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Abstract

In this work, we study the online convex optimization problem with curved losses
and delayed feedback. When losses are strongly convex, existing approaches
obtain regret bounds of order dmax lnT , where dmax is the maximum delay and T
is the time horizon. However, in many cases, this guarantee can be much worse
than

√
dtot as obtained by a delayed version of online gradient descent, where

dtot is the total delay. We bridge this gap by proposing a variant of follow-the-
regularized-leader that obtains regret of order min{σmax lnT,

√
dtot}, where σmax

is the maximum number of missing observations. We then consider exp-concave
losses and extend the Online Newton Step algorithm to handle delays with an
adaptive learning rate tuning, achieving regret min{dmaxn lnT,

√
dtot} where n is

the dimension. To our knowledge, this is the first algorithm to achieve such a regret
bound for exp-concave losses. We further consider the problem of unconstrained
online linear regression and achieve a similar guarantee by designing a variant of
the Vovk-Azoury-Warmuth forecaster with a clipping trick. Finally, we implement
our algorithms and conduct experiments under various types of delay and losses,
showing an improved performance over existing methods.

1 Introduction

Online convex optimization (OCO) is a powerful framework for sequential decision making in
uncertain environments Hazan et al. (2007); Orabona (2025). In classic OCO, a learner repeatedly
makes a decision, incurs a loss for the chosen action, and uses the feedback of the loss function at this
round to update her strategy in the next round. However, in many real-world applications, feedback is
not immediately available after the learner’s decision but is instead subject to a delay. For instance, in
online ad recommendation systems (He et al., 2014), click-through information may be delayed, and
during this time the system must continue making recommendations for other users without access to
the delayed feedback.

Another crucial element in OCO is given by properties of the loss functions such as the curvature.
It is indeed often the case that losses have additional curvature properties such as strong convexity
or exp-concavity. For example, exp-concave losses are prevalent in portfolio management (Cover,
1991), in which the learner (investor) needs to distribute her wealth over a set of financial instruments
in order to maximize her return. When the loss functions have a certain curvature, previous works
(Hazan et al., 2007) have shown that a significantly better regret guarantee can be achieved (i.e., the
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so-called fast rates). However, this type of assumption received little attention when assuming that
the feedback suffers some delay. Therefore, we are interested in investigating the following question:

Can we design algorithms that exploit the loss curvature to obtain improved guarantees even with
delayed feedback?

There is a line of works studying OCO with delayed feedback. For general convex functions,
Quanrud & Khashabi (2015) provided an algorithm called Delayed Online Gradient Descent (DOGD)
and achieves a regret of O(

√
T + dtot) where T is the time horizon and dtot is the total delay.

Subsequently, Wan et al. (2022a); Wu et al. (2024) focused on strongly convex losses, introducing
DOGD-SC and SDMD-RSC, which achieve a regret bound of O((dmax + 1) lnT ), where dmax

represents the maximum delay for any single round of feedback. However, the O((dmax + 1) lnT )
regret bound can sometimes be much worse than O(

√
T + dtot). This occurs in scenarios when

even a single round of feedback is delayed by Θ(T ) rounds (e.g., missing feedback), undermining
the benefits of having both regret guarantees under stronger curvature assumptions. Furthermore, to
the best of our knowledge, no prior work has investigated whether improved regret guarantees are
achievable for exp-concave losses under delayed feedback, leaving an important gap in the literature.

Loss type
Regret bound

Quanrud &
Khashabi (2015)

Wan et al. (2022a);
Wu et al. (2024) Our work

Strongly convex
√
dtot + T (dmax + 1) lnT min{σmax lnT,

√
dtot}+ lnT

Exp-concave
√
dtot + T N/A min{dmaxn lnT,

√
dtot}+ n lnT

OLR N/A N/A min{dmaxn lnT,
√
dtot}+ n lnT

Table 1: Main results and comparisons with prior work. Here T is the number of rounds, n is
the dimension of the feasible domain, dmax is the maximum delay, σmax ≤ dmax is the maximum
number of missing observations, and dtot is the total delay. In Table 1, we omit the dependency on
the curvature parameters, Lipschitz parameters, the norm of the comparator and domain diameter for
conciseness. The detailed dependencies are explicitly shown in the respective theorem statements.

Contribution. To address these gaps, we propose a suite of algorithms and offer a comprehensive
analysis for OCO with delayed feedback under both strongly convex and exp-concave losses, and
we include a special case of (unconstrained) online linear regression (OLR) with delays. The main
contributions of this work can be summarized as follows (see also Table 1):

• We first consider the class of strongly convex losses in Section 3. Specifically, we
propose an algorithm based on the follow-the-regularized-leader framework and obtain a
O
(
min

{
σmax lnT,

√
dtot

}
+ lnT

)
regret, where σmax is the maximum number of missing

observations over rounds. Compared with the results obtained by Wan et al. (2022a) and Wu et al.
(2024), our results have several advantages. First, since σmax is always no larger than dmax and
can be significantly smaller than it, our σmax lnT bound improves upon the dmax lnT bound in
Wan et al. (2022a) and Wu et al. (2024). Second, we prove that our algorithm simultaneously
achieves a O

(√
dtot + lnT

)
regret bound, making our algorithm no worse than the bound

achieved by DOGD (Quanrud & Khashabi, 2015) either. Third, compared with the regret bounds
obtained in Wan et al. (2022a) and Wu et al. (2024), our regret guarantee does not depend on the
diameter of the action domain and recovers the one proven in Hazan et al. (2007) when there is
no delay. Additionally, we provide a novel and improved analysis of the OMD-based algorithm
originally proposed by Wu et al. (2024) in Appendix E, obtaining a regret bound that is again
independent of the diameter of the action domain.

• In Section 4, we consider exp-concave losses, a broader function class compared to the strongly
convex one. Specifically, we propose an algorithm based on the Online Newton Step (ONS)
method that achieves a O

(
min

{
dmaxn lnT,

√
dtot

}
+ n lnT

)
regret bound. To the best of our

knowledge, this is the first algorithm to achieve logarithmic regret for exp-concave losses under
delayed feedback, answering an open question proposed in Wan et al. (2022a). While both the
bounds dmaxn lnT and

√
dtot can be achieved using a simple learning rate within the ONS

framework, it is essential to use a delay-adaptive learning rate tuning scheme to achieve the best
of these two guarantees within our analysis.
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• In Section 5, we investigate online linear regression (OLR) problem, where the feasible domain
is unconstrained, i.e., it corresponds to the entire n-dimensional Euclidean space Rn. Leveraging
the specific structure in OLR, we develop an algorithm based on the Vovk-Azoury-Warmuth
forecaster, achieving a regret bound of O

(
∥u∥22(min

{
dmaxn lnT,

√
dtot

}
+ n lnT )

)
without

requiring any prior knowledge of neither the comparator u ∈ Rn nor the data. This result is
achieved by incorporating a carefully designed clipping technique and, once again, employing an
adaptive tuning of the learning rate.

• Finally, in Section F, we implement all our proposed algorithms and conduct experiments to
validate our theoretical results across multiple delayed settings and loss functions with different
curvature properties. We also compare our methods with existing approaches to demonstrate
their effectiveness.

1.1 Related works

Online learning with curved losses. While Abernethy et al. (2008) have shown that Θ(
√
T ) is

the minimax regret for OCO, if the loss functions further enjoy curvature, the minimax regret can
be improved. Hazan et al. (2007) show that OGD with a specific choice of learning rate achieves
O(G

2

λ lnT ) regret for strongly convex losses where G is the maximum ℓ2 norm of any loss gradient
and λ is the strong convexity parameter.2 This upper bound is also minimax optimal as proven
in Abernethy et al. (2008). For exp-concave losses, Hazan et al. (2007) proposed Online Newton
Step (ONS) achieving O(( 1

α +GD) lnT ) regret where α is the exp-concavity parameter and D is
the diameter of the feasible domain. Hazan et al. (2007) also proposed Exponential Weight Online
Optimization (EWOO), achieving diameter and gradient scale independent guarantees. However,
the algorithm is less practical due to its sampling complexity. For OLR, Vovk (2001) and Azoury &
Warmuth (2001) independently introduced the Vovk-Azoury-Warmuth (VAW) forecaster achieving
O(lnT ) regret without requiring prior knowledge of the data and the comparator. For a more detailed
survey on OCO, we recommend the reader to Hazan (2016) and Orabona (2025).

Online learning with delayed feedback. Weinberger & Ordentlich (2002) initiated the study of
online learning with delayed feedback, proposing an algorithm achieving d ·R(T/d) where d is the
fixed and known per-round delay and R(T ) is the regret upper bound for some base algorithm that
assumes no delay in the feedback. Specifically, their meta-algorithm runs d+ 1 independent copies
of the base algorithm on disjoint time lines in a round-robin fashion. However, this meta-algorithm is
computationally expensive and does not show good empirical performances. Subsequently, Langford
et al. (2009) proposed a practical algorithm by simply performing the gradient descent step using the
observed gradients at each round, and achieved O(

√
dT ) and O(d lnT ) regret bounds for convex

and strongly convex functions, respectively.

When delay is not uniform, Joulani et al. (2013) proposed BOLD (Black-box Online Learning with
Delays) extending the method of Weinberger & Ordentlich (2002) and achieve dmax ·R(T/dmax)
regret, but the algorithm still maintains multiple instances of base algorithms, which could be
prohibitive in terms of computational costs. For convex functions, Quanrud & Khashabi (2015)
achieved O(

√
dtot) where dtot is the total delay accumulated over T rounds. Wan et al. (2022b,

2023) proposed a first Frank-Wolfe-type online algorithm to handle delayed feedback and obtain
a regret bound of O(T 3/4 + dtotT

−3/4) for general convex loss and O(T 2/3 + dmax lnT ) under
strong convexity. There is also an interesting line of works whose focus is to obtain adaptive regret
guarantees with delayed feedback (McMahan & Streeter, 2014; Joulani et al., 2016; Flaspohler et al.,
2021) or to consider variants of delayed feedback (Gatmiry & Schneider, 2024; Bar-On & Mansour,
2025; Ryabchenko et al., 2025).

Two most related works to ours are Wan et al. (2022a) and Wu et al. (2024), which consider strongly
convex losses together with delays. Specifically, Wan et al. (2022a) first proposed DOGD-SC for
strongly convex losses, and establish a regret bound of O(GD+G2

λ dmax lnT ). Subsequently, Wu et al.
(2024) proposed SDMD-RSC and obtained a O(dmaxG

2

λ2 + G2+D
λ dmax lnT ) regret bound.3

2The definitions of these parameters are deferred to Section 2.
3Wu et al. (2024) also considers the class of relative strongly convex loss functions.
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Beyond full-gradient feedback, there exists a growing interest in developing algorithms with delayed
bandit feedback for a range of problems, including multi-armed bandits (Cesa-Bianchi et al., 2016;
Cella & Cesa-Bianchi, 2020; Zimmert & Seldin, 2020; Masoudian et al., 2022; Van der Hoeven
& Cesa-Bianchi, 2022; Esposito et al., 2023; Van der Hoeven et al., 2023; Masoudian et al., 2024;
Schlisselberg et al., 2025; Zhang et al., 2025), Markov decision processes (Lancewicki et al., 2022;
Jin et al., 2022; Van der Hoeven et al., 2023), and online convex optimization (Héliou et al., 2020;
Bistritz et al., 2022; Wan et al., 2024).

2 Problem setting

Let T ∈ N be the time horizon and n ∈ N be the dimension. Denote by X ⊂ Rn the domain, which
we assume to be closed and non-empty. In each round t ∈ [T ], the learner selects a point xt ∈ X as
its decision and incurs a loss ft(xt) given by some unknown function ft : X → R that we assume
to be convex and differentiable. Normally, in the standard OCO setting, the learner would then
immediately observe the gradient gt = ∇ft(xt). On the other hand, here we consider the delayed
feedback scenario in which such a gradient gt is only observed at round t+ dt with some unknown
arbitrary delay dt ≥ 0. We assume t+ dt ≤ T for all t ∈ [T ] without loss of generality Joulani et al.
(2013, 2016) because the feedback of any round t with t+ dt ≥ T cannot be used the learner. The
performance of the learner is then measured via the regret, which is defined as follows:

RegT = max
u∈X

RegT (u) = max
u∈X

T∑
t=1

(
ft(xt)− ft(u)

)
.

For convenience, we define ot = {τ ∈ N : τ + dτ < t} ⊆ [t − 1] to be the set of rounds whose
gradients are observed before round t, and letmt = [t−1]\ot be the set of rounds whose observation
is yet to be received at the beginning of round t. Define σmax = maxt∈[T ] |mt| to be the maximum
number of missing observations over T rounds, dmax = maxt∈[T ] dt to be the maximum delay, and
dtot =

∑
t dt to be the total delay. Also define d≤tmax = maxτ≤tmin{dτ , t − τ} as the maximum

delay that has been perceived up to round t.

Before presenting our main results, we must first introduce some definitions about the curvature of
the loss functions.
Definition 2.1. A function f : X → R is λ-strongly convex with respect to ∥·∥ for λ > 0 if, for all
x, y ∈ X , f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ λ

2 ∥y − x∥2.
Definition 2.2. A function f : X → R is α-exp-concave for α > 0 if x 7→ exp(−αf(x)) is concave
over X .

We finally introduce some standard boundedness assumptions relating to the gradients and the domain.
Assumption 2.3. For every t ∈ [T ], the gradient of ft has norm bounded by G ≥ 0, i.e.,
maxx∈X ∥∇ft(x)∥2 ≤ G.
Assumption 2.4. The diameter of X is bounded by D ≥ 0, i.e., maxx,y∈X ∥x− y∥2 ≤ D. We also
assume 0 ∈ X .

Other notations. For a positive semidefinite matrix A ∈ Rn×n and x ∈ Rd, we denote ∥x∥A =√
x⊤Ax to be the Mahalanobis norm induced by A and, if A is positive definite, let ∥x∥A−1 =√
x⊤A−1x be the dual norm. We denote 1 as the all-one vector in an appropriate dimension.

3 Delayed OCO with strongly convex losses

In this section, we consider the problem of delayed OCO with strongly convex losses and propose
Algorithm 1, which is built upon the follow-the-regularized-leader (FTRL) algorithm. Specifi-
cally, after receiving the gradients gτ for all τ ∈ ot+1\ot at the end of round t, we compute the
updated decision xt+1 as shown in Eq. (1), which is the minimizer of the cumulative linearized
loss with respect to all the currently observed gradients, plus a squared ℓ2-regularization term
with respect to all the past decisions. The following theorem shows that Algorithm 1 achieves
O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
regret bound without any diameter assumption on the

domain.
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Algorithm 1 Delayed FTRL for strongly convex functions

input strong convexity parameter λ > 0
initialize x1 ∈ X

1: for t = 1, 2, . . . do
2: Play xt; receive gτ = ∇fτ (xτ ) for all τ ∈ ot+1 \ ot
3: Update

xt+1 = argmin
x∈X

∑
τ∈ot+1

⟨gτ , x⟩+
λ

2

∑
s≤t

∥x− xs∥22 (1)

4: end for

Theorem 3.1. Assume that f1, . . . , fT are λ-strongly convex with respect to the Euclidean norm
∥·∥2. Then, under Assumption 2.3, Algorithm 1 guarantees that

RegT = O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

Theorem 3.1 highlights two advantages over previous works. From the perspective of the delay-
related term, while both DOGD-SC (Wan et al., 2022a) and SDMD-RSC (Wu et al., 2024) achieve
a O (dmax lnT ) regret bound, the terms σmax and

√
dtot in our regret bound can be substantially

smaller than dmax, with σmax ≤ dmax always being true (Masoudian et al., 2022).4 Second, while
both DOGD-SC and SDMD-RSC exhibit a polynomial dependence on the diameter D of the action
set X , we remark that our bound does not depend on D and recovers the optimal O

(
G2

λ lnT
)

regret
in the no-delay setting.5

3.1 Regret analysis

Here we provide a proof sketch of Theorem 3.1, whereas the full proof is deferred to Appendix B.
Specifically, using the strong convexity property, we first decompose the regret:

RegT (u) ≤
T∑
t=1

(
⟨gt, xt − u⟩ − λ

2
∥xt − u∥22

)

=

T∑
t=1

⟨gt, x⋆t − u⟩︸ ︷︷ ︸
Reg⋆

T (u)

+

T∑
t=1

⟨gt, xt − x⋆t ⟩︸ ︷︷ ︸
DriftT

−λ
2

T∑
t=1

∥xt − u∥22, (2)

where x⋆t = argminx∈X
∑t−1
τ=1(⟨gτ , x⟩ +

λ
2 ∥x − xτ∥22) for t ≥ 2 and x⋆1 = x1 are the decisions

assuming that all gradients before round t are observed.

Next, we analyze the term Reg⋆T (u) and DriftT separately. For the term DriftT , applying the
Cauchy-Schwarz inequality and using the fact that ∥gt∥2 ≤ G for all t ∈ [T ] by Assumption 2.3, we
can obtain that

DriftT ≤ G

T∑
t=1

∥x⋆t − xt∥2 . (3)

For the term Reg⋆T (u), following a standard FTRL analysis and using the optimality of x⋆t , we are
able to obtain that

Reg⋆T (u) ≤
λ

2

T∑
t=1

∥xt − u∥22 +
T∑
t=1

⟨gt, x⋆t − x⋆t+1⟩ .

4In fact, we also show in Lemma A.7 that σmax ≲
√
dtot, and in Lemma A.9 that there are delay sequences

such that σmax ≪
√
dtot and σmax ≈

√
dtot, respectively.

5Despite the fact that G-Lipschitzness and λ-strong convexity of the losses over the domain X imply that its
diameter is bounded by 2G/λ, the guarantees of DOGD-SC and SDMD-RSC remain suboptimal.
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Since the first term can be canceled by the last negative term shown in Eq. (2), we only need to control
the second term ⟨gt, x⋆t − x⋆t+1⟩, which is further bounded by G∥x⋆t − x⋆t+1∥2 via Cauchy-Schwarz
and the fact that ∥gt∥2 ≤ G. Then, using a stability lemma for FTRL (Lemma A.2), we can show that

∥x⋆t − x⋆t+1∥2 ≤ 2G

λ(2t− 1)
+ ∥x⋆t − xt∥2 .

Interestingly, this inequality relates the Euclidean distance between adjacent “cheating” iterates
(x⋆t )t≥1 in the stability term of FTRL to the distance between xt and x⋆t , which is also present in the
DriftT term and intuitively quantifies the influence of delays on the regret.

Combining the inequalities involving Reg⋆T (u) and DriftT , we can finally bound the regret from
above as follows:

RegT ≤
T∑
t=1

2G2

λ(2t− 1)
+ 2G

T∑
t=1

∥x⋆t − xt∥2 ≤ G2

λ
ln(2T + 1) + 2G

T∑
t=1

∥x⋆t − xt∥2 .

It remains to show how to bound ∥x⋆t − xt∥2 by O
(
G
λ min{σmax lnT,

√
dtot}

)
, which is the key

novelty in our analysis compared to previous works. Recalling the definitions of xt and x⋆t , we can
apply the stability lemma of FTRL (Lemma A.2) again and show for all t ≥ 2 that

λ(t− 1)

2
∥x⋆t − xt∥22 ≤

∥∥∑
τ∈mt

gτ
∥∥2
2

2λ(t− 1)
, (4)

meaning that
∑T
t=1 ∥x⋆t − xt∥2 ≤

∑T
t=2

∥∑τ∈mt
gτ∥

2

λ(t−1) ≤
∑T
t=2

G|mt|
λ(t−1) , where we also use the fact

that x⋆1 = x1. Here, we highlight the importance of including all previous decisions xτ for τ ≤ t,
instead of τ ∈ ot+1 only, in the regularization term of the update rule of xt+1 shown in Eq. (1).
Doing so particularly ensures that the updates of xt and x⋆t share the same regularization terms, which
is crucial in leading to a diameter-free upper bound for ∥x⋆t − xt∥2 using the stability lemma.

Finally, we study the term
∑T
t=2

|mt|
t−1 . Directly bounding |mt| from above by σmax leads to the

first σmax lnT bound. To further obtain the
√
dtot bound, it is crucial to observe that

∑
τ≤t |mτ | ≤

(t− 1)2 since mτ ⊆ [τ − 1]. Therefore, by also using Orabona (2025, Lemma 4.13) we are able to
prove that

∑T
t=2

|mt|
t−1 ≤

∑T
t=2

|mt|√∑
τ≤t |mτ |

≤ 2
√
dtot, which concludes the regret analysis.

4 Delayed OCO with exp-concave losses

In this section, we consider the delayed OCO problem with exp-concave losses. Exp-concave
losses are a more general class of loss functions that require more sophisticated techniques to
be tackled. To address this problem, we design Algorithm 2, a variant of Online Newton Step
(ONS) which effectively handles delayed feedback. Specifically, after receiving the gradients gτ
for all τ ∈ ot+1\ot, we select xt+1 as the minimizer of the cumulative surrogate loss over all the
already observed gradients and the past actions, with an additive squared ℓ2-regularization term. For
simplicity, in this section we omit dependencies on curvature parameters, Lipschitz constants, and
domain diameter; they appear explicitly in the theorem statements. The following result provides a
first regret bound for Algorithm 2.

Algorithm 2 Delayed ONS for exp-concave functions

input β > 0, learning rate rule {ηt}t≥1,
initialize x1 ∈ X

1: for t = 1, 2, . . . do
2: Play xt; receive gτ = ∇fτ (xτ ) for all τ ∈ ot+1 \ ot
3: xt+1 = argmin

x∈X

∑
τ∈ot+1

(
⟨gτ , x⟩+ β

2 ⟨gτ , x− xτ ⟩2
)

+ηt
2 ∥x∥

2
2

4: end for
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Theorem 4.1. Assume that f1, . . . , fT are α-exp-concave and let β = 1
2 min{ 1

4GD , α}. Then, under
Assumptions 2.3 and 2.4, Algorithm 2 with 0 < η0 ≤ η1 ≤ · · · ≤ ηT guarantees that

RegT = O
(n
β
ln
(
1 +

βG2T

η0n

)
+ ηTD

2 +min {B1, B2}
)
,

where B1 =
(
G2

η0
+ 1

β

)
ndmax ln

(
1 + βG2T

η0n

)
and B2 = G2

∑T
t=1

|mt|
ηt−1

.

We can now introduce two careful tunings of the time-varying learning rates (ηt)t≥1 to derive the
regret bounds O(dmaxn lnT ) and O(

√
dtot) individually.

Simple tuning. With a constant learning rate constant ηt = 1 for all t ∈ [T ] , Algorithm 2 directly
obtains O(dmaxn lnT ) regret. Alternatively, setting ηt = G

D

√∑
s≤t |ms|+ |mt|+ 1 for all t ≥ 1,

Algorithm 2 achieves O(
√
dtot) regret; here, the |mt| + 1 term is an essentially tight worst-case

estimation of |mt+1|, since mt+1 ⊆ mt ∪ {t}.

Note that either of these two bounds can be significantly better than the other under different delay
sequences, e.g., as shown by our Lemma A.10 in the appendix. Therefore, we ideally want to achieve
O(min{dmaxn lnT,

√
dtot}) regret via a single choice of the learning rates. In fact, we can show

that it is indeed possible to obtain such a bound by a careful delay-adaptive learning rate tuning.

Adaptive tuning. The adaptive learning rate is given by η0 = 1 and ηt = min{at, bt}+ 1 for all
t ≥ 1, where

at =
2

GD

(
G2 +

1

β

)
nd≤tmax ln

(
1 +

βG2T

n

)
, (5)

bt =
G

D

√∑
s≤t

|ms|+ |mt|+ 1 . (6)

The overall idea behind this learning rate tuning is to keep track of both the dmaxn lnT and
√
dtot

regret guarantees over the rounds via at and bt, respectively. Then, ηt is set depending on the best of
the two, i.e., min{at, bt}, which then leads to achieve the best of both regret bounds. Note that this
adaptive tuning requires the knowledge of the time-stamps of the received gradients since we need
to compute d≤tmax = maxτ≤tmin{dτ , t− τ} which, we recall, is the maximum delay that has been
perceived up to round t. The following corollary provides a regret bound for Algorithm 2 with this
adaptive tuning. The full proof of Corollary 4.2 can be found in Appendix C.
Corollary 4.2. Assume that f1, . . . , fT are α-exp-concave and let β = 1

2 min{ 1
4GD , α}. Then, under

Assumptions 2.3 and 2.4, Algorithm 2 with the adaptive learning rate ηt = min{at, bt}+ 1, where
at and bt are defined in Equations (5) and (6), guarantees that

RegT = O
(
n

β
ln
(
1 +

βG2T

n

)
+D2 +min {C1, C2}

)
,

where C1 =
(
D
G + 1

) (
G2 + 1

β

)
ndmax ln

(
1 + βG2T

n

)
and C2 =

(
G2 +GD

) (√
dtot + 1

)
.

Corollary 4.2 shows Algorithm 2 with the adaptive learning rate obtains regret
O
(
min

{
dmaxn lnT,

√
dtot

})
. The main advantage of an adaptive learning rate is that it re-

quires no prior knowledge of dtot or dmax, nor does it rely on a doubling trick that would throw away
information via resets.

4.1 Regret analysis

In this section, we provide a proof sketch of Theorem 4.1 and Corollary 4.2, while their full proofs
are deferred to Appendix C. Specifically, using the exp-concavity property and Lemma A.3, we
decompose the overall regret as follows:

RegT (u) =

T∑
t=1

⟨gt, x⋆t − u⟩︸ ︷︷ ︸
Reg⋆

T (u)

+

T∑
t=1

⟨gt, xt − x⋆t ⟩︸ ︷︷ ︸
DriftT

−β
2

T∑
t=1

⟨gt, xt − u⟩2 , (7)
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where we define x⋆1 = x1 and, for t ≥ 2, x⋆t = argminx∈X
∑t−1
τ=1(⟨gτ , x⟩ +

β
2 ⟨gτ , x− xτ ⟩2) +

ηt−1

2 ∥x∥22 to be the decisions assuming that all gradients before round t are observed.

For the term Reg⋆T (u), following a standard FTRL analysis, we are able to obtain that

Reg⋆T (u) ≤
ηT
2
∥u∥22 +

β

2

T∑
t=1

⟨gt, u− xt⟩2 +
T∑
t=1

min
{
GD, ∥gt∥2A−1

t−1

}
. (8)

where At−1 = ηt−1I + β
∑t−1
τ=1 gτg

⊤
τ . Applying Lattimore & Szepesvári (2020, Lemma 19.4), the

last sum on the right-hand side of the above inequality satisfies
T∑
t=1

min
{
GD, ∥gt∥2A−1

t−1

}
= O

(
n

β
ln

(
1 +

βG2T

n

))
. (9)

Now we consider the DriftT term. By applying the Cauchy-Schwarz inequality followed by the
stability lemma (Lemma A.2) again, it follows that for all t ≥ 1,

DriftT ≤
T∑
t=1

∥gt∥A−1
t−1

∥xt − x⋆t ∥At−1
≤ 4

T∑
t=1

∥gt∥A−1
t−1

(∑
τ∈mt

∥gτ∥A−1
t−1

)
. (10)

By applying Lemma C.1, it holds that

DriftT = O
((

G2 +
1

β

)
ndmax ln

(
1 +

βG2T

n

))
. (11)

At the same time, we can also prove that

DriftT = O

(
G2

T∑
t=1

|mt|
ηt−1

)
. (12)

Combing Equations (7) to (12) concludes the proof of Theorem 4.1. To prove Corollary 4.2, we
carefully consider the adaptive learning rate tuning and separate the analysis into two cases. In case
aT ≤ bT at the end of the T rounds, we utilize a delayed version of the elliptical potential lemma
(Lemma C.1) to achieve the logarithmic regret. On the other hand, if bT < aT we split the regret
analysis at the last round τ⋆ at which aτ⋆ ≤ bτ⋆ . Then, we use again the logarithmic bound up to
round τ⋆ and the

√
dtot bound for the remaining rounds. It suffices to observe that the first bound is

no worse than
√
dtot since aτ⋆ ≤ bτ⋆ to conclude the proof.

5 Online linear regression with delayed labels

Here we consider the problem of online linear regression (OLR) with delays. This setting essentially
corresponds to a variant of OCO where the domain is X = Rn and loss functions are ft(x) =
1
2 (⟨zt, x⟩ − yt)

2 comparing any point x ∈ Rn to a label yt ∈ R given some feature vector zt ∈ Rn;
to be precise, the predicted label by a given point x corresponds to the inner product ⟨zt, x⟩. At each
round t, the learner first observes an n-dimensional feature vector zt before performing its prediction
xt, but the true label yt is only revealed at a later round t+ dt. A common assumption on feature
vectors and labels in this setting, analogous to the ones we introduced in Section 2 for instance, is
their boundedness.
Assumption 5.1. The feature vectors z1, . . . , zT and the labels y1, . . . , yT are bounded, i.e., ∥zt∥2 ≤
Z and |yt| ≤ Y for any t ∈ [T ], given Y,Z ≥ 0.

Note that the loss ft becomes exp-concave when the domain is also bounded. If this were the case,
we could solve this problem by designing a version of ONS that can handle delayed labels. In
OLR, however, the domain is unconstrained as it corresponds to the whole n-dimensional Euclidean
space, which makes it particularly challenging to simply adapt one of the techniques seen so far
without further assumptions. We instead design an algorithm for this problem (see Algorithm 3) that
corresponds to an adaptation of the Vovk-Azoury-Warmuth (VAW) forecaster (Azoury & Warmuth,
2001; Vovk, 2001) in order to handle delayed labels. We can then prove that the regret guarantee for
this algorithm in the delayed OLR setting becomes as stated in Theorem 5.2 below (whose proof is in
Appendix D).
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Algorithm 3 Delayed VAW forecaster with clipping

input learning rate rule {ηt}t≥1

initialize ρ1 = 0
1: for t = 1, 2, . . . do
2: Observe zt
3: Set xt = argmin

x∈Rn

∑
τ∈ot

−yτ ⟨zτ , x⟩+ ηt
2 ∥x∥

2
2

+ 1
2

∑
τ≤t⟨zτ , x⟩2

4: Play x̃t = xt ·min
{

ρt
|⟨zt,xt⟩| , 1

}
5: Receive yτ for all τ ∈ ot+1 \ ot
6: Set ρt+1 = maxτ∈ot+1

|yτ |
7: end for

Theorem 5.2. In the OLR problem with delayed labels under Assumption 5.1, Algorithm 3 guarantees
for any 0 < η0 ≤ η1 ≤ · · · ≤ ηT that

RegT (u) ≤
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+O

(
Y 2
(
σmax +min {M1,M2}

))
,

where M1 = ndmax ln
(
1 + Z2T

η0n

)
and M2 = Z2

∑T
t=1

|mt|
ηt

.

The idea behind the regret analysis is once again to decompose the regret into a cheating regret term
and a drift term:

RegT (u) =

T∑
t=1

(
ft(x

⋆
t )− ft(u)

)
︸ ︷︷ ︸

Reg⋆
T (u)

+

T∑
t=1

(
ft(x̃t)− ft(x

⋆
t )
)

︸ ︷︷ ︸
DriftT

,

where (x̃t)t≥1 are the actions played by Algorithm 3, while (x⋆t )t≥1 are the “cheating” iterates that
assume to have knowledge about all labels from past rounds. To bound the cheating regret Reg⋆T (u),
it is important to leverage the curvature of the squared loss. Specifically, by definition,

Reg⋆T (u) =

T∑
t=1

⟨zt, x⋆t ⟩2 − ⟨zt, u⟩2

2
+

T∑
t=1

⟨−ytzt, x⋆t − u⟩ .

Then, we can study the second sum via the standard tools for the regret analysis of FTRL with respect
to the linear losses x 7→ −yt⟨zt, x⟩, which yields

Reg⋆T (u) ≤
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
.

This is exactly the first line in the regret guarantee presented in Theorem 5.2, and it corresponds to
the part that does not depend on delays.

On the other hand, the drift term DriftT requires much more care and novel techniques. By the
convexity of ft, we have that DriftT ≤

∑T
t=1⟨∇ft(x̃t), x̃t − x⋆t ⟩. Here we immediately observe

the importance of the additional clipping of xt to define the selected point x̃t, which is inspired
from the clipping ideas by Cutkosky (2019); Mayo et al. (2022). Its scope is to guarantee that the
predicted label ⟨zt, x̃t⟩ falls within the range of true labels; the reason for this is to avoid the gradient
of ft evaluated at x̃t to blow up, otherwise obstructing an attempt to nicely bound DriftT . We also
remark that, differently form Mayo et al. (2022), we do not require to clip the labels used in the
iterates update too. If we had knowledge of Y , we could use it to clip to the interval [−Y, Y ], thus
guaranteeing ft(x̃t) ≤ Y . However, since we want to assume no prior knowledge of Y , the best
clipping we can do at any time t is via ρt. Doing so requires to handle possible rounds when the
label falls outside the clipping interval, which in turn requires a careful analysis that accounts for the
feedback to be revealed only after some delay (as ρt could possibly be updated much later in time).
We are then able to prove that

DriftT = O
(
Y 2σmax + Y 2 min

{
M1,M2

})
.
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which is the delay-dependent part of the regret; the Y 2σmax term, in particular, is the one due to
clipping mistakes.

Given any γ > 0, we may now set η0 = γ and ηt = γ(min{at, bt}+ 1) for all t ≥ 1, where

at = 2nd≤tmax ln

(
1 +

Z2T

γn

)
, bt = Z

√∑
s≤t|ms| . (13)

By doing so, we obtain the following Corollary 5.3 which provides a regret bound for Algorithm 3
with this adaptive tuning, and whose proof is deferred to Appendix D.

Corollary 5.3. In the OLR problem with delayed labels under Assumption 5.1, Algorithm 3 with the
adaptive learning rate ηt = γ(min{at, bt} + 1), where at and bt are defined in Equation (13) for
any γ > 0 guarantees that

RegT ≤ γ∥u∥22
2

+ nY 2 ln

(
1 +

Z2T

γn

)
+O

(
min {Q1, Q2}

)
,

where Q1 =
(
γ∥u∥22 + Y 2

)
ndmax ln

(
1 + Z2T

γn

)
and Q2 =

(
γZ∥u∥22 + (Z + 1)Y 2

)√
dtot .

To achieve this final result, we leverage similar ideas from the adaptive tuning for delayed ONS in
Corollary 4.2, as mentioned above, together with a nontrivial relation between σmax and

√
dtot to

handle the additive Y 2σmax term from the clipping errors (see Lemma A.7). We remark that here we
used directly Z for the tuning, which requires its knowledge since the first round; we could easily do
without this prior knowledge by using Zt = maxτ≤t∥zτ∥2 instead because we always observe all
the previous and the current feature vectors by the beginning of round t.

6 Conclusions

In this paper, we study how to leverage the curvature of the loss functions in online convex opti-
mization with delayed feedback so as to improve regret guarantees. For strongly convex functions,
we derive an algorithm achieving O(min{σmax lnT,

√
dtot}) regret, improving upon previous work

(Wan et al., 2022a; Wu et al., 2024), which only obtain O(dmax lnT ) regret. We also derive
O(min{dmaxn lnT,

√
dtot}) for exp-concave losses and online linear regression, answering an open

question proposed in Wan et al. (2022a). It is still left open whether O(min{σmaxn lnT,
√
dtot}) is

achievable for exp-concave losses.
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A Auxiliary results

In this section, we show several auxiliary lemmas that will be helpful throughout the paper.

A.1 General results for the regret analysis

The following lemma is a standard result for the regret of FTRL.

Lemma A.1 (Orabona (2025, Lemma 7.1)). Let X ⊆ Rn be closed and non-empty. Denote
by Ft(x) = ψt(x) +

∑t−1
τ=1 ℓτ (x). Assume that argminx∈X Ft(x) is not empty and xt ∈

argminx∈X Ft(x). Then, for any u ∈ X ,

T∑
t=1

(
ℓt(xt)− ℓt(u)

)
= ψT+1(u)−min

x∈X
ψ1(x) +

T∑
t=1

[
Ft(xt)− Ft+1(xt+1) + ℓt(xt)

]
+ FT+1(xT+1)− FT+1(u) .

The next lemma bounds the distance between two FTRL iterates with different linear losses and
possibly different regularizers. It also shows a simplified upper bound in the case when the two
iterates have the same regularizer.

Lemma A.2 (Stability lemma). Let X ⊆ Rn be closed and non-empty. Let A1, A2 ⪰ 0 be two
positive semidefinite matrices, b1, b2 ∈ Rn, and c1, c2 ∈ R. Define ψ1(x) = x⊤A1x + b⊤1 x + c1
and ψ2(x) = x⊤A2x + b⊤2 x + c2. Suppose that z1 ∈ argminx∈X

{
⟨w1, x⟩ + ψ1(x)

}
and z2 ∈

argminx∈X
{
⟨w2, x⟩+ ψ2(x)

}
. Then, we have

∥z1 − z2∥2A1
+ ∥z1 − z2∥2A2

≤ ⟨w1 − w2, z2 − z1⟩+ (ψ1(z2)− ψ2(z2))− (ψ1(z1)− ψ2(z1)) .

Furthermore, if ψ1(x) = ψ2(x) = x⊤Ax+ b⊤x+ c with positive definite A ≻ 0, we have

∥z1 − z2∥A ≤ 1

2
∥w1 − w2∥A−1 .

Proof. Let h1(x) = ⟨w1, x⟩+ψ1(x) and h2(x) = ⟨w2, x⟩+ψ2(x) be twice-differentiable functions
with Hessians A1 + A⊤

1 and A2 + A⊤
2 , respectively. Note that z1 ∈ argminx∈X h1(x) and z2 ∈

argminx∈X h2(x). By Taylor’s theorem and first-order optimality conditions, we know that

(⟨w1, z2⟩+ ψ1(z2))− (⟨w1, z1⟩+ ψ1(z1)) = h1(z2)− h1(z1) ≥ ∥z1 − z2∥2A1
,

(⟨w2, z1⟩+ ψ2(z1))− (⟨w2, z2⟩+ ψ2(z2)) = h2(z1)− h2(z2) ≥ ∥z1 − z2∥2A2
.

Summing up the above two inequalities, we obtain

∥z1 − z2∥2A1
+ ∥z1 − z2∥2A2

≤ ⟨w1 − w2, z2 − z1⟩+ (ψ1(z2)− ψ2(z2))− (ψ1(z1)− ψ2(z1)) .

The second result is directly obtained by applying the Cauchy-Schwarz inequality when ψ1(x) =
ψ2(x).

The following lemma is the quadratic bound of α-exp-concave functions.

Lemma A.3 (Hazan et al. (2007, Lemma 3)). Let f : X → R be an α-exp-concave function. Then,
under Assumptions 2.3 and 2.4, we have that

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ β

2

(
⟨∇f(y), x− y⟩

)2
for any x, y ∈ X , where β = 1

2 min
{

1
4GD , α

}
.

The following lemma is the link of the Bregman divergences between 3 points.

Lemma A.4 (Wei et al. (2021, Lemma 10)). Let A be a convex set and x2 =
argminx∈A {⟨g, x⟩+Dψ(x, x1)}. Then, for any u ∈ A,

⟨x2 − u, g⟩ ≤ Dψ(u, x1)−Dψ(u, x2)−Dψ(x2, x1) .

14



The following lemma is the general bound on ⟨g, v⟩ − λ
2 ∥v∥

2, which related to the one achievable
via the Fenchel-Young inequality but strengthened thanks to a norm constraint on v.
Lemma A.5 (Flaspohler et al. (2021, Lemma 18)). Let ∥·∥ be a norm over Rn and let ∥·∥∗ be its
dual norm. For any constants λ, c, b > 0 and any g ∈ Rn,

sup
v∈Rn:∥v∥≤min{ c

λ ,b}

(
⟨g, v⟩ − λ

2
∥v∥2

)
≤ min

{
1

2λ
∥g∥2∗,

c

λ
∥g∥∗, b∥g∥∗

}
.

A.2 Results for delay-related quantities

The following three lemmas quantify the relationship between σmax, dmax, and dtot.
Lemma A.6 (Masoudian et al. (2022, Lemma 3)). Let dmax(S) = maxτ∈S dτ and S̄ = [T ] \ S for
any S ⊆ [T ]. Then,

σmax ≤ min
S⊆[T ]

(
|S|+ dmax(S̄)

)
.

Lemma A.7. Let dtot(S) =
∑
τ∈S dτ and S̄ = [T ] \ S for any S ⊆ [T ]. Then,

σmax ≤ 2
√
2 min
S⊆[T ]

(
|S|+

√
dtot(S̄)

)
.

Proof. First, observe that dtot(S) =
∑T
t=1|mt ∩ S| for any S ⊆ [T ]. Also note that the bound

trivially holds if σmax = 0; hence, assume σmax ≥ 1 without loss of generality. Let t∗ be any round
such that |mt∗ | = σmax. Consider any S ⊆ [T ], and define A = mt∗ ∩ S and B = mt∗ ∩ S̄. If
|A| ≥ (

√
2− 1)|mt∗ |, then

|S|+
√
dtot(S̄) ≥ |S| ≥ |A| ≥ (

√
2− 1)σmax .

Otherwise, we have that |B| > (2 −
√
2)|mt∗ |. Hence, denote B = {t1, . . . , t|B|} such that

t1 < · · · < t|B| and observe that |mti+1 ∩B| ≥ i for any ti ∈ B. We can consequently prove that

|S|+
√
dtot(S̄) ≥

√
dtot(S̄) =

√√√√ T∑
t=1

|mt ∩ S̄| ≥
√∑
t∈B

|mt+1 ∩B|

≥

√√√√ |B|∑
i=1

i ≥ |B|√
2
> (

√
2− 1)σmax ,

which concludes the proof as 1√
2−1

≤ 2
√
2 .

Lemma A.8. Let σSmax = maxτ∈[T ]|mτ ∩ S| and S̄ = [T ] \ S for any S ⊆ [T ]. Then,

σmax = min
S⊆[T ]

(
|S|+ σS̄max

)
.

Proof. First, it trivially holds that

σmax ≥ min
S⊆[T ]

(
|S|+ σS̄max

)
.

We now only need to show the inequality in the other direction. Consider any S ⊆ [T ] and let t∗ be
any round such that |mt∗ | = σmax. Then,

|S|+ σS̄max ≥ |S|+ |mt∗ ∩ S̄| = |S|+ |mt∗ \ S| ≥ |mt∗ | = σmax ,

which concludes the proof.

The following lemma further illustrates the relationship between σmax and
√
dtot in a more concrete

way.
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Lemma A.9. There exists a delay sequence (dt)t∈[T ] such that σmax ≥
√
1.5 · dtot. In addition,

there also exists a delay sequence such that σmax = 1 and
√
dtot =

√
T .

Proof. Given a positive integer N > 5, consider the sequence (dt)t∈[T ], where dt = N − t for
all t ≤ N and dt = 0 for all t > N . In this case, σmax = σN−1 = N − 1 and

√
1.5 · dtot =√

3N(N−1)
4 ≤ N − 1. On the other hand, consider the sequence where dt = 1 for all t ∈ [T ]. In this

case, σmax = 1 and
√
dtot =

√
T .

On a similar note, we show another similar result depicting the relationship between dmax and
√
dtot.

Lemma A.10. There exists a delay sequence (dt)t∈[T ] such that dmax = T and
√
dtot =

√
T . In

addition, there also exists a delay sequence such that dmax = 1 and
√
dtot =

√
T .

Proof. Consider the sequence (dt)t∈[T ] where one round t0 ≤ T/2 with dt0 = T−t0 and all the other
rounds dt = 0 for t ̸= t0, then we can choose t0 = 1 and have dmax = T and

√
dtot =

√
T . On the

other hand, consider the sequence where dt = 1 for all t ∈ [T ], then dmax = 1 and
√
dtot =

√
T .

B Omitted details in Section 3

In this section, we show the omitted details in Section 3. For completeness, we restate the theorem
and provide its proof.

Theorem 3.1. Assume that f1, . . . , fT are λ-strongly convex with respect to the Euclidean norm
∥·∥2. Then, under Assumption 2.3, Algorithm 1 guarantees that

RegT = O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

Proof. First of all, define

Ft(x) =
∑
τ∈ot

⟨gτ , x⟩+
λ

2

t−1∑
τ=1

∥x− xτ∥22 and F ⋆t (x) =

t−1∑
τ=1

(
⟨gτ , x⟩+

λ

2
∥x− xτ∥22

)
for any t ≥ 1. Observe that xt ∈ argminx∈X Ft(x) and additionally define x⋆t ∈ argminx∈X F

⋆
t (x)

for t ≥ 2, while x⋆1 = x1 (since F ⋆1 (x) = F1(x)). The sequence (x⋆t )t≥1 represents the “cheating”
sequence that uses the gradients from all rounds up to t− 1, including those from rounds in mt that
are yet to be received because of the delays. As mentioned in Section 3, we decompose the regret as
follows:

RegT (u) =

T∑
t=1

(
ft(xt)− ft(u)

)
≤

T∑
t=1

(
⟨gt, xt − u⟩ − λ

2
∥xt − u∥22

)

=

T∑
t=1

⟨gt, x⋆t − u⟩︸ ︷︷ ︸
Reg⋆

T (u)

+

T∑
t=1

⟨gt, xt − x⋆t ⟩︸ ︷︷ ︸
DriftT

−λ
2

T∑
t=1

∥xt − u∥22 , (14)

where the first inequality follows from the λ-strong convexity of ft. Next, we analyze the cheating
term Reg⋆T (u) and the drift term DriftT individually, and their respective upper bounds will then be
combined to derive the final regret bound.

To analyze Reg⋆T (u), first define ψt(x) = λ
2

∑t−1
τ=1∥x−xτ∥22 for t ≥ 1. We can therefore rewrite both

Ft(x) =
∑
τ∈ot⟨gτ , x⟩+ ψt(x) and F ⋆t (x) =

∑t−1
τ=1⟨gτ , x⟩+ ψt(x). Hence, applying Lemma A.1,
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we can bound Reg⋆T (u) =
∑T
t=1⟨gt, x⋆t − u⟩ as follows:

T∑
t=1

⟨gt, x⋆t − u⟩

= ψT+1(u)−min
x∈X

ψ1(x) +

T∑
t=1

[
F ⋆t
(
x⋆t
)
− F ⋆t+1

(
x⋆t+1

)
+ ⟨gt, x⋆t ⟩

]
+ F ⋆T+1

(
x⋆T+1

)
− F ⋆T+1(u)

≤ ψT+1(u) +

T∑
t=1

[(
F ⋆t (x

⋆
t ) + ⟨gt, x⋆t ⟩

)
−
(
F ⋆t (x

⋆
t+1) + ⟨gt, x⋆t+1⟩

)
− ψt+1(x

⋆
t+1) + ψt(x

⋆
t+1)

]
,

(15)

where the last inequality holds because F ⋆T+1(x
⋆
T+1) ≤ F ⋆T+1(u) by optimality of x⋆T+1, together

with the non-negativity of ψ1.

Focus on the difference between the terms F ⋆t (x
⋆
t ) + ⟨gt, x⋆t ⟩ and F ⋆t (x

⋆
t+1) + ⟨gt, x⋆t+1⟩ within the

sum in the right-hand side of Equation (15). Applying Lemma A.2 for z1 = x⋆t+1 with A1 = λt
2 I

and w1 =
∑
τ≤t gτ , and z2 = x⋆t with A2 = λ(t−1)

2 I and w2 =
∑
τ≤t−1 gτ , we have that

(2t− 1)
λ

2
∥x⋆t − x⋆t+1∥22 = ∥x⋆t − x⋆t+1∥2A1

+ ∥x⋆t − x⋆t+1∥2A2

≤ ⟨gt, x⋆t − x⋆t+1⟩+
λ

2
∥x⋆t − xt∥22 −

λ

2
∥x⋆t+1 − xt∥22

≤ ∥gt∥2∥x⋆t − x⋆t+1∥2 +
λ

2
∥x⋆t − xt∥22 ,

where we used the Cauchy-Schwarz inequality in the last step. By straightforward calculations, we
can show that the above inequality implies that

∥x⋆t − x⋆t+1∥2 ≤ 2∥gt∥2
λ(2t− 1)

+
∥x⋆t − xt∥2√

2t− 1
≤ 2∥gt∥2
λ(2t− 1)

+ ∥x⋆t − xt∥2 . (16)

We can leverage this inequality to show that(
F ⋆t (x

⋆
t ) + ⟨gt, x⋆t ⟩

)
−
(
F ⋆t (x

⋆
t+1) + ⟨gt, x⋆t+1⟩

)
≤ ⟨gt, x⋆t − x⋆t+1⟩ (F ⋆t (x

⋆
t ) ≤ F ⋆t (x

⋆
t+1))

≤ ∥gt∥2∥x⋆t − x⋆t+1∥2 (Cauchy-Schwarz)

≤ 2∥gt∥22
λ(2t− 1)

+ ∥gt∥2∥x⋆t − xt∥2 , (Equation (16))

where the first inequality is due to the optimality of x⋆t with respect to F ⋆t . Plugging the above into
the bound on Reg⋆T (u) from Equation (15), we obtain

Reg⋆T (u) ≤ ψT+1(u) +

T∑
t=1

[
2∥gt∥22
λ(2t− 1)

+ ∥gt∥2∥x⋆t − xt∥2 + ψt(x
⋆
t+1)− ψt+1(x

⋆
t+1)

]

=
λ

2

T∑
t=1

∥xt − u∥22 +
T∑
t=1

[
2∥gt∥22
λ(2t− 1)

+ ∥gt∥2∥x⋆t − xt∥2 −
λ

2
∥x⋆t+1 − xt∥22

]

≤ λ

2

T∑
t=1

∥xt − u∥22 +
G2

λ

T∑
t=1

2

2t− 1
+G

T∑
t=1

∥x⋆t − xt∥2

≤ λ

2

T∑
t=1

∥xt − u∥22 +
G2

λ
ln(2T + 1) +G

T∑
t=1

∥x⋆t − xt∥2 , (17)

where the equality is due to the definition of ψt, while the second inequality follows from ∥gt∥2 ≤ G
by Assumption 2.3.

Observe that, given such a bound on the cheating term, we now have to consider three different terms
as shown in Equation (17). While the second one is a desirable logarithmic term, and the first one is
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negligible since it will be canceled when plugging this bound on Reg⋆T (u) into Equation (14), the
third one needs some further analysis. Interestingly enough, this latter term involves a difference
between x⋆t and xt, in an analogous way as in the drift term DriftT . We indeed show that we can
handle both terms in the same way.

We thus move to the analysis of the DriftT term. One can immediately observe that, by Cauchy-
Schwarz and by Assumption 2.3,

DriftT =

T∑
t=1

⟨gt, xt − x⋆t ⟩ ≤
T∑
t=1

∥gt∥2∥x⋆t − xt∥2 ≤ G

T∑
t=1

∥x⋆t − xt∥2 . (18)

While it immediately follows that ∥x⋆1 − x1∥2 = 0 by definition of x⋆1, we require some additional
effort when studying the other norms ∥x⋆t − xt∥2 for t ≥ 2. To this end, we rely once more
on Lemma A.2 for z1 = x⋆t with w1 =

∑
τ≤t−1 gτ and z2 = xt with w2 =

∑
τ∈ot gτ , using

A = (t− 1)λ2 I , and show that

λ(t− 1)

2
∥x⋆t − xt∥22 = ∥x⋆t − xt∥2A ≤ 1

4

∥∥∥∥∥∑
τ∈mt

gτ

∥∥∥∥∥
2

A−1

=
1

2λ(t− 1)

∥∥∥∥∥∑
τ∈mt

gτ

∥∥∥∥∥
2

2

.

We can thus rewrite this inequality in the following way:

∥x⋆t − xt∥2 ≤ 1

λ(t− 1)

∥∥∥∥∥∑
τ∈mt

gτ

∥∥∥∥∥
2

≤ 1

λ(t− 1)

∑
τ∈mt

∥gτ∥2 ≤ G|mt|
λ(t− 1)

, (19)

where we used once again that ∥gτ∥2 ≤ G by Assumption 2.3. The above considerations consequently
imply that the sum of interest for bounding DriftT satisfies

T∑
t=1

∥x⋆t − xt∥2 ≤ G

λ

T∑
t=2

|mt|
t− 1

. (20)

The sum on the right-hand side of the above inequality can be immediately bounded as
T∑
t=2

|mt|
t− 1

≤ σmax

T∑
t=2

1

t− 1
≤ σmax ln(2T ) (21)

by definition of σmax. Furthermore, by using the fact that
∑
τ≤t|mτ | ≤ (t− 1)2 since mτ ⊆ [τ − 1]

for any τ , we can prove at the same time that

T∑
t=2

|mt|
t− 1

=

T∑
t=2

|mt|√
(t− 1)

2
≤

T∑
t=2

|mt|√∑
τ≤t |mτ |

≤ 2

√√√√ T∑
t=1

|mt| ≤ 2
√
dtot , (22)

where the second inequality is due to Orabona (2025, Lemma 4.13).

Combining all the results gathered so far, we can finally derive the overall regret bound as follows. In
particular, for any u ∈ X , we have

RegT (u) ≤ Reg∗T (u) + DriftT − λ

2

T∑
t=1

∥xt − u∥22 (Equation (14))

≤ G2

λ
ln(2T + 1) +G

T∑
t=1

∥x⋆t − xt∥2 + DriftT (Equation (17))

≤ G2

λ
ln(2T + 1) + 2G

T∑
t=1

∥x⋆t − xt∥2 (Equation (18))

≤ G2

λ
ln(2T + 1) +

2G2

λ

T∑
t=2

|mt|
t− 1

(Equation (20))

≤ G2

λ
ln(2T + 1) +

2G2

λ
min

{
σmax ln(2T ), 2

√
dtot

}
(Equations (21) and (22))

= O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.
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C Omitted details from Section 4

In this section, we show the omitted details from Section 4. To do so, we first introduce the following
useful lemma that will be crucial in the regret analysis of Algorithm 2. It essentially corresponds to
the standard elliptical potential lemma, but here adapted to the presence of delays.
Lemma C.1. Let ϕ > 0, L > 0, and 0 < η0 ≤ η1 ≤ · · · ≤ ηN . For any t ∈ [N ], let at ∈ Rn such
that ∥at∥2 ≤ L and define At = ηtI + ϕ

∑
τ≤t aτa

⊤
τ . Then, it holds that

N∑
t=1

∥at∥A−1
t−1

(∑
τ∈mt

∥aτ∥A−1
t−1

)
≤ 2nd≤Nmax

ϕ

(
ϕL2

η0
+ 1

)
ln

(
1 +

ϕL2N

η0n

)
,

and that
N∑
t=1

∥at∥A−1
t

(∑
τ∈mt

∥aτ∥A−1
t

)
≤ 2nd≤Nmax

ϕ
ln

(
1 +

ϕL2N

η0n

)
.

Proof. Define Bt = 1
ϕAt and Ct = Bt − ηt−η0

ϕ I ⪯ Bt for any t ∈ [N ]. By the AM-GM inequality,
we first show that

N∑
t=1

∥at∥A−1
t−1

∑
τ∈mt

∥aτ∥A−1
t−1

≤
N∑
t=1

(
|mt|
2

∥at∥2A−1
t−1

+
1

2

∑
τ∈mt

∥aτ∥2A−1
t−1

)

≤
N∑
t=1

(
|mt|
2

∥at∥2A−1
t−1

+
1

2

∑
τ∈mt

∥aτ∥2A−1
τ−1

)

=
1

ϕ

N∑
t=1

(
|mt|
2

∥at∥2B−1
t−1

+
1

2

∑
τ∈mt

∥aτ∥2B−1
τ−1

)
,

where we also used the fact that Aτ−1 ⪯ At−1 for any τ < t. Now observe that
N∑
t=1

|mt| · ∥at∥2B−1
t−1

≤ d≤Nmax

N∑
t=1

∥at∥2B−1
t−1

since |mt| ≤ d≤Nmax for t ≤ N . Similarly, we can show that
N∑
t=1

∑
τ∈mt

∥aτ∥2B−1
τ−1

=

N∑
t=1

dt∥at∥2B−1
t−1

≤ d≤Nmax

N∑
t=1

∥at∥2B−1
t−1

as for any τ ∈ [N ] there are no more than dτ rounds t such that τ ∈ mt. Putting these results together,
we obtain that

N∑
t=1

(
|mt|
2

∥at∥2B−1
t−1

+
1

2

∑
τ∈mt

∥aτ∥2B−1
τ−1

)
≤ d≤Nmax

N∑
t=1

∥at∥2B−1
t−1

≤ d≤Nmax

N∑
t=1

∥at∥2C−1
t−1

.

By the fact that ∥at∥2C−1
t−1

≤ ϕL2

η0
, we can use Lemma 19.4 in Lattimore & Szepesvári (2020) and

show that
N∑
t=1

∥at∥2C−1
t−1

≤
(
ϕL2

η0
+ 1

) N∑
t=1

min
{
1, ∥at∥2C−1

t−1

}
≤ 2n

(
ϕL2

η0
+ 1

)
ln

(
1 +

L2N

η0n

)
.

Concatenating all the above results concludes the proof of the first inequality.

For the second inequality, similar steps suffice to prove it, but with a different observation that now
∥at∥2C−1

t

≤ min
{
1, ∥at∥2C−1

t−1

}
because

∥at∥2C−1
t

≤ a⊤t

(
υI + ata

⊤
t

)−1

at = a⊤t

(
1

υ
I − ata

⊤
t

υ2 + υ∥at∥22

)
at

=
∥at∥22
υ

− ∥at∥42
υ2 + υ∥at∥22

=
∥at∥22

υ + ∥at∥22
≤ 1 ,
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where we used the Sherman-Morrison formula in the first equality with υ = η0/ϕ, and since
∥at∥C−1

t
≤ ∥at∥C−1

t−1
given that Ct−1 ⪯ Ct.

For completeness, we restate Theorem 4.1, the main result of Section 4.1, and provide its proof.

Theorem 4.1. Assume that f1, . . . , fT are α-exp-concave and let β = 1
2 min{ 1

4GD , α}. Then, under
Assumptions 2.3 and 2.4, Algorithm 2 with 0 < η0 ≤ η1 ≤ · · · ≤ ηT guarantees that

RegT = O
(n
β
ln
(
1 +

βG2T

η0n

)
+ ηTD

2 +min {B1, B2}
)
,

where B1 =
(
G2

η0
+ 1

β

)
ndmax ln

(
1 + βG2T

η0n

)
and B2 = G2

∑T
t=1

|mt|
ηt−1

.

Proof. First, in a similar way as in the proof of Theorem 3.1, we define

Ft(x) =
∑
τ∈ot

⟨gτ , x⟩+ ψt(x) and F ⋆t (x) =

t−1∑
τ=1

⟨gτ , x⟩+ ψ⋆t (x),

where ψt(x) = ηt−1

2 ∥x∥22 + β
2

∑
τ∈ot ⟨gτ , x− xτ ⟩2 and ψ⋆t (x) = ηt−1

2 ∥x∥22 +
β
2

∑t−1
τ=1 ⟨gτ , x− xτ ⟩2. Observe that xt ∈ argminx∈X Ft(x), and define x⋆t ∈ argminx∈X F

⋆
t (x)

for t ≥ 1 to be the predictions following a similar update rule while using all the information up to
round t− 1. Similarly to the regret decomposition for the strongly convex case shown in Appendix B,
we decompose the regret as follows:

RegT (u) =

T∑
t=1

(ft(xt)− ft(u)) ≤
T∑
t=1

(
⟨gt, xt − u⟩ − β

2
⟨xt − u, gt⟩2

)

=

T∑
t=1

⟨gt, x⋆t − u⟩︸ ︷︷ ︸
Reg⋆

T (u)

+

T∑
t=1

⟨gt, xt − x⋆t ⟩︸ ︷︷ ︸
DriftT

−β
2

T∑
t=1

⟨xt − u, gt⟩2 ,

(23)

where the inequality holds thanks to Lemma A.3.

Let us begin the analysis of the “linearized” regret by first focusing on the cheating term Reg⋆T (u).
Let F ′

t (x) = F ⋆t (x) + ⟨gt, x⟩ and define x′t ∈ argminx∈X F
′
t (x). Leveraging Lemma A.1 with

ℓt(·) = ⟨gt, ·⟩, we show that Reg⋆T (u) =
∑T
t=1 ⟨gt, x⋆t − u⟩ can be bounded as follows:

T∑
t=1

⟨gt, x⋆t − u⟩

= ψ⋆T+1(u)−min
x∈X

ψ⋆1(x) +

T∑
t=1

[
F ⋆t (x⋆t )− F ⋆t+1

(
x⋆t+1

)
+ ⟨gt, x⋆t ⟩

]
+ F ⋆T+1

(
x⋆T+1

)
− F ⋆T+1(u)

≤ ψ⋆T+1(u) +

T∑
t=1

[(
F ⋆t (x

⋆
t ) + ⟨gt, x⋆t ⟩

)
−
(
F ⋆t (x

⋆
t+1) + ⟨gt, x⋆t+1⟩

)
− ψ⋆t+1(x

⋆
t+1) + ψ⋆t (x

⋆
t+1)

]
≤ ψ⋆T+1(u) +

T∑
t=1

[
F ′
t (x

⋆
t )− F ′

t (x
′
t) + ψ⋆t (x

⋆
t+1)− ψ⋆t+1(x

⋆
t+1)

]
(definition of F ′

t and x′t)

≤ ψ⋆T+1(u) +

T∑
t=1

(F ′
t (x

⋆
t )− F ′

t (x
′
t)) , (24)

where in the first inequality we used the facts that F ⋆T+1(x
⋆
T+1) ≤ F ⋆T+1(u) and that ψ⋆1 is nonneg-

ative, while the last inequality is due to ψ⋆t (x
⋆
t+1) ≤ ψ⋆t+1(x

⋆
t+1). Applying now Lemma A.2, we

20



have ∥x⋆t − x′t∥At−1 ≤ ∥gt∥A−1
t−1

, where At−1 = ηt−1I + β
∑t−1
τ=1 gτg

⊤
τ . This further means that

F ′
t (x

⋆
t )− F ′

t (x
′
t) (25)

≤ ⟨∇F ′
t (x

⋆
t ), x

⋆
t − x′t⟩ (convexity of F ′

t )

= ⟨∇F ⋆t (x⋆t ) + gt, x
⋆
t − x′t⟩ (definition of F ′

t )

≤ ⟨gt, x⋆t − x′t⟩ (first-order optimality)

≤ min
{
∥gt∥2∥x⋆t − x′t∥2 , ∥gt∥A−1

t−1
∥x⋆t − x′t∥At−1

}
(Cauchy-Schwarz inequality)

≤ min
{
GD, ∥gt∥A−1

t−1
∥x⋆t − x′t∥At−1

}
(Assumptions 2.3 and 2.4)

≤ min
{
GD, ∥gt∥2A−1

t−1

}
. (26)

We now focus on the sum of terms on the right-hand side of Equation (24). Because ηt is non-
decreasing by assumption, we have

T∑
t=1

(F ′
t (x

⋆
t )− F ′

t (x
′
t)) ≤

T∑
t=1

min
{
GD, ∥gt∥2A−1

t−1

}
(Equation (26))

≤
T∑
t=1

min

{
GD,

1

β
∥gt∥2( η0

β I+
∑

τ<t gτg
⊤
τ )−1

}
(ηt−1I ⪰ η0I)

≤ max

{
GD,

1

β

} T∑
t=1

min
{
1, ∥gt∥2( η0

β I+
∑

τ<t gτg
⊤
τ )−1

}
≤
(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
, (27)

where the last inequality follows by Lattimore & Szepesvári (2020, Lemma 19.4). Combining the
previous inequalities, we can show that Reg⋆T (u) satisfies

Reg⋆T (u) ≤ ψ⋆T+1(u) +

T∑
t=1

(F ′
t (x

⋆
t )− F ′

t (x
′
t)) (Equation (24))

≤ ψ⋆T+1(u) +
β

2

T∑
t=1

(⟨gt, u− xt⟩)2 +
(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
(Equation (27))

=
ηT
2
∥u∥22 +

β

2

T∑
t=1

(⟨gt, u− xt⟩)2 +
(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
, (28)

where we simply replace ψ⋆T+1 with its definition in the last step.

We thus move to the analysis of the DriftT term. Using the Cauchy-Schwarz inequality, we have

DriftT =

T∑
t=1

⟨gt, xt − x⋆t ⟩ ≤
T∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1 . (29)

Applying Lemma A.2, we obtain that

F ⋆t (xt)− F ⋆t (x
⋆
t ) ≥

1

2
∥xt − x⋆t ∥

2
At−1

and Ft(x
⋆
t )− Ft(xt) ≥

1

2
∥xt − x⋆t ∥

2
Aot

,

21



where Aot = ηt−1I + β
∑
τ∈ot gτg

⊤
τ . Summing the above inequalities, and replacing F ⋆t and Ft

with their definitions, it follows that

1

2
∥xt − x⋆t ∥

2
Aot

+
1

2
∥xt − x⋆t ∥

2
At−1

≤
t−1∑
τ=1

⟨gτ , xt⟩ −
∑
τ∈ot

⟨gτ , x⋆t ⟩+
t−1∑
τ=1

⟨gτ , x⋆t ⟩ −
∑
τ∈ot

⟨gτ , xt⟩

+
β

2

(
t−1∑
τ=1

⟨gτ , xt − xτ ⟩2 −
t−1∑
τ=1

⟨gτ , x⋆t − xτ ⟩2 +
∑
τ∈ot

⟨gτ , x⋆t − xτ ⟩2 −
∑
τ∈ot

⟨gτ , xt − xτ ⟩2
)

≤
∑
τ∈mt

⟨gτ , xt − x⋆t ⟩+
β

2

(∑
τ∈mt

⟨gτ , xt − xτ ⟩2 −
∑
τ∈mt

⟨gτ , x⋆t − xτ ⟩2
)

=
∑
τ∈mt

⟨gτ , xt − x⋆t ⟩+
β

2

(∑
τ∈mt

⟨gτ , xt − x⋆t ⟩ · ⟨gτ , xt + x⋆t − 2xτ ⟩

)

≤
∑
τ∈mt

|⟨gτ , xt − x⋆t ⟩|+
β

2

∑
τ∈mt

|⟨gτ , xt − x⋆t ⟩| |⟨gτ , xt + x⋆t − 2xτ ⟩|

≤ (1 + 2GDβ)
∑
τ∈mt

|⟨gτ , xt − x⋆t ⟩| (Assumptions 2.3 and 2.4)

≤ (1 + 2GDβ)

(∑
τ∈mt

∥gτ∥A−1
t−1

)
∥xt − x⋆t ∥At−1

(Cauchy-Schwarz inequality)

≤ 5

4

(∑
τ∈mt

∥gτ∥A−1
t−1

)
∥xt − x⋆t ∥At−1

(β ≤ 1
8GD )

≤ 2

(∑
τ∈mt

∥gτ∥A−1
t−1

)
∥xt − x⋆t ∥At−1

.

Rearranging the terms, we can obtain that ∥xt − x⋆t ∥At−1
≤ 4

∑
τ∈mt

∥gτ∥A−1
t−1

. Plugging this
inequality into DriftT , we have

DriftT ≤
T∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1
(Equation (29))

≤ 4

T∑
t=1

∥gt∥A−1
t−1

(∑
τ∈mt

∥gτ∥A−1
t−1

)

≤ 8d≤Tmaxn

(
G2

η0
+

1

β

)
ln

(
1 +

βTG2

nη0

)
, (30)

where the last inequality is due to Lemma C.1. On the other hand, we can also bound DriftT in a
different way:

DriftT ≤
T∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1
≤ 4

T∑
t=1

∥gt∥A−1
t−1

(∑
τ∈mt

∥gτ∥A−1
t−1

)
≤ 4G2

T∑
t=1

|mt|
ηt−1

,

(31)
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where in the last step we use the fact that ∥gs∥2A−1
t−1

≤ G2

ηt−1
for any s ∈ [T ], also due to Assump-

tion 2.3. Combining all bounds together, we finally obtain that

RegT (u) ≤ Reg⋆T (u) + DriftT − β

2

T∑
t=1

⟨xt − u, gt⟩2 (Equation (23))

≤ ηT
2
∥u∥22 +

(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
+ DriftT (Equation (28))

≤ ηT
2
∥u∥22 +

(
GD +

1

β

)
n ln

(
1 +

βG2T

nη0

)
+ 4min

{
2d≤Tmaxn

(
G2

η0
+

1

β

)
ln

(
1 +

βG2T

η0n

)
, G2

T∑
t=1

|mt|
ηt−1

}
(Equations (30) and (31))

= O
(
n

β
ln

(
1 +

βG2T

η0n

)
+ ηTD

2 +min {B1, B2}
)
, (Assumption 2.4)

where

B1 =

(
G2

η0
+

1

β

)
ndmax ln

(
1 +

βG2T

η0n

)
and B2 = G2

T∑
t=1

|mt|
ηt−1

are defined as in the theorem statement, and we used the fact that GD ≤ 1
β .

The following corollary is a restatement of Corollary 4.2, which shows that via an adaptive tuning of
the learning rate used by Algorithm 2, we are able to guarantee O(min{dmax lnT,

√
dtot}) regret.

Corollary 4.2. Assume that f1, . . . , fT are α-exp-concave and let β = 1
2 min{ 1

4GD , α}. Then, under
Assumptions 2.3 and 2.4, Algorithm 2 with the adaptive learning rate ηt = min{at, bt}+ 1, where
at and bt are defined in Equations (5) and (6), guarantees that

RegT = O
(
n

β
ln
(
1 +

βG2T

n

)
+D2 +min {C1, C2}

)
,

where C1 =
(
D
G + 1

) (
G2 + 1

β

)
ndmax ln

(
1 + βG2T

n

)
and C2 =

(
G2 +GD

) (√
dtot + 1

)
.

Proof. The adaptive learning rate is given by η0 = 1 and ηt = min{at, bt}+ 1 for all t ≥ 1, where
we recall that

at =
2

GD

(
G2 +

1

β

)
nd≤tmax ln

(
1 +

βG2T

n

)
and bt =

G

D

√√√√ t∑
s=1

|ms|+ |mt|+ 1 ,

Note that ηt is non-decreasing since at and bt are non-decreasing. When aT ≤ bT , we have

RegT (u) ≤
(
GD +

1

β

)
n ln

(
1 +

βGT

n

)
+D2

+

(
2D

G
+ 8

)(
G2 +

1

β

)
ndmax ln

(
1 +

βG2T

n

)
,

where ∥u∥2 ≤ D by Assumption 2.4. When aT ≥ bT , we instead have

RegT (u) ≤
(
GD +

1

β

)
n ln

(
1 +

βG2T

n

)
+D2 +GD


√√√√ T∑

t=1

|mt|+ 1


+

τ⋆∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1
+

T∑
t=τ⋆+1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1
,
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where τ⋆ is last round aτ⋆ ≤ bτ⋆ . Hence, we have

τ⋆∑
t=1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1 ≤ 8

(
G2 +

1

β

)
nd≤τ

⋆

max ln

(
1 +

βG2T

n

)
(Equation (30))

≤ 8G2

√√√√ τ⋆∑
t=1

|mt|+ |mτ⋆ |+ 1

≤ 8G2


√√√√ T∑

t=1

|mt|+ 1

 (32)

Regarding the remaining rounds until T , we can also show that

T∑
t=τ⋆+1

∥gt∥A−1
t−1

· ∥xt − x⋆t ∥At−1 ≤ 4G2
T∑

t=τ⋆+1

|mt|
ηt−1

(Equation (31))

≤ 4G2
T∑

t=τ⋆+1

D|mt|

G
√∑t−1

s=1 |ms|+ |mt−1|+ 1

≤ 8G2
T∑

t=τ⋆+1

D|mt|

G
√∑t

s=τ⋆+1 |ms|

≤ 8GD

√√√√ T∑
t=τ⋆+1

|mt|

≤ 8GD

√√√√ T∑
t=1

|mt|, (33)

where the last inequality is due to Orabona (2025, Lemma 4.13). Combining the above three
inequalities together, we have

RegT (u) ≤
(
GD +

1

β

)
n ln

(
1 +

βG2T

n

)
+D2 +

(
8G2 + 9GD

)
√√√√ T∑

t=1

|mt|+ 1

 .

Finally, we obtain

RegT (u)

≤
(
GD +

1

β

)
n ln

(
1 +

βG2T

n

)
+D2

+min

{(
2D

G
+ 8

)(
G2d≤Tmax +

d≤Tmax

β

)
n ln

(
1 +

βG2T

n

)
,
(
8G2 + 9GD

) (√
dtot + 1

)}
= O

(
1

β
ln

(
1 +

βG2T

n

)
+D2 +min {C1, C2}

)
,

where

C1 =

(
D

G
+ 1

)(
G2 +

1

β

)
ndmax ln

(
1 +

βG2T

n

)
and

C2 =
(
G2 +GD

) (√
dtot + 1

)
as in the theorem statement.
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D Omitted details from Section 5

Here we present the omitted details from Section 5. For completeness, we restate the main result
(Theorem 5.2) and provide its proof.

Theorem 5.2. In the OLR problem with delayed labels under Assumption 5.1, Algorithm 3 guarantees
for any 0 < η0 ≤ η1 ≤ · · · ≤ ηT that

RegT (u) ≤
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+O

(
Y 2
(
σmax +min {M1,M2}

))
,

where M1 = ndmax ln
(
1 + Z2T

η0n

)
and M2 = Z2

∑T
t=1

|mt|
ηt

.

Proof. We begin by defining

Ft(x) =
∑
τ∈ot

−yτ ⟨zτ , x⟩+ ψt(x) and F ∗
t (x) =

t−1∑
τ=1

−yτ ⟨zτ , x⟩+ ψt(x),

where ψt(x) = 1
2

∑t
τ=1⟨zτ , x⟩2 + ηt

2 ∥x∥
2
2 for t ∈ [T ], and we let ψT+1 = ψT . Observe that

xt ∈ argminx∈Rn Ft(x), and define x⋆t ∈ argminx∈Rn F ⋆t (x) for t ≥ 1 to be the predictions
following a similar update rule while using all the information up to round t− 1, including the labels
yτ for rounds τ ∈ mt that the algorithm is missing because of the delays.

Similarly to the regret decomposition for the strongly convex case shown in Appendix B, we rewrite
the regret as follows:

RegT (u) =

T∑
t=1

(
ft(x̃t)− ft(u)

)
=

T∑
t=1

(
ft(x

⋆
t )− ft(u)

)
︸ ︷︷ ︸

Reg⋆
T (u)

+

T∑
t=1

(
ft(x̃t)− ft(x

⋆
t )
)

︸ ︷︷ ︸
DriftT

, (34)

where Reg⋆T (u) is the cheating regret for the iterates x⋆1, . . . , x
⋆
T , while DriftT is a drift term that

quantifies the influence of the missing labels on the regret because of the delayed feedback. Note that,
contrarily to other regret analyses in this work, here DriftT is also affected by the clipping in the
definition of x̃t.

Let us first analyze the cheating regret Reg⋆T (u). By the definition of the loss ft(x) = 1
2

(
⟨zt, x⟩−yt

)2
,

we can rewrite the regret in the following way:

Reg⋆T (u) =

T∑
t=1

(
ft(x

⋆
t )− ft(u)

)
=

1

2

T∑
t=1

⟨zt, x⋆t ⟩2 +
T∑
t=1

(
−yt⟨zt, x⋆t ⟩+ yt⟨zt, u⟩

)
− 1

2

T∑
t=1

⟨zt, u⟩2 .

(35)

We can now move our focus on the central sum, which essentially corresponds to the regret of
the same sequence

(
x⋆t
)
t≥1

against the comparator u ∈ Rn, but with respect to the linear losses
x 7→ −yt⟨zt, x⟩. Additionally define F ′

t (x) = F ⋆t (x)− yt⟨zt, x⟩ for notational convenience. Hence,
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we analyze the above-mentioned term by applying Lemma A.1, which yields

T∑
t=1

(
−yt⟨zt, x⋆t ⟩+ yt⟨zt, u⟩

)
= ψT+1(u)− min

x∈Rn
ψ1(x) +

T∑
t=1

[
F ⋆t (x

⋆
t )− F ⋆t+1(x

⋆
t+1)− yt⟨zt, x⋆t+1⟩

]
+ F ⋆T+1(x

⋆
T+1)− F ⋆T+1(u)

≤ ψT+1(u) +

T∑
t=1

[
F ⋆t (x

⋆
t )− F ⋆t+1(x

⋆
t+1)− yt⟨zt, x⋆t+1⟩

]
= ψT+1(u) +

T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
⋆
t+1)

)
−

T∑
t=1

(
ψt+1(x

⋆
t+1)− ψt(x

⋆
t+1)

)
= ψT (u) +

T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
⋆
t+1)

)
− 1

2

T∑
t=1

⟨zt, x⋆t ⟩2

≤ ψT (u) +

T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
′
t)
)
− 1

2

T∑
t=1

⟨zt, x⋆t ⟩2 , (36)

where we let x′t ∈ argminx∈Rn F ′
t (x); in particular, the first inequality is due to the fact that

F ⋆T+1(x
⋆
T+1) ≤ F ⋆T+1(u) and that ψ1 is non-negative, whereas the last equality follows by definition

of ψt and x⋆1 = 0.

Consider now any term F ′
t (x

⋆
t ) − F ′

t (x
′
t) in the sum after the last inequality and let At = ηtI +∑t

τ=1 zτz
⊤
τ . Applying Lemma A.2 for z1 = x′t and z2 = x⋆t with A = At, we derive that

∥x⋆t − x′t∥At
≤ |yt|

2
∥zt∥A−1

t
. (37)

We can now use this fact to show that

F ′
t (x

⋆
t )− F ′

t (x
′
t) ≤ ⟨∇F ′

t (x
⋆
t ), x

⋆
t − x′t⟩ (convexity of F ′

t )

= ⟨∇F ⋆t (x⋆t )− ytzt, x
⋆
t − x′t⟩ (definition of F ′

t )

≤ yt⟨zt, x′t − x⋆t ⟩ (first-order optimality)

≤ |yt|∥zt∥A−1
t
∥x⋆t − x′t∥At (Cauchy-Schwarz inequality)

≤ |yt|2

2
∥zt∥2A−1

t
(Equation (37))

≤ Y 2

2
∥zt∥2A−1

t
, (38)

where the last step is a consequence of |yt| ≤ Y by Assumption 5.1. Further notice that ∥zt∥2A−1
t

≤
∥zt∥2A−1

t−1

since At−1 ⪯ At, as well as

∥zt∥2A−1
t

≤ z⊤t
(
ηtI + ztz

⊤
t

)−1
zt = z⊤t

(
1

ηt
I − ztz

⊤
t

η2t + ηt∥zt∥22

)
zt

=
∥zt∥22
ηt

− ∥zt∥42
η2t + ηt∥zt∥22

=
∥zt∥22

ηt + ∥zt∥22
≤ 1 ,
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using the Sherman-Morrison formula at the first equality. Therefore, we show that the sum of the
terms involving F ′

t is

T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
′
t)
)
≤ Y 2

2

T∑
t=1

∥zt∥2A−1
t

(Equation (38))

≤ Y 2

2

T∑
t=1

min
{
1, ∥zt∥2A−1

t−1

}
≤ nY 2 ln

(
1 +

Z2T

η0n

)
, (39)

using Lemma 19.4 in Lattimore & Szepesvári (2020) at the last step. Then, combining together all
these observations, we can bound Reg⋆T (u) from above and obtain that

Reg⋆T (u) ≤
T∑
t=1

(
F ′
t (x

⋆
t )− F ′

t (x
′
t)
)
+ ψT (u)−

1

2

T∑
t=1

⟨zt, u⟩2 (Equations (35) and (36))

≤ nY 2 ln

(
1 +

Z2T

η0n

)
+ ψT (u)−

1

2

T∑
t=1

⟨zt, u⟩2 (Equation (39))

=
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
. (definition of ψT ) (40)

Let us now consider the drift term DriftT from the decomposition in Equation (34). Define
T = {t ∈ [T ] : ft(x̃t) > ft(x

⋆
t )} to be the rounds when x̃t is worse than x⋆t with respect to the

square loss ft. Moreover, recall the definition of ρt = maxτ∈ot |yτ | as the threshold used for clipping
in the definition of x̃t. By the convexity of ft, we immediately have that

DriftT ≤
∑
t∈T

(
ft(x̃t)−ft(x⋆t )

)
≤
∑
t∈T

⟨∇ft(x̃t), x̃t−x⋆t ⟩ =
∑
t∈T

(
⟨zt, x̃t⟩−yt

)(
⟨zt, x̃t⟩−⟨zt, x⋆t ⟩

)
.

(41)
Now, we distinguish the two following cases for any t ∈ T :

• ft(x̃t) ≤ ft(xt): thus, if ⟨zt, x̃t⟩ ≤ yt it must be the case that ⟨zt, xt⟩ ≤ ⟨zt, x̃t⟩, otherwise if
⟨zt, x̃t⟩ > yt then ⟨zt, xt⟩ ≥ ⟨zt, x̃t⟩; in either case we have that(

⟨zt, x̃t⟩ − yt
)(
⟨zt, x̃t⟩ − ⟨zt, x⋆t ⟩

)
≤
(
⟨zt, x̃t⟩ − yt

)(
⟨zt, xt⟩ − ⟨zt, x⋆t ⟩

)
≤
(
|ρt|+ |yt|

)
|⟨zt, xt − x⋆t ⟩| (triangle inequality, definition of x̃t)

≤ 2Y |⟨zt, xt − x⋆t ⟩| (Assumption 5.1)
≤ 2Y ∥zt∥A−1

t
∥xt − x⋆t ∥At

. (Cauchy-Schwarz) (42)

• ft(x̃t) > ft(xt): here it must be the case that x̃t ̸= xt, yt⟨zt, x̃t⟩ ≥ 0, and |yt| > ρt (otherwise,
clipping would have only decreased the square loss ft); since t ∈ T implies that |⟨zt, x⋆t ⟩− yt| ≤
|⟨zt, x̃t⟩ − yt|, it follows that(

⟨zt, x̃t⟩ − yt
)(
⟨zt, x̃t⟩ − ⟨zt, x⋆t ⟩

)
≤ |⟨zt, x̃t⟩ − yt|

(
|⟨zt, x̃t⟩ − yt|+ |⟨zt, x⋆t ⟩ − yt|

)
(triangle inequality)

≤ 2
(
⟨zt, x̃t⟩ − yt

)2
= 2
(
|yt| − |⟨zt, x̃t⟩|

)2
(yt⟨zt, x̃t⟩ ≥ 0)

= 2
(
|yt| − ρt

)2
(|⟨zt, x̃t⟩| = ρt)

< 2|yt|2 . (0 ≤ ρt < |yt|) (43)
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Given the above remarks, let T1 = {t ∈ T : ft(x̃t) ≤ ft(xt)} be the subset of rounds in T when
clipping does not worsen the value of ft, and let T2 = T \ T1 be the remaining rounds in T . Then,

DriftT ≤
∑
t∈T

(
⟨zt, x̃t⟩ − yt

)(
⟨zt, x̃t⟩ − ⟨zt, x⋆t ⟩

)
≤ 2Y

∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At

+ 2
∑
t∈T2

|yt|2 .

(44)
At this point, for any round t ∈ T1 we are interested in understanding the behavior of the term
∥zt∥A−1

t
∥xt − x⋆t ∥At . Applying Lemma A.2, we have that

∥xt − x⋆t ∥2At
≤ 1

2

∑
τ∈mt

yτ ⟨zτ , x⋆t − xt⟩ ≤
1

2

∑
τ∈mt

|yτ |∥zτ∥A−1
t
∥x⋆t − xt∥At

≤ Y

2

∑
τ∈mt

∥zτ∥A−1
t
∥x⋆t − xt∥At

,

where the second inequality follows by Cauchy-Schwarz, while the last one comes from Assump-
tion 5.1. By rearranging terms in the previous inequality, we obtain that

∥xt − x⋆t ∥At
≤ Y

2

∑
τ∈mt

∥zτ∥A−1
t
. (45)

Recall that we define d≤tmax = maxτ≤tmin{dτ , t− τ} as the maximum delay that has been perceived
up to round t. Hence, we can now bound the sum relative to rounds in T1 from above as

2Y
∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At

≤ Y 2
∑
t∈T1

∥zt∥A−1
t

∑
τ∈mt

∥zτ∥A−1
t

(Equation (45))

≤ Y 2
T∑
t=1

∥zt∥A−1
t

∑
τ∈mt

∥zτ∥A−1
t
.

If we now adopt Lemma C.1, we have that
T∑
t=1

∥zt∥A−1
t

∑
τ∈mt

∥zτ∥A−1
t

≤ 2nd≤Tmax ln

(
1 +

Z2T

η0n

)
,

while at the same time we have
T∑
t=1

∥zt∥A−1
t

∑
τ∈mt

∥zτ∥A−1
t

≤ Z2
T∑
t=1

|mt|
ηt

,

where we used the fact that ∥zs∥A−1
t

≤ Z2

ηt
for any s ∈ [T ]. Thus, we have that

2Y
∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At

≤ Y 2 min

{
2nd≤Tmax ln

(
1 +

Z2T

η0n

)
, Z2

T∑
t=1

|mt|
ηt

}
. (46)

If we instead consider the sum over rounds in T2, it is possible to further bound it from above and
relate it to the rounds for which the corresponding label does not belong to our estimate for the label
range given by ρt. Indeed, if we let R = {t ∈ [T ] : |yt| > ρt} and given our previous remarks about
T2, we have that T2 ⊆ R. Now let q1 = min{⌈log2 ρt⌉ : ρt > 0, t ∈ [T +1]} and q2 = ⌈log2 ρT+1⌉.
For convenience, define Ij = [2j , 2j+1) for any j ∈ {q1, . . . , q2}. Then, for any t ∈ R, there
exists jt ∈ {q1, . . . , q2} such that |yt| ∈ Ijt . Moreover, if we denote by νj ∈ [T + 1] as the first
time when ρνj ∈ Ij for any j ∈ {q1, . . . , q2}, we can further show that any t ∈ R has to be such
that t ∈ mνjt−1; if it were not the case, yt would have been observed before time νjt which is a
contradiction because |yt| > ρτ for any τ < νjt . All things considered, we can derive that

2
∑
t∈T2

|yt|2 ≤ 2
∑
t∈R

|yt|2 ≤ 2

q2∑
j=q1

∑
t∈mνj−1

|yt|2 ≤ 2

q2∑
j=q1

22j |mνj−1|

≤ σmax

q2∑
j=q1

22j+1 ≤ 8

3
σmax4

q2 ≤ 32

3
σmaxρ

2
T+1 ≤ 11Y 2σmax . (47)
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Combining all the results gathered so far, we can finally derive the overall regret bound as follows:

RegT (u) ≤ Reg⋆T (u) + DriftT

≤ ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+ DriftT (Equation (40))

≤ ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+ 11Y 2σmax (Equations (44) and (47))

+ 2Y
∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At (48)

≤ ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

η0n

)
+ 11Y 2σmax (Equation (46))

+ Y 2 min

{
2ndmax ln

(
1 +

Z2T

η0n

)
, Z2

T∑
t=1

|mt|
ηt

}
.

The following corollary is a restatement of Corollary 5.3, which shows that we can further achieve a
O(min{dmax lnT,

√
dtot}) regret guarantee via an adaptive tuning of the learning rate of Algorithm 3

similar to the one adopted for Algorithm 2.
Corollary 5.3. In the OLR problem with delayed labels under Assumption 5.1, Algorithm 3 with the
adaptive learning rate ηt = γ(min{at, bt} + 1), where at and bt are defined in Equation (13) for
any γ > 0 guarantees that

RegT ≤ γ∥u∥22
2

+ nY 2 ln

(
1 +

Z2T

γn

)
+O

(
min {Q1, Q2}

)
,

where Q1 =
(
γ∥u∥22 + Y 2

)
ndmax ln

(
1 + Z2T

γn

)
and Q2 =

(
γZ∥u∥22 + (Z + 1)Y 2

)√
dtot .

Proof. By performing a similar analysis as in the proof of Theorem 5.2 up to Equation (46), for
any time threshold τ⋆ ∈ [T ] we can actually separately analyze the time ranges {1, . . . , τ⋆} and
{τ⋆ + 1, . . . , T} in an analogous way as in the proof of Corollary 4.2, and have a bound of the
following form:

2Y
∑
t∈T1

∥zt∥A−1
t
∥xt − x⋆t ∥At

≤ Y 2

(
2nd≤τ

⋆

max ln

(
1 +

Z2T

η0n

)
+ Z2

T∑
t=τ⋆+1

|mt|
ηt

)
. (49)

Then, we use an adaptive tuning of the learning rate in a similar way as performed for the proof of
Corollary 4.2. In particular, we define

at = 2nd≤tmax ln

(
1 +

Z2T

γn

)
and bt = Z

√√√√ t∑
s=1

|ms| ,

and, for any γ > 0, we set η0 = γ and ηt = γ
(
min{at, bt}+ 1

)
for any t ≥ 1. First, when aT ≤ bT

we have that

RegT (u) ≤
ηT
2
∥u∥22 + nY 2 ln

(
1 +

Z2T

γn

)
+ Y 2

(
11σmax + 2ndmax ln

(
1 +

Z2T

γn

))
(Equations (46) and (48))

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ Y 2dmax

(
11 + 2n ln

(
1 +

Z2T

γn

))
(σmax ≤ dmax)

≤ γ∥u∥22
2

+ nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2dmax +

(
γ∥u∥22 + 2Y 2

)
ndmax ln

(
1 +

Z2T

γn

)
≤ γ∥u∥22

2
+ nY 2 ln

(
1 +

Z2T

γn

)
+
(
γ∥u∥22 + 13Y 2

)
ndmax ln

(
1 +

Z2T

γn

)
.
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On the contrary, when aT > bT , we let τ⋆ be the last round such that aτ⋆ ≤ bτ⋆ and show that

RegT (u) ≤
∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax (Equations (48) and (49))

+ Y 2

(
2nd≤τ

⋆

max ln

(
1 +

Z2T

γn

)
+ Z2

T∑
t=τ⋆+1

|mt|
ηt

)

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax + ZY 2

(√√√√ τ⋆∑
t=1

|mt|+ Z

T∑
t=τ⋆+1

|mt|
ηt

)
(aτ⋆ ≤ bτ⋆ )

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax (definition of ηt)

+
ZY 2

γ


√√√√ τ⋆∑

t=1

|mt|+
T∑

t=τ⋆+1

|mt|√∑t
s=1|ms|


≤ ∥u∥22

2
ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax + ZY 2


√√√√ τ⋆∑

t=1

|mt|+ 2

√√√√ T∑
t=τ⋆+1

|ms|


(Orabona (2025, Lemma 4.13))

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 11Y 2σmax + 2ZY 2

√
2dtot

≤ ∥u∥22
2

ηT + nY 2 ln

(
1 +

Z2T

γn

)
+ 2(11 + Z)Y 2

√
2dtot (Lemma A.7)

≤ γ∥u∥22
2

(
1 + Z

√
dtot

)
+ nY 2 ln

(
1 +

Z2T

γn

)
+ 2(11 + Z)Y 2

√
2dtot .

(definition of ηT )

Considering the conditions in each of the two cases together with the definitions of at and bt, this
concludes the proof.

E Online mirror descent for delayed OCO with strongly convex losses

In this section, we prove that the following online mirror descent (OMD) algorithm achieves a
regret guarantee whose dependence on the delays is of order min

{
σmax lnT,

√
dtot

}
, similarly to

Algorithm 1. To be precise, an OMD-based algorithm which handles delays was initially proposed
by Wu et al. (2024) in their Algorithm 6. However, Wu et al. (2024) only manage to show that
this algorithm achieves regret O

(
dmax(G

2+D)
λ lnT + dmaxG

λ2

)
under Assumptions 2.3 and 2.4. Here,

we report its pseudocode in Algorithm 4 and we provide an improved regret analysis for it. Not
only do we provide a significantly better guarantee, but we also manage to lift Assumption 2.4 and
only require the boundedness of the gradient norms via Assumption 2.3. The key to achieve these
improvements simultaneously is a fundamentally different and more careful regret analysis.

Algorithm 4 Delayed OMD for strongly convex functions

input strong convexity parameter λ > 0, learning rates ηt = 2
tλ for all t ∈ [T ]

initialize x1 ∈ X
1: for t = 1, 2, . . . do
2: Play xt
3: Receive gτ = ∇fτ (xτ ) for all τ ∈ ot+1 \ ot
4: Update xt+1 = argmin

x∈X

∑
τ∈ot+1\ot

⟨gτ , x⟩+ 1
ηt
∥x− xt∥22.

5: end for
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Theorem E.1. Assume that f1, . . . , fT are λ-strongly convex functions with respect to the Euclidean
norm ∥·∥2. Then, under Assumption 2.3, Algorithm 4 guarantees

RegT = O
(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

Proof. We begin with a decomposition of the regret that, similarly to the proof of Theorem 3.1,
leverages the strong convexity of losses f1, . . . , fT and attempts to isolate the discrepancy in the
information available to the learner because of the delayed gradients. However, this decomposition
differs from the one in Theorem 3.1 since the algorithm updates its predictions differently via mirror
descent. Our approach follows the idea of framing such an information discrepancy via optimism
(Flaspohler et al., 2021). For notational convenience, define g̃1 = 0 and g̃t+1 = g̃t+

∑
τ∈ot+1\ot gτ−

gt for any t ≥ 1. Note that, by definition, each g̃t is equal to

g̃t =

t−1∑
τ=1

(
g̃τ+1 − g̃τ

)
=

t−1∑
s=1

( ∑
τ∈os+1\os

gτ − gs

)
=
∑
s∈ot

gs −
t−1∑
s=1

gs = −
∑
s∈mt

gs (50)

and consequently g̃T+1 = 0 since mT+1 = ∅. This definition of g̃t allows to rewrite the “linearized”
regret as

T∑
t=1

⟨gt, xt − u⟩ =
T∑
t=1

〈 ∑
τ∈ot+1\ot

gτ , xt − u

〉
+

T∑
t=1

⟨g̃t − g̃t+1, xt⟩ (51)

and to have that, for every round t,〈 ∑
τ∈ot+1\ot

gτ , xt − xt+1

〉
= ⟨gt−g̃t+g̃t+1, xt−xt+1⟩ = ⟨gt−g̃t, xt−xt+1⟩+⟨g̃t+1, xt−xt+1⟩ .

(52)
Moreover, according to the standard regret analysis of OMD (Lemma A.4), we know that〈 ∑

τ∈ot+1\ot

gτ , xt − u

〉
≤ 1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)

+

〈 ∑
τ∈ot+1\ot

gτ , xt − xt+1

〉
. (53)

The above observations then make it possible to bound the first sum in the right-hand side of
Equation (51) as

T∑
t=1

〈 ∑
τ∈ot+1\ot

gτ , xt − u

〉
≤

T∑
t=1

1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)

+

T∑
t=1

〈 ∑
τ∈ot+1\ot

gτ , xt − xt+1

〉
(Equation (53))

=

T∑
t=1

1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)
+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩+
T∑
t=1

⟨g̃t+1, xt − xt+1⟩ (Equation (52))

=

T∑
t=1

1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)
+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩+
T∑
t=1

⟨g̃t+1 − g̃t, xt⟩
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+ ⟨g̃1, x1⟩ − ⟨g̃T+1, xT+1⟩

=

T∑
t=1

1

ηt

(
∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22

)
+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩+
T∑
t=1

⟨g̃t+1 − g̃t, xt⟩ , (54)

where the second equality follows by carefully rearranging the terms in the sum
∑T
t=1⟨g̃t+1, xt −

xt+1⟩, while the last equality is due to g̃1 = g̃T+1 = 0 by definition.

At this point, we can rewrite the regret in the following way:

RegT (u) =

T∑
t=1

(
ft(xt)− ft(u)

)
≤

T∑
t=1

⟨gt, xt − u⟩ − λ

2

T∑
t=1

∥xt − u∥22

=

T∑
t=1

〈 ∑
τ∈ot+1\ot

gτ , xt − u

〉
+

T∑
t=1

⟨g̃t − g̃t+1, xt⟩ −
λ

2

T∑
t=1

∥xt − u∥22

(Equation (51))

≤
T∑
t=1

∥u− xt∥22 − ∥u− xt+1∥22 − ∥xt − xt+1∥22
ηt

+

T∑
t=1

⟨gt − g̃t, xt − xt+1⟩

− λ

2

T∑
t=1

∥xt − u∥22 (Equation (54))

=

T∑
t=1

(
∥u− xt∥22 − ∥u− xt+1∥22

ηt
− λ

2

T∑
t=1

∥xt − u∥22

)

+

T∑
t=1

(
⟨gt − g̃t, xt − xt+1⟩ −

∥xt − xt+1∥22
ηt

)

=
λ

2

T∑
t=1

((
∥xt − u∥22 − ∥xt+1 − u∥22

)
t− ∥xt − u∥22

)
+

T∑
t=1

(
⟨gt − g̃t, xt − xt+1⟩ −

∥xt − xt+1∥22
ηt

)
(definition of ηt)

= −λT
2

∥xT+1 − u∥22 +
T∑
t=1

(
⟨gt − g̃t, xt − xt+1⟩ −

∥xt − xt+1∥22
ηt

)

≤
T∑
t=1

(
⟨gt − g̃t, xt − xt+1⟩ −

∥xt − xt+1∥22
ηt

)
, (55)

where the first inequality holds because of the λ-strong convexity of ft.

We now focus on the right-hand side of Equation (55). Applying Lemma A.2, we can bound from
above the distance between subsequent iterates:

∥xt − xt+1∥2 ≤ ηt∥gt + g̃t+1 − g̃t∥2 = ηt

∥∥∥∥∥∥
∑

τ∈ot+1\ot

gτ

∥∥∥∥∥∥
2

≤ Gηt
(
|ot+1| − |ot|

)
, (56)

where the last inequality follows by jointly using the triangle inequality, the bound on the gradient
norm (Assumption 2.3), and the fact that ot ⊆ ot+1.
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What remains to analyze now is the distance ∥gt − g̃t∥2, and a direct calculation allows us to show
that

∥gt − g̃t∥2 =

∥∥∥∥∥gt + ∑
τ∈mt

gτ

∥∥∥∥∥
2

≤ G(|mt|+ 1) , (57)

again by using the triangle inequality and Assumption 2.3.

Applying Lemma A.5 with Equation (56), we show that the each term of the sum in the right-hand
side of Equation (55) satisfies

⟨gt− g̃t, xt−xt+1⟩−
∥xt − xt+1∥22

ηt
≤ min

{
Gηt∥gt − g̃t∥2(|ot+1| − |ot|) , ηt∥gt − g̃t∥22

}
. (58)

Therefore, starting from Equation (55), we are able to derive the final regret bound:

RegT (u) ≤
T∑
t=1

ηt∥gt − g̃t∥2∥gt + g̃t+1 − g̃t∥2 (Equations (55) and (58))

=
2G

λ

T∑
t=1

∥gt − g̃t∥2(|ot+1| − |ot|)
t

(definition of ηt)

≤ 2G2

λ

T∑
t=1

(|mt|+ 1)(|ot+1| − |ot|)
t

. (Equation (57))

Crucially, what remains to analyze is the sum in the right-hand side of the above inequality. We can
first show that

T∑
t=1

(|mt|+ 1)(|ot+1| − |ot|)
t

≤ (σmax + 1)

T∑
t=1

|ot+1| − |ot|
t

(definition of σmax)

≤ (σmax + 1)

T∑
t=1

|ot+1| − |ot|
|ot+1|

(ot+1 ⊆ [t])

= (σmax + 1)

T∑
t=1

(|ot+1| − |ot|)∑t
s=1(|os+1| − |os|)

≤ (σmax + 1)(1 + lnT ) , (59)

where the last inequality follows by Orabona (2025, Lemma 4.13) and the fact that
∑T
t=1(|ot+1| −

|ot|) = |oT+1| = T . Second, we can also bound such a sum in an alternative way:
T∑
t=1

(|mt|+ 1)(|ot+1| − |ot|)
t

=
T∑
t=1

|mt|(|ot+1| − |ot|)
t

+
T∑
t=1

(|ot+1| − |ot|)
t

≤
T∑
t=1

|mt|(|ot+1| − |ot|)
t

+

T∑
t=1

(|ot+1| − |ot|)∑t
s=1(|os+1| − |os|)

(definition of ot)

≤
T∑
t=1

|mt|(|ot+1| − |ot|)
t

+ lnT + 1

≤
T∑
t=1

|mt|(t− |mt+1| − (t− 1− |mt|))
t

+ lnT + 1

(|ot|+ |mt| = t− 1 for all t)

=

T∑
t=1

|mt|(1 + |mt| − |mt+1|)
t

+ lnT + 1

=

T∑
t=1

|mt|
t

+ |m1|2 −
|mT ||mT+1|

t
+

T∑
t=2

(
|mt|2

t
− |mt−1||mt|

t− 1

)
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+ lnT + 1

=

T∑
t=1

|mt|
t

+

T∑
t=2

(
|mt|2

t
− |mt−1||mt|

t− 1

)
+ lnT + 1

(definition of mt)

≤
T∑
t=1

|mt|
t

+

T∑
t=2

(
(|mt−1|+ 1)|mt|

t− 1
− |mt−1||mt|

t− 1

)
+ lnT + 1

(mt+1 ⊆ mt ∪ {t} for all t)

≤
T∑
t=1

|mt|
t

+ lnT + 1

≤ 2
√
dtot + lnT + 1 ,

where the last inequality follows by Equation (22). Combing the above two inequalities, we finally
obtain

RegT (u) ≤
2G2

λ
(1 + lnT ) +

2G2

λ
min

{
σmax(1 + lnT ) , 2

√
dtot

}
= O

(
G2

λ

(
lnT +min

{
σmax lnT,

√
dtot

}))
.

F Experiments

In this section, we evaluate the performance of the proposed algorithms on three types of loss
functions in the delayed OCO setting.6 All experiments are conducted over T = 10000 round and
results are averaged over 20 independent trials. To showcase the advantage of our algorithms, we
consider two delay regimes. For the first case, each delay dt is independently and uniformly sampled
from the set {0, 1, . . . , 5}, thus leading to E[

√
dtot] = Θ(

√
T ) and E[σmax] ≤ E[dmax] ≤ 5. In the

second case, we define p = T−1/3 = 0.1. Then, for each t, dt is sampled from the same distribution
with probability 1−p, and it is set to be dt = T − t with probability p. In this case, E[

√
dtot] = o(T ),

E[dmax] ≥ T (1 − (1 − p)T ), and E[σmax] = O(pT ). We compare our algorithms against several
baselines designed for delayed feedback settings. Below, we describe how we construct losses,
together with the baseline algorithms we compare against. We provide additional experiments in
Appendix F.1.

Strongly convex loss. We consider the following strongly convex losses ft(x) = 1
2 (⟨zt, x⟩−yt)

2+
1
2∥x∥

2
2. The feasible set is the ball X = {x ∈ R5, ∥x∥2 ≤ 2}. Each coordinate of the feature vector

zt ∈ R5 at round t is uniformly chosen from [−1, 1] while yt = ⟨zt,1⟩ + ϵt, where ϵt is an i.i.d.
standard Gaussian noise. We evaluate Algorithm 1 on this loss sequence and compare its performance
with DOGD-SC (Wan et al., 2022a), SDMD-RSC (Wu et al., 2024, Algorithm 6), and BOLD-OGD
which applies the reduction proposed by Joulani et al. (2013) to OGD.

Exp-concave loss. The loss functions we consider for exp-concave ones are ft(x) = 1
2

(
⟨zt, x⟩ −

yt
)2

. The other configurations are the same as the experiments in the strongly convex case. We
evaluate our Algorithm 2 and compare its performance with that of DOGD (Quanrud & Khashabi,
2015) and BOLD-ONS, which applies the reduction proposed in Joulani et al. (2013) to ONS (Hazan
et al., 2007).

Online linear regression. We still consider the loss function ft(x) = 1
2

(
⟨zt, x⟩ − yt

)2
for all

t ∈ [T ], the same one as used in the exp-concave setting. The only difference is that the action space
is now unconstrained (X = R5). We empirically evaluate Algorithm 3 on this loss sequence and
compare the performance with DOGD (Quanrud & Khashabi, 2015) and BOLD-VAW, which is again
a combination of the reduction in Joulani et al. (2013) and the VAW forecaster (Azoury & Warmuth,
2001; Vovk, 2001).

6The code for the experiments is available at https://github.com/haoqiu95/DOCO.
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Figure 1: Comparison with relevant baselines. The shaded areas consider a range centered around the
mean with half-width corresponding to the empirical standard deviation over 20 repetitions.

Experimental results. Figure 1 shows the mean cumulative regret and its standard deviation over
20 rounds for the instances with strong convexity, exp-concavity, and OLR under the two previously
mentioned delay regimes. For strongly convex losses, we find that our algorithm performs much
better than DOGD-SC (Wan et al., 2022a) and have similar performances compared to SDMD-RSC,
which is proven to only achieve O(dmax lnT ) regret (Wu et al., 2024). However, we point out that
this mismatch in the empirical performance and the theoretical guarantee of SDMD-RSC is due to
a loose analysis of this algorithm. In fact, we show that SDMD-RSC can also achieve the same
O(min{σmax lnT,

√
dtot}) regret via a refined analysis. The proof is deferred to Appendix E.

For both exp-concave and OLR settings, our algorithms consistently outperform DOGD, which does
not leverage the curvature of the loss function, as well as the reduction-based algorithms proposed
in Joulani et al. (2013), under both delay regimes, showing the effectiveness of our algorithms under
different delay conditions.

F.1 Additional experiments
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Figure 2: Comparison with relevant baselines. The shaded areas consider a range centered around the
mean with half-width corresponding to the empirical standard deviation over 20 repetitions.

We consider a real-world dataset mg_scale from the LIBSVM repository (Chang & Lin, 2011). This
dataset has 1385 samples and each sample has 6 features with values in [−1, 1] and a label in [0, 2].
The experimental setup, including constructions of losses and delays, follows what already done
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Figure 3: Comparison with relevant baselines. The shaded areas consider a range centered around the
mean with half-width corresponding to the empirical standard deviation over 20 repetitions. The top
plots correspond to T = 1000, while the bottom plots correspond to T = 10000.

for the experiments in Appendix F. Figure 2 shows a similar behaviour of the algorithms as already
shown in Appendix F.

We also designed a non-stationary environment as follows. The generation processes for the feature
vectors, as well as the definition of the loss function, remain the same as the environment in
Appendix F. However, we modified the generation of the label yt:

yt =
〈
zt, θt

〉
+ ϵt , (60)

where the latent vector θt alternates every 30 rounds between the two vectors 1 and 0. This periodic
change introduces non-stationarity, reflecting scenarios where the optimal action shifts over time.
The delay dt is independently sampled from a distribution that alternates every 30 rounds between
a geometric distribution with success probability T−1/3 and a uniform distribution over the set
{0, 1, . . . , 5}. Additionally, we also modify the noise term ϵt inspired by Xu & Zeevi (2023).
Specifically, we flatten an abstract art piece by Jackson Pollock and take consecutive grayscale values
in [0, 1] as the noise ϵt. Figure 3 shows that our algorithms again perform the best among all the
benchmark algorithms.
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