labels classification problem, and binary 372

cross-entropy loss is used to optimize the model. 373

Following the same evaluation criteria used in the 374

previous works, for Open Entity, we evaluate the 375

models using micro precision, recall and F1, and 376

adopt the micro F1 score as the final metric. For 377

FIGER, we adopt accuracy, macro F1, and micro 378

F1 scores for evaluation. 379

Results The results on Open Entity and 380

FIGER dataset are presented in Table 3 and 4, 381

respectively. We can see that Ered outperforms 382

the previous SOTA by 0.5 F1 points on Open En- 383

tity. On FIGER dataset, it outperforms the repro- 384

duced RoBERTa and LUKE by 1.7 and 0.7 micor 385

F1 points, respectively. Besides, to demonstrate the 386

effectiveness of our proposed model, we also reim- 387

plement LUKE+Adapter, where the two adapters 388

pre-trained by K-Adapter (Wang et al., 2021a) are 389

transferred to the LUKE model. We find that, with 390

the plugin of the two adapters, there are no ex- 391

pected gains, but drops of 0.2 F1 points on the 392

Open Entity dataset. We attribute these results to 393

the semantic spaces of the two, namely LUKE and 394
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Model Prec. Rec. Mi-F1
BERTbase 85.1 85.1 84.9
ERNIE-THU (Zhang et al., 2019) 88.5 88.4 88.3
RoBERTa∗large 88.8 88.8 88.8
LUKE∗ 89.4 89.4 89.4
Ered 90.3 90.3 90.3

Table 5: Results of entity typing on the FewRel dataset.

Model Prec. Rec. Mi-F1
BERTbase 67.2 64.8 66.0
ERNIE-THU (Zhang et al., 2019) 70.0 66.1 67.97
KnowBERT (Peters et al., 2019) 71.6 71.4 71.5
RoBERTabase 70.4 71.1 70.7
KEPLER-Wiki (Wang et al., 2021b) 71.5 72.5 72.0
RoBERTalarge 70.2 72.4 71.3
K-Adapter (Wang et al., 2021a) 70.1 74.0 72.0
LUKE (Yamada et al., 2020) 70.4 75.1 72.7
LUKE∗ 71.2 72.2 71.7
Ered 71.3 73.7 72.5

Table 6: Results of relation classification on TACRED.

adapters, being different. We think it is necessary395

to narrow this semantic gap, and the ablation study396

in Section 4.3 confirms our view.397

4.1.2 Relation Classification398

Relation classification is the task of determining399

the relation between the given head and tail entities400

in a sentence. Here we use TACRED (Zhang et al.,401

2017) and FewRel (Han et al., 2018) datasets, fol-402

lowing the split setting as (Zhang et al., 2019; Wang403

et al., 2021a). Following (Yamada et al., 2020), we404

modify the input token sequence by adding the405

special token “[HEAD]” before and after the first406

entity, adding “[TAIL]” before and after the second407

entity, and adding two entity identifiers “[MASK]”408

as additional input. The representations of entity409

identifiers are concatenated to perform relation clas-410

sification, and the token representations of the first411

special token “[HEAD]” and “[TAIL]” are concate-412

nated to represent the original text. We evaluate the413

models using micro precision, recall and F1, and414

adopt micro F1 score as the final metric to represent415

the model performance as in previous works.416

Results The results on FewRel and TACRED are417

shown in Table 5 and 6, respectively. Notably, the418

gap between the original reported results in LUKE419

and the reproduced results may probably be be-420

cause of different maximum sequence lengths, i.e.,421

from 512 to 256, open-source library, i.e., from422

AllenNLP to HuggingFace, and reports, i.e., from423

the best to average results. Compared with the424

previous best-published models, Ered achieves an425

Model ACC
BERTbase 93.00
ERNIE-THU (Zhang et al., 2019) 93.50
KT-attn∗bert-base 93.33
RoBERTabase 94.72
KEPLER-Wiki (Wang et al., 2021b) 94.50
KT-attnroberta-base (Xu et al., 2021a) 94.84
KT-attn∗roberta-base 94.72
RoBERTalarge 96.22
RoBERTa∗large 96.10
KT-attnroberta-large (Xu et al., 2021a) 96.44
KT-attn∗roberta-large 96.44
Ered 96.90

Table 7: Results of sentiment analysis on the
SST dataset. ∗ refers to reproduced results.

Model ROC AUC PR AUC
BERT∗

base 85.60 90.64
KT-attn∗bert-base 86.27 91.02
RoBERTa∗base 86.08 90.94
KT-attn∗roberta-base 86.87 91.38
RoBERTa∗large 87.36 91.82
KT-attn∗roberta-large 88.29 92.46
Ered 87.90 92.27

Table 8: Results on the EEM dataset.

improvement of 0.9 and 0.8 F1 points, respectively, 426

demonstrating the usefulness of the representations 427

of entities and entity descriptions and the effective- 428

ness of our designed framework. 429

4.2 Common Tasks 430

(Zhang et al., 2019; Wang et al., 2021b; Xu et al., 431

2021a) show that common tasks may not require 432

external knowledge, which may harm the language 433

model’s representation to some extent. To test Ered, 434

we conduct experiments on two common tasks, in- 435

cluding sentence-level sentiment analysis and ex- 436

tended exact match tasks. 437

Sentence-level sentiment analysis aims to pre- 438

dict the sentiment polarity of the given sentence. 439

We use SST dataset, obtained from General Lan- 440

guage Understanding Evaluation (GLUE) bench- 441

mark (Wang et al., 2018), which collects several 442

popular NLP tasks (Rajpurkar et al., 2016; Socher 443

et al., 2013). The entity identifier “[MASK]” is 444

inserted and its representation is used for predic- 445

tion. While, the vector in the first position of the 446

last backbone layer is adopted to compute the en- 447

hanced or polluted text representation, we evaluate 448

it by accuracy (ACC). 449
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Dataset Open Entity FIGER FewRel TACRED SST EEM
Model Prec. Rec. Mi-F1 Acc Ma-F1 Mi-F1 Prec. Rec. Mi-F1 Prec. Rec. Mi-F1 ACC ROC AUC PR AUC
Baseline 80.8 74.7 77.6 57.4 82.1 78.1 89.4 89.4 89.4 71.2 72.2 71.7 96.4 88.3 92.5
Ered 80.3 75.9 78.0 60.6 77.7 78.8 90.3 90.3 90.3 71.3 73.7 72.5 96.9 87.9 92.3
w/o a 80.4 74.6 77.4 59.9 81.1 78.4 90.2 90.2 90.2 70.8 72.5 71.7 96.3 87.7 92.1
w/o b 80.1 75.3 77.6 - - - 89.9 89.9 89.9 72.3 72.3 72.1 96.1 87.7 92.1
w/o a, b 79.9 75.3 77.5 - - - 89.9 89.9 89.9 72.7 71.1 71.8 96.4 87.8 92.2

Table 9: Ablation results of each auxiliary task.

Extended exact match is a kind of matching450

mode of search advertising in the search adver-451

tisements scene, which requires the user’s search452

term, i.e., query, must exactly match the bid term,453

i.e., keyword. Therefore, the task is to determine454

whether the given query and keyword are exactly455

matched or not. It is a binary classification problem.456

A private EEM dataset from the Bing ads group457

is used, where an entity identifier is provided as458

an extra input and the vector in the first position is459

used to perform all classifications. We evaluate it460

by ROC AUC and PR AUC.461

Results Table 7 shows the results on SST. We462

can see that Ered outperforms all the baselines,463

and increases the accuracy of RoBERTalarge and464

KT-attn by 0.8 and 0.45 accuracy points, respec-465

tively. Table 8 shows the results on EEM, it shows466

that Ered outperforms the RoBERTalarge about 0.6467

ROC AUC points and is comparable to KT-attn.468

We claim that common tasks are not knowledge-469

intensive, but the reasonable use of knowledge can470

promote the representation of the language model,471

just as our human beings do.472

4.3 Ablation Study473

In this subsection, we analyze the impacts of ex-474

ternal knowledge and auxiliary tasks, where w/o a475

refers to fine-tuning Ered without entity/description476

enhancement task, w/o b refers to removing entity477

enhancement/pollution task, w/o a, b refers to no478

auxiliary is adopted except entity and description479

representation. As shown in Table 9, w/o a is better480

than w/o b is some cases but worser in other cases.481

Ered is better than w/o, demonstrating the neces-482

sity of the auxiliary tasks and two auxiliary tasks483

can mutually enhance each other. Moreover, when484

no auxiliary task is adopted, the ablation models485

suffer significant drops, about 0.3 to 0.8 points,486

demonstrating that the straightforward introduc-487

tion of external representation may not be helpful488

or even harm the performance. In summary, ac-489

cording to the results, we claim that when external490

representation is introduced, which may have a dif-491

ferent semantic space from the backbone, auxiliary 492

tasks that aim to narrow semantic gap are nec- 493

essary. These results also explain that combining 494

pre-trained adapters from K-Adapter with LUKE 495

does not boost the performance. 496

5 Analysis 497

5.1 Effects of Layer Alignment 498

As described in subsection 3.4, each knowledge 499

layer is selectively connected with one backbone 500

layer. Therefore, in this section, we analyze the 501

impacts of different layer alignment, the results are 502

shown in Table 10. For the test four datasets, the 503

differences between the best and worst results are 504

0.7, 0.1, 0.6, and 0.5, respectively, indicating that 505

different layer alignment has significant impacts. 506

“last” can achieve the top results on Open Entity, 507

FewRel and TACREDdataset, but obtain the worst 508

results on SST, demonstrating different layer fusion 509

impacts different datasets. In most cases, “first & 510

last” can get a relatively solid result. 511

Layers Open Entity FewRel TACRED SST avg.
last 78.1 90.4 72.6 95.6 84.18
first 77.6 90.3 72.5 96.1 84.13
middle 77.5 90.3 72.0 96.1 83.98
first & last 78.1 90.3 72.4 96.1 84.23
uniform 78.2 90.4 72.0 96.0 84.15

Table 10: Results under different layer alignments.
“last”, “first”, “middle” refers to the last/first/middle K
backbone layers are connected, and “first & last” refers
to the first and last K/2 backbone layers are connected.
“uniform” means that the backbone layers are connected
to knowledge layer in a uniform interval. Underline
indicates top ranked results.

5.2 Effects of Loss Coefficients 512

In Section 3.5, we use α and β coefficients to 513

weight the two auxiliary task losses and then add 514

it with the main loss. As reported in previous 515

works (Zhao et al., 2022; Chuang et al., 2022), 516

the auxiliary loss should have smaller weights to 517

avoid domain the model’s attention. Therefore, in 518

this section, we search α and β from {2.0, 1.0, 0.5, 519
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α Open Entity FewRel TACRED SST β Open Entity FewRel TACRED SST
2.0 76.8 89.7 71.7 96.0 2.0 68.0 90.0 70.8 95.7
1.0 77.5 89.8 71.9 95.6 1.0 68.0 90.1 71.0 95.5
0.5 77.5 89.6 72.0 96.1 0.5 68.0 90.4 72.0 95.9
0.1 77.5 89.7 71.7 95.9 0.1 77.1 90.2 71.6 95.9
0.05 76.5 89.9 72.0 96.2 0.05 77.4 90.0 72.5 95.8
0.01 75.3 89.6 71.1 96.1 0.01 78.4 90.0 72.3 96.0
0.005 73.6 89.7 71.5 96.3 0.005 77.7 89.7 71.8 95.5
0.001 72.2 89.5 70.1 95.9 0.001 77.2 89.9 72.2 96.4

Table 11: Results under different values of α and β. Underline indicates top ranked results.
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Figure 2: Impacts of loss coefficients.

0.1, 0.05, 0.01, 0.005, 0.001} to demonstrate this520

parameter’s impacts, the results are shown in Ta-521

ble 11. We can find that when we solely adopt the522

first task, i.e., the entity/description enhancement523

task, 1.0 to 0.05 is better for the three knowledge-524

related datasets, and 0.05 to 0.005 is better for SST.525

When we solely adopt the second task, namely the526

entity enhancement/pollution task, 0.01 to 0.005527

is a better choice. In summary, a relatively larger528

α and smaller β are recommended in most cases.529

Figer 2 shows the mutual impacts of the two auxil-530

iary tasks. It shows that top results concentrate on531

the top of Figer 2(a), 2(b) and 2(c), whereas on the532

contrary for SST. For FewRel and TACRED, the533

results in the top left corner are better, whereas for534

Open Entity, that in the top right corner are better.535

5.3 Limitations536

As show in Eq. 3.5, Ered takes a multi-task537

loss, these losses introduce parameters, i.e.,538

W2, b2,W3, b3, to linearly transform the represen-539

tation to the distribution of target classes. Be-540

sides, the dimension size and the semantic space541

of the backbone and knowledge model are differ-542

ent, and the map from the former to the latter in-543

troduces parameters in each fusion module, i.e.,544

W(k) ∈ Rd3×d2 , 1 ≤ k ∈ N+ ≤ K. Moreover,545

though the parameters of the knowledge module546

are frozen, it induces computations and time costs547

in the inference phase, and this problem can be 548

solved by pre-computation (Borgeaud et al., 2021). 549

Specifically, we pre-compute each knowledge layer 550

representation of all entity descriptions and cache 551

the pre-computed representations for later use. 552

6 Conclusion 553

This paper presents a novel architecture Ered for 554

enhancing text representation with entities and en- 555

tity descriptions. Long description text is repre- 556

sented separately by a lighter knowledge mod- 557

ule and then injected to the backbone for knowl- 558

edge enhancement. On top of the architecture, 559

two entity/description-related auxiliary tasks are 560

introduced to narrow the semantic gap between in- 561

volved different representations. Empirical results 562

on knowledge-related and common tasks show the 563

effectiveness of Ered compared to current state- 564

of-the-art knowledge enhanced methods. We also 565

conduct extensive ablation studies to demonstrate 566

the impacts of each design choice in Ered. One 567

limitation of our work is that the knowledge mod- 568

ule costs computation resources and increases in- 569

ference time, and it can be easily solved by pre- 570

computation, we leave this for future work. We 571

believe that Ered can provide the NLP community 572

with a new way to utilize knowledge for natural 573

language and thus produce better representations. 574
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Name Open Entity FIGER FewRel TACRED SST EEM
Batch size 4 2048 32 32 128 128
Maximum text length 256 128 256 256 128 32
Maximum description length 64 64 64 64 64 32
Learning rate 1e-5 2e-5 1e-5 1e-5 {1e-5, 2e-5, 3e-5, 5e-5}
Epoch 3 2 10 5 3 3
Evaluation steps per epoch 50 per epoch 500 500 500
Warmup ratio 0.06 0.06 0.1 0.1 0.1 0.1
Number of entities 4 2 4 4 4 2
Number of descriptions 1 1 1 1 1 1
α 1.0 1.0 1.0 1.0 1.0 1.0
β 0.01 0.01 1.0 0.1 0.1 1.0
Alignment the top six backbone layers are connected to knowledge layers
Recognized entities ERNIE-THU TAGME Satori
Times of experiments 20 1 20 5 4 4
Reported results average - average average best best

Table 12: Hyper-parameters and other details of our experiments. “average” and “best” refer to that the averaged/best
results are reported.

listed in Table 12. We optimized the model by792

AdamW (Loshchilov and Hutter, 2018), and a lin-793

ear learning rate decay is adopted. Besides, mixed794

precision (Micikevicius et al., 2018) is adopted795

to accelerate computation. The number of asso-796

ciated entities and descriptions is searched from797

{1, 2, 4, 6, 8}, and the α and β are searched from798

{1.0, 0.1, 0.01}. In our experiments, four entities,799

one description and α = 1.0 are used as default.800

And the knowledge layer is aligned to the last K801

backbone layers. Since entities are used, we need802

entity linker (Wu et al., 2020; Orr et al., 2020b; van803

Hulst et al., 2020; Ferragina and Scaiella, 2010) to804

recognize the entities included in the text. In our805

experiment, we adopt the linked datasets provided806

by (Zhang et al., 2019), and for SST, TAGME (Fer-807

ragina and Scaiella, 2010) is used to perform en-808

tity linking. For EEM, entity and entity descrip-809

tion are given, which is extracted from Microsoft810

knowledge graph Satori (Gao et al., 2018). Positive811

entities are recognized by the entity linker, while812

negative entities are randomly sampled from en-813

tity vocabulary. When no entity is included in one814

sentence, an entity identifier “[MASK]” is used815

as a positive entity. For EEM and FIGER dataset,816

considering its large training samples, we run it817

just for one time. Note that, considering the large-818

scale training set of FIGER dataset, to accelerate819

the training process, we reduce the maximum se-820

quence length from 256 to 128. Besides, with 2821

million training samples and only 500 test samples,822

it is easy to overfit, and we used the parameters823

recommended in (Zhang et al., 2019; Wang et al.,824

2021a) and did not do a grid-search. Specifically, 825

the batch size per GPU is 64, the gradient accu- 826

mulation step is set to 8, four NVIDIA V100 of 827

32G are used, and then it takes about two hours 828

per epoch and the best results are always obtained 829

in step 300, the learning rate is set to 2e-5, the 830

warmup step is set to 6%, α = 1.0, β = 0.01, the 831

number of entities and descriptions are set to 2 and 832

1, respectively. We run training on FIGER for two 833

epochs and evaluate it every 50 steps. 834
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