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Abstract

Natural gradient has been successfully employed in a wide range of optimization
problems. However, for the training of neural networks the resulting increase in
computational complexity sets a limitation to its practical application. Helmholtz
Machines are a particular type of generative models, composed of two Sigmoid
Belief Networks, commonly trained using the Wake-Sleep algorithm. The locality
of the connections in this type of networks induces sparsity and a particular structure
for the Fisher information matrix that can be exploited for the evaluation of its
inverse, allowing the efficient computation of the natural gradient also for large
networks. We introduce a novel algorithm called Natural Reweighted Wake-Sleep,
a geometric adaptation of Reweighted Wake-Sleep, based on the computation
of the natural gradient. We present an experimental analysis of the algorithm
in terms of speed of convergence and the value of the log-likelihood, both with
respect to number of iterations and training time, demonstrating improvements
over non-geometric baselines.

1 Introduction

Deep generative models have been successfully employed in unsupervised learning to model complex
and high dimensional distributions thanks to their ability to extract higher-order representations of the
data and thus generalize better [16, 8]. An approach which proved to be successful and thus common
to several models is based on the use of two separate networks: the recognition network, i.e., the
encoder, which provides a compressed latent representation for the input data, and the generative
network, i.e., the decoder, able to reconstruct the observation in output. Helmholtz Machines
(HM) [11] consist of a recognition and a generative network both modelled as a Sigmoid Belief
Network (SBN) [22], and differently from standard VAEs [19, 23], are characterized by discrete
hidden variables.

The training of stochastic networks is a challenging task in deep learning [12], in particular for
generative models based on recognition and generative networks. A solution to this problem consists
in the introduction of a family of tractable approximate posterior distributions parameterized by
the encoder network. However, in the presence of discrete hidden variables, as for HMs, this
approach cannot be directly employed, and thus standard training procedures relies on the well-
known Wake-Sleep [15] algorithm, in which two optimization steps for the parameters of the
recognition and generative networks are alternated. The Wake-Sleep algorithm, as well as more
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recent advances [10, 9, 24, 14], relies on the conditional independence assumption between the hidden
variables of each layer, as a consequence of the directed graphical structure of a SBN. This leads
to a computationally efficient formula for the weights update which does not require the gradients
to be back-propagated through the full network. Besides the choice of the specific loss function to
be optimized, depending on the nature of the generative model, in the literature several approaches
to speed up the convergence during training have been proposed, through the definition of different
training algorithms. One line of research, initiated by Amari and co-workers [3, 2], takes advantage
of a geometric framework based on notions of Information Geometry [5] which allows the definition
of the natural gradient, i.e., the Riemannian gradient of a function computed with respect to the
Fisher-Rao metric. In general the computation of the natural gradient requires the inversion of an
estimation of the Fisher information matrix, whose dimension depends on the number of weights,
and for this reason it cannot be directly applied for the training of large neural network due to its
computation costs.

Motivated by preliminary results from [6], we observe that the Fisher information matrix associated to
a HM takes a block diagonal structure, where the block sizes depend linearly on the size of individual
hidden layers. Starting from this observation, we propose a geometric version of the Reweighted
Wake-Sleep algorithm for the training of HMs, where the gradient is replaced by the corresponding
natural gradient.

2 The Natural Reweighted Wake-Sleep Algorithm

A Helmholtz Machine with L layers is composed by two Sigmoid Belief Networks, a generative
network p, parameterized by θ (a set of weights and biases W i for each layer i, with i = 0, .., L),
and a recognition (or inference) network q, parameterized by φ (a set of weights and biases V i for
each layer i, with i = 0, .., L− 1).

Following [10], the training of Helmholtz Machines can be recast in terms of a variational objec-
tive [13, 19, 23]. This is analogous to the learning in a Variational Autoencoder which requires the
maximization of a lower bound for the likelihood. In the Reweighthed Wake-Sleep (RWS) [10, 20]
algorithm, the derivative of the log-likelihood of x are approximated with a Monte Carlo sampling in
which the samples are reweighted [10, 20] with the importance weigths ω̃k, i.e.,

∂ ln p(x)

∂θ
=

1

p(x)
Eh∼q(h|x)

[
p(x, h)

q(h|x)
∂ ln p(x, h)

∂θ

]
'

K∑
k=1

ω̃k
∂ ln p(x, h(k))

∂θ
with h(k) ∼ q(h|x) .

(1)

ω̃k =
ωk∑
k′ ωk′

, with ωk =
p(x, h(k))

q(h(k)|x)
. (2)

The RWS algorithm also introduces another training step called the q-wake update, additionally to
the wake and sleep phases to outperform the regular WS. Our method builds on the RWS to calculate
the gradients for each step.

Information Geometry [1, 5, 4, 7] studies the geometry of statistical models using the language of
Riemannian and affine geometry. In this framework, the steepest direction of a function is given by
the natural gradient update step, computed by

θt+1 = θt − ηF (θ)−1∇L(θ) , (3)

where L is the loss function and ∇L its vector of partial derivatives. F (θ) is the Fisher information
matrix associated to the Riemannian Fisher-Rao metric on the manifold of probability distributions
parameterized by θ, i.e., the weights of the network. Finally, η > 0 is the learning rate.

The Fisher information matrix F , needed for the evaluation of the natural gradient of a given function,
has a structure which strongly depends on the nature of the statistical model. For both Sigmoid
Belief Networks (SBNs) constituting a Helmholtz Machine, the Fisher information matrix can be
computed as follows. Let i denote a layer, and j one of its hidden nodes, we denote with W i

j the j-th
column of the matrix W i. The blocks associated to the i-th layer and its j-th hidden unit for both the
distributions p and q associated to the generative and the recognition networks, are denoted with F i

p,j

and F i
q,j , respectively. These matrices can be estimated using Monte Carlo methods, based on the
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samples in the batch.

F i
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The Fisher matrix is block-diagonal, as it can be seen in Fig. 1 and all other blocks besides F i
p,j

and F i
q,j are zero by definition. Such block structure is very convenient and represents the main

argument for the efficiency of the algorithm. Notice that the estimations in Eqs. (4) and (5) are
not to be confused with the approximations typically introduced for the simplification of the Fisher
matrix needed to make it computationally tractable in feed-forward neural networks. Each block
of the Fisher matrix is estimated by Monte Carlo sampling based on n samples. To obtain a lower
variance estimator for the expected value in Eq. (4) we use samples h(k) ∼ q(h|x) pD(x) from the
approximate distribution, and reweight them by the importance sampling weights ω̃k as in Eq. (2).

Since the Fisher matrices in Eqs. (4) and (5) only depend on the statistical models associated to the
joint distributions p(x, h) and q(x, h), thus the model of the Helmholtz Machine remains unchanged,
the same Fisher matrix can be used for different training algorithms (WS, RWS, etc.).

We introduced a matrix representation, where the Hi matrices are obtained by concatenating for
each sample the hi vector as a row vector, while the diagonal matrices Qi

p and Qi
q depends on the

evaluation of the activation function. The matrices HTQH associated with the estimation of the
Fisher blocks may be singular depending on the number of samples in the batch used in the estimation
and the size li of each layer i. During training n is the size of the mini-batch b multiplied by the
number of samples s from the network (respectively p or q, depending on the Fisher matrix under
consideration). Notice that during training typically n < li, thus to guarantee the invertibility we add
a damping factor α > 0 multiplying the identity matrix in addition to HTQH . Now we can use the
Shermann-Morisson formula to calculate the inverse of a rank-k update matrix by

F̃−1 =

(
α1l +HTQH

1 + α

)−1
=

1 + α

α

(
1l −HT (αQ−1 +HHT )−1H

)
, (6)

so that F̃−1 −→ 1l for α −→∞ and F̃−1 −→ F−1 for α −→ 0, if F is full rank. By keeping in memory
the rank-k representation of the matrices, the overall complexity is O(l0l1n2) where l0 and l1 are the
bottom two layers of the Helmholtz Machine, which are usually the largest.

Assuming the locality of the gradient descent learning step, we make the approximation of slowly
changing metric during few training steps. Under these assumptions we can reuse the Fisher matrix
for a certain amount of steps K, without recalculating it. We call this technique, K-step update.

Figure 1: Block structure of the Fisher
information matrix for Deep Sigmoid
Belief Networks.

alg s lr LL T/E
WS 10 0.002 -89.84 37s

RWS 10 0.002 -87.35 50s
NRWS 10 0.001 -84.91 250s

VAE [19] - - ≈ -89.5 -
RWS [10] 10-100 0.001-0.0003 ≈ -86.0 -
BiD [9] 10-100 0.001-0.0003 ≈ -85.0 -

Table 1: Importance Sampling estimation of the log-
likelihood (LL) with 10,000 samples for different algo-
rithms after training till convergence with SGD. The damp-
ing factor used is 0.2. T/E - average time per epoch; s -
samples in training.

3 Experiments

We use the binarized version of the MNIST database of handwritten digits [21]. The model archi-
tecture is a binary Helmholtz Machine with layers of sizes 300, 200, 100, 75, 50, 35, 30, 25, 20,
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15, 10, 10, as in Bornschein et al. [9]. The training is performed without data augmentation, with
binary variables in {−1, 1}. We used a mini-batch size of 32 for all experiments and no regularizers
nor decaying learning-rate. All experiments were run with CUDA optimized Tensorflow on Nvidia
GTX1080 Ti GPUs.

(a) Gradient Descent (b) NADAM

Figure 2: Training curves with (a) Gradient Descent and (b) Nesterov Adaptive Momentum
(NADAM), continuous lines represent the quantities on the train set, and dashed lines the ones
on validation; Left: Loss of algorithms in epochs; Right: Loss of algorithms in wall-clock time (s).

In Fig. 2a we present loss curves during training, for training and validation. The advantage of the
NRWS in this case comes in the form of convergence to a better minimum. NRWS converges faster
than the their non-geometric counterparts in epochs. Even increasing the learning rate of RWS it
is not possible to achieve the same convergence speed (left panel of Fig. 2a). Even in time (right
panel), NRWS is fast enough to compete with vanilla RWS. While NRWS outperformes the other
methods, a possible drawback is that the in real-time it takes roughly 5 times as long to reach the
same amount of epochs as its non-natural counterpart, still reaching a better optimum. Reducing the
number of samples for the importance weighting results in faster convergence but it could also impact
the performances. We compare our SGDs implementations of WS, RWS and NRWS with state-of-the-
art [10, 9] in Table 1. Implementations from the literature also take advantage of accelerated gradient
methods (ADAM[18]), learning-rate decay (from 10−3 to 3× 10−4), L1 and L2 regularizers and an
increased number of samples towards the end of the training (from 10 to 100), in order to achieve
better results. While further hyperparameter tuning could be successfully employed to improve our
reported results, as well as variable learning rates, regularizers and number of samples [9], this is
out of the scope of the present paper. Even with a simple training procedure (fixed learning rate, no
regularization and fixed number of samples 10) we notice how the IS Likelihood on 10k samples is
comparable and even better than RWS and BiHM as reported from the literature [10, 9].

Additionally, we tested the algorithms using the NADAM (Nesterov-Adam) optimizer [17, 25, 18].
In Fig. 2 we see that the NRWS also benefits from the accelerated gradient method outperforming
in epochs as well as in real-world time the RWS. Similarily to SGD, the speed up of RWS by using
a larger learning rate, does not help it catch up with NRWS. However, the adaptive steps and the
accumulated momentum of NADAM are implicitly assuming an Euclidean metric in the tangent
space, which is not the geometrically correct approach. This motivates the exploration of adaptive
riemannian gradient methods for the NRWS algorithm, as a future work.

4 Conclusions

We showed how the graphical structure of Helmholtz Machines allows for the efficient computation
of the Fisher matrix and thus the natural gradient during training, by exploiting the locality of the
connection matrix. We introduced the Natural Reweighted Wake-Sleep (NRWS) algorithm and
we demonstrated an improvement of the convergence during training for standard gradient descent
over the state-of-the-art baselines WS and RWS. NRWS was not only faster to converge, but the
obtained optimum resulted in better values for the IS likelihood estimation compared to the values
reported with RWS and with BiHM. These results hold with a fixed number of samples and learning
rate, without taking advantage of decaying learning rate and increasing number of samples during
training as its literature counterparts. When using the NADAM optimizer, NRWS maintain the speed
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advantage and the convergence to a better optimum, compared with its non-geometric counterpart.
This encourages the exploration of adaptive gradient methods for the Natural Reweighted Wake-Sleep
algorithm in which the Fisher-Rao matrix is explicit considered for the momentum accumulation and
the adaptive step. Moreover, we plan to further study ways to obtain a better estimation of the Fisher
matrix while training. As a final remark, we highlight that since the computation of the Fisher matrix
is only dependent on the underlying statistical model, also other algorithms for the training of HMs
could benefit from the use of the natural gradient, such as Bidirectional Helmholtz Machines.
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