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Abstract

In this work, we study the online convex optimization problem with curved losses
and delayed feedback. When losses are strongly convex, existing approaches
obtain regret bounds of order dy,,x In T, where dy,ax is the maximum delay and 7'
is the time horizon. However, in many cases, this guarantee can be much worse
than /dy.¢ as obtained by a delayed version of online gradient descent, where
dyot 1s the total delay. We bridge this gap by proposing a variant of follow-the-
regularized-leader that obtains regret of order min{cmax In T, v/diot }, Where opax
is the maximum number of missing observations. We then consider exp-concave
losses and extend the Online Newton Step algorithm to handle delays with an
adaptive learning rate tuning, achieving regret min{dyaxn In T, v/diot } Where n is
the dimension. To our knowledge, this is the first algorithm to achieve such a regret
bound for exp-concave losses. We further consider the problem of unconstrained
online linear regression and achieve a similar guarantee by designing a variant of
the Vovk-Azoury-Warmuth forecaster with a clipping trick. Finally, we implement
our algorithms and conduct experiments under various types of delay and losses,
showing an improved performance over existing methods.

1 Introduction

Online convex optimization (OCO) is a powerful framework for sequential decision making in
uncertain environments |Hazan et al.| (2007)); (Orabona| (2025). In classic OCO, a learner repeatedly
makes a decision, incurs a loss for the chosen action, and uses the feedback of the loss function at this
round to update her strategy in the next round. However, in many real-world applications, feedback is
not immediately available after the learner’s decision but is instead subject to a delay. For instance, in
online ad recommendation systems (He et al.||2014), click-through information may be delayed, and
during this time the system must continue making recommendations for other users without access to
the delayed feedback.

Another crucial element in OCO is given by properties of the loss functions such as the curvature.
It is indeed often the case that losses have additional curvature properties such as strong convexity
or exp-concavity. For example, exp-concave losses are prevalent in portfolio management (Cover,
1991)), in which the learner (investor) needs to distribute her wealth over a set of financial instruments
in order to maximize her return. When the loss functions have a certain curvature, previous works
(Hazan et al.|[2007) have shown that a significantly better regret guarantee can be achieved (i.e., the
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so-called fast rates). However, this type of assumption received little attention when assuming that
the feedback suffers some delay. Therefore, we are interested in investigating the following question:

Can we design algorithms that exploit the loss curvature to obtain improved guarantees even with
delayed feedback?

There is a line of works studying OCO with delayed feedback. For general convex functions,
Quanrud & Khashabi| (2015)) provided an algorithm called Delayed Online Gradient Descent (DOGD)
and achieves a regret of O(y/T + dyo1) where T is the time horizon and d. is the total delay.
Subsequently, [Wan et al.|(2022a)); Wu et al.| (2024) focused on strongly convex losses, introducing
DOGD-SC and SDMD-RSC, which achieve a regret bound of O((dyax + 1) InT), where dpax
represents the maximum delay for any single round of feedback. However, the O((dpax + 1) InT)
regret bound can sometimes be much worse than O (/T + d;ot). This occurs in scenarios when
even a single round of feedback is delayed by O(7') rounds (e.g., missing feedback), undermining
the benefits of having both regret guarantees under stronger curvature assumptions. Furthermore, to
the best of our knowledge, no prior work has investigated whether improved regret guarantees are
achievable for exp-concave losses under delayed feedback, leaving an important gap in the literature.

Regret bound
Loss type Quanrud & Wan et al.|(2022a));
Khashabi (2015) | W et al (2024) Our work
Strongly convex Vot +T (dmax + 1) InT min{omax In T, v/diot } + InT
Exp-concave Vdior + T N/A min{dpaxnIn T, \/diot} + nlnT
OLR N/A N/A min{dpaxnIn T, \/diot} + nlnT

Table 1: Main results and comparisons with prior work. Here 7' is the number of rounds, n is
the dimension of the feasible domain, dy,.x is the maximum delay, oax < dpax s the maximum
number of missing observations, and di; is the total delay. In[Table 1] we omit the dependency on
the curvature parameters, Lipschitz parameters, the norm of the comparator and domain diameter for
conciseness. The detailed dependencies are explicitly shown in the respective theorem statements.

Contribution. To address these gaps, we propose a suite of algorithms and offer a comprehensive
analysis for OCO with delayed feedback under both strongly convex and exp-concave losses, and
we include a special case of (unconstrained) online linear regression (OLR) with delays. The main
contributions of this work can be summarized as follows (see also[Table T)):

* We first consider the class of strongly convex losses in Specifically, we
propose an algorithm based on the follow-the-regularized-leader framework and obtain a
@ (min {O'max InT, \/dtot} + In T) regret, where op,.x 1S the maximum number of missing
observations over rounds. Compared with the results obtained by |Wan et al.|(2022a) and Wu et al.
(2024), our results have several advantages. First, since o, is always no larger than d, ., and
can be significantly smaller than it, our 0y« In T bound improves upon the d,,x In7" bound in
Wan et al.| (2022a) and [Wu et al.| (2024)). Second, we prove that our algorithm simultaneously
achieves a O (v/dior + InT) regret bound, making our algorithm no worse than the bound
achieved by DOGD (Quanrud & Khashabil 2015) either. Third, compared with the regret bounds
obtained in [Wan et al|(2022a) and |[Wu et al.|(2024), our regret guarantee does not depend on the
diameter of the action domain and recovers the one proven in|Hazan et al.|(2007) when there is
no delay. Additionally, we provide a novel and improved analysis of the OMD-based algorithm

originally proposed by [Wu et al.| (2024) in[Appendix E] obtaining a regret bound that is again
independent of the diameter of the action domain.

In we consider exp-concave losses, a broader function class compared to the strongly
convex one. Specifically, we propose an algorithm based on the Online Newton Step (ONS)
method that achieves a O (Inin {dmaxn InT,/ dtot} +nlnT ) regret bound. To the best of our
knowledge, this is the first algorithm to achieve logarithmic regret for exp-concave losses under
delayed feedback, answering an open question proposed in|[Wan et al.| (2022a)). While both the
bounds dy,.xn InT and v/diot can be achieved using a simple learning rate within the ONS
framework, it is essential to use a delay-adaptive learning rate tuning scheme to achieve the best
of these two guarantees within our analysis.



e In we investigate online linear regression (OLR) problem, where the feasible domain
is unconstrained, i.e., it corresponds to the entire n-dimensional Euclidean space R™. Leveraging
the specific structure in OLR, we develop an algorithm based on the Vovk-Azoury-Warmuth
forecaster, achieving a regret bound of O (|ul|3(min {dmaxn In T, v/dior } +nInT)) without
requiring any prior knowledge of neither the comparator © € R” nor the data. This result is
achieved by incorporating a carefully designed clipping technique and, once again, employing an
adaptive tuning of the learning rate.

e Finally, in we implement all our proposed algorithms and conduct experiments to
validate our theoretical results across multiple delayed settings and loss functions with different
curvature properties. We also compare our methods with existing approaches to demonstrate
their effectiveness.

1.1 Related works

Online learning with curved losses. While Abernethy et al.[(2008) have shown that © (/T is
the minimax regret for OCO, if the loss functions further enjoy curvature, the minimax regret can
be improved. [Hazan et al.|(2007)) show that OGD with a specific choice of learning rate achieves

CO(GT2 In T") regret for strongly convex losses where G is the maximum /5 norm of any loss gradient

and X is the strong convexity parameterﬂ This upper bound is also minimax optimal as proven
in |Abernethy et al.| (2008)). For exp-concave losses, Hazan et al.| (2007 proposed Online Newton
Step (ONS) achieving O((£ + GD) InT) regret where « is the exp-concavity parameter and D is
the diameter of the feasible domain. |Hazan et al.| (2007) also proposed Exponential Weight Online
Optimization (EWOO), achieving diameter and gradient scale independent guarantees. However,
the algorithm is less practical due to its sampling complexity. For OLR, Vovk] (2001)) and |Azoury &
‘Warmuth| (2001) independently introduced the Vovk-Azoury-Warmuth (VAW) forecaster achieving
O(InT) regret without requiring prior knowledge of the data and the comparator. For a more detailed
survey on OCO, we recommend the reader to |Hazan| (2016) and |Orabonal (2025).

Online learning with delayed feedback. Weinberger & Ordentlich|(2002) initiated the study of
online learning with delayed feedback, proposing an algorithm achieving d - R(T/d) where d is the
fixed and known per-round delay and R(T) is the regret upper bound for some base algorithm that
assumes no delay in the feedback. Specifically, their meta-algorithm runs d + 1 independent copies
of the base algorithm on disjoint time lines in a round-robin fashion. However, this meta-algorithm is
computationally expensive and does not show good empirical performances. Subsequently, Langford
et al.|(2009) proposed a practical algorithm by simply performing the gradient descent step using the
observed gradients at each round, and achieved O(v/dT') and O(dIn T)) regret bounds for convex
and strongly convex functions, respectively.

When delay is not uniform, Joulani et al.[|(2013)) proposed BOLD (Black-box Online Learning with
Delays) extending the method of Weinberger & Ordentlich|(2002) and achieve dyax - R(T/dmax)
regret, but the algorithm still maintains multiple instances of base algorithms, which could be
prohibitive in terms of computational costs. For convex functions, |Quanrud & Khashabi| (2015)
achieved O(v/diot) where diot is the total delay accumulated over T' rounds. Wan et al.| (2022b,
2023)) proposed a first Frank-Wolfe-type online algorithm to handle delayed feedback and obtain
a regret bound of O(T%/* + dy, T~3/*) for general convex loss and O(T?/3 4 dyax In T') under
strong convexity. There is also an interesting line of works whose focus is to obtain adaptive regret
guarantees with delayed feedback (McMahan & Streeter, |2014; Joulani et al., 2016; [Flaspohler et al.,
2021)) or to consider variants of delayed feedback (Gatmiry & Schneider, 2024} Bar-On & Mansour,
2025; Ryabchenko et al., 2025).

Two most related works to ours areWan et al.|(2022a) and [Wu et al.|(2024), which consider strongly

convex losses together with delays. Specifically, Wan et al.| (2022a)) first proposed DOGD-SC for

strongly convex losses, and establish a regret bound of O( GD )TGZ dmax InT). Subsequently, |Wu et al.

(2024) proposed SDMD-RSC and obtained a (’)(d“‘;i’gc2 + Gz;rD dmax InT) regret bound

’The definitions of these parameters are deferred to
IWu et al.| (2024) also considers the class of relative strongly convex loss functions.



Beyond full-gradient feedback, there exists a growing interest in developing algorithms with delayed
bandit feedback for a range of problems, including multi-armed bandits (Cesa-Bianchi et al.l 2016
Cella & Cesa-Bianchi, [2020; [Zimmert & Seldin, [2020; Masoudian et al.| 2022; Van der Hoeven
& Cesa-Bianchil 2022} |[Esposito et al., 2023; Van der Hoeven et al., 2023} Masoudian et al., |[2024;
Schlisselberg et al., 2025} Zhang et al., |2025)), Markov decision processes (Lancewicki et al.|, [2022;
Jin et al.| 2022;|Van der Hoeven et al.,[2023)), and online convex optimization (Héliou et al.| [2020;
Bistritz et al.l 2022; 'Wan et al., [2024).

2 Problem setting

Let T' € N be the time horizon and n € N be the dimension. Denote by X' C R the domain, which
we assume to be closed and non-empty. In each round ¢ € [T, the learner selects a point x; € X as
its decision and incurs a loss fi(x+) given by some unknown function f;: X — R that we assume
to be convex and differentiable. Normally, in the standard OCO setting, the learner would then
immediately observe the gradient g, = V f;(x;). On the other hand, here we consider the delayed
feedback scenario in which such a gradient g, is only observed at round ¢ + d; with some unknown
arbitrary delay d; > 0. We assume t + d; < T for all ¢ € [T] without loss of generality Joulani et al.
(2013} 2016) because the feedback of any round ¢ with ¢ + d; > T cannot be used the learner. The
performance of the learner is then measured via the regret which is defined as follows:

Reg; = max Regr(u maxz fi(@e) = fi(w))

For convenience, we define o = {r e N: 74+ d; < t} C [t — 1] to be the set of rounds whose
gradients are observed before round ¢, and let m; = [t — 1] \ o; be the set of rounds whose observation
is yet to be received at the beginning of round ¢. Define 0,ax = max; e[z |4 to be the maximum
number of missing observations over 7' rounds, dyax = max;e[r) d¢ to be the maximum delay, and
diot = >, di to be the total delay. Also define d5!, = max,<; min{d,,t — 7} as the maximum
delay that has been perceived up to round .

Before presenting our main results, we must first introduce some definitions about the curvature of
the loss functions.

Definition 2.1. A function f: X — R is A-strongly convex with respect to ||-|| for A > 0 if, for all
vy € X, fly) 2 fo) +(Vf@)y —a) + 3y — [

Definition 2.2. A function f: X — R is a-exp-concave for o > 0 if x — exp(—af(z)) is concave
over X.

We finally introduce some standard boundedness assumptions relating to the gradients and the domain.
Assumption 2.3. For every t € [T, the gradient of f: has norm bounded by G > 0, i.e.,
maxgex ||V fi(z)]2 < G.

Assumption 2.4. The diameter of X is bounded by D > 0, i.e., max, ye x|z — y|l2 < D. We also
assume 0 € X.

Other notations. For a positive semidefinite matrix A € R"*" and = € R%, we denote ||z][4 =
VT Az to be the Mahalanobis norm induced by A and, if A is positive definite, let ||z|| 4-1 =
Va7 A~z be the dual norm. We denote 1 as the all-one vector in an appropriate dimension.

3 Delayed OCO with strongly convex losses

In this section, we consider the problem of delayed OCO with strongly convex losses and propose
| which is built upon the follow-the-regularized-leader (FTRL) algorithm. Specifi-
cally, after recelvmg the grad1ents gr forall 7 € 0t+1\ot at the end of round ¢, we compute the
updated decision x; 1 as shown in which is the minimizer of the cumulative linearized
loss with respect to all the currently observed gradients, plus a squared ¢5-regularization term
with respect to all the past decisions. The following theorem shows that achieves

(’)(GTZ (InT + min {omax In T, v/dior } ) ) regret bound without any diameter assumption on the
domain.




Algorithm 1 Delayed FTRL for strongly convex functions

input strong convexity parameter A > 0
initialize z, €¢ X
1: fort=1,2,... do
2:  Play ay; receive g, = Vf,(x,) forall 7 € o411 \ 0

3:  Update
. A
s = argmin 3 (g0 + 2 o - B
reX
TEOL41 s<t
4: end for
Theorem 3.1. Assume that f1, ..., fr are A-strongly convex with respect to the Euclidean norm

Ill2- Then, under|Assumption 2.3} [Algorithm 1| guarantees that

Reg;r =0 (Ci\z (lnT + min {O'max InT, @})) .

highlights two advantages over previous works. From the perspective of the delay-
related term, while both DOGD-SC (Wan et al.,|2022a) and SDMD-RSC (Wu et al.,[2024) achieve
a O (dmax InT) regret bound, the terms o5 and +/diot in our regret bound can be substantially
smaller than d,,x, With opax < dimax always being true (Masoudian et al., 2022)E] Second, while

both DOGD-SC and SDMD-RSC exhibit a polynomial dependence on the diameter D of the action
set X', we remark that our bound does not depend on D and recovers the optimal O (%2 In T) regret
in the no-delay settingE]

3.1 Regret analysis
Here we provide a proof sketch of whereas the full proof is deferred to
Specifically, using the strong convexity property, we first decompose the regret:

T

Regr(w) < 3 (e~ — 3llec — ul})

t=1

T T
* * )\
(o = > oo = i) =5 e —ulf @

t=1

Il
N

o~
Il
i

Reg}(u) Driftr

where 2} = argmin, ¢ y Zi_:ll«gﬁ z) + 3|z — z,||3) for t > 2 and % = 1 are the decisions
assuming that all gradients before round ¢ are observed.

Next, we analyze the term Reg/-(u) and Driftr separately. For the term Driftr, applying the

Cauchy-Schwarz inequality and using the fact that ||g:||2 < G for all ¢ € [T'] by [Assumption 2.3} we
can obtain that

T
Drifty <G Y _|laf — o2 . 3)

t=1

For the term Reg7-(u), following a standard FTRL analysis and using the optimality of x}, we are
able to obtain that

T T
* A *
Regr(u) < ) Z e = ull3 + Z<gt>xt — i) -
=1 t=1

“In fact, we also show inthat Omax S Vdtot, and inthat there are delay sequences
such that omax <K Vdiot and Tmax = v/ diot, respectively.

SDespite the fact that G-Lipschitzness and A-strong convexity of the losses over the domain X’ imply that its
diameter is bounded by 2G /), the guarantees of DOGD-SC and SDMD-RSC remain suboptimal.



Since the first term can be canceled by the last negative term shown in[Eq. (2)] we only need to control
the second term (g¢, 7 — x7, ), which is further bounded by G||z} — x}, |2 via Cauchy-Schwarz
and the fact that ||g¢||2 < G. Then, using a stability lemma for FTRL (Lemma A.2), we can show that
2G
o = 2tk < 5y + loi — il

Interestingly, this inequality relates the Euclidean distance between adjacent “cheating” iterates
(x7)¢>1 in the stability term of FTRL to the distance between x; and z}, which is also present in the
Driftp term and intuitively quantifies the influence of delays on the regret.

Combining the inequalities involving Reg/-(u) and Drifty, we can finally bound the regret from
above as follows:

T 2G2 T G2 T
t=1

t=1 t=1

It remains to show how to bound ||z} — x||2 by (9(% min{omax In T, v/diot } ), Which is the key
novelty in our analysis compared to previous works. Recalling the definitions of z; and z}, we can
apply the stability lemma of FTRL (Lemma A.2) again and show for all ¢ > 2 that

Hz'remf, 97”2
2A(t—-1)

M1

i - wllf <

“

. remy; 97
meaning that Zthl |2y — ]2 < ZZ;Q w < 2322 ,\G(!sn—%1|) , where we also use the fact
that 7 = x;. Here, we highlight the importance of including all previous decisions x, for 7 < ¢,
instead of 7 € o041 only, in the regularization term of the update rule of x;;; shown in
Doing so particularly ensures that the updates of x; and x} share the same regularization terms, which

is crucial in leading to a diameter-free upper bound for ||z} — 2|2 using the stability lemma.

Finally, we study the term Zthg ‘t“ztll Directly bounding |m;| from above by o« leads to the

first o max In 7" bound. To further obtain the /do¢ bound, it is crucial to observe that ) _ <t |m,| <
(t — 1)? since m, C [t — 1]. Therefore, by also using Orabonal (2025, Lemma 4.13) we are able to
prove that Zthz Ime] ZZ;Q Z‘mit‘ < 24/dyot, which concludes the regret analysis.

=1 = rgf,lmfl

4 Delayed OCO with exp-concave losses

In this section, we consider the delayed OCO problem with exp-concave losses. Exp-concave
losses are a more general class of loss functions that require more sophisticated techniques to
be tackled. To address this problem, we design a variant of Online Newton Step
(ONS) which effectively handles delayed feedback. Specifically, after receiving the gradients g,
for all T € 0;41\0t, we select 411 as the minimizer of the cumulative surrogate loss over all the
already observed gradients and the past actions, with an additive squared ¢2-regularization term. For
simplicity, in this section we omit dependencies on curvature parameters, Lipschitz constants, and
domain diameter; they appear explicitly in the theorem statements. The following result provides a

first regret bound for [Algorithm 2}

Algorithm 2 Delayed ONS for exp-concave functions

input 3 > 0, learning rate rule {n; };>1,
initialize z, € X
1: fort=1,2,... do
2:  Play x4; receive g, = Vf(z,) forall 7 € o441 \ o4
3: x4 =argmin Y, ((gT,ax> + 2(gr,x — ;)2
r€EX  TEO141
+% )3
4: end for




Theorem 4.1. Assume that f1, ..., fr are a-exp-concave and let 5 = % min{ﬁ, a}. Then, under

Assumptions 2. and with 0<no <m < .- < nr guarantees that

G?*T
RegT:O<an(l+B ) +77TD2+min{Bl,Bg}),
B Ton
where B1 = (%2 + %) Ndmax 1N (1 + ﬁg—?) and By = G? Zthl l;:l—_tl‘

We can now introduce two careful tunings of the time-varying learning rates (1;);>1 to derive the
regret bounds O(daxn InT) and O(y/dot) individually.

Simple tuning. With a constant learning rate constant 5 = 1 for all ¢ € [T'] ,[Algorithm 2|directly
obtains O(dmaxn InT) regret. Alternatively, setting 1, = %\/Esgt |ms| + |mi| + 1 forallt > 1,

Algorithm 2| achieves O(1/dot,) regret; here, the |m;| 4+ 1 term is an essentially tight worst-case
estimation of |my.1|, since myy1 C my U {t}.

Note that either of these two bounds can be significantly better than the other under different delay
sequences, e.g., as shown by our|Lemma A.10|in the appendix. Therefore, we ideally want to achieve
O(min{dmaxn In T, \/diot }) regret via a single choice of the learning rates. In fact, we can show
that it is indeed possible to obtain such a bound by a careful delay-adaptive learning rate tuning.

Adaptive tuning. The adaptive learning rate is given by g = 1 and 7y = min{ay, b;} + 1 for all

t > 1, where
2 1 BG2T
“@=z5 (G2+B> ndst, In (1+ - ) , 5)
b= & > Imsl + Ime| + 1 (6)
o D s<t ’ t .

The overall idea behind this learning rate tuning is to keep track of both the d,,,xn InT" and v/dyo
regret guarantees over the rounds via a; and b;, respectively. Then, 7; is set depending on the best of
the two, i.e., min{ay, b; }, which then leads to achieve the best of both regret bounds. Note that this
adaptive tuning requires the knowledge of the time-stamps of the received gradients since we need
to compute d=t = max,<; min{d,,t — 7} which, we recall, is the maximum delay that has been

perceived up to round ¢. The following corollary provides a regret bound for [Algorithm 2 with this
adaptive tuning. The full proof of can be found in[Appendix C|

Corollary 4.2. Assume that f1, ..., fr are a-exp-concave and let 3 = % min{ﬁ, a}. Then, under

[Assumptions 2.3|and [Algorithm 2|with the adaptive learning rate 1, = min{ay, b;} + 1, where
at and by are defined in|Equations (5)|and guarantees that

n G*T .
RegTO(ﬁln<1+ﬁn )+D2+mm{Cl,C’2}>,
where C1 = (g +1) (G2 + %) ndmax In (1 + @) and Cy = (G* + GD) (Viior + 1)

shows [Algorithm 2| with the adaptive learning rate obtains regret
O(min | dms

axPIn T \/diot t). The main advantage of an adaptive learning rate is that it re-
quires no prior knowledge of dy or diax, nor does it rely on a doubling trick that would throw away
information via resets.

4.1 Regret analysis

In this section, we provide a proof sketch of [Theorem 4.1|and [Corollary 4.2] while their full proofs

are deferred to Specifically, using the exp-concavity property and we

decompose the overall regret as follows:
T T
Regy(u) = Z (ge, 2} —u) +Z (gt, 0 — xF) —

t=1 t=1

|

T
Z<gt7xt - U>2 9 (7)
t=1

Regx (u) Drifto



where we define 27 = x; and, for t > 2, 27 = argmingcy 30—} ((gr, ) + g (gr @ — 2:)°) +
21| z|3 to be the decisions assuming that all gradients before round ¢ are observed.

For the term Reg?-(u), following a standard FTRL analysis, we are able to obtain that

T T
Regh(u) < Tl + 03 fgou—x)* + Y min{en o ). ®)
t=1 t=1

where Ay_1 = 11+ Zt;ll g-g. . Applying |[Lattimore & Szepesvari| (2020, Lemma 19.4), the

last sum on the right-hand side of the above inequality satisfies

T
. BG?T
min{ GD, ||g ||2 1 =0 (nln (1+ >> . 9)
; { t Atfl} 8 n

Now we consider the Drifty term. By applying the Cauchy-Schwarz inequality followed by the

stability lemma again, it follows that for all ¢ > 1,

T T
prifttr <3 el e —aflla, <43 el ( ) ||gT|Atll> )
t=1

t=1 TEMY

By applying[Lemma C.1] it holds that

2
pester - 0/((0% 1) i (14 25T w

At the same time, we can also prove that

T
Drifty = O (G2 Z |mt> ) (12)

= -1

Combing [Equations (7)| to [(12)] concludes the proof of To prove we

carefully consider the adaptive learning rate tuning and separate the analysis into two cases. In case
ar < br at the end of the T rounds, we utilize a delayed version of the elliptical potential lemma
to achieve the logarithmic regret. On the other hand, if by < ar we split the regret
analysis at the last round 7* at which a,« < b;«. Then, we use again the logarithmic bound up to
round 7* and the \/d;,¢ bound for the remaining rounds. It suffices to observe that the first bound is
no worse than /d;. since a,+ < b« to conclude the proof.

5 Online linear regression with delayed labels

Here we consider the problem of online linear regression (OLR) with delays. This setting essentially
corresponds to a variant of OCO where the domain is X = R"™ and loss functions are f;(z) =
%((zt, x) — y;)? comparing any point € R" to a label y; € R given some feature vector z; € R"™;
to be precise, the predicted label by a given point x corresponds to the inner product (z;, ). At each
round ¢, the learner first observes an n-dimensional feature vector z; before performing its prediction
x4, but the true label y; is only revealed at a later round ¢ + d;. A common assumption on feature
vectors and labels in this setting, analogous to the ones we introduced in[Section 2| for instance, is
their boundedness.

Assumption 5.1. The feature vectors z1, . . ., zp and the labels y1, . . .,y are bounded, i.e.,
Z and |y:| <Y foranyt € [T), givenY,Z > 0.

zi]l2 <

Note that the loss f; becomes exp-concave when the domain is also bounded. If this were the case,
we could solve this problem by designing a version of ONS that can handle delayed labels. In
OLR, however, the domain is unconstrained as it corresponds to the whole n-dimensional Euclidean
space, which makes it particularly challenging to simply adapt one of the techniques seen so far
without further assumptions. We instead design an algorithm for this problem (see that
corresponds to an adaptation of the Vovk-Azoury-Warmuth (VAW) forecaster (Azoury & Warmuthl
2001; Vovk, [2001)) in order to handle delayed labels. We can then prove that the regret guarantee for
this algorithm in the delayed OLR setting becomes as stated in[Theorem 5.2|below (whose proof is in

Appendix D).



Algorithm 3 Delayed VAW forecaster with clipping

input learning rate rule {n; };>1
initialize p; =0
1: fort=1,2,... do
2:  Observe z;
3 Seta; =argmin Y, —y-(z-,z) + L3
TzER™ T€o0s

+l Zr<t (27, x>2

4:  Play z; = x4 - mln{m 1}
5:  Receive y, forall 7 € 0441 \ 04
6:  Setpiy1 = MaXrco, , |[Yr]

7: end for

Theorem 5.2. In the OLR problem with delayed labels under[Assumption 5.1} [Algorithm 3|guarantees
forany O <mno <m <--- < nr that

o1 2T |
MW)‘ﬂ%+WM1ﬂm-w<®m+th%m,
0

where M1 = ndpax ln(l —l— ) and My = 72 Zthl I

t
n "

The idea behind the regret analysis is once again to decompose the regret into a cheating regret term
and a drift term:

T T
Regr(u) =Y (filz}) = fi(w) + > (fi(@) — fila]))
t=1 t=1

Reg,} (u) Drifto

where (Z;);>1 are the actions played by [Algorithm 3| while (2} );>1 are the “cheating” iterates that
assume to have knowledge about all labels from past rounds. To bound the cheating regret Reg’-(u),
it is important to leverage the curvature of the squared loss. Specifically, by definition,

T
* Z"/L. Z?
Regy (u) = Y Cotil +Z ezl —u).

t=1

Then, we can study the second sum via the standard tools for the regret analysis of FTRL with respect
to the linear losses = — —y;(2¢, ¥), which yields

ZQ
Reg U +nY21n<1+> .
F) < Tl =
This is exactly the first line in the regret guarantee presented in| and it corresponds to
the part that does not depend on delays.

On the other hand, the drift term Drift; requires much more care and novel techniques. By the

convexity of f;, we have that Drifty < 2321 (Vfi(zy), 2 — xF). Here we immediately observe
the importance of the additional clipping of z; to define the selected point z;, which is inspired
from the clipping ideas by |Cutkosky| (2019); Mayo et al.| (2022). Its scope is to guarantee that the
predicted label (z;, z,) falls within the range of true labels; the reason for this is to avoid the gradient
of f; evaluated at x; to blow up, otherwise obstructing an attempt to nicely bound Driftz. We also
remark that, differently form Mayo et al.| (2022), we do not require to clip the labels used in the
iterates update too. If we had knowledge of Y, we could use it to clip to the interval [-Y, Y], thus
guaranteeing f;(Z;) < Y. However, since we want to assume no prior knowledge of Y, the best
clipping we can do at any time ¢ is via p;. Doing so requires to handle possible rounds when the
label falls outside the clipping interval, which in turn requires a careful analysis that accounts for the
feedback to be revealed only after some delay (as p; could possibly be updated much later in time).
We are then able to prove that

Drifty = O(Y 0max + Y min{ My, Ms}) .



which is the delay-dependent part of the regret; the Y20, term, in particular, is the one due to
clipping mistakes.

Given any v > 0, we may now set 79 = v and 7y = y(min{as, b} + 1) for all t > 1, where

Z2T
a; = 2nd=! In (an) s e =2\ [3 < Ims| - (13)

By doing so, we obtain the following which provides a regret bound for [Algorithm 3]
with this adaptive tuning, and whose proof is deferred to

Corollary 5.3. In the OLR problem with delayed labels under|Assumption 5.1} |Algorithm 3|with the
adaptive learning rate 1, = y(min{as, b;} + 1), where a; and b, are defined in|Equation (13)|for
any v > 0 guarantees that

2 zZT
RegT < IYH;HZ + nY2 1H<]. + ’)”I’L) + O(mll’l {Ql»QZ})?

where Q1 = (v[|ul|3 + Y?)ndmax In (1 + ij) and Q2 = (VZ||ull3 + (Z + 1)Y?) /dior .
To achieve this final result, we leverage similar ideas from the adaptive tuning for delayed ONS in
as mentioned above, together with a nontrivial relation between o yax and v/dyor t0
handle the additive Y20, term from the clipping errors (see[Lemma A.7). We remark that here we
used directly Z for the tuning, which requires its knowledge since the first round; we could easily do
without this prior knowledge by using Z; = max,<||z,||2 instead because we always observe all
the previous and the current feature vectors by the beginning of round ¢.

6 Conclusions

In this paper, we study how to leverage the curvature of the loss functions in online convex opti-
mization with delayed feedback so as to improve regret guarantees. For strongly convex functions,
we derive an algorithm achieving O(min{omax In T, v/d;ot }) regret, improving upon previous work
(Wan et all 2022a; Wu et al., [2024), which only obtain O(dpyaxInT) regret. We also derive
O(min{dmaxn In T, v/diot }) for exp-concave losses and online linear regression, answering an open
question proposed inWan et al.|(2022a). It is still left open whether O(min{oyaxnIn T, /diot }) is
achievable for exp-concave losses.
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A Auxiliary results
In this section, we show several auxiliary lemmas that will be helpful throughout the paper.

A.1 General results for the regret analysis

The following lemma is a standard result for the regret of FTRL.

Lemma A.1 (Orabonal (2025, Lemma 7.1)). Let X C R" be closed and non-empty. Denote
by Fi(z) = t(z) + Zt;:ll l-(x). Assume that argmin,c, Fy(x) is not empty and x; €
argmin, ¢ y Fy(x). Then, for any u € X,

T T

D (elws) = o)) = g (u) - min ¢y () + Y [Fi(@e) = Frsr (@) + ()]

t=1 t=1
+ Fri(zria) — Frya(u)

The next lemma bounds the distance between two FTRL iterates with different linear losses and
possibly different regularizers. It also shows a simplified upper bound in the case when the two
iterates have the same regularizer.

Lemma A.2 (Stability lemma). Let X C R"™ be closed and non-empty. Let A1, Ay = 0 be two
positive semidefinite matrices, by,bs € R™, and c¢1,co € R. Define 11 (z) = Az + blTx +
and Y3(z) = " Aox + bj & + ca. Suppose that zy € argminge p { (w1, z) + ¢y ()} and 2 €
arg min, ¢ y { (wa, z) + o) }. Then, we have

21 = zoll%, + ll21 = 22ll%, < (w1 — w2, 20 — 21) + (Y1 (22) — Ya(22)) — (Y1(21) — ¥a(21)) -

Furthermore, if 1 (x) = o (x) = 2 Az + b a + c with positive definite A = 0, we have
1
Iz = z2lla < Sllwr — walla-s .

Proof. Let hy(x) = (w1, x) + 11 (x) and ha(z) = (we, ) + 12 (2) be twice-differentiable functions
with Hessians A; + A{ and A, + Aj, respectively. Note that z; € arg ming, ¢y hi(z) and 25 €
arg min, ¢ y ho(z). By Taylor’s theorem and first-order optimality conditions, we know that

(w1, 22) + 1 (22)) = ((wi, 21) +91(21)) = ha(22) = ha(21) 2 |21 — 22[%,
((w2, 21) + ¥2(21)) = ((wa, 22) + 12 (22)) = ha(21) = ha(22) 2 |21 — 22|, -
Summing up the above two inequalities, we obtain
21 = 2%, + 121 = 22014, < (w1 — w2, 20 — 21) + (Y1(22) — a(22)) — (Ya(21) = ¥2(21)) -
ih? s)econd result is directly obtained by applying the Cauchy-Schwarz inequality when 1 () E
o ().

The following lemma is the quadratic bound of a-exp-concave functions.
Lemma A.3 (Hazan et al.| (2007, Lemma 3)). Let f: X — R be an a-exp-concave function. Then,

under [Assumptions 2.3|and 2.4 we have that
F&) = £w) + (V@) — )+ 2 (Vf)a— )’

forany x,y € X, where 3 = %min{4éD,Oé}-

The following lemma is the link of the Bregman divergences between 3 points.

Lemma A.4 (Wei et al| (2021, Lemma 10)). Let A be a convex set and x5 =
argmin, ¢ 4 {(g, ) + Dy(z,x1)}. Then, for any u € A,

(2 —u,9) < Dy(u, 1) — Dy(u,22) — Dy (22, 71) -
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The following lemma is the general bound on (g, v) — 5 [|v[|%, which related to the one achievable
via the Fenchel-Young inequality but strengthened thanks to a norm constraint on v.

Lemma A.5 (Flaspohler et al.| (2021, Lemma 18)). Let ||-|| be a norm over R™ and let ||-||« e its
dual norm. For any constants A, c,b > 0 and any g € R",

A ) 1 c
s ({g,0) = SIl?) < mm{mllglli Slgll., b|g*} :
vER™:||v||<min{ £,b}

A.2 Results for delay-related quantities

The following three lemmas quantify the relationship between oy ax, dimax, and dio.
Lemma A.6 (Masoudian et al[(2022, Lemma 3)). Let dpax(S) = max,cg d, and S = [T]\ S for
any S C [T). Then,
max S i S dmax 5 .
Omax < it (1S] + dinax(S))

Lemma A.7. Let dyot(S) =Y. _gd, and S = [T]\ S forany S C [T). Then,

TES
max < 2V2 i dio S .
o \[SHCH[%<|S|+V ¢ t(S)>

Proof. First, observe that dio(S) = ZtT:l|mt N S| for any S C [T]. Also note that the bound
trivially holds if op,,x = 0; hence, assume o, > 1 without loss of generality. Let ¢* be any round

such that |m«| = omax. Consider any S C [T]Tand define A = my« NSand B = my=- N S. If

|A| > (V2 — 1)|my+|, then

1514 \/dior (S) > 1] = ] > (V2 = Dt

Otherwise, we have that [B| > (2 — v/2)|m;-|. Hence, denote B = {t1,...,t g} such that
t1 <--- < tp| and observe that |m¢,+1 N B| > i for any t; € B. We can consequently prove that

T
Z\mtﬂ§| > Z|mt+1ﬂB|
t=1 teB

> (\/5 - 1)G"max s

1] 4 \/dres(8) > 1/ duar () =

which concludes the proof as \/517 T < 2¢/2. O
Lemma A8. Let 07, = max,c(r|m-. N S|and S = [T]\ S for any S C [T]. Then,

: S
Omax = ;gl[l%] (‘S| + Umax) .

Proof. First, it trivially holds that
Omax 2 1uin (18] + 0fia ) -
SC[T)

We now only need to show the inequality in the other direction. Consider any S C [T] and let ¢* be

any round such that |m«| = opax. Then,
S| + 0 > IS]+ [mes 18] = [S] + [mee \ S| > |- | = Omax
which concludes the proof. O

The following lemma further illustrates the relationship between o,,x and v/dy. in @ more concrete
way.
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Lemma A.9. There exists a delay sequence (dt)te[T] such that omax > V1.5 - diot. In addition,
there also exists a delay sequence such that 0y,,x = 1 and \/dior = VT.

Proof. Given a positive integer N > 5, consider the sequence (d;):c|r), Where d; = N — t for
allt < Nandd; = 0 forall t > N. In this case, omax = on_1 = N — 1 and /1.5 - dioy =

1/ w < N — 1. On the other hand, consider the sequence where d; = 1 for all ¢ € [T]. In this
case, Omax = 1 and \/dior = V/T. O

On a similar note, we show another similar result depicting the relationship between d,,x and v/diot.

Lemma A.10. There exists a delay sequence (dt)te[T] such that dyax = T and /dyoy = VT. In
addition, there also exists a delay sequence such that dy,.x = 1 and \/dioy = VT.

Proof. Consider the sequence (dy);c[r) Where one round tq < T'/2 with d;, = T'—t, and all the other

rounds d; = 0 for t # t, then we can choose typ = 1 and have d,.x = T and v/dior = V/T. On the
other hand, consider the sequence where d; = 1 forall t € [T, then dyax = 1 and v/dior = VT. O

B Omitted details in

In this section, we show the omitted details in For completeness, we restate the theorem
and provide its proof.

Theorem 3.1. Assume that f1,..., fr are A-strongly convex with respect to the Euclidean norm
Ill2 Then, under|Assumption 2.3} |Algorithm I|guarantees that

Regr = 0 (5 (74 min {onusn . Vi }) )

Proof. First of all, define

t—1
. A
Fi(w) = Y g:.2) Zux wlfawd F@) =3l - ol
T=1

TEO

for any t > 1. Observe that z; € argmin_ ., F}(x) and additionally define z} € argmin,c » Fy(x)
for t > 2, while 27 = x1 (since Fy(z) = Fi(z)). The sequence (x});>1 represents the “cheating”
sequence that uses the gradients from all rounds up to ¢ — 1, including those from rounds in m; that
are yet to be received because of the delays. As mentioned in we decompose the regret as
follows:

T T
A
Regr () = Y- (o) — f(w) = 3t~ = 3ls — )
t=1

t=1

Il
M’ﬂ

T T
A
(gt, 77 — +Z gta‘rt_x:>_§ ZH%—UH% , (14
t=1 t=1

~
Il
-

Reg}(u) Drifto

where the first inequality follows from the \-strong convexity of f;. Next, we analyze the cheating
term Reg}-(u) and the drift term Driftr individually, and their respective upper bounds will then be
combined to derive the final regret bound.

To analyze Regh (u), first define ¢, (z) = 2 Z |x x,||3 fort > 1. We can therefore rewrite both
Fy(z) =32 c,,(9r ) + Ye(x) and F (z ) Zizll (g, x) + ¥(x). Hence, applying [Lemma A.1}
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we can bound Reg?(u) = 3.1, (g¢, 2} — u) as follows:
T

Z(gtvx: —u)

t=1

T
= ¢ri1(u) — mlnwl )+ Z F* xt - t);l(x;rl) + <9tax:>] +F;+1(x§“+1) —Fr4(w)
t=1

T
< Praa(u Z[ (F7 (@) + {gesaD) = (7 (@ign) + (00 3710)) = Yo (@) + Yty
=1

15)

where the last inequality holds because F7 (2% ;) < F7(u) by optimality of 2%, ;, together
with the non-negativity of ;.

Focus on the difference between the terms F*(x}) + (g¢, #7) and FY(x7, 1) + (g¢, @7, ;) within the

sum in the right-hand side of Equation (15)l Applying for z; = x7,, with Ay = %I

andw; =) __, gr, and 2o = x} with Ay = @I and wy = ) ., | gr, we have that

A
2t = D5t = 2ialls = llaf = afala, + 27 — 2iall,
A A
< {gowi = i) + Sllat = wllz = Sllein - 2l

A
< lgellalley = @ialla + Sl = 2ll3

where we used the Cauchy-Schwarz inequality in the last step. By straightforward calculations, we
can show that the above inequality implies that

2llgell Mo —@lla - 2llgell2

r— . 16

||‘Tt xt+1||2 = )\( 1) 5% 1 — )\(2t — 1) + th xt”Q (16)

We can leverage this inequality to show that
(B (@) + (g, 27)) — (Y (@41) + (96 2841))
< (ge, 27 — Ti41) (Fy (7) < F/ (27:1))
< llgellzll=f — 242 (Cauchy-Schwarz)
2)|g¢1I3
S <o s ; Equation (16);
< sy * lorlklei il E: 6)

where the first inequality is due to the optimality of x} with respect to F}*. Plugging the above into
the bound on Reg’-(u) from| quation (15), we obtain

||gt||2

Regh (1) < dr4a(u) + [ +|gt||2||a:z—xtngwt(xal)—wm(a:;l)]
t=1

2ol A
Zm—unﬁz[ 25+ lailelle? =zl = ot — o

A
<25 -l + Z% +GZ\|$t—$t||2

G d
TET+ 1) +GD 2} — iz, (17)

t=1

< [l —ull3 +

N[ >
E

t

Il
—

where the equality is due to the definition of v;, while the second inequality follows from ||g:||2 < G
by

Observe that, given such a bound on the cheating term, we now have to consider three different terms
as shown in While the second one is a desirable logarithmic term, and the first one is
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negligible since it will be canceled when plugging this bound on Reg’-(u) into[Equation (14)| the
third one needs some further analysis. Interestingly enough, this latter term involves a difference

between x} and x;, in an analogous way as in the drift term Drift,. We indeed show that we can
handle both terms in the same way.

We thus move to the analysis of the Drifts term. One can immediately observe that, by Cauchy-

Schwarz and by
T T T
priftr = Y lgowe—af) < Yllalollai —wilh <Gl —mlo . (8
t=1 t=1

t=1 =
While it immediately follows that |27 — x1||2 = 0 by definition of 7, we require some additional
effort when studying the other norms ||z} — |2 for ¢ > 2. To this end, we rely once more
on for z; = af withwy = 3} _, gy and 2o = 2, with wy = Y7 _ g, using
A = (t —1)51, and show that

2

At —1) 1
e R A R et DO s vy ng
TEM A-1 TEM 2
We can thus rewrite this inequality in the following way:
G me
ot~ il < 5y | 2 0r|| < ey 2 lele S g 49
TEMY TEm

where we used once again that || g, ||2 <G by [Assumption 2.3] The above considerations consequently
imply that the sum of interest for bounding Drifty satisfies

T aZ |
* t
Sllz =l < 530 20)
t=1 t=2
The sum on the right-hand side of the above inequality can be immediately bounded as
T T
3 || Z 1
< Omax < 0om Xl 2T 21
t:zt_l_aatz_l e b

by definition of 0'yy,ax. Furthermore, by using the fact that > __,|m,| < (¢t — 1) since m, C [7 — 1]
for any 7, we can prove at the same time that

T
Z|mt| Z |mt| |mt| <2 Z'thQ@’ (22)

where the second inequality is due to Orabona (2025, Lemma 4.13).

Combining all the results gathered so far, we can finally derive the overall regret bound as follows. In
particular, for any v € X, we have

T
A
Regy(u) < Regy(u) + Drifty — o > e —ul3 (Equation (14))
t=1
G2 4
< - I(27 +1) +G Y llaf — wll2 + Drifty (Equation (17))
t=1
G2 a
< TET+1)+2G) a7 — a2 (Equation (13))
t=1

G? 262 &
< — In(2T 1 —_—
= n(2T + 3 z;

2

2
< % In(2T + 1) + % min {O‘max In(27), 2\/dtot} (Equations (21)]and [22))
o2
()\ (lnT + min {O‘max InT, dtot})> . O]
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C Omitted details from

In this section, we show the omitted details from [Section 4] To do so, we first introduce the following
useful lemma that will be crucial in the regret analysis of [Algorithm 2| It essentially corresponds to
the standard elliptical potential lemma, but here adapted to the presence of delays.

Lemma C.1. Let ¢ > 0, L > 0, and 0 < np < 7)1 < ... <. Foranyt € [N], let a; € R™ such
that ||a;||2 < L and define Ay = mI + ¢ -, ara Then it holds that

2nd<fj (¢L2 ) ( ¢L2N>
agll - arl| o | < Zmax +1)m(1+ :
Sl ( 3 ok, ) < 2 (2 K

TEM

mdsN ¢L2N)
a 1 ar 1| < —2In( 1+ .
Do (Zn I ) (14 02

TEM

and that

Proof. Define B; = éAt and C; = B, — %I = B for any t € [N]. By the AM-GM inequality,
we first show that

Znaanl S flarllyo <Z<'mt'| wls 43 S arl? s )

TEM TEmt
o [ Imel 1
t
< Z<2|at||?41 + 5 Z H(Ir”i—l >
t—1 -1
t=1 TEMY
N
1 | 2 1 2
"9 Z<2||“t|3,,11 t5 2 llarlzo |
t=1 TEMY

where we also used the fact that A,y < A;_; for any 7 < ¢t. Now observe that

Z\mtl lac 1% <dfnﬁ(2||atll23;gl
=1

for ¢ < N. Similarly, we can show that

N
S>3 Nl = Zdtnatu? ; <d;£(2||at|\237_11
=1

t=1 TEM

d<N

since |my| < d=2

as for any 7 € [N] there are no more than d, rounds ¢ such that 7 € m,. Putting these results together,
we obtain that

N
|14 1
Z<2”at|23t_11 t3 Z HaTHQB:l < dgl ZHM\Q 1= i z;HatHZCt—_ll ,

t=1 TEMY
By the fact that ||a; || ‘ﬁ]L we can use Lemma 19.4 in [Lattimore & Szepesvari| (2020) and
show that

N 2 )
} 2 ¢ L?’N
H”“ff” o~ < +1) E :mln{l lacl1Z, }S 2n<+1> ln<1+ non) .

Concatenating all the above results concludes the proof of the first inequality.

For the second inequality, similar steps suffice to prove it, but with a different observation that now
2 : 2
a||%,-1 < mm{l a||%, - } because
lacllgs < Naelle -

-1
lac?-: < af (v +aa) | ar=a/ 1I - % a;
c, — t t t v V2 JrUHat”%

_ el laells — _  llacl3

v v tullad vflad T
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where we used the Sherman-Morrison formula in the first equality with v = 19/¢, and since
||at||C;1 < Hat||c;11 given that Cy_1 < C}.

For completeness, we restate [Theorem 4.1] the main result of [Section 4.1] and provide its proof.

Theorem 4.1. Assume that fl, ..., fr are a-exp-concave and let § = mln{ 15> ) Then, under
and 24| [Algorithm 2 with0 < no <m < --- <nrp guamntees that
BG*T

Regy = O(% ln(l + ) + npD? 4+ min {31,32}>,

non

where Bl = (G*2 + %) ndrnax In (1 + %) and BQ G2 Zt 1 |mt‘ .

70 Mt—1

Proof. First, in a similar way as in the proof of we define

t—1
Fyz) =) (gr2) +u(z) and  Ff(x)=) (g, 2) + ] (2),
TEOL T=1
where ’(/)t(x) = mT_lHZL'H% + gz_}_e()t <gT,£I,' — x7_>2 and ’l[);(:f) = m2_1 ”x”g +
g Z (gT, 2,)°. Observe that z; € arg min, y Fy(x), and define z} € argmin,cy Fy(x)

for t> 1 to be the predictions following a similar update rule while using all the information up to
round ¢ — 1. Similarly to the regret decomposition for the strongly convex case shown in[Appendix B]
we decompose the regret as follows:

T T

Regr (1) = S(h(or) = ) < 3 (g =) = o = w.)?)

t=1 t=1 2

Il
[Vjﬂ

T 6 T
9t7$t—u+z ghxt_xt §th_ugt )
t=1 t=1

Reg (u) Driftp

t

1

(23)
where the inequality holds thanks to

Let us begin the analysis of the “linearized” regret by first focusing on the cheating term Reg’-(u).
Let F/(x) = Fy(x) + (g+, x) and define z; € argmin,¢, F(z). Leveraging with
2:(+) = {(gt, -), we show that Regi(u) = Zthl (g¢, xf — u) can be bounded as follows:

T
= (u) — 211;1 Yi(z) + Z [Ft* (z7) — Fia (x:-u) + (gt 33:>] + Fryq (555“+1) —Friy(u)

€
-1

- ¢

< pryq(u) + Z [(Ft*(x:) + <gt793:>) - (Ft*(‘r:—kl) + <9t»17t*+1>) — i (@) + 1/’:(@-5-1)]
=1
T

< YPpya(u) + Z [Ft/(xt) Fi(xy) +¢f (T341) — 7/’:4-1(332-5-1)] (definition of F{ and x})
—1
tT

<P (w) + > (Fl()) — F{(x})), (24)
=1

where in the first inequality we used the facts that Fi7 | | (27, ;) < Ff;(u) and that ¢ is nonneg-
ative, while the last inequality is due to 97 (z7, ;) < ;i (z}, ). Applying now [Lemma A.2 we
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have ||zf — xilla,, < [lgell 4-2 - where Ay =m; 1] + B34 grgT. This further means that

Fy(a7) — Fi(z ) (25)
< (VF/(x}),x} — z}) (convexity of F})
(VFt*( 7) + G, T} — ) (definition of FY)
< (gt,x} — ) (first-order optimality)
< mm{ngtnznx: = a2, llgillaco o = @lla,, } (Cauchy-Schwarz inequality)
< min{GD, llgoll o ¥ = @tlla,, } (Assumptions 2.3 and [3)
< min {GD, llg% } - 26)
t—1
We now focus on the sum of terms on the right-hand side of Because 7, is non-

decreasing by assumption, we have

T T
S (F(«}) - Fl(z}) Z n{GD, gl | (Equation (26))
t=1 t=1

T 1 ,

Z D, 3 lgell(me ryss_, grgry (Me—11 = nol)

T
1 . 2
S max {GDa 5} ;mm {17 ||gtH(%JI+ZT<t 97'9:)71}

2
< (GD+ ;) nln <1+ BG T) 7 @7)

nMo

where the last inequality follows by [Lattimore & Szepesvari| (2020, Lemma 19.4). Combining the
previous inequalities, we can show that Reg7-(u) satisfies

(Ft/(@) - Ft/(l"i)) (Equation (24))

M=

Regr(u) < ¢7 4 (u) +
1

o~
I

B & 1 BG2T
<Praa () + 5 D (gnu— ) +(eD+5)nin(1+ (Equation (27))

t=1 o

o s+ (004 o (1 570
+ = LU — Tt) GD + nln 1+ , 28
|| [& QZ gt t 3 o (28)

t=1

where we simply replace ¢7- ; with its definition in the last step.

We thus move to the analysis of the Drifts term. Using the Cauchy-Schwarz inequality, we have

T T
Driftr = Z {91,z —af) < Z ||9t||,4;11 e — 2 lla,, (29)
t=1

t=1
Applying we obtain that

* * [k 1 2 * 1 2
Fi (@) — Ff(@7) > 3 ze — 27, _, and  Fy(a}) — Fy(x) > 5 e — =y,
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where A,, = ni_11 + Zfeof gr g: . Summing the above inequalities, and replacing F}* and F}
with their definitions, it follows that

1 2
5 o=zl + 5 e — a7l
t—1 t—1
S <97—>$t> Z <g7—,$t> + Z <gT7xt> Z <g7'7mt>
T=1 TEO =1 TEOL
ﬂ t—1 t—1
2
+ 2(2 <g7'7'rt SC7-> - <gT7x1’ + Z 975 Ty T - Z <g'raxt x > >
T=1 T=1 TEOt TEO:
p 2
< Z <g‘ra37t +§ Z 97, Tt — > - Z <g7—,$:—$7—>
TEM TEM TEM
= Z <g‘r7xt + é Z 91, Tt — <g7’axt +5L't 2377')
2
TEMY TEMY
ﬂ
S Z |<g7—71't— 5 Z ‘ 97, Ty — >||<g7'7xt+xt 2x7>|
TEM TEM
< (1+2GDB) > [{gr, e — a})] (Assumptions 2.3|and [24)
TEM
< (142GDp) ( Z gT||A_11> lx: — 27| a,_, (Cauchy-Schwarz inequality)
TEMY -
5 * 1
= Z Z ||g‘l'||A;_11 ||:th — Ty ||At—1 (ﬂ < SGD)
TEM
<2 ( ) ||gT||At11> e — fla,s -
TEM

Rearranging the terms, we can obtain that |z, —z7(|,, | < 4> . ||gr||A*11~ Plugging this
_ o

inequality into Driftz, we have

T

Driftr < Y |[lgella s, - e — a4, (Equation (29))
t=1
T
< 42 HQtHA;}l ( Z ||97||At11>
t=1 TEM
G? 1 TG?
<8d=L n ( + > In (1 + P > , (30)
n B nmo

where the last inequality is due to[Cemma C.1] On the other hand, we can also bound Drifty in a
different way:

T
. |mt|
Driftr < Y |[lgella 2, - e — ]l < 42 e/l -2 ( > llgrllaz ) < 4GQZ
t=1

TEM t=1 77t 1

(3D
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where in the last step we use the fact that ||g, ||124,1 [T, also due to|Assump;
)

<
= n
Combining all bounds together, we finally obtain that

T

Regr(u) < Regy(u) + Drifty — §Z<mt —u gt)2 (Equation (23))

G2
77T|u||§+(GD+ ) (147
2 nNo

2
”2T|u||§+(GD+ ) n(1+5570)

G? 1 ﬁGQT |mt|
+ 4 min 2dr<nfx < +—=|In ( ) G?
{ B on Z

IN

) + Drifty (Eq 3))

IN

=1 -1
(Equations (30)]and [(3T))
G*T
—O(”ln <1+5 >+nTD2+min{Bl,Bz}> , (Assumption 2.4)
B non
where
G? 1 G?*T
Bl = ( + ) ndmax ln (1 + 6 > and G2 Z |mt‘
n B non = -1
are defined as in the theorem statement, and we used the fact that GD % ]

The following corollary is a restatement of [Corollary 4.2] which shows that via an adaptive tuning of
the learning rate used by |Algorithm 2|, we are able to guarantee (Q(min{dmaX InT,/dsot }) regret.

Corollary 4.2. Assume that f1, ..., fr are a-exp-concave and let § = % mln{ c f) ,a}. Then, under

[Assumptions 2.3|and - [Algorithm 2|with the adaptive learning rate nt min{a¢, b} + 1, where
a; and by are defined in|Equations (5)|and @ guarantees that

n BG?T
Regr = O(ﬂ ln(l + -

where Cy = (8 +1) (G2 + &) ndumax 0 (1+ 267 ) and Cy = (G2 + GD) (Vilior +1).

) —+ l)2 + min {01702}>,

Proof. The adaptive learning rate is given by ng = 1 and 1, = min{ay,b;} + 1 for all ¢ > 1, where
we recall that

2 1 BG2T G <
“= G5 (G2 ﬂ>nd;§m1 (1+ ~ ) and b =4 §|ms|+|mt|+17
Note that 7, is non-decreasing since a; and b; are non-decreasing. When ar < br, we have

Regr(u) < <GD + ;) nln <1 + 6GT> + D?

n

2
+ g+8 G2+l Ndmayx In 1+5GT ,
G I3 n

where ||u||2 < D by[Assumption 2.4] When ar > br, we instead have

2
Regp(u) < <GD + ;) nln( + B(;I;T> +D*+GD

T
Z Im| + 1
t=1

+Z|IgtllA1 e = ailla, 0 + Z gell azr, - e = 2flla s s
t=r*+1
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where 7* is last round a,+« < b;+. Hence, we have

~ 1 . G2T
> gillar - lwe—aflla,, <8(G*+ < ) ndaniIn {1+ & (Equation (30))
t=1 ! 8 n
< 8G* Z || + |ms| + 1
t=1
T
<8G? | (| Imel +1 (32)
t=1
Regarding the remaining rounds until 7", we can also show that
T T ‘m |
Yo Mgillaz, - llee —aflla,, <46 Y == (Equation (31))
t=rr 1 t=rrg1 11
T
< 4G2 D|mt|
P—] G\/Z';;ll |mg| + [me—1] + 1
T
< 8¢2 Z D|my|
=1 Gy ]
T
<8GD,| > |ml
t=7*+1
T
<8GD,| Y |ml, (33)
t=1

where the last inequality is due to |Orabonal (2025, Lemma 4.13). Combining the above three
inequalities together, we have

BG*T

T
Regp(u) < (GD + ;) nln (1 + ) + D? + (8G* + 9GD) > ) +1
t=1

Finally, we obtain

RegT(U)
< (GD+ 1) nln (1 + 5G2T> + D?
8 n

2D =7 T
+ min { (G + 8) (Ger%fX + dmﬂax) nln (1 L ) ,(8G* +9GD) ( dyot + 1)}
n

-0 (;m <1+ ﬁG:T> +D2+min{01702}> :

where
D 1 BG2T
=(=+1 242 axIn (1
0= (g +1) (4 5 ) mtmean (14 55)
and
Cy = (02 + GD) (\/ diot + 1)
as in the theorem statement. O
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D Omitted details from Section

Here we present the omitted details from [Section 5| For completeness, we restate the main result
(Theorem 5.2)) and provide its proof.

Theorem 5.2. In the OLR problem with delayed labels under|Assumption 5. 1| |Algorithm 3|guarantees
forany 0 <mng <n; <--- < np that

2

zZ°T
Rogr(u) < 2 Jull 407?101+ Z0) 4 O(Y (e -+ min {1, 123))
0

where My = ndyax In(1 + ) and My = Z* Zthl i,

e

Proof. We begin by defining

-+
|
—

Fyw) =) —yrlzroa) +9(z)  and  Fj(@) =) —yr(zr,2) + (),

TEOL

3
Il
o

where ¢ (x ) =3 Zi (o) + 2 Hx||2 for t € [T], and we let 41 = . Observe that
xy € argmingcpn Fi(z), and deﬁne xt € argmin,cpn FY(x) for t > 1 to be the predictions
following a similar update rule while using all the 1nf0rmat10n up to round ¢ — 1, including the labels
1y, for rounds 7 € m; that the algorithm is missing because of the delays.

Similarly to the regret decomposition for the strongly convex case shown in we rewrite
the regret as follows:

T T T
Regr(u) = Y (fi(@) =Y (fel@p) = fiw) + D (ful@) = fulap)) . (B4
t=1 t=1 t=1
Reg? (u) Driftp
where Reg-(u) is the cheating regret for the iterates x7, .. ., 2%, while Drifty is a drift term that

quantifies the influence of the missing labels on the regret because of the delayed feedback. Note that,
contrarily to other regret analyses in this work, here Driftr is also affected by the clipping in the
definition of z;.

Let us first analyze the cheating regret Reg7.(u). By the definition of the loss fi(z) = 1 ({2, z)—y;) %,
we can rewrite the regret in the following way:

T T T
1
Reg7 (u Z fe(af) = 52 2, 77)% + —ye(ze, 1) + Yz, u
t=1 t=1 t=1

T
§ 2ty U

t=1
(35)

w\H

We can now move our focus on the central sum, which essentially corresponds to the regret of

the same sequence (xf) ;> against the comparator v € R", but with respect to the linear losses

& +— —y; (2, x). Additionally define F/(x) = Fy(x) — y; (2, x) for notational convenience. Hence,
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we analyze the above-mentioned term by applying which yields

T
Z —yilze, ) + Yoz, u))

t=1

T
= Yraa(w) - min ¢ (@) + D [F7 @) = Faa(@f) = welees i)
t=1

+ Ffiq (5'3*T+1) Ffiq(u)

< ria(u) + Z [F* x) = Fi(ai) — yt<zt,x§+1>}

T

T
= i1 (u) + Z (F{(27) = Fl(2740) = Y (@ (@50) — u(@fyy))
t=1

T 1 T
= ¢r(u) + Z(Ftl(fﬂg) $t+1 ) Z (21, 27)?
t=1 t=1
T 1 T
< or(u) + D (F(e)) = Fiw1) — 5 (e 5)? (36)
t=1 t=1

where we let #; € argmin pn F}(z); in particular, the first inequality is due to the fact that
Fr o (o +1) < FT 41 () and that 1), is non-negative, whereas the last equality follows by definition
of ¢, and 27 =

Consider now any term F}(x}) — Ft’ (x}) in the sum after the last inequality and let A; = T +
Zi | #rz; . Applying| for z; = z} and 2o = x} with A = A;, we derive that

‘y” Izl 4o - (37)

o7 = @illa, <
We can now use this fact to show that

F{(z) — F{(z3) < (VF{(x7), xf — 2}) (convexity of Fy)
= (VF}(x}) — yrze, ] — x}) (definition of F})
<y lzy, Ty — x}) (first-order optimality)
< |yt|||zt||A;1 lzy — 23| A, (Cauchy-Schwarz inequality)

2
< 'yt' l2ell? - (Equation (37))
Y2

< Slalio (38)

where the last step is a consequence of |y;| < Y by|Assumption 5.1| Further notice that ||z, ||?4,1 <
t

||Zt||?4:_11 since A;_1 < A;, as well as

|| ||2 < T( ]_~_ T)_l T<1I th;l' )

y4 _ Z. 2tz 2t = Z _— 5§

Hlapr =2 ST as ) 2= 5 0 T i+ mill=d3
_ N3 [EAE AP

ne onp ezl om i T
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using the Sherman-Morrison formula at the first equality. Therefore, we show that the sum of the
terms involving F} is

T V2
Z (F/(x}) — F{(x)) < ZHthA n (Eq )

t=1
Y? . 9
<5 ;mln{l, ||thA;11}

2
< Y2 (1 + ZT) , (39)
Ton

using Lemma 19.4 inLattimore & Szepesvari| (2020) at the last step. Then, combining together all
these observations, we can bound Reg7 () from above and obtain that

T
1
Regh (u Z (F/(z}) — F{(z})) +¥r(u 52 Zt, U (Equations (35)]and [(36))
t=1 t=1

72T 1 «
2
<nY 1n(1+ o >+wT §;zt, (Equation (39))
2 Z°T .
||uH2 +nY?In( 1+ — (definition of ) (40)
Nomn
Let us now consider the drift term Driftr from the decomposition in Define

T ={t e€[T]: fi(zy) > fi(x})} to be the rounds when T, is worse than x;} with respect to the
square loss f;. Moreover, recall the definition of p; = max,¢,,|y-| as the threshold used for clipping
in the definition of z,. By the convexity of f;, we immediately have that

Drifty < Z(ft(ft)—ft(iﬁf)) < Z<Vft(5§t)7§t_w:> = Z(<2t7§ét>_yt) ((zt, T4)— (20, 37))

teT teT teT
(41)

Now, we distinguish the two following cases for any ¢t € T

o fi(Ty) < fiay): thus, if (z¢, T;) < y, it must be the case that (z;, 2:) < (24, Z;), otherwise if
(z¢,Ty) >y then (z¢, 1) > (2, Ty); in either case we have that

(<Zt,5t> - yt) (<Zta5t> - <Zt7$f>)

< ((ze, Ze) — we) (20, 1) — (20, 27))

< (lpe| + |yl ) {22, 20 — 27)| (triangle inequality, definition of Z;)

< 2Y[(2t, 21 — 7)) (Assumption 5.1)

< 2Y ||zl At |zt — 27|l 4, - (Cauchy-Schwarz) (42)

o f1(Zy) > fi(xy): here it must be the case that T; # , y¢ (2, ) > 0, and |y;| > p: (otherwise,
clipping would have only decreased the square loss f;); since ¢t € T implies that |{z;, 2}) — yi]| <
[(z¢, Tt) — y|, it follows that

((zt,5t> - yt) (<Zt’5t> - <Zt793t*>)

< Uz, @) — ye| (I(20, Te) — yel + (2, 7)) — i) (triangle inequality)

< 2(<Zt,ft> - yt)2

=2(Jye| — [, 7)) (Y20, ) > 0)

=2(lue| — pr)” ({2, 70)| = o)

<2y|* . 0 < pi < | (43)
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Given the above remarks, let 71 = {t € T : f;(Z:) < fi(x:)} be the subset of rounds in 7 when
clipping does not worsen the value of f;, and let 7, = 7 \ 77 be the remaining rounds in 7. Then,

Drifty < 3 (e F1) = ) (20 F) = (2,29) <2V 3 Nl ol — flla, +2 3 el
teT teT teTs

(44)

At this point, for any round ¢ € 7; we are interested in understanding the behavior of the term

Hzt”A;l lx: — x| 4, Applying , we have that

1 1
e — 213, < 5 D yr(en,at —m) < B D Ayelllzrllas e llp = 2ella,
TEMY TEMY
Y
<3 D llzrll s ey =l a,
TEM

where the second inequality follows by Cauchy-Schwarz, while the last one comes from [Assump]
By rearranging terms in the previous inequality, we obtain that

N Y
lze = ailla, < 5 D lzellae (45)

TEMY

Recall that we define d5!, = max,<; min{d,,t — 7} as the maximum delay that has been perceived

up to round ¢. Hence, we can now bound the sum relative to rounds in 77 from above as

2V Y "zl g e — aflla, <Y Y lzella D llzrl o (Equation (43))

teTy teTy TEMy

T
<YYo 3 lerllyr -
t=1

TEMY
If we now adopt[Lemma C.I] we have that
T
Z2T
Z”Zt”At—l Z ”ZT”A;l < 2nd§§x ln<1 + ) )
t=1

n
TEMY "o

while at the same time we have

T T ‘m |
Yollzelas D Nzl <22y =2,
t=1 1

TEM t=

2
where we used the fact that ||z, ;-1 < % for any s € [T]. Thus, we have that
t

72T d
2y 2 o2l = 2f]|.a, < Y?min {Qndrﬂx 1n<1 + ) 22y |mt} . (46)
teTy Tom =

If we instead consider the sum over rounds in 73, it is possible to further bound it from above and
relate it to the rounds for which the corresponding label does not belong to our estimate for the label
range given by p;. Indeed, if we let R = {t € [T] : |y:| > p:} and given our previous remarks about
Tz, we have that 73 C R. Now let g1 = min{[log, pt] : p+ > 0,t € [T + 1]} and g2 = [log, pr1]-
For convenience, define Z; = [27,2/71) for any j € {q1,...,q2}. Then, for any t € R, there
exists j; € {q1,...,q2} such that |y,| € Z;,. Moreover, if we denote by v; € [T + 1] as the first
time when p,,, € Z; forany j € {q1,...,q2}, we can further show that any ¢ € R has to be such
that t € My, 15 if it were not the case, y; would have been observed before time v;, which is a
contradiction because |y;| > p, for any 7 < v;,. All things considered, we can derive that

q2 q2
2 P <2 P <2Y Y P <2 2¥m,,

teTz terR J=qutemy; 1 J=q
2 8 32
< Omax Z 227 +1 < go'maxllq2 < Eamaxp%-',-l < llyzamax . (47)
J=q
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Combining all the results gathered so far, we can finally derive the overall regret bound as follows:

Regp(u) < Regp(u) + Driftyp

72T
< T jull3 + ny? 1n(1 + ) + Drifty (Equation (40))
2 nNon
72T
< %Hu“% +nY? ln<1 + ) +11Y %0 max (Equations (44)and [(47))
omn
+2V Y |lzt]l g e — 274, (48)
teTy
72T
< )3 + ny? 1n<1 ; ) Y20 (Faquation (46)
2 Non
72T I ml
+ Y2 min 2ndmaxln<1+>,Z22 . O
on —

The following corollary is a restatement of which shows that we can further achieve a
O(min{dmax In T, v/di0t }) regret guarantee via an adaptive tuning of the learning rate of
similar to the one adopted for [Algorithm 2}

Corollary 5.3. In the OLR problem with delayed labels under|Assumption 5.1} |Algorithm 3|with the
adaptive learning rate 1; = ~y(min{as, b;} + 1), where a; and by are defined in|Equation (13))for
any v > 0 guarantees that

2

2 72T
Reg, < % +nY? 1n<1 + > +O(min{Q1, Q2}),

n
where Q1 = (v[|ul|3 + Y?)ndmax In (1 + %) and Q2 = (VZ||ull3 + (Z + 1)Y?) V/dior -

Proof. By performing a similar analysis as in the proof of [Theorem 5.2|up to [Equation (46)] for
any time threshold 7* € [T] we can actually separately analyze the time ranges {1,...,7*} and

{r* +1,...,T} in an analogous way as in the proof of [Corollary 4.2] and have a bound of the
following form:

2y <o 2T\ o N~ Il
2Y )zl gt |z — 2ffla, <Y <2ndmgx ln(l + ) +2° ) ) . (49)
teT ' Mo =1

Then, we use an adaptive tuning of the learning rate in a similar way as performed for the proof of

In particular, we define
Z°T !
a; = 2nd=t, In (1 + ) and b, =27 Z|ms\ ,
n s=1

and, for any v > 0, we set 7o = ~y and 7y = y(min{ay, b;} + 1) for any ¢ > 1. First, when ar < by
we have that
2

zZ°T Z°T
Regp(u) < 77—THuH% +nY?%ln (1 + ) +v? <1lamaX + 2ndmax In (1 + ))
2 yn yn
(Equations (46)|and [(43))
Z2T Z?T
77T+nY2ln<1—|— >+Y2dmax <11+2nln (1+ ))
n

yn
(Umax S dmax)

ul3

IN

2

Z*T Z*T
+nY?%ln (1 + w) + 11Y 2 dpax + (v]|ull3 + 2Y %) ndimax In (1 + w)

AN
n

7]ull3
2
]ull3

g +nY21n<1—|—

IA

IA

Z2T
) + (vl|lull3 + 13Y?) ndmax In (1 + o ) .
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On the contrary, when ar > bp, we let 7* be the last round such that a,+ < b;+ and show that

2 ZT
Regp(u) < 7”1;”27771 +nY? 1n<1 + o ) + 11V %0 pax (Equations (48)[and [(49))
. Z°T o
+Y? (2nd§lzx In (1 + ) +2° ) |mt>
m =1 M
2 Z°T s
<l oy 1n<1 + ) + Y 20 + ZY2 D Il +Z Y it
2 m t=1 t=7*+1 Nt
(a'r* S b'r*)
2 ZT
< ||U2||277T L ny? 1n(1 + ) +11Y 200 (definition of 7))
yn

T

+Z7}/2 Z|mt|+ Z %
7 t=1

t=r*+1 Zi:1|ms\

el 21 3 )
§2277T+TLY21H(1+ )HlYQO‘“a”LZYQ D_mil+2y| > Iml
yn t=1 t=7*+1

(Orabonal (2025, Lemma 4.13))

||u||§ 2 Z*T 2 2
<—=nr+nY"Inl 1+ — | + 11Y 0pax + 22Y "/ 2d;0t
yn

=2
[ull3 2 z°T 2 A
< Fnr +nY?In( 1+ +2(11 + Z2)Y?/2dso (Cemma A7)
yn
Yl 2 z’T 2
<52 (14 2V dio) + 1Y In( 14 +2(11 + 2)Y*\/2dyor -
n

(definition of n7)

Considering the conditions in each of the two cases together with the definitions of a, and by, this
concludes the proof. O

E Online mirror descent for delayed OCO with strongly convex losses

In this section, we prove that the following online mirror descent (OMD) algorithm achieves a
regret guarantee whose dependence on the delays is of order min{amax InT, \/dtot}, similarly to
To be precise, an OMD-based algorithm which handles delays was initially proposed
by Wu et al.| (2024)) in their Algorithm 6. However, |Wu et al|(2024) only manage to show that

2
this algorithm achieves regret O M InT + d%G) under |Assumptions 2.3 and Here,
we report its pseudocode in and we provide an improved regret analysis for it. Not
only do we provide a significantly better guarantee, but we also manage to lift[Assumption 2.4 and
only require the boundedness of the gradient norms via[Assumption 2.3] The key to achieve these

improvements simultaneously is a fundamentally different and more careful regret analysis.

Algorithm 4 Delayed OMD for strongly convex functions

input strong convexity parameter A > 0, learning rates 7, = % forall ¢t € [T
initialize =, € X

1: fort =1,2,... do

2:  Play x4

3:  Receive g, = V[, (z,) forall 7 € o411 \ o

4:  Update z;11 = argmin Y.  (g-,z) + i”x — x4

zeX TEOL4+1\0¢
5: end for
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Theorem E.1. Assume that f1, ..., fr are \-strongly convex functions with respect to the Euclidean
norm ||-||2. Then, under|Assumption 2.3} |Algorithm 4| guarantees

2

Regr =0 <C§\ (1nT—|— min{omax InT, @})) .

Proof. We begin with a decomposition of the regret that, similarly to the proof of
leverages the strong convexity of losses f1, ..., fr and attempts to isolate the discrepancy in the
information available to the learner because of the delayed gradients. However, this decomposition
differs from the one in since the algorithm updates its predictions differently via mirror
descent. Our approach follows the idea of framing such an information discrepancy via optimism
(Flaspohler et al.,[2021). For notational convenience, define g; = O0and g;+1 = g¢+

g: for any t > 1. Note that, by definition, each g, is equal to

t—1 t—1 -1
Et:Z(g'rJrl_g'r):Z( Z gT_gs>:Zg5_ng:_ng (50)
s=1

=1 $=1 \7€0541\0s s€o sEmMy

r€opi1\os 9T

and consequently gr41 = 0 since mpy1 = (). This definition of g; allows to rewrite the “linearized”

regret as
T T T
Z<9t7$t —u) = Z< Z Gry Ty — U> + Z@t — 41, %t) (5D

t=1 t=1 Teot+1\0t t=1

and to have that, for every round ¢,

< Z 9ry Tt — xt+1> = (9= Gt +Ge41, Te = Teg1) = (Ge = Gt, Tt = Te1) T (Ge41, Te — Te41) -
TEo¢t1\0t

(52)
Moreover, according to the standard regret analysis of OMD (Cemma A.4), we know that

1
< > grm— u> < *(Hu — a3 — llu = @[3 — e — $t+1H§)
n
TEoy1\0t
+< > gT,:Etxt+1>. (53)

TEO0t+1\0t

The above observations then make it possible to bound the first sum in the right-hand side of

quation as

XT:< > gf,xt—u> <

t=1 \r€o¢i1\ot

(Il = @l = llw = @423 = o = e 13)

53

] =
S |e

t=1

+

M=

< > grwi— o:t+1> (Equation (53))

t TE€O0t4+1\0¢

1

~
| —

Il
(]

-
Il
—
3
o~

(e = el = llu = 212l = o = 201 ]3)

(9t — gs 2t — Teg1) + ) (Ger1, T — Teg1) (Equation (52))

Il
+
MaEVE
Y

-~
Il
—
3
=

(e = 23 = llu = 21213 = o = 201 ]3)

4
B
M=

(9t = Gt, e — 1) + ) (Ger1 — G, )

~
I
s
S
Il
-
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+ (g1, 21) — (gr+1, T741)

1
=3 = (Il = @l = = @il = llow = e 3)
=
T T
+ (
t=

(9t — Gt Tt — Teq1) + Z Gi41 — G, Tt) (54)
1 t=1

where the second equality follows by carefully rearranging the terms in the sum Zthl (Gta1, T —
Z¢11), while the last equality is due to g3 = gr1 = 0 by definition.

At this point, we can rewrite the regret in the following way:

T
Regr(u) = Z(ft(ﬂﬁt) - ft(u))
t=1
T W
< Z<9t7xt —u) — b) ant - U||§
t=1 t=1
T T W
_Z< Z gr,xt—U>+ <§t—§t+1,$t>—§znxt—’u”§
t=1 \r€osy1\os t=1 t=1
(Equation (51))
T 2 2 2 T
u—z)3—lu—= — |zt — = _
> [ ellz — |l t1ls = floe = zenllz S0 — e — i)
t=1 "t t=1
T
A
=5 2 Ml —ull3 (Equation (5)
t=1
T T
[ — @¢|l3 — |l — zeqa]l3 )\Z >
=2 =5 Dl —ull
t=1 ( Nt 24
3 ot = @143
- — Tiy1
+ Z (<gt — Gt Tt — T41) — tm)
t=1 Nt
T
= 23 (e = wl} = llowss = wl3)t = e — ull3)
t=1
3 e = @143
+y (<gt — Gy — Tep1) — tn””) (definition of 7,)
t=1 t
T
AT ~ Ty — Tpi1]3
=2 lorar = a4 3 (= G = iy - 1=l
t=1 Ui
S ot = @43
_ — Tyq1
< Z (<gt — Gt Tt — Tp1) — tnt+2) ; (55)
t=1 t

where the first inequality holds because of the A-strong convexity of f;.

We now focus on the right-hand side of Applying we can bound from

above the distance between subsequent iterates:

Izt = zealle < mellge + Gern — Gella =m|| Y. go| < Gmlloggal —loil) . (56)

TEo¢41\0t 2

where the last inequality follows by jointly using the triangle inequality, the bound on the gradient
norm (Assumption 2.3)), and the fact that o; C 044 1.
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What remains to analyze now is the distance ||g; — g¢||2, and a direct calculation allows us to show

that
gt + Z 9r

TEM

lge — ell2 = G(lm¢| +1), (57

2
again by using the triangle inequality and

Applying [Lemma A.5|with|[Equation (56)} we show that the each term of the sum in the right-hand
side of [Equation (55)|satisfies

2
~ Tt — L1 . ~ ~
(0= =) L2 i (Gl — Gl = lod) o~ 1B) - 59
t
Therefore, starting from we are able to derive the final regret bound:
T
Regrp(u) < Zm\lgt = gtll2llge + g1 — Gtll2 (Equations (55)]and [(58))
t=1
T -
2G - -
- 3 lge 9t||2(|t0t+1| |ot]) (definition of ;)
t=1
T
< 2G? ~ (Il + D)(Joera| — lorl) (Equation (57)
TN = t '

Crucially, what remains to analyze is the sum in the right-hand side of the above inequality. We can
first show that

T T
1 _ _
§ (‘mt| + >(|0t+1| |0t|) < (Umax 4 1) § M (deﬁnition Ofgmax)
t t
t=1 t=1
Z |0t+1] — |o¢]
> Umax +1 (o C[t)
|Ot+1| t+1 [ ]

T

(|0t+1| — |0t|)
= (Omax + 1 T
Omae + 12 s 1 o)

<(Omax +1)(1+1InT), (59)

where the last inequality follows by (Orabona| (2025, Lemma 4.13) and the fact that Zthl (lots1] —
lo¢|]) = |or+1| = T. Second, we can also bound such a sum in an alternative way:

T
m¢| + 1)(|o —|o m¢|(|o —|o 0 — o
3 (Ime| + D (Jos41] — lot]) Z| ald t+1| ) +Z ( t+1| ([ot1] = lot])

t
t=1

T
Z | ( |0t+1| — |ot|) + Z (|ot+1] — [ot])
—1 Zs 1(‘05+1| - |05D

(definition of o)

A )

; +InT+1

B

~
Il
=

[ma(t = [mia| = (8= 1 — [me]))

; +InT+1

E

~
Il
—

(lo¢] + |mi| =t — 1 forall t)

I (14 [my| — [myq1])

Il
M=

+InT+1
t=1 t
S |y pp - rllmral s (nd? Jmeallmd
= —_— m _——,—— —_
ot ' t o\t t—1
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ET: i +§T: ma® el Y gy
=) — - n
? : 1

(definition of m;)

T T
S SIS o (LISES ARSI
< - nT +1

t—1 t—1
(mt+1 - me U {t} for all t)

T
|mt|
< ZT +InT +1
t=1

<2Vdiot +In T +1,

where the last inequality follows by [Equation (22)] Combing the above two inequalities, we finally
obtain
2G? 2G?
RegT(u) S T(l—FlnT) + Tmin{omax(l—i—lnT),Z dtot}

O(Cf (lnT—Fmin{amaXlnT, \/ﬂ})) . O

F Experiments

In this section, we evaluate the performance of the proposed algorithms on three types of loss
functions in the delayed OCO settingE] All experiments are conducted over 7' = 10000 round and
results are averaged over 20 independent trials. To showcase the advantage of our algorithms, we
consider two delay regimes. For the first case, each delay d, is independently and uniformly sampled
from the set {0, 1,..., 5}, thus leading to E[v/dyo;] = O(VT) and E[0may] < E[dmax] < 5. In the
second case, we define p = T—1/3 = 0.1. Then, for each ¢, dy is sampled from the same distribution
with probability 1 — p, and it is set to be d; = T' — t with probability p. In this case, E[/d;ot] = o(T),
Eldmax] > T(1 — (1 —p)T), and E[o1max] = O(pT). We compare our algorithms against several
baselines designed for delayed feedback settings. Below, we describe how we construct losses,
together with the baseline algorithms we compare against. We provide additional experiments in

Strongly convex loss. We consider the following strongly convex losses f;(z) = & ({2, ) —y)? +
1||z||3. The feasible set is the ball X = {z € R®, ||z||» < 2}. Each coordinate of the feature vector
2; € R® at round ¢ is uniformly chosen from [—1,1] while y; = (2;,1) + ¢, where ¢; is an i.i.d.
standard Gaussian noise. We evaluate [Algorithm T]on this loss sequence and compare its performance
with DOGD-SC (Wan et al., [2022a)), SDMD-RSC (Wu et al.| 2024] Algorithm 6), and BOLD-OGD
which applies the reduction proposed by Joulani et al.| (2013 to OGD.

Exp-concave loss. The loss functions we consider for exp-concave ones are f;(z) = %((zt, x) —

yt)2. The other configurations are the same as the experiments in the strongly convex case. We
evaluate our [Algorithm 2]and compare its performance with that of DOGD (Quanrud & Khashabil,
2015) and BOLD-ONS, which applies the reduction proposed inJoulani et al.|(2013)) to ONS (Hazan
et al.l [2007).

Online linear regression. We still consider the loss function f;(z) = ({2, x) — yt)2 for all

t € [T, the same one as used in the exp-concave setting. The only difference is that the action space
is now unconstrained (X = R®). We empirically evaluate |[Algorithm 3|on this loss sequence and

compare the performance with DOGD (Quanrud & Khashabi, 2015) and BOLD-VAW, which is again
a combination of the reduction in Joulani et al.|(2013) and the VAW forecaster (Azoury & Warmuth,
20015 [Vovkl, 2001).

5The code for the experiments is available at https:/github.com/haoqiu95/DOCO.
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Figure 1: Comparison with relevant baselines. The shaded areas consider a range centered around the
mean with half-width corresponding to the empirical standard deviation over 20 repetitions.

Experimental results. shows the mean cumulative regret and its standard deviation over
20 rounds for the instances with strong convexity, exp-concavity, and OLR under the two previously
mentioned delay regimes. For strongly convex losses, we find that our algorithm performs much
better than DOGD-SC (Wan et al.,[2022a)) and have similar performances compared to SDMD-RSC,
which is proven to only achieve O(dax InT) regret (Wu et al.l|2024). However, we point out that
this mismatch in the empirical performance and the theoretical guarantee of SDMD-RSC is due to
a loose analysis of this algorithm. In fact, we show that SDMD-RSC can also achieve the same
O(min{omax In T, v/dsot }) regret via a refined analysis. The proof is deferred to

For both exp-concave and OLR settings, our algorithms consistently outperform DOGD, which does
not leverage the curvature of the loss function, as well as the reduction-based algorithms proposed
inJoulani et al.| (2013)), under both delay regimes, showing the effectiveness of our algorithms under
different delay conditions.

F.1 Additional experiments
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Figure 2: Comparison with relevant baselines. The shaded areas consider a range centered around the
mean with half-width corresponding to the empirical standard deviation over 20 repetitions.

We consider a real-world dataset mg_scale from the LIBSVM repository (Chang & Lin| [2011). This
dataset has 1385 samples and each sample has 6 features with values in [—1, 1] and a label in [0, 2].
The experimental setup, including constructions of losses and delays, follows what already done
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Figure 3: Comparison with relevant baselines. The shaded areas consider a range centered around the
mean with half-width corresponding to the empirical standard deviation over 20 repetitions. The top
plots correspond to 7" = 1000, while the bottom plots correspond to 7" = 10000.

for the experiments in [Appendix H [Figure 2|shows a similar behaviour of the algorithms as already
shown in [Appendix F

We also designed a non-stationary environment as follows. The generation processes for the feature
vectors, as well as the definition of the loss function, remain the same as the environment in

However, we modified the generation of the label y;:
Yt = <Zt70t> + €, (60)

where the latent vector 6; alternates every 30 rounds between the two vectors 1 and 0. This periodic
change introduces non-stationarity, reflecting scenarios where the optimal action shifts over time.
The delay d, is independently sampled from a distribution that alternates every 30 rounds between
a geometric distribution with success probability 7-'/3 and a uniform distribution over the set
{0,1,...,5}. Additionally, we also modify the noise term ¢, inspired by Xu & Zeevi| (2023).
Specifically, we flatten an abstract art piece by Jackson Pollock and take consecutive grayscale values

in [0, 1] as the noise ¢;. shows that our algorithms again perform the best among all the
benchmark algorithms.
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