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Abstract— Humans have a remarkable ability to fluently
engage in joint collision avoidance in crowded navigation tasks
despite the complexities and uncertainties inherent in human
behavior. Underlying these interactions is a mutual understand-
ing that (i) individuals are prosocial, that is, there is equitable
responsibility in avoiding collisions, and (ii) individuals should
behave legibly, that is, move in a way that clearly conveys their
intent to reduce ambiguity in how they intend to avoid others.
Toward building robots that can safely and seamlessly interact
with humans, we propose a general robot trajectory planning
framework for synthesizing legible and proactive behaviors and
demonstrate that our robot planner naturally leads to prosocial
interactions. Specifically, we introduce the notion of a markup
factor to incentivize legible and proactive behaviors and an
inconvenience budget constraint to ensure equitable collision
avoidance responsibility. We evaluate our approach against
well-established multi-agent planning algorithms and show
that using our approach produces safe, fluent, and prosocial
interactions. We demonstrate the real-time feasibility of our
approach with human-in-the-loop simulations. Project page can
be found at https://uw-ctrl.github.io/phri/.

I. INTRODUCTION

Robots are becoming increasingly pervasive in our every-
day lives, and more so in settings where they must interact
and navigate through human counterparts. From autonomous
driving to autonomous food deliveries, robots are required
to safely and seamlessly interact with humans despite the
myriad of uncertainties they face such as human intent,
human preferences, and environmental factors. Indeed, a sig-
nificant research effort has been dedicated to human behavior
prediction (see [1] for a survey). Yet in highly dense interac-
tions (e.g., Shibuya Crossing in Tokyo, Japan), humans are
surprisingly remarkable in avoiding collision. The reason is,
that humans are self-preserving [2] and will engage in joint
collision avoidance. Joint collision avoidance controllers
have been shown to successfully replicate collision-free and
fluent (dense) multi-agent interactions [3], [4], [5]. While we
may not be able to perfectly predict how humans behave,
we can at least expect other humans to exhibit some degree
of cooperativeness in avoiding collisions. In this work, we
ask the question, despite uncertainty in human behaviors,
can we achieve safe and fluent human-robot interactions by
leveraging the fact that humans are self-preserving?

Our main hypothesis is that if the robot is able to indicate
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Fig. 1: Our approach enables robots to interact legibly and proac-
tively, providing oncoming humans with sufficient time to engage
cooperatively in collision avoidance. Our experiments show that this
leads to fluent, safe, and prosocial interactions.
early to interacting humans its intent to avoid collision
(e.g., pass to the right), then this will (i) provide the
humans sufficient warning to adjust their plans to avoid
collisions, (ii) remove ambiguity in how the joint collision
avoidance maneuver should occur, and (iii) result in prosocial
interactions where everyone equitably compromises their
performance to benefit the group. In this work, we propose
a robot planning framework to create legible—the ability
to infer the intent from motion—and proactive—the ability
to influence a situation by causing something to happen
rather than responding to it after it has happened—robot
motions. Our approach adds a number of simple additions to
a standard robot trajectory optimization used widely for robot
motion planning, making it a general and flexible approach
for synthesizing legible and proactive behaviors. Specifically,
we introduce the notion of a markup factor to encourage the
robot to take nontrivial actions earlier rather than later, and
the concept of an inconvenience budget to keep the robot’s
motion directed to its goal and to promote an equitable
distribution of collision avoidance responsibility.
Contributions. Our contributions are four-fold: (i) We intro-
duce an inconvenience budget constraint as a mechanism to
produce prosocial interactions. The constraint prevents the
robot from making inequitable collision avoidance maneu-
vers, such as a sharp swerve, and keeps its motion aligned
with the goal direction. (ii) We present a markup factor into
the robot’s cost function to encourage legible and proactive
behaviors. With the markup factor, the robot is encouraged to
rotate earlier to pass oncoming agents, therefore indicating its
intent to the human. (iii) We propose a robot planner utilizing
an iterated best response algorithm to capture interaction
dynamics with human agents and demonstrate its real-time
applicability via human-in-the-loop experiments. (iv) We
demonstrate that our proposed legible and proactive planner
results in safer, more fluent, and more prosocial interactions
compared to other social navigation approaches.
Organization. In Section II, we discuss related work, fol-
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lowed by a problem formulation in Section III. We describe
our proposed approach in Section IV, and discuss experimen-
tal results in Section V. We conclude and present exciting
directions for future work in Section VI.

II. RELATED WORK

We discuss some related work on social robot navigation,
with a focus on modeling other agents, social competency,
and legibility. For a deeper review, see [6] and [7].
Modeling other agents. To model feedback interaction
between robots and humans, the robot typically relies on
knowledge of humans’ objective (cost or reward) function,
often chosen to be a linear combination of handcrafted
features [8], [9], [10]. A key benefit is interpretability and
tractability—knowledge of the objective function provides
direct insight into what other agents value and how they
would respond in any given situation (assuming they are
optimal planners). However, data is required to learn other
humans’ objective function; employing techniques such as
maximum entropy inverse reinforcement learning [11], [12].
While these approaches boast interpretability benefits, the re-
liance on knowing other humans’ objective functions hinders
real-world multi-agent applicability. A deep neural network
can be used to learn the objective function but would lose any
interpretability benefits [13]. Online inference is challenging
given the limited interaction time while offline learning is
prone to distribution shifts. In our work, we do not rely
on learning other humans’ objective functions from data.
Instead, we propose a robot-only objective function that
encourages legible and proactive behaviors to help the robot
indicate to humans early its intent. We show that reducing
ambiguity in robot behaviors helps humans commit to a type
of behavior [14], thereby mitigating the reliance on accurate
feedback interaction models.
Social competency. To increase interpretability and structure
into understanding how robots can account for the welfare of
others, the concept of Social Value Orientation (SVO) stems
from social psychology which models the degree to which an
individual values other people’s welfare in relation to their
own [15]. Different SVO parameter values elicit different
behaviors, such as egoistic, prosocial, altruistic, masochistic,
and sadistic. The SVO parameter can be learned from data to
provide a social label on interaction data [16], [17], or chosen
by the designer to elicit desired robot behaviors [18], [19].
Building upon the idea of socially aware robots, [10], [20]
consider designing “courteous” robot behaviors by minimiz-
ing the amount of inconvenience the robot imposes on the
human. Specifically, they compare how humans behave when
the robot is there versus if the robot were not there. Similar
to the works discussed previously, [10], [20] too operate in
the objective space—a major limitation to encoding social
preference in the objective space is that it does not limit how
much a robot should compromise its objective for the benefit
of others. Without such a limit, it may lead to the robot
behaving in unexpected ways, such as moving backward [8],
or becoming incapable of accomplishing the task to yield
for others, i.e., frozen robot problem [21]. In our work,

we impose a robot-centric inconvenience budget constraint,
and in conjunction with legible and proactive planning, our
approach naturally leads to prosocial behaviors compared to
other baseline approaches.

Legibility. There has been considerable attention into con-
structing legible robot behaviors and evaluating its influence
in generating more fluent and safer human-robot interactions
[14], [22], [23], [24], [25], [26], [27]. However, different
approaches formulate legibility differently, leading to vastly
different, highly customized legible motion planning algo-
rithms that are difficult to integrate into a more general plan-
ning framework that considers additional planning objectives.
For example, [23] proposed a gradient-based legible motion
optimizer for (single-agent) goal-reaching problems, and [25]
introduces the notion of social momentum to generate legible
motion to indicate which side agents will pass by each
other. Leveraging the notion that the velocity vector is a
primary signal for indicating intent [28], we propose a simple
approach to synthesizing legible robot behaviors that can be
easily integrated into a general optimal control problem.

III. PROBLEM FORMULATION

We aim to compute robot controls that enable a robot
to accomplish its task in a safe and efficient manner while
taking into account the presence and reactions of surrounding
human agents. For simplicity, first consider a single human
case; we later describe how to extend this to multiple
humans. Let xt

HR ∈ RnH+nR denote the joint state of the
human and robot xt

H ∈ RnH and xt
R ∈ RnR at time step t

respectively, and ut
H ∈ RmH and ut

R ∈ RmR be the human
and robot controls at time step t respectively. Then we seek
to find a robot control sequence u0:T

R over T time steps that
is a solution to the following optimal control problem:

Problem 1 (Interaction-aware trajectory problem):

min
u0:T

R

T∑
t=0

J(xt
HR,u

t
R, t) + JT+1(x

T+1
HR ) (1a)

s.t. xt+1
HR = fHR(x

t
HR,u

t
R,uH(x

t
HR)), t = 0, ..., T (1b)

gi(x
t
HR,u

t
R) ≤ 0, t = 0, ..., T, i = 0, ..., G (1c)

hj(x
t
HR,u

t
R) = 0, t = 0, ..., T, j = 0, ...,H. (1d)

The objective (cost) function (1a) captures the robot’s per-
formance goals (e.g., minimize control effort and distance to
the goal) and joint performance between both agents (e.g.,
the robot considers the welfare of the human). The joint
dynamics constraints (1b) capture the interaction between the
two agents; the human’s control policy uH(x

t
HR) is expressed

as a function of the joint state—how the robot behaves will
affect how the human behaves. Indeed, this joint dynamics
can be viewed as an underactuated system—a large challenge
is in obtaining realistic human policies and formulating a
tractable robot trajectory planner with it. The other two con-
straints (1c) and (1d) describe constraints on robot controls
and the joint state such as initial state constraints, control
constraints, and critically, collision avoidance.



IV. LEGIBLE ROBOT PLANNING FOR PROACTIVE AND
PROSOCIAL BEHAVIOR

We present our legible robot trajectory planner that encour-
ages the robot to be legible and proactive, leading to proso-
cial human-robot interactions. The planner will be executing
in model predictive control (MPC) fashion, recomputing a
new solution at each time step. We leverage the notion that
in the context of crowded social navigation, humans engage
in joint collision avoidance but are also self-interested in that
they are unwilling to disproportionally sacrifice their own
performance for the benefit of others. Solving Problem 1
is challenging due to the closed-loop coupling between
agents and difficulty in accessing the human’s policy. Before
diving into the robot planner, we first describe iterated best
response (IBR) to account for the closed-loop interactions,
a commonly used approach for interaction-aware planning
[10], [8], [29]. Although IBR requires a model for the human,
we only assume knowledge of human dynamics and goal
location. In general, our proposed robot planner is compatible
with other interaction planners that do not require an explicit
human model (e.g., neural networks) [30], [20], and we defer
investigating these models for future work.

A. Iterated best response
We utilize an iterated best response (IBR) strategy to ac-

count for the human’s reaction to the robot’s actions. In IBR,
the robot iteratively improves its trajectory by computing
how the human would respond to its trajectory, and then vice
versa. Without loss of generality, we first assume the human
is the “leader” whose trajectory is fixed. Then the robot (the
“follower”) selects its trajectory after observing the leader’s
trajectory. Then the roles are switched and the agents update
their trajectories correspondingly. This process repeats until
convergence or a fixed number of iterations. The final output
is the robot’s trajectory, and the first control output will be
executed as part of the MPC loop. The robot assumes that
the human is a “reasonable” decision-maker who, like the
robot, minimizes a cost function while avoiding collision.

B. Inner trajectory optimization
In this section, we describe the inner trajectory optimiza-

tion problem during the IBR iterations. Note that while both
the human and robot solve the same trajectory optimization
problem described in Problem 2, the parameter values may
differ for each agent. Without loss of generality, at any iter-
ation of the IBR loop, the follower has observed the leader’s
planned trajectory (x0:T+1

L ,u0:T
L ) which is considered fixed.

The follower responds by selecting a state/control trajectory
(x0:T+1

F ,u0:T
F ) that is a solution to Problem 2,

Problem 2 (Follower’s trajectory optimization problem):

min
x0:T+1
F ,

u0:T
F ,

ϵ0:T+1

T∑
t=0

µtJ(ut
F,x

t
F, t) + γ0

T+1∑
t=0

γtϵt
2 + JT+1(x

T+1
F ) (2a)

s.t. xt+1
F = fF(x

t
F,u

t
F), x

0
F = xcurrent

F t = 0, ..., T (2b)

xt
F ∈ X t

F \ Ostatic, t = 0, ..., T + 1, (2c)

ut
F ∈ UF(x

t
F), t = 0, ..., T (2d)

g(xt
F,u

t
F,x

t
L,u

t
L) ≥ −ϵt, t = 0, ..., T (2e)

g(xT+1
F ,xT+1

L ) ≥ −ϵT+1, (2f)

Jincon(x
0:T+1
F ,u0:T

F ) ≤ βF, (2g)
ϵt ≥ 0, t = 0, ..., T + 1. (2h)

In words, the follower aims to minimize a cost objec-
tive (2a) that depends only on its own states and control,
subject to dynamics and initial state constraints (2b), state
and static obstacle constraints (2c), (state-dependent) control
constraints (2d), collision avoidance constraints (2e) and
(2f), an inconvenience budget constraint (2g), and slack
variable constraints (2h). We describe three key elements
of Problem 2 (highlighted in color) that are designed to
encourage legible and proactive behaviors.
Markup term: Similar to a discount term common to many
infinite horizon planning problems, in the cost function (2a),
we instead introduce the inverse of a discount factor: a
markup term µ > 1 which increases the cost of states
and controls further in the future, thereby incentivizing the
follower to take nontrivial controls earlier in the (finite)
horizon rather than later. For instance, the agent will be
incentivized to start turning earlier to avoid the oncoming
agent, therefore revealing its intent to pass on one side,
rather than at the last possible moment. The hypothesis
is that a markup µ > 1 will lead to more legible and
proactive behaviors since the robot’s intention to avoid other
agents/obstacles will be revealed earlier in the interaction.
Inconvenience budget: We constrain the amount of “incon-
venience” an agent can experience via (2g), therefore ensur-
ing no agent sacrifices too much on its own performance to
benefit of others (hence preventing the onset of the frozen
robot problem [21]). We described the inconvenience budget
in more detail in Section IV-C.
Collision avoidance slack: To ensure Problem 2 remains fea-
sible, we introduce a slack variable on the collision avoidance
constraint (2e) with a weighting of γ0. Additionally, since the
robot’s model of the human within the IBR iterations will
not match exactly with how humans truly behave, we apply a
discount γ < 1 on the collision avoidance constraint so that
collision constraint violations later in the planning horizon
are penalized less. Despite treating collision avoidance as
a soft constraint, our experiments show that by the robot
behaving legibly and proactively, there is better coordination
between the human and robot which leads to more fluent and
less collision-prone interactions. Additional safety filters can
be added to further improve safety albeit in a reactive manner
[31], [32], but this is outside the scope of this work.

C. Inconvenience budget
Similar to [10], inconvenience is a quantity that measures

the increase in cost of a planned trajectory compared to an
ideal, or optimistic, trajectory. In this work, we consider the
inconvenience experienced by the robot whereas [10] consid-
ers the human inconvenience caused by the robot’s actions.
For notational simplicity, let τ0:T+1 = (x0:T+1,u0:T ) denote
a trajectory of an agent (either human or robot). Then let
c(τ0:T+1) be a measure of how “convenient” a trajectory
τ0:T+1 is for some user-defined notion of convenience (lower



values indicate more convenient trajectories). For example,
convenience can be measured as a weighted linear com-
bination of functions that includes trajectory length, jerk,
and distance to the goal at the end of the trajectory, i.e.,
c(τ0:T+1) = wTϕ(τ0:T+1). Note that c does not necessarily
need to be the same as the cost function J in (2a). Then we
define the inconvenience of a trajectory τ0:T+1 as,

Jincon(τ
0:T+1) =

c(τ0:T+1)− c(τ0:T+1
ideal )

c(τ0:T+1
ideal )

, (3)

which describes the degradation in convenience of τ0:T+1

compared to τ0:T+1
ideal which is the solution to the idealized

trajectory optimization problem described in Problem 3,
Problem 3 (Idealized trajectory optimization problem):

min
x0:T+1,u0:T

T∑
t=0

J(ut,xt, t) + JT+1(x
T+1) (4a)

s.t. xt+1
F = fF(x

t
F,u

t
F), t = 0, ..., T (4b)

x0
F = xcurrent

F (4c)

xt
F ∈ X t

F \ Ostatic, t = 0, ..., T + 1, (4d)

ut
F ∈ UF(x

t
F), t = 0, ..., T. (4e)

Problem 3 describes optimal trajectory towards a goal as-
suming no other agents are present (i.e., collision avoidance
and inconvenience budget constraints are removed).
Remark: In the scope of Problem 2, c(τ0:T+1

ideal ) is a constant
since it can computed independently of Problem 2. Thus if ϕ
consists of only convex functions (e.g., quadratic functions),
then (2g) is a convex (inequality) constraint.

D. Practical considerations when performing IBR
We highlight some important practical considerations.

Sequential Convex Program. Generally, Problem 2 is non-
linear (due to dynamics and collision avoidance constraints).
We can apply sequential convex programming (SCP), the
process of repeatedly convexifying an optimization problem
about a previous solution. We can linearize the dynamics
and collision avoidance constraint, and if the convenience
function (see Section IV-C) and the cost function (2a) are
quadratic, then Problem 2 is a quadratically constrained
quadratic program, i.e., convex.
IBR initialization. Performing IBR requires an initial tra-
jectory for the leader at the first iteration. Instead of using
the previous trajectory, we instead use the ideal trajectory for
the current time step. This ensures the IBR solution at each
time step will exhibit minimal deviations from the (current)
ideal trajectory to the extent allowed by the inconvenience
budget constraint. Initializing with the previous trajectory
accumulates an imbalance between the human and robot (i.e.,
one agent would disproportionately move aside more).
Trust region. Since we are using SCP where the linearization
is valid locally around the point of linearization, we apply
a trust region cost Jtrust(uF,xF,u

prev
F ,xprev

F ) = β(∥uF −
uprev
F ∥22+∥xF−xprev

F ∥22) to (2a) to ensure the new solution
does not differ too much from the previous solution. As such,
combined with the IBR iterations, both agents’ trajectories
will gradually deviate from their ideal trajectories until they
avoid collisions or reach the inconvenience budget constraint.

E. Scaling up to multiple agents and wall constraints
Thus far, we have been concerned with a two-agent

setting—one robot, one human. Extending IBR problems
to account for all agents in the scene is possible but can
be computationally challenging and typically relies on par-
allelization [29] to ensure real-time capabilities. To reduce
the number of agents to consider within the IBR loop, we
lean on the idea that different agents have varying degrees of
interactivity with the robot. For example, agents that are close
to the robot but moving away can be considered “peripheral”
agents, whereas agents that are farther but moving towards
the robot are considered “interacting” agents. We consider
the problem of defining an interactivity score or classifying
which agents are interacting or “peripheral” outside the scope
of this work but there are several works that investigate
this problem [33], [34], [35]. Assuming interacting and
peripheral agents have been classified, we propose a simple
tractable way to account for both interacting and peripheral
agents simultaneously—we treat peripheral agents as con-
stant velocity obstacles which amount to additional linear
constraints (after linearization) to Problem 2. Additionally,
straight wall constraints (e.g., narrow corridor passing) are
linear state constraints that can be easily appended to Prob-
lem 2.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental set-up
We evaluate our proposed approach on a number of

simulations and compare it against a number of baseline
methods. We also perform human-in-the-loop experiments
to demonstrate the real-time applicability of our method.
Software implementation. We used the Julia programming
language [36], and the JuMP package, a modeling language
for a wide range of optimization problems [37], [38], to
model the problem, and ECOS [39] as the solver. We used
forward-mode automatic differentiation [40] to linearize the
problem. For human-in-the-loop experiments, we used ROS
[41] to incorporate the human control input in real time. All
experiments (except human-in-the-loop) were performed on
an AMD Ryzen 9 3900X 12-Core Processor.
Dynamics. Our method is dynamics-agnostic. For simplicity
and ease of comparison, we use the dynamically-extended
unicycle model for both the human and robot agents. The
state and control (for each agent) are x = [x, y, θ, v]T

and u = [ω, a]T , and the continuous time dynamics
are ẋ = [v cos θ, v sin θ, ω, a]T . We use the discrete-time
dynamics (omitted for brevity) by applying zero-order hold
on the continuous dynamics with a time step size of ∆t = 0.1
seconds. The control and velocity limits are ω ∈ [−1, 1]rad
and a ∈ [−1.5, 1.5]ms−2, and v ∈ [0, 1.5]ms−1.
Comparison methods. We compare our approach to sev-
eral baseline methods. Social Forces Model (SFM) [3]: A
common multi-agent control method based on attractive and
repulsive forces for goal reaching and obstacle avoidance.
Reactive Control via HJ reachability (HJ): A reactive control
method that executes optimal collision avoidance control if
a collision with the human is imminent under a constant



Fig. 2: Human and robot trajectories in a head-on scenario. In our approach (green box) the robot legibly and proactively conveys its
intent to pass, thus providing the human sufficient time to prepare to pass safely. In other approaches (blue boxes), the robot (SFM) does
not convey its intention clearly and early and causes the human to swerve significantly, (HJ) freezes on the spot, (OC) takes on more
collision avoidance responsibility than necessary, or (vIBR) confuses the human.

Fig. 3: Our approach can easily account for additional wall con-
straints and multiple dynamic agents.

Fig. 4: Snapshot of human-in-the-loop simulation experiment. Hu-
man interacts with the robot in first-person view.

velocity assumption [4]. Hamilton-Jacobi reachability [42],
[43] is used for collision checking and control. Optimal
Control (OC): Problem 2 without IBR iterations, without
markup (µ = 1), without the inconvenient budget constraint,
and a collision slack weighting γ0 of 1000. Vanilla IBR
(vIBR): The OC method with three IBR iterations. Legible
& Proactive IBR (Ours): Problem 2 with 3 IBR iterations.
Human simulation model. To simulate the human in our
experiment, we use two different approaches, IBR and OC
(as described above). We assume the human’s goal is known,
which is privileged information. We also add some white
noise to the human controls. The parameters used to model
the human is different from the robot’s model of the human
to make sure the robot does not use privileged information.
Experimental parameters. We considered a planning hori-
zon of 2.5 seconds, and each episode was 5 seconds. When
comparing against baselines, we used an inconvenience bud-
get of 0.2, markup µ = 1.05, collision discount γ = 0.98, a
collision slack weighting γ0 = 150, and a collision radius of
1 meter. We use a quadratic cost function, penalizing only
running control cost and distance to the goal position. For the
inconvenience budget, we considered a linear combination

of the sum of distances between states along the trajectory
squared, the sum of the change in velocity squared, and the
distance to the goal squared. Note that these quantities are
quadratic. The human and robot approach each other almost
head-on. Both agents have their goal position situated 10
meters directly in front of them, but their relative heading
varies between ±π

4 . Their straight-line trajectory between the
initial and goal state intersects, meaning they must deviate
from the straight-line path to avoid collision.
B. Qualitative analysis
General behavior. Figure 2 illustrates a canonical scenario
where the robot and human approach each other head-on—
if the agents do nothing, collision is inevitable. We see
that in our method (right, green box), both agents engage
cooperatively in joint collision avoidance. The reason is
that the robot has indicated early and clearly its intent to
pass on the right. Whereas in SFM, the robot does not
move out of the way until the last moment and does so
very slowly, causing the human to make a sharp swerve at
the last moment. In the HJ approach, the constant velocity
assumption is too conservative and causes the robot to almost
immediately freeze on the spot, resulting in the human doing
most of the collision avoidance. In the OC case, does not
anticipate the human will cooperate and makes a sharp turn
to avoid a collision. In the vIBR case, while both agents
deviated to avoid collision, the robot’s motion was not legible
or proactive which caused the human to sway back and forth
a bit before passing on the left.
Additional constraints. We tested our approach with wall
constraints and with multiple agents. Figure 3 (left) compares
the trajectories with and without the presence of a wall,
while the figure on the right illustrates our planner navigating
through a crowd. The human is forced to swerve more
than the robot since the robot is blocked by another (non-
interacting) agent. When adding 4 additional non-interacting
agents, the computation time increased by ∼ 6%, from
approximately 67ms to 71ms per planning time step.
Effect of markup. Figure 5a illustrates how the robot
is proactive and legible through its heading and heading
rate. In the left plot, as markup increases, the robot rotates
faster, thus making the robot’s decision to move to one side
more noticeable earlier. In the right plot, with our proposed
method, the robot’s heading is smoother, more deliberate,
and less aggressive compared to HJ. Whereas SFM barely



(a) Left: Varying the markup parameter affects how quickly the robot starts turning to pass an
oncoming human. Right: With our method, the robot’s heading is consistent, smooth, and deliberate,
whereas other methods oscillate between passing left or right or swerving too much.

(b) Box plots comparing the minimum distance
between agents. Our approach does exceed the col-
lision radius threshold despite using less stringent
safety measures compared to other approaches.

Fig. 5: (a) Analysis of heading and heading rate to illustrate the legibility and proactivity of our proposed approach. (b) Statistics of the
minimum distance between human and robot to evaluate the safety performance of our approach.

turns until the end, and OC and vIBR are indecisive and only
start turning later in the interaction.
Human-in-the-loop simulation. We performed human-in-
the-loop experiments, see Figure 4, to validate the perfor-
mance of our planner and demonstrate its real-time applica-
bility. The planning was performed at 10Hz on a laptop with
AMD Ryzen 7 PRO 6850U processor.
C. Performance metrics

We consider the following metrics to evaluate the safety
and efficiency of our approach.
Minimum distance (MinDist): To evaluate safety, we consider
the minimum distance between the robot and human during
the interaction. Let pos(·) denote the position vector given
agent state. Then the minimum distance is defined as,

MinDist(x0:T+1
H ,x0:T+1

R ) = min
t∈{0,...,T+1}

∥pos(xt
H)− pos(xt

R)∥2

Path Irregularity (PI) Index [44]: The total amount of un-
necessary turning relative to the straight line path towards the
goal. Lower is better. Let vt = [vt cos θt, vt sin θt]

T be the
velocity vector at time t, and dstr

t = [xgoal−xt, ygoal−yt]
T

be the vector pointing to the goal from the position at time
t. Then the path irregularity index is defined as,

PI(τ0:T+1) =
T+1∑
t=0

cos−1

(
vt · dstr

t

∥vt∥∥dstr
t ∥

)
Distance to goal (D2G): To evaluate how well an agent
accomplishes its task, we compare how close the agent gets
to the desired goal location by the end of the horizon. Lower
is better. Note: All simulations have the same horizon length.

D2G(τ0:T+1) = ∥pos(xT+1)− pos(xgoal)∥2
Total acceleration (ACC): To evaluate the amount of effort
and smoothness of the trajectory, we compute the total
acceleration over the trajectory. Lower is better.

ACC(τ0:T+1) =
1

∆t

T∑
t=0

∥vt+1 − vt∥2

D. Quantitative analysis
We compare our approach against the baseline methods

using the performance metrics described in Section V-C.
Safety. Figure 5b compares the minimum distance between
the robot and human over the interaction episode. We see that

our method does not violate the collision radius threshold
despite collision avoidance not being a hard constraint, and
having a lower slack penalty than OC. In the OC case where
the weighting on the slack variable was much higher than
Ours, there were a few cases where the minimum distance
dipped below the collision radius. This result is consistent
with our hypothesis—if the robot is more proactive and
legible, then the human can prepare, and both can engage
equitably in avoiding collision.
Efficiency. Figure 6 compares the efficiency-related per-
formance metrics. Both SFM and HJ methods result in a
large imbalance in all efficiency metrics, often requiring
the human to bear a majority of the collision avoidance
responsibility, i.e., swerving a lot. This is because SFM
moves aside too late which is ineffective in conveying intent
to the human, while HJ is too timid and often freezes on
the spot requiring the human to swerve out of the way.
OC, in general, performs similarly to vIBR and Ours, but
experiences large fluctuations since it does not account for
the interaction dynamics—it does not anticipate how the
human may respond, and therefore often gets in the way
of the human, requiring one or both to swerve out of the
way (see Figure 2). vIBR performs similarly to Ours, but
Ours either has a lower variance, is more equitable, or
for roughly the same human performance, the robot does
better (especially notable in ACC). These results indicate that
with relatively simple modifications to the standard trajectory
optimization problem, we are able to achieve more prosocial
(i.e., equitable) and more efficient robot behaviors without
compromising on safety.

VI. CONCLUSIONS AND FUTURE WORK

We have presented simple yet effective modifications to a
general trajectory optimization problem to generate legible
and proactive robot behaviors for prosocial human-robot
interactions. With our framework, we are able to achieve
more efficient and more equitable interactions without com-
promising on safety. Our human-in-the-loop experiments
highlight the real-time applicability of our approach. We
also propose a simple and scalable approach to account for
multiple agents but requires future work to distinguish which
humans are considered interacting or peripheral. Future work



Fig. 6: Box plots comparing efficiency performance metrics using two different human models (interactive and non-interactive). Our
approach has a lower and more equitably distributed between the human and robot. (Lower is better.)

is aimed at scaling our efforts to account for more humans
and perform real-world human-in-the-loop testing. To ensure
scalability, we plan to explore different interaction-aware
planning frameworks, such as using neural-based human
behavior prediction models to model interaction.
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