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Abstract

Low-Rank Adaptation (LoRA), which introduces a product of two trainable low-
rank matrices into frozen pre-trained weights, is widely used for efficient fine-
tuning of language models in federated learning (FL). However, when combined
with differentially private stochastic gradient descent (DP-SGD), LoRA faces sub-
stantial noise amplification: DP-SGD perturbs per-sample gradients, and the ma-
trix multiplication of the LoRA update (B A) intensifies this effect. Freezing one
matrix (e.g., A) reduces the noise but restricts model expressiveness, often result-
ing in suboptimal adaptation. To address this, we propose FedSVD, a simple yet ef-
fective method that introduces a global reparameterization based on singular value
decomposition (SVD). In our approach, each client optimizes only the B matrix
and transmits it to the server. The server aggregates the B matrices, computes the
product B A using the previous A, and refactorizes the result via SVD. This yields
a new adaptive A composed of the orthonormal right singular vectors of B A, and
an updated B containing the remaining SVD components. This reparameteriza-
tion avoids quadratic noise amplification, while allowing A to better capture the
principal directions of the aggregate updates. Moreover, the orthonormal structure
of A bounds the gradient norms of B and preserves more signal under DP-SGD, as
confirmed by our theoretical analysis. As a result, FedSVD consistently improves
stability and performance across a variety of privacy settings and benchmarks,
outperforming relevant baselines under both private and non-private regimes. Our
code is publicly available at https://github.com/seaniel2/fed-svd.

1 Introduction

Language models have demonstrated remarkable performance across various tasks [32, 24, 8].
While these models provide strong general capabilities, adapting them to specific domains or
tasks typically requires fine-tuning with domain-specific datasets [4]. In real-world deployments,
however, training data is frequently fragmented across various organizations or user devices, and
strict privacy regulations often prohibit direct data sharing [10]. Federated Learning [FL; 21]
provides a viable solution by allowing clients to fine-tune models locally on their private data,
while a central server aggregates model updates without accessing raw training data, enabling
privacy-preserving collaborative training.

In FL, individual clients often lack the computational and memory capacity required for full fine-
tuning of large models, making such approaches impractical. Parameter-efficient fine-tuning ad-
dresses this by freezing most model parameters and updating only a small subset, enabling scalable
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Figure 1: (a) At communication round ¢, the server computes the SVD of B;Ai_1, ie., U;s; Vit = BiAi_1,
and initializes AZ = \/;T and BZ = U;X;. These reparameterized matrices are then broadcast to all clients. (b)
Each client updates only the matrix B, initialized with B;, using its local dataset, while keeping A; fixed.
(¢) The locally optimized B&’” matrices are aggregated at the server to update the global model.

model adaptation in resource-constrained settings. In particular, Low-Rank Adaptation [LoRA; 16]
has been widely adopted for fine-tuning models in FL environments due to its low local computation
and communication requirements [40, 31, 12, 34].

Although FL improves privacy by exchanging model updates instead of raw data, it does not pro-
vide formal guarantees against information leakage. Sophisticated attacks such as membership in-
ference [27] or model inversion [11], can reconstruct sensitive information from shared updates,
particularly given the capacity of language models to memorize training data [0, 7]. Therefore, inte-
grating differential privacy [DP; 9] is essential to provide formal privacy guarantees and enhance the
trustworthiness of collaborative model training. A common approach to enforcing DP in deep neural
networks is DP-SGD [30, 3, 1], which clips the norm of each per-sample gradient to a predefined
threshold and adds Gaussian noise to the average of the clipped gradients.

Recent work [31] has shown that naive integration of LoRA into DP-SGD significantly degrades
model performance. Following a single DP-SGD update of the LoRA adapter matrices A and B,
the noise added to both matrices is amplified through their product BA, as shown in Eq. 5. To
mitigate this amplification, FFA-LoRA [31] fixes the A matrix to a randomly initialized constant
and updates only the B matrix during training. However, using a fixed random matrix for A limits
the learning capability of LoRA, and we observe that optimizing only B leads to significantly
slower convergence. Ideally, we would like to adapt A over time to better capture the principal
direction of aggregated updates without incurring noise amplification under DP-SGD.

To this end, we propose FedSVD, a simple yet effective method that introduces global reparameteri-
zation based on singular value decomposition (SVD). In the first communication round, the server
randomly initializes Ag and By and broadcasts them to the participating clients. Each client then
optimizes only the matrix B using its local data, and the server aggregates the updated B matrices.
In each subsequent round, the server refactorizes the product of the aggregated B and the previous
A using SVD to obtain the matrices for the next iteration. As shown in Fig. 1a, the rows of A are
re-initialized with orthonormal right singular vectors (i.e., V,") of BA obtained from the SVD. The
re-initialization of B uses the remaining components of the SVD, namely the left singular vectors
and singular values (i.e., U;Y;). The newly initialized matrices Ai and Bi are then broadcast to
all clients. Each client k, initializes its local matrix é(()k) with BZ and subsequently optimizes it to

obtain Bﬁk), while keeping A; fixed (Fig. 1b). The resulting Bxk) matrices are then collected and
aggregated on the server (Fig. 1c).

This SVD-based reparameterization offers several advantages. It allows A to adapt based on the
aggregated B without amplifying noise, while maintaining the differential privacy guarantee, since
SVD is applied only as a post-processing step after local DP-SGD updates. The orthonormality of
A beneficially bounds the gradient norms of B, preserving stronger update signals under DP-SGD
compared to random initialization. Theoretically, we show that the orthonormal rows of A yield a
lower Hessian condition number than a random matrix in a two-layer multilayer perceptron (MLP)
with ReLU activations, implying a better-conditioned loss landscape that can potentially lead to
faster convergence. Empirically, we observe that this property translates into accelerated accuracy
improvement for deep models with orthonormal rows of A (Fig. 3).

We empirically evaluate FedSVD on several benchmark datasets, including SNLI [5], MNLI [35],
SST2 [29], QQP [26], QNLI [33], and HellaSwag [39], both in private and non-private settings. In



both regimes, FedSVD consistently outperforms the relevant baselines during most communication
rounds and achieves the highest final accuracy.

We summarize our findings and contributions as follows:

* We propose FedSVD, a simple yet effective method allowing the LoRA matrix A to adapt over
time based on aggregated updates of B using SVD, while eliminating noise amplification under
DP-SGD.

* We theoretically show that orthonormal rows of A yield a better-conditioned Hessian of the
training loss with respect to B in a two-layer MLP with ReL.U.

* We empirically demonstrate that our FedSVD approach achieves higher accuracy and faster
convergence than relevant baselines under DP-SGD in several benchmark datasets.

2 Background

This section reviews the necessary background, including federated learning with LoRA, DP-SGD,
and FFA-LoRA. A detailed discussion of related work is deferred to Appendix B.

Federated learning with LoRA. Letpy : X — ) be a language model (e.g., Devlin et al. [8], Liu
et al. [20]) parameterized by 6, which maps an input token sequence x € X’ to an output class label
y € Y. In the FL framework each client k € [K] := {1, ..., K} has access only to its local training
dataset Dy, = {( ,yfk)) k., where Dy, () Dy = @ forall k, k' € [K] with k # k’. Furthermore,
the central server never accesses any local datasets directly. At each update round ¢ € [R], a random
subset of client indices S; < [K] is selected such that |.S;| = K’. Each selected client k € .S; then
receives a copy of the current global model parameters 6; from the central server and trains its local
model p,) using its private dataset Dy, as follows:

1
00 = 00 = VL0 D), LD = —— 3 logpum(y|x), (D
§ (%,9)€Dy, ,
fort = 0,. — 1, where 7 > 0 is the learning rate and 9(() o 1is initialized with §;. Since full
fine-tuning of pg is computationally expensive, LoRA is commonly employed to reduce overhead
by injecting trainable low-rank matrices into the weight matrix of each layer (:
Wl(lz A _ W(l) + B(kyl)A(k,l) )

(k 1) € RouxT

are the corresponding low-rank matrices. We denote GM = {(Aﬁ’i 2 B (. l))} i, as the set of LoRA

where Wé ) is a frozen pre-trained weight matrix of pe and A e R™*dn and B;

adapter weights for client k at step ¢ of round ¢, where each pair (Agkt l), Bl(li l)) represents the LoORA
matrices in layer [. In methods such as FedAvg [21] and FedIT [40], the server updates its parameters

0; = {(AZ(-Z), Bl-(l))} L | by aggregating the weights from the participating clients as follows:

O] (k,0) O] "k p(k.0)
Aifr = (Z mAw>’ Bis = (Z m.Bi,T,C>7 3)
keS; ‘

keS;
where m; = Y}, g nx and ng = [Dg|. Atround i + 1, the central server model py, , uses the
updated weight matrix for each layer [ € [L] as follows:
1 ! IO
W¢(+)1 = Wé ) Bz(+1A§+1a 4)

D 40

i+144+1
Differential privacy. Language models tend to memorize training data, which can lead to the
leakage of private information from local client datasets [6, 7]. Differential privacy [DP; 9] provides
a formal privacy guarantee by limiting the influence of any individual data point on the model, thus
mitigating such leakage risks.

Definition 2.1 ((¢,0)-DP). A randomized algorithm M is (e, 0)-differentially private if, for all
neighboring datasets D, D' that differ in exactly one entry, and all subsets E of the possible outputs
of M, we have Pr(M (D) € E) < e“Pr(M(D') € E) + 6, where € is the privacy budget, and 6
bounds the probability that the privacy loss exceeds €, i.e., the probability that the DP guarantee
may fail.

where Wé ) denotes the frozen pre-trained weights and B, is the aggregated low-rank update.



In FL, privacy guarantee depends on whether the central server is trusted. In the centralized DP
setting, clients send raw updates without local privacy measures, and DP is applied during global
aggregation [22]. In the local DP setting, which assumes an untrusted server, each client ensures that
its update is differentially private before communication [36, 18, 25]. Our work adopts this stronger
local DP setting: we apply DP at the client level so that any shared updates (i.e., model parameters)
are already privatized. By the post-processing invariance property of DP [9, Proposition 2.1], the
final global model also satisfies DP.

Fixed LoRA A matrix. A common approach to ensuring the differential privacy of deep neural
networks is DP-SGD [30, 3, 1]. DP-SGD first clips each per-sample gradient g(x;) from a sam-
pled mini-batch to have a bounded norm by applying g(x;)/ max(1, ||g(x;)||y /C), where C'is a
predefined threshold. Gaussian noise & ~ N'(0,02C?1) is then added to the average of the clipped
gradients, and the resulting noisy average is used to update the model parameters. However, jointly
updating and aggregating both A and B, introduces a challenge for fine-tuning models with DP-
SGD. During client-side fine-tuning, Gaussian noise is added to the average of the clipped gradients
of A and B, which becomes amplified through their post-update matrix product after a single DP-
SGD step:

(B(kl)+§(kl)( kl)+€(kl) Bz(lfsl)Az('ktl +£(kl (kl)+B(k,l) (k1) +€B 5k1)7 )

where ff’l) and fj(gk’l) represent the Gaussian noise added by DP-SGD. To mitigate the noise am-
plification caused by the LoRA matrix product, FFA-LoRA [31] fixes A as a randomly initialized
matrix and performs aggregation only on B:

l l k l 1)
Wi(+)l = WO( ) + <Z m; i Tk)> Alglxed (6)

k‘GSi

This removes the quadratic noise term in Eq. 5 (i.e., 5 B ”5(’“’”) as well as & Ak’l), thus stabiliz-

ing model training under DP-SGD. However, using a fixed random matrix Agx)ed can affect LoRA
learning capacity, potentially leading to suboptimal performance.

3 Method

Although FFA-LoRA mitigates noise amplification by freezing A, this can lead to suboptimal adap-
tation, as a fixed random projection may not align well with the data distribution or the dynamics of
local model updates. Ideally, A should adapt over time to better capture the principal directions of
aggregated updates, while avoiding noise amplification under DP-SGD.

Periodic re-initialization of A via SVD. To this end, we propose FedSVD, a simple yet effective
approach that avoids direct optimization of A by periodically resetting it to a new matrix with or-
thonormal rows, obtained via SVD of the aggregated product BA. Specifically, before broadcasting

the newly aggregated matrix B; to the participating clients, the server computes the SVD of B; A;_1,
where AZ 1 is the matrix from the previous round ¢ — 1, and initializes A and B as follows:

Bi = Ui[Z,Z 7“]21[ Ty 7’], fL = VT[I r, 2], UlEZV;T = BiAifl, (7)

where By = 0, Ay is initialized with Kaiming uniform [14], M [:,: r] and M[: r,:] denote the
first » columns and rows of the matrix M, respectively. Note that we omit the superscrlpt [ for
brevity. Each client k receives A; and B;, and optimizes only B;, using Eq. 1 on its local dataset

Dy.. The server then aggregates the optimized B; matrices from all participating clients. We outline
our complete method in Alg. 1.

Importantly, this reparameterization does not change the value of B;A;_4, ie., Bifli,l = Bifli,
since rank(B; A;_1) < r follows from the low-rank structure of LoRA. Therefore, the rank-r SVD
exactly recovers B;A;_1. As a result, all clients receive a consistent, globally synchronized ini-

tialization after SVD, while benefiting from updated, data-informed A matrices instead of relying
on a fixed random projection. As shown in Sec. 4, this strategy empirically stabilizes training and
accelerates optimization.



Algorithm 1 FedSVD

1: Input: Pre-trained language model py, client datasets {Dk}kK=1, total optimization rounds R,
learning rate 7, batch size b, rank r, the number of participating clients K.

2: fort=0,..., R—1do
3: forfori=1,...,Ldo > Broadcast global parameters
4: if i > 0 then A A A
5: U, %, ViT SVD(BZ.(l)AZ(Ql), BZ-(l) — Uils,: ]Sy r],AZ(-l) —~ V',
6: else A
7: Bél) 0, Aél) < Kaiming_Uniform(—d,d)
8: end if
9: end for
10 Sample a set of clients S; < {1,..., K} with |S;] = K’, m; < 0.
11: for each client k € S; do = Done in parallel
12: Initialize the client parameter 9%) = {(AE%I),B%’Z))}le — {(4; AW B NE L.
13: Optimize {B%’U }L_, on Dy, with SGD for 7, steps with Eq. 1.
14: Nng <« |Dk , My <— My + Nk,
15: end for
16: for{=1,...,Ldo > Aggregation of parameters updated by the clients
. U] B
17: Bz+1 - ZkES z Tk
18: end for
19: end for

Bounding the gradient norm. Moreover, the orthonormality of A ensures that its spectral norm
is exactly 1, which leads to a tighter bound on the gradient norm of B. Denoting the output as

z = (Wy + BA)x, we compute:
H 00(z) 0l(z)

B 0L(z)
0B || | oz

0z

0l(z)
0z

00(z)
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where ¢(z) is a loss function with the corresponding label y, ||-|| ¢ is the Frobenius norm,
the spectral norm of A, and ||x||, is the [o-norm of x. Under DP-SGD, each per-example gradient
is clipped to a fixed norm before noise addition. Thus, any implicit amplification introduced by A
directly increases the amount of clipping, distorting the original gradient, and weakening the update

signal. Since ||/1||2 = 1, the gradients reach the clipping threshold with minimal norm, preserving a
more genuine update signal under a given privacy budget. In contrast, random initializations usually
yield ||A||2 > 1, necessitating more aggressive clipping and slowing optimization.

Privacy guarantee of FedSVD. Due to the post-processing invariance property of DP [9, Propo-
sition 2.1], FedSVD guarantees DP by design, as SVD is applied only after B has already been
privatized.

Corollary 3.1 (Privacy guarantee). By Theorem I and the moment accountant from Abadi et al. [1],
FedSVD with DP-SGD and FedAvg aggregation satisfies (¢, 0)-DP, given a sampling rate q, the total
number of local updates T = TR per client, and a noise multiplier o > c - qg/T log(q/d)/e for

some constant c.

Proof. This is a direct application of the post-processing invariance property of DP [9, Proposition
2.1] and Theorem 1 in Abadi et al. [1]. O]

Theoretical analysis. We analyze how reparameterizing A and B via an SVD affects the opti-
mization dynamics of C'-class classification. Consider a labeled dataset Dy, = {(x;,y;)}., with
one-hot labels y; € {0,1}¢. Let

Wy e R#*d= AeR™%, BeR™ ", W,eR%, ©9)

be parameters of the classification model. With these parameters, let h; = (W, + BA)x; €
R, z; = Wy ReLU(h;) € R, and p; = softmax(z;). We define the cross-entropy loss (with
element-wise logarithm) £y(B; A) = = 3" (—y/ logp;). Let Hy(B;A) be the Hessian of

nk

L1.(B; A) with respect to B. Set A = A ® I, and, for each 4, let S; = diag(p;) — pip; > 0



and D; = diag(]l{hz- > 0}), where 1 denotes elementwise indicator function and ® denotes the
Kronecker product. Then

Hiy(B; A) = AM; AT, M, = nikZ(Idhchi) (D;Wy SiWaD;) (I, ®%,).  (10)

i=1

Proposition 3.2. Assume A has full row rank. Then the condition number of the Hessian satisfies
)\max(Mk)

Amin(M [R(am))’

where Ain () and A\max(+) denote the smallest and largest eigenvalues of a symmetric matrix. If the
rows of A are orthonormal (so ko(A) = 1), the bound tightens to

)\max (M k )
AInin(-/\/l k |73(.A—r ) )

Kg(Hk(B; A)) < HQ(A)2

Y

KQ(Hk(B;A)) < (12)

The proof is deferred to Appendix A. By reparameterizing using the SVD of BA, we write
BA = UXVT and choose A = VT[: r,:] (the top r rows of V' 7). Then the rows of A are or-

thonormal, hence T pax(A) = omin(A) = 1 and k2(A) = 1. This removes the r(A)? factor that
appears with a fixed random A. In contrast, for a randomly initialized Agyeq (e.g., Gaussian, or
uniform distribution), its condition number satisfies k2 (Agxeq) > 1 with high probability. A smaller
Hessian condition number generally indicates a better-conditioned optimization landscape, leading
to faster and more stable gradient-based updates to B. Thus, our SVD-based reparameterization
improves the stability of local client optimization steps by promoting a well-conditioned projection
matrix A. To directly compute the actual condition number, we use a simple logistic regression and
show that enforcing the orthonormal structure of A yields a lower condition number (see Table 9 in
Appendix D).

4 Experiments
In this section, we empirically validate the effectiveness of FedSVD.

4.1 Experimental Setups

Datasets. Following FFA-LoRA [31], we use five datasets, including four from the GLUE bench-
mark [33]: Stanford Natural Language Inference [SNLI; 5], a sentence-pair classification task for
textual entailment with three labels (entailment, neutral, contradiction), i.e., NLI task (or recognizing
textual entailment); Multi-Genre Natural Language Inference [MNLI; 35], the same NLI task, eval-
uated on both matched (in-domain) and mismatched (cross-domain) test sets; Stanford Sentiment
Treebank v2 [SST-2; 29], a single-sentence sentiment classification task with two labels (positive,
negative); Quora Question Pairs [QQP; 26], a paraphrase detection task with two labels (duplicate,
not duplicate); and Question Natural Language Inference [QNLI; 33], a binary classification task
with two labels (entailment, not entailment) that determines whether a context sentence answers a
given question. We use the validation split for evaluation, as test splits are unavailable for all datasets
except SNLI, which is evaluated on its test split. See Table 7 in Appendix C for the dataset statistics.

Baselines. We compare our method, FedSVD, against the following baselines:

1. FedAvg [21, 40]: Both A and B matrices are fine-tuned locally and averaged independently, as
described in Eq. 3.

2. FFA-LoRA [31]: The A matrices are initialized with Kaiming_Uniform(—d, d) [14] and remain
fixed during training. Only the B matrices are fine-tuned and aggregated.

3. FLoRA [34]: Both A and B matrices are fine-tuned locally and aggregated by stacking the
individual matrices from all clients, rather than averaging them independently. The central server
computes the product B A from the stacked matrices and adds it to the pre-trained weight matrix
Wo. After aggregation, randomly re-initialized A, B and updated W), are sent back to the clients.

4. FedEx-LoRA [28]: Both A and B matrices are fine-tuned and aggregated individually as de-
scribed in Eq. 3. The residual, which is defined as the difference between the aggregated B A and
the product of the aggregated B and fixed A, is added to the frozen pre-trained matrix Wj.
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Table 1: Results on 6 GLUE tasks without privacy constraints. We report average accuracy and 95% confi-
dence intervals over 5 runs. The best/second-best results are highlighted in bold/underline, respectively.

MNLI

Method SNLI Matched Mismatched SST-2 QQpP QNLI Average

FedAvg 84.16 + 802 7479 1492 75.09 +1504  85.89 +1212 61.75 +1006  71.40 +1278  75.51 + 661
FFA-LoRA 82.54 + 213 8275+ 1712 83.45 + 184 94.06 + 018 78.00 + 308  86.61 + 122 84.57 + 099
FLoRA 62.17 +1326  50.49 +1493  50.81 +1527  58.99 +1247 5791 + 731 62.16 +1041  57.09 + 9.26

FedEX-LoRA  70.08 +11.06  56.85 +14.41 57.74 +14.81 59.43 +1244  64.86 + 239 64.90 + 1284  62.31 + 4.06
FedSVD (ours) 85.70 + 123 83.96 + 212 84.32 + 227  94.26 + 051 79.82 + 243 88.98 + 143  86.18 + 1.44

MNLI (matched) MNLI (mismatched) SST-2 QQP QNLI
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Figure 2: Accuracy vs. communication rounds without privacy constraints across 5 GLUE tasks. Curves
show average accuracy over 5 runs, with shaded regions indicating 95% confidence intervals.

Data distribution. Following Hsu et al. [15], we sample client data proportions from a Dirichlet
distribution, with concentration parameter o = 0.5 (except in Fig. 4a) for non-i.i.d data. Unless
stated otherwise (Fig. 4b), we use six clients in total (X = 6). To better emulate realistic federated
settings, only half of the clients are randomly sampled for participation in each communication
round (K’ = 3). See Table 8 in Appendix C for per-label distribution across six clients with o = 0.5.

Implementation details. Following FFA-LoRA [31], we use RoBERTa-large [20] as a base model
and apply LoRA [16] with rank = 8 and scaling factor & = 8 to the query and value projections,
using a LoRA dropout rate of 0.05. All non-LoRA parameters, including the classification head, are
frozen. We run R = 100 communication rounds, with participating clients in each round updating
their weights using vanilla SGD for 7 = 10 local steps. Due to the absence of separate validation
splits (except for SNLI), we refrain from extensive hyperparameter tuning. Instead, we adopt values
that work reasonably well for FedAvg: learning rate n = 0.5, clipping norm C = 2, and § = 1072,
The same hyperparameters are applied to all methods for a fair comparison. We consider two privacy
budgets, € € {3,6}, where we use the Opacus library [37] to compute the noise multiplier o for a
total T = R x 7 training steps. We use 3 NVIDIA RTX A6000 GPUs for all experiments.

4.2 Main Results

Effectiveness of FedSVD without privacy constraints. We first assess FedSVD on the GLUE
benchmark in a non-private setting. In Table 1, FFA-LoRA outperforms FedAvg, which we at-
tribute to the reduced aggregation error. In contrast, FLoRA, which transmits a large number of
parameters, underperforms due to the frequent random re-initialization of the A and B matrices in
our experimental setups. We observe a similar pattern in FedEX-LoRA. The proposed FedSVD fur-
ther improves the performance by periodically adapting A through SVD of the product B A rather
than using a fixed A. As a result, FedSVD achieves the highest average accuracy, outperforming
the second-best baseline (FFA-LoRA) by +1.29 percentage points (pp). Fig. 2 illustrates accuracy
as a function of communication rounds for FedAvg, FFA-LoRA, and FedSVD. FedSVD consistently
outperforms the baselines across all rounds. This robustness to early stopping makes FedSVD well-
suited for scenarios with limited communication budgets or uncertain convergence points.

Effectiveness of FedSVD with DP-SGD. We next evaluate the performance of FedSVD under DP
constraints (e € {3,6},5 = 107°). Table 2 shows that the average gain of FedSVD over FFA-LoRA
increases substantially in the DP settings, i.e., from +1.29 pp without privacy constraints to +8.77
pp with ¢ = 6. Even under a stricter privacy budget (¢ = 3), where the injected noise intensifies
and the signal-to-noise ratio of gradients degrades notably, our method still achieves an accuracy
improvement of +9.63 pp, demonstrating its robustness to tighter DP constraints. We attribute this
improvement to the SVD-based re-initialization of FedSVD which allows A to capture the principal
directions of the aggregated updates more reliably. Furthermore, orthonormal rows of A bound the
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Table 2: Results on 6 GLUE tasks with DP (¢ € {3,6},5 = 107°). We report average accuracy and 95%
confidence intervals over 10 runs. The best/second-best results are highlighted in bold/underline, respectively.

MNLI

DP
Budget Method SNLI Matched Mismatched SST-2 QQpr QNLI Average
FedAvg 61.37 +1026  65.45 + 614  67.02 + 595 89.41 +218 5859 4527 60.70 4527  67.17 +2.63
FFA-LoRA 62.55 + 948 55.56 + 858  56.39 + 894  91.42 +o87  64.35 +326  72.39 +496  68.02 +337
€ = 6 | FLoRA 39.14 + 639  48.01 +1076  48.86 +1122  91.83 +1.13  63.18 +516  49.48 1003  59.78 +487
FedEX-LoRA 54.27 +1067  54.98 + s.16 56.02 + 8.10 87.34 +174 5329 +846  49.86 +035  60.86 +3.05
FedSVD (ours) | 72.77 +1022  71.68 + 331 73.03 + 290  91.32 +o85  72.42 +236  75.50 +420 76.79 +131
FedAvg 36.70 +456 4991 +1216  50.53 £1218  61.87 £9.08  55.27 + 789 50.00 +035  50.71 +4.30
FFA-LoRA 56.96 +896  57.76 + 700 59.19 + 702 91.08 +123  68.68 + 434  62.35 +807  66.00 +3.12
€ = 3 | FLoRA 3342 t077 4136 1396 41.81 +1455  90.46 +186 5791 +11.12 49.68 +o46  52.44 +3.17
FedEX-LoRA 55.62 +985 4092+ 712 4132+ 754 7429 4809  50.00 + 861 49.78 +032  49.28 +231
FedSVD (ours) 70.89 +852  70.65 + 397  72.02 + 396  90.46 +066 72.65 + 260 77.10 +1.60 75.63 +1.92
MNLI (matched) MNLI (mismatched) SST-2 QQP QNLI
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Figure 3: Accuracy vs. communication rounds with DP (e = 6,0 = 107%) across 5 GLUE tasks. Curves show
average accuracy over 10 runs, with shaded regions indicating 95% confidence intervals.

gradient norm of B (cf. Eq. 8), making gradient clipping more robust under DP-SGD settings. Fig. 3
demonstrates the effectiveness of SVD re-initialization: FedSVD consistently exhibits better conver-
gence behavior compared to FFA-LoRA across most training rounds. Although we observe a slight
accuracy drop on SST-2 after round 80, FedSVD maintains strong overall accuracy, which demon-
strates its robustness to DP noise and suitability for real-world federated learning deployments.

Results on HellaSwag. To verify the scalability of FedSVD to more complex tasks, we compare
it with FedAvg and FFA-LoRA using the HellaSwag [39] dataset. We partition the training split
with o = 0.5 based on the activity_label field (i.e., labels associated with each caption), since it
does not contain explicit labels. We fine-tune SmollLM-360M [2] with LoRA under DP constraints
(e = 6,8 = 10~°). We use the same experimental setups as in Sec. 4.1. The models are trained with
the next-token prediction objective only on the correct endings. At test, we select the endings
with the highest normalized log-likelihood:

argmaxﬁlogpg(x | c), (13)

xeX ()
Table 3: Results on the

where x and c are the token sequences of endings and ctx, and X(¢) is
HellaSwag [39] dataset.

the set of candidate endings. Table 3 presents results averaged over 5

runs, where FedSVD outperforms all baselines (+1.34 pp), demonstrating ~ Method Accuracy
its effectiveness on a more complex commonsense reasoning task. FedAvg 48.81 + 0.8
. . FFA-LORA  49.76 + 009

Integration with DoRA. We also show that FedSVD can be successfully
FedSVD 51.10 +o.16

integrated with DoRA [19]; see Table 11 in Appendix D for details.

4.3 Analysis

Initialization of A. To better understand the effect of initialization strate-

gies for matrix A, we compare three classes of configurations. First, we randomly initialize A with
orthonormal rows and keep it fixed during training (Agixea W/ random orthonormal). Second, fol-
lowing PiSSA [23], we factorize the frozen pre-trained matrix using SVD: W, UOEOVOT and
initialize A and B with A/So[: 7,: 7]Vo'[: 7,:] and Up[:,: 7]4/So[: 7, : 7], respectively. The base
matrix Wy is re-initialized with its residual component W = Ug[:,7 + 1 :|So[r + 1 ;,r + 1 :
Vo' [r + 1 :,:]. Both W}, and A are frozen, while only B is updated during training (Afgyea W/
PiSSA). Lastly, we consider an alternative SVD-based initialization where A is periodically re-
initialized with A/%[: 7,: 7]V '[: r,:] and B with U[:,: r]5/%[: 7, : r] from the SVD of BA, which
does not preserve the orthonormality of A’s rows (FedSVD w/o orthonormal).
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Figure 4: (a): Results of varying o € {0.1,0.2,0.3, 0.4, 0.5} for a Dirichlet distribution on the MNLI dataset.
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Table 4 shows that introducing structural pri- Table 4: Results on the MNLI dataset with different
ors into matrix A, i.e., Afixeq W/ random orthonor- initializations of A under DP-SGD (¢ = 6,5 = 10_5).
mal, OF Afixeq w/ PiSSA, helps to stabilize training  indicates that A matrices are periodically updated.
and yields better performance compared to the Method Matched  Mismatched
unstructured baseline., i.e., Agxed (FFA-LORA). Anes (FFALORA) 55.56 2555 5639 1501
Ho_wever, when A 18 kept fixed thI'OllghOllt Afixed W/ random orthonormal ~ 55.58 +5.97 56.96 + 598
training (methods without 1), the improvements Afixed W/ PiSSA 66.32 +287 6757 +279
are limited, suggesting that adaptivity plays  FedSVD wioorthonormal® ~ 70.76 +375  71.86 +3.79

a crucial role beyond the structural prior it-
self. In addition, we find that removing the or-
thonormal constraint from FedSVD (denoted as
FedSVD wio orthonormal ') degrades performance, indicating that the orthonormal structure of A is not
only beneficial for initialization but remains important throughout training. Although the effective-
ness of enforcing the orthonormal constraint appears marginal on the MNLI dataset in Table 4 (e.g.,
+0.92/+1.17 pp for Matched/Mismatched), it yields a much larger improvement on the SNLI dataset
(i.e., +11.68 pp), as shown in Table 10 of Appendix D.

FedSVD' (Ours) 71.68 + 331 73.03 + 290

Heterogeneity of the data distribution (). To assess the robustness of FedSVD under varying
degrees of non-i.i.d. data, we partition the MNLI dataset across clients using various concentration
parameters a € {0.1,0.2,...,0.5} for the Dirichlet distribution. For each setting, we train models
under DP-SGD (e = 6,6 = 107°) and report the mean and standard deviation over 5 independent
runs. We compare FedSVD with FedAvg and FFA-LoRA across all levels of heterogeneity. As shown
in Fig. 4a, our proposed FedSVD consistently outperforms the baselines across all tested levels of
data heterogeneity, except at o = 0.1, where extreme heterogeneity causes all methods to fail.

Varying the number of clients (K). To evaluate the robustness of each method in more realistic
federated settings, we vary the total number of clients K € {6,9,12} while keeping the number
of participating clients per round fixed at K’ = 3. Here, K = 12 is near the maximum feasible
value, as some clients already have fewer training samples than the data processed per round (i.e.,
batch size xlocal steps 7). We compare the performance of FedAvg, FFA-LoRA, and FedSVD under
DP-SGD (¢ = 6,6 = 10~°) on the MNLI dataset and report the mean and standard deviation over
5 independent runs for each configuration. Fig. 4b shows that FedSVD consistently outperforms
the baselines across all values of K. Notably, the performance degradation with increasing K is
significantly smaller for FedSVD, showing its robustness to the number of clients.

Overcoming the SVD bottleneck: (1) Low-rank SVD. Although FedSVD introduces additional
overhead due to the SVD step, this cost can be substantially mitigated by using randomized low-rank
approximation techniques, e.g., the algorithm proposed by Halko et al. [13, Algorithm 5.1 on p. 29].
It iteratively approximates the leading singular components with high fidelity while significantly
reducing computational complexity, making FedSVD feasible for practical use in large-scale feder-
ated settings. We set the number of iterations for the low-rank approximation (niter) to 2 or 10.
In Table 5, the approximation (denoted as Low-rank SVD) achieves similar accuracy to Full SVD
(even better with niter=2 and 10 on SNLI/MNLI-Matched and QNLI, respectively), while running
approximately 60x (niter=2) or 10x (niter=10) faster than Full SVD. This demonstrates that
Low-rank SVD can serve as an efficient alternative to full SVD without sacrificing accuracy.

Overcoming the SVD bottleneck: (2) Frequency of SVD. To further alleviate the computational
burden, we explore reducing the frequency of SVD itself. Specifically, we conduct an ablation study
in which SVD-based re-initialization is applied every 1, 2, 5, or 10 communication rounds.
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Table 5: Results of FedSVD using the low-rank approximation (Low-rank SVD) with niter=2 or 10 under
DP-SGD (e = 6,6 = 107°). The average run-time per SVD step (in seconds) for Full SVD is 9.12+ 0.08, and
for Low-rank SVDitis 0.15+ 004 (niter=2; 60 x faster) or 0.89+ 007 (niter=10; 10x faster).

SNLI MNLI (niter=2) SST-2 QQP QNLI
SVD strategy (niter=2) Matched  Mismatched (niter=2) (niter=2) (niter=2) (niter=10)
Full SVD 72.71 +783  T1.57 +318  73.03 +280  91.32 +053 7242 +236 75.50 +420  75.50 +4.20
Low-rank SVD 74.92 +506 72.76 + 182 7274 + 1.64 92.34 060 76.66 +1.02 68.76 +780  79.84 + 206
Each configuration is denoted as FedSVD (n), (—e— FedSVD (1) -e- FedSVD(2) —e— FedSVD (5) |
where n € {1,2,5,10} denotes the re- o FedSVD (10) —s— FFA-LORA
initialization interval in rounds. As shown in MNLI (matched) MNLI (mismatched)
Fig. 5, all FedSVD (n) variants exhibit better 80 80

~
o

convergence than FFA-LoRA, confirming the 70
benefit of SVD re-initialization and its robust-
ness to the choice of interval n. Given their
comparable performance, variants with less fre-
quent re-initialization offer a favorable trade- .
off when computational efficiency is priori- 20 40 60 80 100 20 40 60 80 100
tized. Accuracy remains stable across different Communication Rounds
re-initialization schedules, demonstrating the Figure 5: Results of varying the SVD frequency using
robustness of FedSVD to hyperparameter n. the MNLI dataset under DP-SGD (e = 6,6 = 107°).
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5 Conclusion

In this work, we proposed FedSVD, a simple yet effective method for fine-tuning language models
with DP-SGD in FL. Instead of using a fixed random matrix A for LoRA, we periodically refactor
the product of two LoRA adapter matrices BA with SVD and initialize A with the right singular
vectors of BA. As A remains untrained and SVD is applied post-privatization of B, our method
preserves differential privacy without incurring additional noise from matrix multiplication. Empir-
ically, FedSVD consistently outperforms the relevant baselines, often achieving faster convergence.

Limitations. Although our approach shows promising re- Table 6: Communication cost per

sults in both private and non-private federated learning set-
tings, the computation of SVD incurs additional overhead on
the server side. However, since SVD is performed on low-rank
matrices, this overhead can be significantly reduced by em-
ploying randomized low-rank approximation methods, such as

round (i.e., the number of parame-
ters exchanged between the server and
clients) when using RoBERTa-large
and applying LoRA with rank r» = 8.

Comm. Cost

the algorithm proposed by Halko et al. [13, Algorithm 5.1], as Method (# parameters.)
shown in Table 5. Another limitation is the additional commu-

ication overhead associated with the broadcast of the newl FedAve 786,432
nucation overhead ) Y FFA-LoRA 393,216
initialized A matrix to clients after each SVD step. However, FLoRA 52,169,730
this cost can be avoided by decentralizing the SVD computa- FedEX-LoRA 52,169,730
tion. After aggregating B;, the server computes A; via SVD on FedSVD (ours) 393216

the product B; A;_1 and transmits only B; to the clients. Each
client then reconstructs A; locally using the same procedure and obtains the updated pair (E», fli).
Since only B; is optimized during training while A; remains fixed, it is not necessary to transmit
or aggregate A; at the server. Table 6 compares the communication cost when both the server and
the clients perform SVD computations, showing that our proposed FedSVD, along with FFA-LoRA,
achieves the lowest communication cost, since only the LoORA B matrix is transmitted.

Future work. Since our method is compatible with any FL setup employing LoRA, extending the
empirical evaluation of FedSVD to a wider range of foundation models across different modalities
is a promising direction for future work. Furthermore, a deeper theoretical analysis of FedSVD’s
convergence dynamics, particularly for complex non-linear models, could provide valuable insights.

Broader impact. FedSVD advances data privacy in Al development by enabling stable and effec-
tive training of neural networks under differential privacy within a federated learning framework,
ensuring that sensitive data remains locally available to each client. By improving the robustness
of privacy-preserving fine-tuning for foundation models, FedSVD contributes to reducing the risk of
information leakage and supports the responsible deployment of Al systems in sensitive domains.
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Appendix

A Proof of Proposition 3.2

Proof. Let x; € R% with one-hot y; € R®. Parameters:
AeR™%=  BeR™*r W, eR™WXd Ty, e ROXr,

?

Now we assume A has full row rank, i.e., rank(A) = r. We define activations with forward pass as:
h; = (W, + BA)x; € R, a; = ReLU(h;) € R, z; = Wha, € RC.

With elementwise logarithm, let
n
pi = softmax(z;), l; = —y;-r log ps, L= Z l;.
i=1
Standard logit-space derivatives are

ol; o%0;
= Di,c — Yic

= Sice, Si=diag(p;) —pip; > 0.

(’]\Ziyc 02176 (‘)ZLC/
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Let D; = diag(1{h; > 0}) € R%*d» g0 D? = D, = D,. On any open region where the sign
pattern of h; is fixed, D; is constant and

a, =D; (Wl + BA) Xi, Z; = WQDi(WerL') + WsD; B (AXl)
Sett; = (ti1,...,tir) = Ax; e R". Then foreachce {1,...,C},

dp, dn 7
Zie = Z W2,caDi,aa(W1Xi)a + Z Z W2¢caDi,aaBabti,b~
a=1 a=1b=1
Hence, on a fixed mask,
0z,c aQZi c
—— = Ws.caDj aati independent of B), —
aBab 2,cal’i,aalib ( P ) aBab (,}qu

Now apply the full second-order chain rule for ¢;(z;(B)):

(926,‘ o & 62,»70 ﬁzi,cx ¢ (3& 8221‘,0

Ap . Ap Sl cc’ “p Ap
0Bay 0Bpqy =4 = O0Bay 7 0Bpq = 0zie 0Bap 0By
The second sum vanishes (affine logits in B). Substituting the first derivatives gives
0L T T
0By aqu =tiptig Z(W2,caDi,aa) Si,cc’ (WQ,c'pDi’pp) = (titi )bq [_DlVV2 S;WsD; ]ap~

c,c’

Therefore the per-sample Hessian (indexed by (a, b) rows/cols) is

Hi = Vipyli = (tit]) ® (D;Wy SiWzD;) > 0.
Averaging,
1 n
H =ViepL = o Dt @ (DWW SiWaD;).
i=1
Let A:= A® I, € R *(dzdn) and define
1 n
M= D Ua, ® %) (DiW, S;WaD;) (I, ®x] ) € Rlnde)x(dndz)
i=1

Then Hy(B; A) = AMAT. Now our goal is to bound the following quantity

o AmadHe(B3A) A (AMAT)
Ko Hy(B; A)) = o (B A)) — Amin(AM:AT)' (14)

Using
Amax(Hi(B; A)) = [AMAT [, < [ A3 | Milz = [ A3 Admax (M)
and || All2 = |[Ic ® A2 = |A|2 = omax(A), we can bound the numerator in Eq. 14 as follows:

)\max(Hk(B; A)) < O—max(A)Q)\max(Mk)~

Let R(AT) := {ATv : v e R%"} be an image of .AT. By Rayleigh quotient characterization,
w! Mpw

Amin(Mk|”R(,AT)) = min =

T min T
WER(AT),w#0 W 'W wWeR(AT),|lw|,=1

Miw,

for every w € R(A") we have
2
W MW = Amin(Mi|r(am)) [[W]l3 -
Applying this to w = ATv with v € R%" and then minimizing over ||v||, = 1 gives

Amin(Hi(B; A)) = min v AMATv

[vil;=1

= min W' Muw
Ivil,=1

= Amin(Mglr(aT)) | minl ||ATVH§'

vlly=
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Using Rayleigh quotient characterization again,

min VTAATV = )\min(AAT) = Ufnin(A) = U?nin(A)'

Ivilo=1

Thus we obtain

UmaX(A)Q)\max(Mk) 2 Amax('/\/tk?)

ko (Hi(B; A)) < = koA . 15)
2( k( )) Unlin(A)2>\mi11(Mk|R(AT)) 2( ) Amin(/\/lk|R(.AT))
If the rows of A are orthonormal (so AAT = I, and G ppax(A) = Timin(A) = 1), then
)\max(Mk)
Ko (Hi(B;A)) < . (16)
2 (Hi( ) Amin (Mg |r(aT))

O

B Related Work

Federated learning. Federated Learning (FL) enables decentralized clients to collaboratively train
models without sharing raw data. FedAvg [21] averages locally updated model weights to form a
global model, offering a simple yet effective baseline. Built upon FedAvg, recent work has explored
integrating Low-Rank Adaptation [LoRA; 16] into FL to reduce communication and computation
overhead during model fine-tuning. For instance, Fed-IT [40] updates the adapter matrices A and
B of LoRA, averages each matrices separately. To aggregate product of B and A, several meth-
ods have been proposed. FedEx-LoRA [28] introduces an additional correction matrix to mitigate
aggregation error. FLoRA [34] stacks adapter matrices and reinitializes them randomly at the end
of each communication round. FFA-LoRA [31] proposes to use a fixed randomly initialized matrix
A, while training and aggregating only B. Lastly, Fed-SA [12] proposes learning both matrices A
and B, but shares only A during aggregation. Our method is based on FFA-LoRA; however, we
reinitialize the adapter matrices after aggregation to promote gradient stability and learning efficacy.
Instead of using a fixed random matrix for A, we periodically reinitialize A using orthonormal bases
via singular value decomposition (SVD) of B A, which empirically accelerates optimization.

Differential privacy guaranteed federated fine-tuning. (¢, d)-differential privacy [DP; 9] pro-
vides a rigorous framework ensuring that models trained on neighboring datasets, differing by only
one data point, produce similar outputs, thereby preserving individual privacy. DP-SGD [30, 3, 1]
brings this guarantee to deep learning by adding noise to stochastic gradient updates. In FL, privacy
guarantees depend on whether the central server is trusted. In the centralized DP setting, clients send
raw updates without local privacy, and DP is applied during global aggregation [22]. In the local
DP setting, which assumes an untrusted server, each client ensures its update is differentially private
before communication [36, 18, 25]. Our work adopts this stronger setting: we apply DP at the client
level, so any shared updates (i.e., model parameters) are already privatized. By the composition
property of DP, the final global model also satisfies DP. DP-SGD is unstable with large numbers
of trainable parameters due to increased gradient sensitivity and noise injection [1, 38]. To address
this, FFA-LoRA [31] fixes the adapter matrix A in LoRA to reduce trainable parameters, limiting
noise amplification and avoiding quadratic noise growth.

Parameter efficient fine-tuning. To mitigate the computational cost of fine-tuning language
models, LoRA [16] injects trainable low-rank adapter matrices into some of model components.
Subsequent works have proposed variants to improve adaptability and efficiency. For example,
DeltalLoRA [42] improves LoRA’s expressivity by combining original weights with adapter outputs,
thereby enhancing the representational power. LoSparse [17] integrates LoRA with sparsity
constraints to prevent the pruning of essential neurons. DoRA [19] separates the magnitude and
direction of the update by learning a scaling factor for the update AW, while keeping the direction
determined by the LoRA update BA.

Unlike these approaches, which aim to learn expressive low-rank approximations of weight updates,
PiSSA [23] takes a more structural approach. It first decomposes the original weight matrix us-
ing SVD, then fine-tunes only the low-rank components corresponding to the top-r singular values,
while freezing the residual parts. Our method differs from PiSSA in two key aspects. First, rather
than decomposing the pretrained weights, we perform SVD on the aggregated adapter product BA
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to reinitialize low-rank components after aggregation of optimized B on the client side. This is
distinct from PiSSA’s fixed decomposition of model weights. Second, we enforce the rows of A
to be orthonormal by initializing them with right singular vectors of BA, which empirically sta-
bilizes training and accelerates optimization compared to a non-orthonormal structure. AdaLoRA
[41] dynamically learns the optimal rank by parameterizing incremental updates through an SVD
to dynamically prune and reallocate a rank budget across layers based on the magnitude of the sin-
gular values during training. Unlike AdaLoRA, we employ SVD to refactor the aggregated adapter
product BA and enforce the rows of A to be orthonormal by initializing them with right singular
vectors.

C Dataset Statistics

In this section, we summarize the statistics of the datasets used in our experiments (Table 7), and
present the per-label data distribution across clients (%) for both two-class (SST-2, QQP, QNLI) and
three-class (MNLI, SNLI) datasets using a Dirichlet distribution with o = 0.5 and six clients in total
(Table 8).

Table 7: An overview of datasets used in our experiments.

Dataset \ # Classes  # Train #Val  # Test
SNLI 3 550,152 10,000 10,000
MNLI (matched) 9,815 -
MNLI (mismatched) 30392702 g3y -
SST-2 2 67,349 872 -
QQP 2 363,846 40,430 -
QNLI 2 104,743 5,463 -
HellaSwag N/A 39,905 10,042 -

Table 8: Per-label data distribution across clients (%) for datasets with two labels (SST-2, QQP, QNLI) and
three labels (MNLI, SNLI) under the Dirichlet partition (o« = 0.5, 6 clients). For the HellaSwag dataset, which
contains 137 distinct activity_labels, we do not report the detailed per-label distribution here; however, the
partitioning strategy can be found at https://github.com/seaniel2/fed-svd.

#Labels | Label | Client0 Client1 Client2 Client3 Client4 Client 5

o) 0 0.196 0.469 0.187 0.018 0.130 0.001
0.020 0.100 0.004 0.089 0.186 0.600

0.104 0.025 0.673 0.024 0.100 0.073

0.049 0.016 0.007 0.405 0.058 0.465

3
0.333 0.168 0.113 0.000 0.064 0.322

NN = O

D Additional Experiments

In this section, we present additional experiments to empirically support the effectiveness of the
proposed FedSVD.

Table 9: Comparison on condition numbers, x2(H (B; A)) = Amax(H(B; A))/Amin (H(B; A)).

Method | o 1k 2k 3k 4k 5k

FFA-LoRA | 10.18 10.15 9.78 10.09 10.13 10.23
FedSVD 1.67 1.52  1.51 1.50 1.50 1.51
Oracle | 1.06 1.01  1.02 1.04 1.03 1.02

Empirical validation of Proposition 3.2. To empirically support Proposition 3.2, we consider a
simple logistic regression setup which allows us to directly compute the actual condition num-
ber during optimization. Therefore, we directly measure the condition number ko (H(B; A)) =
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Amax (H (B; A))/Amin (H (B; A)) for FFA-LoRA, FedSVD, and oracle. Specifically, using the SST-
2 dataset, we (1) extract features X e R™*din using a pretrained BERT model, (2) train a logistic
regression head on top of these frozen features, and (3) compute the Hessian’s condition number
directly during optimization. As shown in Table 9, we observe that the condition number of FedSVD
remains consistently smaller than that of FFA-LoRA throughout training (up to 5,000 iterations),
closely matching the oracle. This confirms the practical advantage of FedSVD for optimization.

Table 10: Results on the SNLI [5] dataset with different initializations of A. We report average accuracy and
95% confidence intervals over 5 runs.

Method Accuracy
FedSVD w/o orthonormal ~ 69.48 + 9.45
FedSVD 81.16 +237

Impact of orthonormal initialization on the SNLI dataset. In Table 4, we present the impact
of different initializations of A and the effect of orthonormality. The improvement from enforcing
orthonormality (row 4: FedSVD w/o orthonormal vs. row 5: FedSVD (Ours)) appears marginal on
the MNLI dataset—e.g., +0.92 percentage points (pp) for Matched and +1.17 pp for Mismatched.
However, we find that the influence of orthonormality can vary considerably across datasets. To
further investigate this, we conducted an additional experiment on the SNLI dataset. As shown in
Table 10, maintaining the orthonormal structure yields a substantial performance gain of nearly 12

pp.

Integration of FedSVD to DoRA [19]. To investigate the potential of FedSVD on different
parameter-efficient fine-tuning methods, we conduct experiments using DoRA by learning only the
B € R%:«x" matrix and freezing the A € R"*% matrix, the magnitude vector m € R%, and the
initial weight W € R%u«*dn_For a given input x € R%, the output of the DoRA layer is defined as

diag(m) - diag(||W + BA|20w) ' - (Wo + BA)x,

where |W + BA| 3 row € R% is a row-wise norm. After computing the SVD of BA, we re-initialize
the magnitude vector

m « diag(m) - diag(|W + BA|250w) ' - (Wo + BA).

The matrices A and B are re-initialized as in FedSVD with LoRA, i.e., B = U[:,: r]X[:,: r] and
A=V[,:r]".

Table 11: Results with DoRA [19] on the MLNI dataset. We report average accuracy and 95% confidence
intervals over 5 runs.

Method Matched Mismatched

FedSVD w/LoRA  71.57 +3.18 73.03 + 289
FedSVD w/DoRA  72.12 + 265 73.13 +2.69

In Table 11, we observe that FedSVD with DoRA shows a similar performance to FedSVD with LoRA
on the MNLI dataset, demonstrating the generalizability of FedSVD across different parameter-
efficient fine-tuning parameterizations. We note that DoRA is known to bring benefits primarily
in complex tasks (e.g., image generation, text generation), and its improvements on text classifica-
tion benchmarks are often marginal (e.g., Table 3 in [23]).
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer "

" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering " "or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope. We summarize our contribution in the introduction and support
all the claims in the experiments.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included limitations of our proposed method in conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.
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* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We have provided a complete proof in the supplemental material.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We have specified all the implementation details in section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use public benchmark datasetes for our experiments and include our code
in supplementary file.

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have specified all the implementation details in section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform experiments multiple times with different random seeds and pro-
vide means and confidence intervals.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide all details in Section 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS COde of Ethics and make sure the reserach
conform with it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have included societal impacts in Sec. 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No, we do not describe any safeguards in our paper.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we properly use public benchmark datasets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA|
Justification: We do not introduce any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer:

Justification: We do not perform crowdsourcing experiments or research with human sub-
jects.

24


paperswithcode.com/datasets

15.

16.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not perform research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLMs for writing and editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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