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Abstract

In learning tasks with label noise, boosting model robustness against overfitting is a pivotal
challenge because the model eventually memorizes labels including the noisy ones. Identifying
the samples with corrupted labels and preventing the model from learning them is a promising
approach to address this challenge. Per-sample training loss is a previously studied metric
that considers samples with small loss as clean samples on which the model should be trained.
In this work, we first demonstrate that this small-loss trick is not efficient by itself. Then,
we propose a novel discriminator metric called confidence error and a sieving strategy called
CONFES to effectively differentiate between the clean and noisy samples. We experimentally
illustrate the superior performance of our proposed approach compared to recent studies on
various settings such as synthetic and real-world label noise. Moreover, we show CONFES can
be combined with other approaches such as Co-teaching and DivideMix to further improve
the model performance.

1 Introduction

The superior performance of deep neural networks (DNNs) in numerous application domains, ranging from
medical diagnosis De Fauw et al. (2018); Liu et al. (2019) to autonomous driving Grigorescu et al. (2020)
mainly relies on the availability of large-scale and high quality data Sabour et al. (2017); Marcus (2018).
Supervised machine learning in particular requires correctly annotated datasets to train highly accurate
DNNs. However, such datasets are rarely available in practice due to labeling errors (leading to label noise)
stemming from high uncertainty Beyer et al. (2020) or lack of expertise Peterson et al. (2019). In medical
applications for instance, there might be a disagreement between the labels assigned by radiology experts
and those from the corresponding medical reports Majkowska et al. (2020); Bernhardt et al. (2022), yielding
datasets with noisy labels.

In real-world scenarios, a corrupted label assigned to a sample depends on the feature values and the true
label of the sample, which is known as instance-dependent noise Liu (2021); Zhang et al. (2021b). There
are also other types of label noise in the literature including symmetric noise, where a sample is allocated a
random label or pairflip noise, in which the label of a sample is flipped into the adjacent label Patrini et al.
(2017); Xia et al. (2020); Bai et al. (2021). Instance-dependent noise is more challenging than the other label
noise types Yao et al. (2020); Berthon et al. (2021). Training DNNs in the presence of label noise can lead
to memorization of noisy labels, and consequently, reduction in model generalizability Zhang et al. (2021a);
Chen et al. (2021b). Hence, it is indispensable to design and develop robust learning algorithms that are able
to alleviate the adverse impact of noisy labels during training. Throughout this paper, we will refer to these
methods as label noise learning methods.

Some of the existing studies Patrini et al. (2017); Berthon et al. (2021); Yao et al. (2021b); Xia et al. (2019);
Yao et al. (2020) model the noise distribution as a transition matrix, encapsulating the probability of clean
labels being flipped into noisy ones, and leverage loss correction to attenuate the effect of the noisy samples.
Other studies Cheng et al. (2020); Xia et al. (2021); Wei et al. (2020) learn the clean label distribution
and capitalize on regularization or selection of reliable samples to cope with the noisy labels. Although the
former line of work theoretically guarantees the consistency between the classifiers learned with and without
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Figure 1: Distributions of loss values for clean and noisy labels are relatively similar, and consequently,
loss value is a less-efficient metric to distinguish between the clean labels and noisy ones. Experiments are
performed using PreAct-ResNet18 trained on CIFAR-100 with instance-dependent label noise of level 60%.
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Figure 2: Distributions of confidence error values for clean and noisy samples progressively diverge
from each other as the training process continues. This indicates that confidence error is a more effective
metric than loss value to differentiate the clean samples from noisy ones. Experiments are conducted using
PreAct-ResNet18 and CIFAR-100 with noise level of 60%.

noisy samples, its efficiency strongly depends on the accurate estimation of the transition matrix, which is a
non-trivial task Xia et al. (2019); Bernhardt et al. (2022); Cheng et al. (2020).

A main challenge in the latter line of work, also known as sample selection (sieving), is to find a reliable
criterion (or metric), which can efficiently differentiate between clean and noisy samples. The majority of the
previous studies Jiang et al. (2018); Han et al. (2018); Yu et al. (2019) employ the loss value to this end,
where the samples with small loss values are considered to likely be clean ones (small-loss trick). However,
our observations (Fig 1) illustrate the distributions of the loss values for clean and noisy samples overlap
widely, implying that a lot of noisy samples have small loss values and vice versa. Consequently, loss value is
not an effective metric to distinguish between clean and noisy samples.

Contributions. We propose a novel metric called confidence error to more efficiently discriminate between
the clean and noisy labels. The confidence error metric is defined as the difference between the softmax
outputs/logits of the predicted and original label of a sample. Our observations (Fig 1) indicate that there
exist a clear correlation between the confidence error value and the probability of being clean. That is, a
sample with lower confidence error has much higher probability to be a clean sample than a noisy one.

Next, we integrate the confidence error criterion into a novel learning algorithm called CONFidence Error
Sieving (CONFES) to robustly train DNNs in the instance-dependent, symmetric, and pairflip label noise
settings. The CONFES algorithm computes the confidence error associated with training samples at the
beginning of each epoch and only incorporates a subset of training samples with lower confidence error values
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during training (i.e. likely clean samples). We draw a performance comparison between CONFES and its
competitors using typical benchmark datasets for label noise learning including CIFAR-10/100 Krizhevsky
et al. (2009) and Clothing1M Xiao et al. (2015).

In summary, we make the following contributions:

• We demonstrate that loss value by itself is not an effective metric to discriminate between the clean
and noisy samples.

• To address this shortcoming, we introduce the confidence error as a novel alternative metric and
illustrate that it can efficiently differentiate clean samples from noisy ones.

• We propose the CONFES learning algorithm, which leverages the confidence error as a core building
block to effectively sieve the training samples in an online fashion during training.

• Through extensive experiments, we show that CONFES outperforms the state-of-the-art learning
algorithms of comparison, in terms of accuracy in symmetric, pairflip, and instance-dependent label
noise scenarios.

• We combine CONFES with other learning algorithms including CoTeaching, JoCor, and DivideMix
and illustrate the combination provides further improved accuracy.

2 Related Work

Overcoming the memorization of noisy labels plays a crucial role in label noise learning and improves
model generalization by making the training process more robust to label noise Song et al. (2022); Zhang
et al. (2021a); Natarajan et al. (2013); Arpit et al. (2017). The research community mainly tackled the
memorization problem by adjusting the loss function Yao et al. (2020); Xia et al. (2019); Yao et al. (2021b),
using implicit/explicit regularization techniques Xia et al. (2021); Liu et al. (2020); Zhang et al. (2018); Chen
et al. (2021a); Song et al. (2019a), or refining the training data and performing sample sieving (also called
sample selection) Han et al. (2018); Jiang et al. (2018); Yu et al. (2019); Cheng et al. (2020); Li et al. (2020);
Yao et al. (2021a); Malach & Shalev-Shwartz (2017); Kim et al. (2021); Pleiss et al. (2020); Hu et al. (2021).

Adjusting the loss function according to the noise transition probabilities is an effective method for decreasing
the adverse impact of noisy samples during the training but comes at the cost of accurate estimation of the
transition matrix Patrini et al. (2017). Previous studies Yao et al. (2020); Xia et al. (2019); Yao et al. (2021b)
have paved the way for this non-trivial estimation in different ways. For instance, T-Revision Xia et al.
(2019) estimates the transition matrix without requiring anchor points (the data points whose associated
class is known almost surely), which play an important role in learning the transition matrix effectively.
Dual-T Yao et al. (2020) first divides the transition matrix into two matrices that are easier to estimate, and
then aggregates their outputs for more accurate estimation of the original transition matrix.

A different line of work Liu et al. (2020); Xia et al. (2021); Zhang et al. (2018); Chen et al. (2021a)
improves model generalization by introducing regularization effects suitable for learning with noisy labels.
The regularization effect may be injected implicitly using methods such as data augmentation Zhang et al.
(2018) and inducing stochasticity Chen et al. (2021a). For example, Mixup Zhang et al. (2018) augments the
training data using a convex combination of a pair of examples and their labels which encourages the model
to learn a simple interpolation between the samples. SLN Chen et al. (2021a) introduces stochastic label
noise to help the optimizer to skip sharp minima in the optimization landscape.

Although conventional (implicit) regularization techniques such as dropout Srivastava et al. (2014) and data
augmentation have been proven effective in alleviating overfitting and improving generalization, they are
insufficient to tackle the label noise challenge Song et al. (2022). ELR (Early-Learning Regularization) Liu
et al. (2020) is an explicit regularization approach based on the observation that at the beginning of training,
there is an early-learning phase in which the model learns the clean samples without overfitting the noisy
ones. Given that, ELR adds a regularization term to the Cross-Entropy (CE) loss, leading the model output
towards its own (correct) predictions at the early-learning phase. Similarly, CDR Xia et al. (2021) groups
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the model parameters into critical and non-critical in terms of their importance for generalization, and then
penalizes the non-critical parameters.

Differentiating the clean samples from the noisy ones (known as sample selection/sieving) and employing
them in the training process, is a promising direction to enhance robustness in label noise learning Han
et al. (2018). MentorNet Jiang et al. (2018) uses an extra pretrained model (mentor) to help the main model
(student) by providing it with small-loss samples. The decoupling algorithm Malach & Shalev-Shwartz (2017)
trains two networks simultaneously using the samples on which the models disagree about the predicted
label. Co-teaching Han et al. (2018), cross-trains two models such that each of them leverages the samples
with small-loss values according to the other model. Co-teaching+ Yu et al. (2019) improves Co-teaching by
considering the clean samples as the ones that not only have small loss but also those on which the models
disagree. JoCoR Wei et al. (2020) computes a joint-loss to make the outputs of the two models become closer,
then it considers the samples with small loss as clean samples.

Algorithm 1: Confidence error based sieving (CONFES)
Input: Noisy training dataset D̃ = {(xi, ỹi)}n

i=1, model Fθ, number of training epochs T , initial sieving
threshold α, number of warm-up epochs Tw, batch size M

Output: Trained model Fθ

1 for i = 0, ..., T do
2 αi = Max(α - i · α

Tw
, 0) /* Set sieving threshold */

3 Oi ← F i
θ(D̃) /* Feed the dataset to model */

4 Ci ← P(Oi ) /* Calculate confidence on labels */

5 EC(s) = C(ŷi) − C(ỹi) /* Compute confidence error */
6 Dc = {s | EC(s) ≤ αi} /* Sieve clean samples */

7 D
′ = Dc ⊕ ({(augment(xi), ỹi)}|(xi, yi)⊆ Dc). /* Build new dataset(clean⊕augmented) */

8 for mini-batch β = {(xi, ỹi)}M
i=1 ∈ D

′ do
/* Train the model on new dataset */

9 Update model Fθ on mini batch β using Equation equation 1

10 return Trained model Fθ

3 CONFES: CONFidence Error based Sieving

We assume a classification task on a training dataset D = {(xi, yi) | xi ∈ X, yi ∈ Y }n
i=1, where n is the

number of samples and X and Y are the feature and label (class) space, respectively. The neural network
model F(Xβ ; θ) ∈ Rm×k is a k-class classifier with trainable parameters θ that takes mini-batches Xβ of size
m as input. In real life, a sample might be assigned a wrong label (e.g. due to human error). Consequently,
clean (that is, label noise-free) training datasets are not always available in practice. Given that, assume
Ỹ = {ỹi}n

i=1 and D̃ = {(xi, ỹi)}n
i=1 indicate the noisy labels and noisy dataset, respectively. The training

process is conducted by minimizing the empirical loss (e.g. cross-entropy) using mini-batches of samples from
the noisy dataset:

min
θ
L(F(Xβ ; θ); Ỹβ) = min

θ

1
m

m∑
i=1
L(F(xi, θ), ỹi), (1)

where L is the loss function and (Xβ , Ỹβ) is a mini-batch of samples with size m from the noisy dataset D̃.

In the presence of label noise, the efficiency of the training process mainly depends on the capability of the
model to distinguish between clean and noisy labels and to diminish the impact of noisy ones on the training
process. The loss value is a commonly used metric to that end, where a sample with lower loss value is
considered to be more likely a clean sample than a noisy one Han et al. (2018); Jiang et al. (2018); Yu et al.
(2019); Li et al. (2020). We design an experiment to investigate the effectiveness of this consideration: we
employ the SGD optimizer and cross-entropy loss function to train PreActResNet18 on CIFAR-100, where
60% of the labels are made noisy using the instance-dependent noise. At the beginning of each epoch, the
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model computes the loss value for all training samples, and sorts them in ascending order by loss value. The
model considers the first 40% of the samples with lower loss values as clean, and only incorporate them
during training. This procedure is repeated for 200 epochs.

Figure 1 visualizes the probability density function, computed using the kernel density estimation method, of
cross-entropy loss values. As seen in the figure, the distribution of the loss values for the clean and noisy labels
are relatively analogous. Moreover, the corresponding distributions still remain similar as the training process
continues. This implies that the loss value by itself is not necessarily an effective metric to discriminate
between the clean and noisy samples. Consequently, the prior studies employ different techniques such as loss
correction Patrini et al. (2017); Arazo et al. (2019) or relying on an additional model (e.g. co-teaching) Han
et al. (2018); Li et al. (2020); Yao et al. (2021a); Jiang et al. (2020) to enhance the robustness of cross-entropy
loss to label noise. In this study, we take a different approach and propose an alternative metric called
confidence error for more efficient sieving of the samples during training.

Confidence Error Consider a sample s = (xi, ỹi) from the noisy dataset D̃. The k-class/label classifier
F(xi; θ)) takes xi as input and computes the weight value associated with each class as output. Moreover,
assume P(·) is the softmax activation function such that P(F(xi; θ)) ∈ [0, 1]k takes classifier’s output
and computes the predicted probability for each class. We define the model confidence for a given label
l ∈ {1, . . . , k} associated with sample s as the prediction probability assigned to the label:

C(l) = P(F(xi; θ))(l) (2)

The class with the maximum probability is considered as the predicted class, i.e. ŷi, for sample s:

ŷi = arg max
j∈{1, ..., k}

P(j)(F(xi; θ)), (3)

where P indicates probability. The confidence error EC(s) for sample s is defined as the difference between
the probability assigned to the predicted label ŷi and the probability associated with the original label ỹi:

EC(s) = C(ŷi) − C(ỹi), (4)

where EC(s) ∈ [0, 1]. In other words, the confidence error states how much the model confidence on the
original class is far from the model confidence on the predicted class. The confidence error of zero implies
that the original and predicted classes are the same.

We repeat the previous experiment, but with confidence error as the metric to differentiate the clean samples
from noisy ones. As shown in Figure 2, the distribution of confidence error values for the clean and noisy
samples becomes more and more dissimilar as the training process proceeds. For instance at epoch 50, a
sample with high confidence error (e.g. near 1.0) is much more likely to be a noisy sample than clean one.
Likewise, a sample with very low confidence error is most probably a clean sample. Given that, we conclude
that confidence error is a more efficient metric than loss value to distinguish between the clean and noisy
samples.

CONFES algorithm Previous studies Bai et al. (2021); Liu et al. (2020) show that deep neural networks
tend to memorize noisy samples, which can have detrimental effect on the model utility. Therefore, it is
crucial to detect the noisy samples and alleviate their adverse impact, especially in the early steps of training.
The CONFES algorithm takes this into consideration by sieving the training samples using the confidence
error metric and completely excluding the identified noisy samples during training. CONFES (Algorithm 1)
consists of three main steps at each epoch: Sieving samples, building the refined training set, and training
the model.

In the sieving step, the confidence error for each training sample is computed using Equation 4; then, the
samples whose confidence error is less than or equal to αi (sieving threshold at epoch i) are considered as
clean, whereas the remaining samples are assumed to be noisy and excluded from training. CONFES has
two hyper-parameters: initial sieving threshold α, and the number of warm-up epochs Tw, which are used
to compute per-epoch sieving threshold αi at each epoch i. In the second step, a new training dataset is
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Figure 3: Effectiveness of confidence error based sieving: Using naive cross-entropy training (left), the
model confidence over noisy labels increases as the training moves forward. It implies that model is misled by
the noisy samples. Confidence-based sieving (right), however, differentiates the noisy samples from the clean
ones, and keeps the model confidence over the noisy labels as low as possible.

created by concatenating (⊕) only the identified clean samples and their augmentations such that this dataset
becomes as large as the initial training set. Finally, the model is trained on the augmented dataset, which
consists of the most probably clean samples according to their confidence error.

Why model confidence? Prior works empirically and theoretically showed the effective role of model
confidence in label noise settings Cheng et al. (2020); Zheng et al. (2020). The study by Cheng et al. (2020)
adds a confidence regularization term to the loss function, which encourages confident (high probability)
predictions and makes the elimination of noisy samples more efficient. The work from Zheng et al. (2020)
theoretically proved that if the model confidence on a given sample is low, the probability of being noisy for
that sample is high and bounded to an upper-bound which is dependent on how well the model has been
trained. Given that, the study proposed a training algorithm called likelihood ratio test (LRT), which trains
the model on all samples for a certain number of warm-up epochs (i.e. 30) to get an enough-trained model.
Then, it uses the ratio of the confidence values on the original and predicted labels as a metric to separate the
clean and noisy samples after the warm-up epochs. A sample for which the aforementioned ratio is close to
1.0 is considered as a clean sample. Motivated by these previous works, we incorporate the model confidence
as the cornerstone of our proposed metric and sieving algorithm.

Why confidence error? The proposed confidence error metric has at least two advantages over likelihood
ratio (a metric also based on confidence): (1) Confidence error enables the algorithm to start performing the
sample sieving in the early epochs of training. Using the sieving threshold αi, the algorithm only incorporates
the samples with confidence error less than αi in the training instead of all samples. Applying similar
threshold to likelihood ratio in warm-up epochs delivers much lower accuracy than using all samples based on
our observations. (2) The confidence error is a more efficient metric than likelihood ratio for differentiating
the clean samples from the noisy ones according to our experimental results provided in Figure 9 (at the
Appendix). The results in the next section also verify this observation.

Why sieving based on confidence error? We use our previous experimental setup and train the model
with the naive cross-entropy method and CONFES algorithm to answer this question. Figures 3a and 3b show
the model confidence for the noisy, clean, and predicted labels (averaged over the corresponding samples)
with cross-entropy and CONFES, respectively. According to Figure 3a, the confidence over noisy labels is
very low at the early stages of cross-entropy training. However, as the training proceeds, the model confidence
over noisy labels increases. At the end of training, the model confidence over predicted and noisy labels is
close to each other. This indicates that the model has been misled by the noisy samples, wrongly considering
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them as the true labels of the samples. This observation shows the importance of keeping the confidence
over noisy labels as low as possible. Confidence-error based sieving, on the other hand, relies on the model
confidence to separate the clean samples from noisy ones. This way, it makes the model to have very low
confidence on the noisy samples throughout all training stages according to Figure 3b, leading to more robust
model training against label noise.

4 Experiments

In this section, we draw a performance comparison between CONFES and recent baseline approaches Han
et al. (2018); Liu et al. (2020); Chen et al. (2021a); Cheng et al. (2020); Bai et al. (2021) on three label noise
settings: symmetric, pairflip, and instance-dependent. We first describe our experimental setting, and then
provide and discuss the empirical results.

Datasets We employ the CIFAR-10/100 datasets Krizhevsky et al. (2009) and Clothing1M datasets Xiao
et al. (2015), which is naturally noisy and utilised as a standard benchmark for label noise training tasks.
CIFAR-10/100 contain 50000 training samples and 10000 testing samples of shape 32×32 from 10/100 classes.
For the CIFAR datasets, we perturb the training labels using symetric, pairflip, and instance-dependent label
noise introduced in Xia et al. (2020), but keep the test set clean. For data augmentation/preprocessing, the
training samples are horizontally flipped with probability 0.5, randomly cropped with size 32×32 and padding
4 × 4, and normalized using the mean and standard deviation of the dataset. Clothing1M is a real-world
dataset of 1 million images of size 224× 224 with noisy labels (whose estimated noise level is approximately
38% Wei et al. (2022); Song et al. (2019b)) and 10k clean test images in 14 classes. The data augmentation
methods performed on this dataset include 256× 256 resizing, 224× 224 random crops and random horizontal
flips. In the clothing1M training dataset, the number of samples for each class is imbalanced. Thus, we follow
Li et al. (2020) and sample a class-balanced subset of the training dataset at each epoch.

State-of-the-art methods On all of the examined datasets, we compare CONFES with the most recent
related studies including: (1) standard cross-entropy loss (CE), (2) co-teaching Han et al. (2018) that
cross-trains two models and uses the small-loss trick for selecting clean samples and exchanges them between
the two models, (3) ELR Liu et al. (2020), an early-learning regularization method that leverages the model’s
output during the early-learning phase, (4) CORES2 Cheng et al. (2020), a sample sieving approach that uses
confidence regularization which leads the model towards having more confident predictions, (5) PES Bai et al.
(2021), a progressive early-stopping strategy and (6) SLN Chen et al. (2021a) that improves regularization by
introducing stochastic label noise. Co-teaching and CORES2 are based on sample selection, ELR and SLN
are regularization-based methods. For all of these methods, the specific hyper-parameters are set according
to the corresponding manuscript or the published source code, if available.

Neural Networks and optimization We conduct the experiments on a single GPU system equipped
with an NVIDIA RTX A6000 graphic processor and 48GB of GPU memory. Our method is implemented in
PyTorch v1.9. For all methods, we evaluate the average test accuracy on the last 5 epochs and for co-teaching,
we report the average of this metric for the two networks. Following previous works Li et al. (2020); Bai
et al. (2021) on CIFAR-10 and CIFAR-100, we train the PreActResNet-18 He et al. (2016) model using the
SGD optimizer with a momentum of 0.9, weight decay of 5e-4 and batch size of 128. The initial learning rate
is set to 0.02 and is decreased by 0.01 in 300 epochs using a cosine annealing scheduler Loshchilov & Hutter
(2017). On Cloting1M dataset, we adopt the setting from Li et al. (2020) and train the ResNet-50 model
pre-trained on ImageNet Krizhevsky et al. (2012). The network is trained using SGD with momentum of 0.9
and weight decay of 1e-3 for 80 epochs, starting with learning rate of 0.002 which decreased by 10 at epoch
40. At each epoch the network is trained on 1000 mini-batches of size 32.

4.1 Evaluation

CIFAR-10/100 datasets Tables 1 and 2 list test accuracy values for different noise types and noise rates
on CIFAR-10 and CIFAR-100 datasets respectively. According to these tables, CONFES outperforms the
competitors for all considered symmetric, pairflip, and instance-dependent noise types. Similarly, CONFES
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Table 1: Test accuracy on CIFAR-10 for different noise types with noise level 40%.

Method Symmetric Pairflip Instance
CE 66.61 ±0.4 59.25 ±0.1 66.04 ±0.2
Co-teaching Han et al. (2018) 87.42 ±0.2 84.57 ±0.2 86.90±0.1
ELR Liu et al. (2020) 85.74 ±0.2 86.15 ±0.1 85.37 ±0.3
CORES2 Cheng et al. (2020) 83.9 ±0.4 58.38 ±0.6 76.71 ±0.4
LRT Zheng et al. (2020) 85.47 ±0.3 59.25 ±0.3 80.53 ±0.9
PTD Xia et al. (2020) 72.05 ±0.9 58.34 ±0.8 65.97 ±0.9
PES Bai et al. (2021) 90.55 ±0.1 85.56 ±0.1 85.63 ±0.5
SLN Chen et al. (2021a) 83.69 ±0.2 85.26 ±0.5 67.71 ±0.4
CONFES (ours) 90.62±0.2 86.18±0.3 90.28±0.2
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Figure 4: Test accuracy on CIFAR-100 using PreAct-ResNet18: CONFES is robust against overfitting,
whereas some of its competitors including SLN and ELR start overfitting after some epochs of training; noise
level is 40%.

delivers higher accuracy than the competitors for different noise rates. Moreover, as the noise level increases,
the accuracy gap between CONFES and its competitors widens in favor of CONFES. Figure 4 illustrates the
test accuracy versus epoch for the different learning algorithms. As shown in the figure, CONFES is robust
against overfitting because the corresponding test accuracy continues to increase as training moves forward,
and stays at the maximum after the model converges. Some of the other algorithms such as SLN and ELR
on the other hand suffer from an overfitting problem, where their final accuracy values are lower than the
maximum accuracy they achieve.

Table 4 shows the accuracy values of CoTeaching, JoCor, and DivideMix if confidence error is used as the
discriminator metric instead of the training loss. As shown in the table, the accuracy from these algorithms
is enhanced by 2-5%, indicating that confidence error is not only effective as the main building block of the
proposed CONFES algorithm, but also combined with other state-of-the-art methods such as Co-teaching,
JoCor and DivideMix, which is a complex method employing data augmentation and relabeling. Furthermore,
combining confidence error with other state-of-the-art methods (such as DivideMix) that guess or refine
the noisy labels rather than excluding them, helps utilizing the noisy samples and learning their feature
information as well.

Clothing1M dataset Table 3 summarises the performance of methods on Clothing1M dataset. CORES2

and PES provide slight or no accuracy gain compared to the baseline cross-entropy training, respectively.
CONFES, on the other hand, outperforms the competitors including ELR and SLN.
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Table 2: Test accuracy on CIFAR-100 for various label noise types with different noise rates.
(a) Symmetric

Method 20% 40% 60%
CE 63.46 ±0.7 47.85 ±0.4 29.59 ±0.3
Co-teaching Han et al. (2018) 71.54 ±0.3 66.26 ±0.1 58.82 ±0.1
ELR Liu et al. (2020) 63.59 ±0.1 48.33 ±0.2 30.37 ±0.1
CORES2 Cheng et al. (2020) 65.99 ±0.5 52.26 ±0.2 34.61 ±0.2
LRT Zheng et al. (2020) 73.72 ±0.1 66.52 ±0.2 50.86 ±0.4
MentorMix Jiang et al. (2020) 71.52 ±0.2 61.96 ±0.2 44.38 ±0.3
PES Bai et al. (2021) 71.42 ±0.2 68.37 ±0.2 60.38 ±0.1
SLN Chen et al. (2021a) 60.48 ±0.1 46.98 ±0.2 28.50 ±0.2
CONFES (ours) 73.89±0.1 69.63±0.2 60.65±0.1

(b) Instance-dependant

Method 20% 40% 60%
CE 63.16 ±0.1 48.92 ±0.3 30.65 ±0.4
Co-teaching Han et al. (2018) 71.12 ±0.3 66.55 ±0.3 57.18 ±0.2
ELR Liu et al. (2020) 63.10 ±0.2 49.15 ±0.2 29.88 ±0.6
CORES2 Cheng et al. (2020) 64.55 ±0.1 50.98 ±0.2 33.93 ±0.5
LRT Zheng et al. (2020) 73.14 ±0.2 65.32 ±0.6 45.37 ±0.1
MentorMix Jiang et al. (2020) 69.41 ±0.2 56.41 ±0.1 34.61 ±0.1
PES Bai et al. (2021) 71.65 ±0.3 64.83 ±0.2 41.10 ±0.5
SLN Chen et al. (2021a) 60.08 ±0.1 46.08 ±0.3 29.77 ±0.4
CONFES (ours) 73.59±0.2 69.68±0.2 59.48±0.1

(c) Pairflip

Method 20% 30% 40%
CE 64.31 ±0.3 55.77±0.1 45.62 ±0.4
Co-teaching Han et al. (2018) 69.59 ±0.2 64.04 ±0.4 55.42 ±0.5
ELR Liu et al. (2020) 62.05 ±0.5 54.44 ±0.2 44.31 ±0.3
CORES2 Cheng et al. (2020) 63.85 ±0.2 54.88 ±0.3 45.34±0.2
LRT Zheng et al. (2020) 71.70 ±0.1 60.78 ±0.1 46.24 ±0.2
MentorMix Jiang et al. (2020) 69.65 ±0.1 62.01 ±0.1 50.97 ±0.2
PES Bai et al. (2021) 71.73 ±0.4 68.28 ±0.3 59.18 ±0.2
SLN Chen et al. (2021a) 61.82 ±0.3 53.67 ±0.2 45.72 ±0.2
CONFES (ours) 73.12±0.1 71.34±0.2 62.37±0.4

Table 3: Test accuracy on Clothing1M dataset

Method CE ELR CORES2 PES SLN CONFES (ours)
Test Accuracy 69.21% 71.39% 69.50% 69.18% 72.80% 73.24%

5 Discussion

According to the experimental results, CONFES outperforms all baseline methods in the considered symmetric,
pairflip, and instant-dependent noise settings. As the noise rate increases, the efficiency of the CONFES
algorithm becomes more apparent (e.g. noise rate of 50% in CIFAR-100). Moreover, CONFES is robust to
overfitting unlike some of its competitors such as SLN and ELR. This indicates that the underlying confidence

9
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Table 4: Test accuracy for CONFES (CNF) combined with other approaches; dataset: CIFAR-100; model:
PreActResNet18; noise rate: 40%.

Method Symmetric Pairflip Instance
Co-teaching Han et al. (2018) 66.26 ±0.1 55.42 ±0.5 66.55±0.3
CNF-Co-teaching 69.94±0.1 57.90±0.2 69.51±0.1
Improvement +3.68 +2.48 +2.96
DivideMix Li et al. (2020) 74.63±0.2 74.9±0.1 66.79±0.3
CNF-DivideMix 76.31±0.2 76.51±0.1 69.03±0.1
Improvement +1.68 +1.61 +2.24
JoCoR Wei et al. (2020) 67.05±0.2 54.96±0.3 67.46±0.2
CNF-JoCoR 70.48±0.2 59.61±0.1 70.24±0.4
Improvement +3.43 +4.65 +2.78
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Figure 5: Confusion matrix for the CONFES algorithm. In early epochs, CONFES correctly identifies the
majority of noisy labels (around 38% out of 40%), but wrongly identifies many clean labels as noisy ones
(about 27%). As training proceeds, the algorithm not only still remains effective in identifying the noisy
labels (around 38% out of 40%), but also correctly recognizes the clean labels (about 55% out of 60%). In
the experiment, the dataset is CIFAR-100 with instance-dependant label noise of rate 40% trained using
PreActResNet18.

error metric can effectively differentiate the clean labels from the noisy ones, and eliminate their adverse
impact by excluding them from the training process.

Figure 5 shows the confusion matrix for the CONFES algorithm. According to the figure, CONFES is effective
in recognizing the noisy samples from the beginning to the end of training, where it correctly identifies around
38% out of 40% of noisy labels. On the other hand, the algorithm wrongly identifies many clean samples as
noisy in the early epochs (around 27%). However, as training moves forward, CONFES becomes more and
more efficient in distinguishing the clean samples, where it correctly identifies around 55% out of 60% of the
clean samples.

The initial sieving threshold α and number of warm-up epochs Tw are the hyper-parameter of our proposed
method. The per-epoch sieving threshold is computed using the aforementioned hyper-parameters. For
CIFAR-100, we set α=0.2 and Tw=30 for all noise types and noise rates. For CIFAR-10, α=0.1 and Tw=25 in
symmetric and instance-dependent noise types. For Clothing1M, α and Tw are set to 0.05 and 3, respectively.
In general, the value of these hyper-parameters should be set to higher values for more complex training
processes, which depends on the model and dataset combination.

Sensitivity analysis of hyper-parameters: We investigate the sensitivity of CONFES to its hyper-
parameters, i.e. the number of warm-up epochs (Tw) and the initial sieving threshold (α), using the CIFAR-100
dataset with noise rate of 40% for symmetric, instance-dependent, and pairflip noise settings. To analyze
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Figure 6: Sensitivity analysis of CONFES hyper-parameters Tw(number of warm-up epochs) and α (initial
sieving threshold) for different noise types. The analyses are performed on CIFAR-100 with noise rate 40%.

the sensitivity to Tw, we set α = 0.2 and use four different values for warm-up epochs: Tw ∈ {5, 20, 30, 50}.
Similarly, we set Tw = 30 and try four different values for sieving threshold: α ∈ {0.1, 0.2, 0.3, 0.5}. As shown
in Figure 6, the accuracy reductions using the suboptimal hyper-parameter values compared to the optimal
setting (α = 0.2 and Tw = 30) are 1.6%, 2.3% and 4.1% for symmetric, instance-dependent, and pairflip noise
settings, respectively, at the worst case. That is, CONFES is relatively robust against hyper-parameter value
choices, making it easy to employ or tune by the practitioners.

CONFES vs. baseline methods: The CONFES strategy sieves the clean samples effectively and improves
the robustness without adding too much overhead to the standard Cross-Entropy approach. In terms of
computational overhead, CONFES has one additional forward pass for constructing the refined dataset,
which only includes clean samples according to the confidence error metric. However, methods such as
Co-teaching Han et al. (2018) employ two networks in the training process, which makes them substantially
less computationally efficient compared to our approach. Although some methods such as PES Bai et al.
(2021) perform well in the presence of symmetric label noise, their accuracy decreases in more complex noise
settings such as instance-dependent, which is not the case for CONFES. Moreover, the accuracy of some other
baseline methods such as LRT Zheng et al. (2020) and MentorMix Jiang et al. (2020) drastically reduces
in highly noisy setting (e.g. with 60% noise rate). Approaches such as ELR Liu et al. (2020) and PES Bai
et al. (2021) work well for datasets such as CIFAR-10, which are easy to classify, but their efficiency reduces
on more challenging CIFAR-100 (or Clothing1M) dataset. CONFES, on the other hand, outperforms the
compared baselines in different noise types (symmetric, instance-dependent and pairflip), with various noise
levels (i.e. 20%, 40% and 60%), and on CIFAR-10, CIFAR-100 and Clothing1M datasets.

6 Conclusion

We present an effective label noise learning algorithm called CONFES for different noise settings such as
symmetric, pairflip, and instance-dependent. CONFES is based on the proposed confidence error metric,
which exploits the model’s predictive confidence for discriminating between clean and noisy samples. We
illustrate the efficacy of the confidence error metric in differentiation of the clean samples from the noisy
ones. CONFES refines the training samples by keeping only the identified clean samples and filtering out
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the noisy ones. Our empirical results verify the robustness of CONFES under different noise type scenarios,
especially when noise levels are high. Moreover, we demonstrate that confidence error can be employed by
other algorithms such as co-teaching and DivideMix to further improve the model accuracy.

References
Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and Kevin McGuinness. Unsupervised label noise

modeling and loss correction. In International conference on machine learning, pp. 312–321. PMLR, 2019.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal,
Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in
deep networks. In International conference on machine learning, pp. 233–242. PMLR, 2017.

Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang Niu, and Tongliang Liu.
Understanding and improving early stopping for learning with noisy labels. Advances in Neural Information
Processing Systems, 34, 2021.

Mélanie Bernhardt, Daniel C Castro, Ryutaro Tanno, Anton Schwaighofer, Kerem C Tezcan, Miguel Monteiro,
Shruthi Bannur, Matthew P Lungren, Aditya Nori, Ben Glocker, et al. Active label cleaning for improved
dataset quality under resource constraints. Nature communications, 13(1):1–11, 2022.

Antonin Berthon, Bo Han, Gang Niu, Tongliang Liu, and Masashi Sugiyama. Confidence scores make
instance-dependent label-noise learning possible. In International Conference on Machine Learning, pp.
825–836. PMLR, 2021.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are we done
with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Pengfei Chen, Guangyong Chen, Junjie Ye, Jingwei Zhao, and Pheng-Ann Heng. Noise against noise: stochastic
label noise helps combat inherent label noise. In International Conference on Learning Representations,
2021a.

Pengfei Chen, Junjie Ye, Guangyong Chen, Jingwei Zhao, and Pheng-Ann Heng. Robustness of accuracy
metric and its inspirations in learning with noisy labels. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021b.

Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu. Learning with instance-dependent
label noise: A sample sieve approach. International Conference on Learning Representations, 2020.

Jeffrey De Fauw, Joseph R Ledsam, Bernardino Romera-Paredes, Stanislav Nikolov, Nenad Tomasev, Sam
Blackwell, Harry Askham, Xavier Glorot, Brendan O’Donoghue, Daniel Visentin, et al. Clinically applicable
deep learning for diagnosis and referral in retinal disease. Nature medicine, 24(9):1342–1350, 2018.

Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A survey of deep learning techniques
for autonomous driving. Journal of Field Robotics, 37(3):362–386, 2020.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
Co-teaching: Robust training of deep neural networks with extremely noisy labels. Advances in neural
information processing systems, 31, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In
European conference on computer vision, pp. 630–645. Springer, 2016.

Wei Hu, QiHao Zhao, Yangyu Huang, and Fan Zhang. P-diff: Learning classifier with noisy labels based on
probability difference distributions. In 2020 25th International Conference on Pattern Recognition (ICPR),
pp. 1882–1889. IEEE, 2021.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-driven
curriculum for very deep neural networks on corrupted labels. In International Conference on Machine
Learning, pp. 2304–2313. PMLR, 2018.

12



Under review as submission to TMLR

Lu Jiang, Di Huang, Mason Liu, and Weilong Yang. Beyond synthetic noise: Deep learning on controlled
noisy labels. In International Conference on Machine Learning, pp. 4804–4815. PMLR, 2020.

Taehyeon Kim, Jongwoo Ko, Sangwook Cho, JinHwan Choi, and Se-Young Yun. FINE samples for learning
with noisy labels. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=QZpx42n0BWr.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix: Learning with noisy labels as semi-supervised
learning. In International Conference on Learning Representations, 2020.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning regular-
ization prevents memorization of noisy labels. Advances in neural information processing systems, 33:
20331–20342, 2020.

Xiaoxuan Liu, Livia Faes, Aditya U Kale, Siegfried K Wagner, Dun Jack Fu, Alice Bruynseels, Thushika
Mahendiran, Gabriella Moraes, Mohith Shamdas, Christoph Kern, et al. A comparison of deep learning
performance against health-care professionals in detecting diseases from medical imaging: a systematic
review and meta-analysis. The lancet digital health, 1(6):e271–e297, 2019.

Yang Liu. The importance of understanding instance-level noisy labels. arXiv e-prints, pp. arXiv–2102, 2021.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017.

Anna Majkowska, Sid Mittal, David F Steiner, Joshua J Reicher, Scott Mayer McKinney, Gavin E Duggan,
Krish Eswaran, Po-Hsuan Cameron Chen, Yun Liu, Sreenivasa Raju Kalidindi, et al. Chest radiograph
interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and
population-adjusted evaluation. Radiology, 294(2):421–431, 2020.

Eran Malach and Shai Shalev-Shwartz. Decoupling" when to update" from" how to update". Advances in
Neural Information Processing Systems, 30, 2017.

Gary Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. Learning with noisy
labels. Advances in neural information processing systems, 26, 2013.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep
neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1944–1952, 2017.

Joshua C Peterson, Ruairidh M Battleday, Thomas L Griffiths, and Olga Russakovsky. Human uncertainty
makes classification more robust. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9617–9626, 2019.

Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data using the
area under the margin ranking. Advances in Neural Information Processing Systems, 33:17044–17056, 2020.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances in neural
information processing systems, 30, 2017.

Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for robust deep learning.
In International Conference on Machine Learning, pp. 5907–5915. PMLR, 2019a.

13

https://openreview.net/forum?id=QZpx42n0BWr


Under review as submission to TMLR

Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. How does early stopping help generalization
against label noise? In ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning, 2019b.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy labels with
deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):
1929–1958, 2014.

Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A joint training
method with co-regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13726–13735, 2020.

Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with noisy
labels revisited: A study using real-world human annotations. In International Conference on Learning
Representations, 2022.

Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama. Are
anchor points really indispensable in label-noise learning? Advances in Neural Information Processing
Systems, 32, 2019.

Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu, Dacheng Tao,
and Masashi Sugiyama. Part-dependent label noise: Towards instance-dependent label noise. Advances in
Neural Information Processing Systems, 33:7597–7610, 2020.

Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang. Robust
early-learning: Hindering the memorization of noisy labels. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Eql5b1_hTE4.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy labeled data
for image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2691–2699, 2015.

Yazhou Yao, Zeren Sun, Chuanyi Zhang, Fumin Shen, Qi Wu, Jian Zhang, and Zhenmin Tang. Jo-src: A
contrastive approach for combating noisy labels. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5192–5201, 2021a.

Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, and Masashi Sugiyama. Dual t:
Reducing estimation error for transition matrix in label-noise learning. Advances in neural information
processing systems, 33:7260–7271, 2020.

Yu Yao, Tongliang Liu, Mingming Gong, Bo Han, Gang Niu, and Kun Zhang. Instance-dependent label-noise
learning under a structural causal model. Advances in Neural Information Processing Systems, 34, 2021b.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does disagreement
help generalization against label corruption? In International Conference on Machine Learning, pp.
7164–7173. PMLR, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021a.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk
minimization. In International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=r1Ddp1-Rb.

Yivan Zhang, Gang Niu, and Masashi Sugiyama. Learning noise transition matrix from only noisy labels via
total variation regularization. In International Conference on Machine Learning, pp. 12501–12512. PMLR,
2021b.

14

https://openreview.net/forum?id=Eql5b1_hTE4
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb


Under review as submission to TMLR

Songzhu Zheng, Pengxiang Wu, Aman Goswami, Mayank Goswami, Dimitris Metaxas, and Chao Chen. Error-
bounded correction of noisy labels. In International Conference on Machine Learning, pp. 11447–11457.
PMLR, 2020.

A Appendix

More experiments on the effectiveness of confidence error : We extended the experiments corre-
sponding to Fig.1 and Fig.2 of the main manuscript, to the symmetric and pairflip label noise. Experiments
are conducted using PreAct-ResNet18 and CIFAR-100 with noise level of 40%.
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Figure 7: Distributions of confidence error values for pairflip label noise
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Figure 8: Distributions of confidence error values for symmetric label noise

More details on experiment setup For all experiments on the CIFAR-10, CIFAR-100, and Clothing1M
datasets, there are some general hyper-parameters such as learning rate, batch size and weight decay, specified
in the original manuscript and are summarized in Table 5. The source code for CONFES is included in the
supplementary material and will be publicly available. The method-specific hyper-parameters used in the
experiments are set based on the corresponding manuscript or the published source code: Co-teaching Han
et al. (2018)1, ELR Liu et al. (2020) 2, CORES2 Cheng et al. (2020)3, PES Bai et al. (2021)4, SLN Chen et al.
(2021a) 5, DivideMix Li et al. (2020)6, JoCoR Wei et al. (2020) 7, LRT Zheng et al. (2020)8, MentorMix Jiang
et al. (2020)9 and PTD Xia et al. (2020)10.

1https://github.com/bhanML/Co-teaching
2https://github.com/shengliu66/ELR
3https://github.com/UCSC-REAL/cores
4https://github.com/tmllab/PES
5https://github.com/chenpf1025/SLN
6https://github.com/LiJunnan1992/DivideMix
7https://github.com/hongxin001/JoCoR
8https://github.com/pingqingsheng/LRT
9https://github.com/LJY-HY/MentorMix_pytorch

10https://github.com/xiaoboxia/Part-dependent-label-noise
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Table 5: General training hyperparameters (common for all methods of comparison)

CIFAR-10 CIFAR-100 Clothing1M
model PreAct-ResNet18 PreAct-ResNet18 Pre-trained ResNet50
batch size 128 128 32
learning rate (lr) 2e-2 2e-2 2e-3
lr decay Cosine annealing Cosine annealing By 0.1 at 40th
weight decay 5e-4 5e-4 1e-3
epochs 300 300 80

Comparison between CONFES and LRT Zheng et al. (2020) we employed the experiment designed
for Fig.1 and Fig.2 of the main manuscript, to examine how-well CONFES can seprate the noisy labels from
the clean labels compare to LRT.
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Figure 9: Distributions of likelihood ratio (employed in LRT) and confidence error (employed in
CONFES) values for 60% instance-dependent label noise at epoch 200. The distributions of confidence error
for noisy and clean samples are more dissimilar than that of likelihood ratio, indicating that confidence error
is a more effective metric than likelihood ratio for sieving the samples.

Instance-dependent label noise: In order to generate the instance-dependent label noise in the
experiments, we followed the previous works Cheng et al. (2020); Yao et al. (2020); Bai et al. (2021); Chen
et al. (2021a) and employed the following algorithm proposed in Xia et al. (2020):

Algorithm 2: Instance-dependent Label Noise Generation
Input: Clean samples {(xi, yi)}n

i=1, Noise rate τ
Output: Noisy samples {(xi, ỹi)}n

i=1
1 Sample instance flip rates q ∈ RN from the truncated normal distribution N (τ, 0.12, [0, 1])
2 Independently samples w1, ..., wc from the standard normal distribution N (0, 12)
3 for i = 0, ..., n do
4 p = xi × wyi /* Generate instance dependent flip rate */
5 pyi = −∞ /* control the diagonal entry of the instance-dependent transition matrix */
6 p = qi × sofmax(p) /* make the sum of the off-diagonal entries of the yi-th row to be qi */
7 pyi

= 1− qi /* set the diagonal entry to be 1 − qi */

8 Randomly choose a label from the label space according to the possibilities p as noisy label yi

9 return Noisy samples {(xi, ỹi)}n
i=1
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