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ABSTRACT

Multimodal learning has advanced rapidly with large-scale transformers, but of-
ten requires heavy computation and lacks clear theoretical grounding. We propose
a lightweight yet robust framework for multimodal fusion that unifies efficiency
with theoretical guarantees. At its backbone lies a Class-Conditional Autoencoder
(CCAE), which maps modality-specific inputs into a class-aware latent space.
Building upon this, our Discriminative Embedding Framework (DEF) incorpo-
rates homologous and reconstruction losses to contract intra-class variance while
preserving semantic fidelity, producing embeddings that are compact and discrim-
inative. To address distributional inconsistencies across modalities, we introduce
the Adversarial Alignment Framework (AAF), which dynamically weights modal-
ity contributions and aligns fused embeddings with modality-specific distribu-
tions using a Wasserstein objective. Together, DEF and AAF form a cohesive
framework that explains why consistency and alignment emerge from a unified
optimization perspective. Extensive experiments on machine translation (How2,
Multi30k) and emotion recognition (IEMOCAP, MOSEI) demonstrate that our ap-
proach consistently outperforms strong baselines, including Transformer, MulT,
and MISA, while operating with much lower FLOPs.

1 INTRODUCTION

Multimodal learning plays an important role in recent AI advances, enabling joint reasoning over
text, speech, vision, and beyond.Multimodal transformers (e.g., CLIP, BLIP-2, Flamingo, LLaVA)
achieve strong performance but demand massive compute and obscure how modalities should be
fused. In contrast, lightweight strategies (e.g., pooling, canonical correlation, or modality-specific
autoencoders) are while keeping the design computationally efficient. This gap motivates our frame-
work, which balances scalability, adaptivity, and theoretical grounding.

In this work, we aim to bridge this gap. We introduce a lightweight yet theoretically-grounded
framework for multimodal fusion that (i) scales across many modalities and categories without pa-
rameter explosion, (ii) adapts dynamically to modality quality and availability, and (iii) enjoys for-
mal guarantees on variance contraction, reconstruction fidelity, and cross-modal distribution align-
ment. Unlike prior work that primarily assembles modules in an ad hoc manner, our design provides
a unified optimization perspective that explains why consistency and alignment emerge, offering
both practical efficiency and conceptual clarity.

Contributions. The main contributions of this work are as follows:

• Unified Optimization Perspective. We re-cast multimodal fusion as a constrained opti-
mization problem that balances variance contraction, semantic reconstruction, and distri-
butional alignment, offering a principled view of why consistency and alignment emerge.

• Class-Conditional Autoencoder (CCAE). We introduce a conditional autoencoder with
shared parameters modulated by class embeddings, forming the backbone of our approach.

• Discriminative Embedding Framework (DEF). Building on CCAE, DEF enforces com-
pactness and class separability using homologous and reconstruction losses, ensuring
modality-aligned and semantically robust embeddings.
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• Adversarial Alignment Framework (AAF). Complementary to DEF, AAF integrates a
dynamic fusion operator and Wasserstein-based adversarial matching to enforce cross-
modality distributional coherence.

• Complete Method: DEF+AAF. Combining the discriminative power of DEF with the
robustness of AAF yields an efficient, theoretically grounded multimodal fusion model.

• Extensive Evaluation. Our framework consistently improves performance on translation
(How2, Multi30k) and emotion recognition (IEMOCAP, MOSEI) benchmarks over strong
multimodal baselines, while reducing FLOPs compared to transformer-based models.

2 RELATED WORK

Multimodal representation learning. Early research on multimodal learning primarily relied on
heuristic fusion strategies, such as early fusion (feature concatenation) or late fusion (decision-level
combination), which often suffer from suboptimal alignment and poor robustness under missing
modalities. Autoencoding-based methods extended this line by constructing joint latent spaces
through reconstruction objectives, but tend to overlook fine-grained semantic consistency across
modalities. Recent survey work (Baltrusaitis et al., 2019) has summarized these paradigms and
highlighted the need for principled approaches to modality integration.

Contrastive and cross-modal alignment. Contrastive learning has become the dominant
paradigm for large-scale multimodal pretraining. CLIP (Radford et al., 2021) demonstrated the ef-
fectiveness of aligning vision and language representations via natural language supervision, inspir-
ing subsequent frameworks such as ALIGN (Jia et al., 2021) and BLIP-2 (Li et al., 2023). However,
these models rely heavily on massive web-scale data and remain vulnerable to modality imbalance
or corruption. Task-specific approaches (Tsai et al., 2019; Zadeh et al., 2018a) have investigated
multimodal alignment for emotion recognition, yet most still employ fixed fusion architectures.

Dynamic and robust fusion. Recent studies emphasize robustness and adaptability in multimodal
integration. Dynamic fusion methods such as MulT (Tsai et al., 2019), MMIM (Han et al., 2021),
and interpretable dynamic fusion graphs (Zadeh et al., 2018a) highlight the importance of context-
aware modality weighting. Adversarial learning has also been used as a mechanism for distribution-
level alignment across heterogeneous features (Wang et al., 2020), complementing contrastive ob-
jectives. Despite these advances, most existing methods either rely on rigid global alignment or
computationally heavy pretraining, which limits their applicability in noisy or resource-constrained
scenarios.

3 METHOD

In this chapter, we describe two methods that can effectively leverage multimodal latent collabora-
tive information for dynamic fusion.

3.1 DISCRIMINATIVE EMBEDDING FRAMEWORK

To reduce inherent semantic differences in multimodal representations, enhance semantic correla-
tions, and extract unified object embedding patterns, we designed the discriminative embedding
framework(DEF) module. Here, the term “discriminative” in the Discriminative Embedding Frame-
work (DEF) emphasizes that the learned latent representations are not only compact and aligned
across modalities, but also exhibit strong class separability, i.e., embeddings from the same class
are encouraged to cluster closely while those from different classes remain well separated.It builds
on a Class-Conditional Autoencoder (CCAE), which maps modality features into a class-aware
latent space using class embeddings ew. On these embeddings, DEF applies homologous loss to
align modalities of the same object, and dual reconstruction losses (intra- and cross-modal) to pre-
serve semantic fidelity. This design produces compact, class-specific multimodal representations
and remains computationally efficient.
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3.1.1 MODAL EMBEDDING GENERATION

In DEF, we adopt a Class-Conditional Autoencoder (CCAE) to construct unified and discriminative
representations across multiple modalities. These CCAE-based embeddings serve as the backbone
for DEF, which further incorporates homologous and reconstruction losses to enhance discriminabil-
ity.Specifically, for each object belonging to category w, we consider up to N modalities {Ms}Ns=1
(1 < N ≤ 3). Each modality Ms is first processed by a semantic feature extractor T s to obtain
semantic features:

Xs
i = T s(wsi ), (1)

where wsi denotes the raw modality-s input of object i, and Xs
i is the corresponding semantic rep-

resentation.

Unlike conventional designs where each category maintains an independent family of autoencoders,
CCAE shares a unified encoder–decoder architecture across all categories, while conditioning both
encoder and decoder on the class embedding ew. This design ensures parameter sharing and scal-
ability to unseen categories, while simultaneously injecting semantic category information into the
latent space.

Formally, the CCAE encoder fθ maps a modality-specific input feature Xs
i together with its class

embedding ew into the latent embedding space:

csi = fθ(X
s
i , ew), (2)

where csi denotes the class-aware latent embedding of object i under modality s. Correspondingly,
the decoder gϕ reconstructs features from the latent embedding under the same class condition:

X̃s
i = gϕ(c

s
i , ew). (3)

Here, fθ(·, ew) enforces that embeddings from the same class are aligned in a shared space, while
gϕ(·, ew) guarantees that the class-conditioned latent codes retain sufficient semantic information for
faithful reconstruction. In this way, CCAE produces modality embeddings that are simultaneously
compact, semantically grounded, and discriminative across categories.

3.1.2 LOSS FUNCTIONS IN CCAE

To fully utilize inter-modal collaborative information, we introduce two key loss functions: homol-
ogous loss and reconstruction loss. Homologous loss ensures minimal distance between different
modal features from the same sample in the latent space; reconstruction loss includes both intra-
modal and cross-modal dimensions, ensuring feature compression accuracy while enhancing inter-
modal semantic consistency. The final fusion features are generated through a simple but effective
aggregation function Λ, avoiding computational overhead from complex fusion operations.

Homogeneous Loss Function: We provide a more detailed discussion of this method. TheHomol-
ogous loss function is designed to constrain the modal representations of the same traffic data object
to be as similar as possible, thereby constructing a more compact latent space. This helps reduce
the distance between embeddings generated by different modalities within the same autoencoder
family.The homologous loss ensures that the latent codes of different modalities belonging to the
same object are pulled close to each other under the supervision of the same class embedding ewi

.
The function is mathematically defined as shown in Equation 1. Here, ∥·∥ denotes the L2 norm.

LH =
1

N

N∑
i=1

2

Mi(Mi − 1)

∑
s<t

∥∥fθ(xsi , ewi)− fθ(x
t
i, ewi)

∥∥2, (4)

where N is the batch size, Mi the number of modalities for object i, xsi the s-th modality input of
object i, and ewi the embedding vector of its class label wi.

Reconstruction Loss Function:To enhance the generalization capability of the encoder and de-
coder for the three highly heterogeneous modalities within the autoencoder, we introduce the dual
reconstruction loss function. This function is composed of two components: the single-modal re-
construction loss and the cross-modal reconstruction loss. Its definition is given in Equation 5 and
6.
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(a) With LH (b) Without LH

Figure 1: t-SNE style schematic visualization of learned embeddings. With homologous loss (left),
clusters are compact and separated. Without LH (right), clusters overlap significantly.

(a) Intra-modal reconstruction

Lintra
R =

1

N

N∑
i=1

Mi∑
s=1

∥∥xsi − gϕ(fθ(x
s
i , ewi), ewi)

∥∥2. (5)

(b) Cross-modal reconstruction requires that information from one modality can be used to recon-
struct another:

Lcross
R =

1

N

N∑
i=1

1

Mi(Mi − 1)

∑
s̸=t

∥∥xsi − gϕ(fθ(x
t
i, ewi), ewi)

∥∥2. (6)

The overall reconstruction objective is then a weighted combination:

LR = λLintra
R + (1− λ)Lcross

R , (7)
with λ ∈ [0, 1] controlling the trade-off.

Contrastive Regularization (optional): Inspired by InfoNCE, we can regularize embeddings us-
ing:

Lcon = −E

[
log

exp(⟨za, zb⟩/τ)∑
j exp(⟨za, z

−
j ⟩/τ)

]
, (8)

which separates positive homologous pairs (za, zb) from negatives z−j .

Total DEF Objective: The complete optimization objective is:
LDEF = αLH + βLR + τLcon, (9)

where α, β, τ balance alignment, semantic reconstruction, and contrastive separation. In experi-
ments, τ = 0 if contrastive regularization is not used.

In summary, the discriminative nature of DEF lies in its ability to jointly enhance intra-class consis-
tency, inter-class separability, and overall discriminative power of the learned embeddings. Through
the class-conditioned representation provided by CCAE, the homologous loss encourages latent
codes from different modalities of the same object to cluster tightly, while maintaining sufficient
margins between categories. Meanwhile, the dual reconstruction losses preserve semantic fidelity
during compression and prevent the embeddings from collapsing into non-informative represen-
tations. Together, these mechanisms ensure that the learned class-conditioned embeddings are
not only compact and modality-aligned, but also highly discriminative, thereby facilitating reliable
cross-modal learning and downstream classification tasks. These embeddings constitute the core
of DEF, which will be complemented by AAF to further enforce distributional alignment across
modalities.

4 ADVERSARIAL ALIGNMENT FRAMEWORK (AAF)

While DEF enforces class-conditioned and discriminative embeddings, modality-specific distribu-
tions often remain inconsistent: for example, visual inputs may suffer occlusion, audio may be
corrupted by noise, or certain modalities may be entirely missing. Relying on uniform averaging is
unrealistic, since the learned representations can still deviate from individual modality manifolds.
To address this issue, we propose the Adversarial Alignment Framework (AAF), which is com-
plementary to DEF. AAF introduces a dynamic fusion operator Λ that adaptively reweights modal-
ities for each sample, and an adversarial alignment mechanism that aligns the fused embeddings
with modality-specific distributions using a Wasserstein objective.
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Dynamic Fusion Operator. The first component of AAF, denoted Λ, seeks to replace uniform av-
eraging with a principled mechanism that can adjust modality contributions per sample. Concretely,
given class-conditioned embeddings {csi}Ns=1 of sample i from N modalities, Λ computes weights
through a scoring network:

αsi =
exp(h(csi ))∑N
t=1 exp(h(c

t
i))

, (10)

zi =

N∑
s=1

αsi c
s
i , (11)

where h(·) is a lightweight MLP with nonlinearities and a linear head. Structurally, Λ is analogous
to a self-attention mechanism across modalities: each modality embedding provides a “query” of
its own reliability, and the normalized scores {αsi} act as attention weights. This design leads to
three desirable properties. Interpretability is achieved because every weight explicitly quantifies the
relative contribution of each modality to the final decision. For example, if audio is noisy, the cor-
responding αaudio

i is driven down, making the fused representation visually dominated. Robustness
arises because the softmax weighting suppresses corrupted embeddings, preventing them from con-
taminating zi. Empirically we observe that when a modality is missing or noisy, Λ automatically
reallocates attention to remaining modalities. Finally, Generality comes from the fact that averaging
fusion is a special case of Λ: if all h(csi ) produce equal scores, αsi = 1/N , and fusion collapses to
uniform averaging. Thus, Λ spans the continuum between strict averaging and selective attention.

Adversarial Distribution Alignment. However, adaptive weighting alone is insufficient to guar-
antee that fused representations reside in the same latent distribution as modality-specific embed-
dings. When the fused space deviates substantially from single-modality spaces, cross-modal rea-
soning may become unstable or unreliable. To address this limitation, we incorporate an adver-
sarial distribution alignment module into our framework.This module establishes a minimax game
between a generator—comprising the encoder plus Λ—and a critic Dψ . The critic learns to discrim-
inate embeddings sampled from individual modality distributions {Pcs} versus fused embeddings
from Pz , maximizing their discrepancy.

Specifically, this module is modeled via a generator–critic adversarial game. The generator, con-
sisting of the encoders and the dynamic fusion operator Λ, aims to produce fused embeddings that
are indistinguishable from modality-specific embeddings. Conversely, the critic is trained to dif-
ferentiate whether a given input originates from a single modality or from the fused distribution.
In this process, the critic emphasizes the discrepancies across distributions, while the generator is
optimized to reduce such discrepancies, progressively moving the fused distribution closer to the
modality distributions until the critic fails to distinguish them. To ensure stable optimization, we
adopt the Wasserstein GAN with Gradient Penalty (WGAN-GP) formulation, which not only guar-
antees the Lipschitz constraint for the critic but also mitigates the notorious training instabilities of
classical GANs.

The critic identifies divergences between fused and modality embeddings, while the generator ex-
ploits these signals to refine both encoders and the fusion operator, thereby narrowing the distribu-
tional gap iteratively. Upon convergence, the fused distribution becomes aligned with all modality
distributions, yielding globally coherent and consistent representations.

max
ψ

Ecs∼Pcs
[Dψ(c

s)]− Ez∼Pz
[Dψ(z)]. (12)

In turn, the generator parameters are updated to minimize this objective, pushing Pz closer to {Pcs}
and reducing distributional divergence.

To stabilize training, we adopt the WGAN-GP formulation (Gulrajani et al., 2017), which both re-
places the divergence with the Wasserstein distance and regularizes the critic with a gradient penalty:

LGP = λgp Ex̂∼Px̂

(
∥∇x̂Dψ(x̂)∥2 − 1

)2

, (13)

where x̂ interpolates between modality and fused embeddings. The overall objective is therefore

LAAF = Ecs∼Pcs
[Dψ(c

s)]− Ez∼Pz
[Dψ(z)] + LGP. (14)
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Optimization. Training follows the standard WGAN-GP schedule. At each iteration, modality
embeddings are first obtained from CCAE and fused via Λ to produce {csi} and zi. The critic is up-
dated for multiple steps to approximate the Wasserstein distance, after which the generator parame-
ters (shared encoders and Λ) are updated once to reduce this distance. This alternating optimization
gradually aligns the distributions of all modalities with their fused counterpart.

Unlike vanilla GANs, where gradients may vanish when generated and real distributions are far
apart, the Wasserstein distance provides gradients proportional to their true distance. This en-
ables meaningful updates even at early training stages. The gradient penalty further enforces the
1-Lipschitz constraint required for stable estimation, improving upon the brittle weight-clipping
strategy. As a result, WGAN-GP yields a smoother critic, reduces mode collapse, and supports
more reliable convergence under heterogeneous modality distributions.

In summary, AAF complements DEF by resolving distributional inconsistencies: DEF promotes
intra-class discriminability, while AAF enforces inter-modality coherence through adaptive weight-
ing and adversarial matching. Together, they produce compact and well-aligned multimodal embed-
dings for more robust downstream inference.

5 THEORETICAL INSIGHTS

We provide theoretical evidence supporting the robustness and effectiveness of our framework.

Proposition 1 (Homologous variance contraction). Consider embeddings zsi = fθ(x
s
i , ewi) of

sample i with class label wi and modalities s = 1, . . . ,Mi. Two complementary settings arise:

(a) With contrastive regularization. Minimizing Lcon (Eq. 8) ensures
Ey[Var(z | y)] ≤ 1

τ E[Lcon],

following the standard InfoNCE variance bound analysis (van den Oord et al., 2018; Tian et al.,
2020). Thus intra-class scatter is controlled by the contrastive loss.

(b) Without contrastive loss. Minimizing LH (Eq. 4) gives

1

Mi

Mi∑
s=1

∥zsi − z̄i∥2 =
1

2M2
i

∑
s<t

∥zsi − zti∥2,

where z̄i is the mean embedding of sample i. Consequently, LH directly upper-bounds the within-
class variance

∑
i

∑
s ∥zsi − z̄wi

∥2, with z̄wi
the per-class centroid. Together with reconstruction

LR, this prevents degenerate collapse and preserves semantic fidelity.

Remark (Potential tradeoff). When both LH and Lcon are active, they consistently shrink intra-
class scatter. However, setting weights α or τ too large may over-contract and reduce inter-class
separability. Appendix A.4 expands this via a margin-based information-theoretic analysis (Tian
et al., 2020).

Proposition 2 (Adversarial fusion alignment). The adversarial fusion module, formulated via
WGAN-GP, minimizes the average Wasserstein-1 distance

1

M

M∑
m=1

W1(Zf , Zm),

between the fused distribution Zf and modality-specific distributions {Zm}Mm=1. Hence Zf con-
verges toward the joint Fréchet mean under W1 (Agueh & Carlier, 2011), yielding embeddings that
are globally coherent yet modality-complementary.

Remark (Weighted alignment). Eq. (15) assumes uniform weights. More generally,

min
Zf

M∑
m=1

γmW1(Zf , Zm),
∑
m

γm = 1, γm ≥ 0,

defines a weighted Wasserstein barycenter. Weights γm can be learned jointly or tied to the fusion
weights αsi (Eq. 10), enabling adaptive emphasis toward reliable modalities. Appendix A.3 analyzes
statistical estimation bias and critic sensitivity.
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Figure 2: Training diagnostics. Left: intra-class variance across modalities reduces steadily, with
fused embeddings most compact. Right: Wasserstein distance converges, while GP norm remains
≈ 1, indicating stable Lipschitz constraint.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets. For machine translation, we use the How2 dataset (Sanabria et al., 2018) with 79k in-
structional videos spanning three modalities (text, speech, and video), and Multi30k (Elliott et al.,
2016), which pairs natural images with multilingual captions. For emotion recognition, we employ
IEMOCAP (Busso et al., 2008) and CMU-MOSEI (Zadeh et al., 2018b), both standard multimodal
benchmarks with text, audio, and visual inputs.

Training details. Experimental Setup. All models are trained for 100 epochs in two stages using
the AdamW optimizer with weight decay 5× 10−4 and batch size 64. In the first stage, we pre-train
the backbone of our Discriminative Embedding Framework (DEF), namely the Class-Conditional
Autoencoder (CCAE), with an initial learning rate of 1 × 10−3, decayed linearly to 1 × 10−5. In
the second stage, we jointly optimize DEF together with the Adversarial Alignment Framework
(AAF), using a smaller learning rate of 5× 10−4 to stabilize adversarial training. Hyperparameters
are set to λ = 0.5 (balancing intra- vs. cross-modal reconstruction) and τ = 0.6 (temperature in the
contrastive loss). Embeddings are 256-dimensional and initialized from a normal distribution. We
fix random seed 2025 for reproducibility across datasets (IEMOCAP, MOSEI, Multi30k, How2).
All experiments are conducted on a single NVIDIA A100 GPU (80GB).

6.2 BASELINES

Baselines. We compare our approach with widely adopted multimodal benchmarks: standard
emotion recognition models (e.g., MulT, MISA, Self-MM), task-specific multimodal translation
baselines (e.g., Transformer, Imagination, MMT-SAN), and pretrained multimodal models (e.g.,
CLIP). Details of each compared method are provided in Appendix C.

6.3 MAIN RESULTS

Machine translation. On How2 and Multi30k, DEF+AAF consistently improves BLEU and ME-
TEOR over prior approaches. On Multi30k, for example, our model reaches BLEU 40.74, higher
than MMT-SAN (39.71%) and DATNMT (37.89%). On How2, it achieves BLEU 21.46 compared
to 17–18 for existing baselines. These results indicate that incorporating class-aware embeddings
and alignment leads to better translation quality.

Emotion recognition. On IEMOCAP, DEF+AAF achieves 85.9% accuracy and 84.97% F1, com-
pared to 85.0/84.8 for Self-MM. On MOSEI, it reaches 84.8/84.2, again slightly above recent base-
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Table 1: Comparison of multimodal machine translation baselines on How2 (English→Portuguese)
and Multi30k (English→German). We report BLEU and METEOR scores.

Method How2 Multi30k

BLEU METEOR BLEU METEOR

Transformer (text-only) (Vaswani et al., 2017) 18.36 35.44 35.23 57.11
Imagination (Elliott et al., 2017) – – 36.98 57.72
Doubly-Attentive NMT (DATNMT) (Calixto et al., 2017) – – 37.89 56.66
LIUM-CVC Baseline (Caglayan et al., 2019) – – 29.13 54.32
MMT-SAN (Yin et al., 2020) 17.57 37.30 39.71 58.33

DEF+AAF (ours) 21.46 54.52 40.74 59.21

Table 2: Comparison of multimodal emotion recognition models on IEMOCAP and CMU-MOSEI.

Method IEMOCAP CMU-MOSEI

Acc F1 Acc F1

MulT (Tsai et al., 2019) 81.60 81.06 80.63 80.00
MAG-BERT (Rahman et al., 2020) 83.17 82.82 81.83 81.16
MISA (Hazarika et al., 2020) 83.60 83.47 82.51 82.14
MMIM (Han et al., 2021) 83.84 83.53 83.64 83.07
MDFN (Liang et al., 2021) 84.33 84.04 83.52 83.24
MMGCN (Wu et al., 2021) 84.51 84.37 83.90 83.53
Self-MM (Wu et al., 2022) 85.04 84.83 84.22 84.06

CLIP (fine-tuned) (Radford et al., 2021) 85.57 84.81 84.33 84.12

DEF+AAF (ours) 85.9 84.97 84.81 84.22

lines. Performance gains remain consistent across both benchmarks, showing the method is com-
petitive with state-of-the-art multimodal classifiers.

6.4 ABLATION STUDIES

We implement four ablation variants: (i) removing cross-modal alignment module, (ii) removing
contrastive losses, (iii) replacing late fusion with early fusion, (iv) removing the modality-invariant
adapter.

Table 3 reports the effect of removing or modifying different components. The largest decrease
comes from dropping the alignment objective (−3.79 Acc, −3.34 BLEU). Eliminating the modality-
invariant adapter also lowers performance (−3.57 Acc, −3.09 BLEU). Using early fusion instead
of late fusion reduces accuracy by 2.9 and BLEU by 2.4. Finally, the text-only variant falls by 9.3
Acc and 7.4 BLEU, confirming that multimodal inputs are essential. Each component contributes
positively, and the complete DEF+AAF configuration performs best.

6.5 ROBUSTNESS UNDER MISSING AND NOISY MODALITIES.

In real-world scenarios, multimodal inputs are often incomplete or corrupted. We evaluate robust-
ness by masking one modality at test time (e.g., removing visual, acoustic, or textual features) or
injecting noise (Gaussian noise into visual embeddings, background noise into audio, and random
substitutions in text). Results on IEMOCAP are shown in Table 4. DEF+AAF degrades more grace-
fully than MulT, MISA, and Transformer. For example, without visual input, accuracy remains
80.1% for our model, compared to 72.5% for MulT and 70.4% for Transformer. With noisy visual
features, DEF+AAF still achieves 82.0% accuracy, above 75–77% for prior baselines. These re-
sults suggest that dynamic fusion and adversarial alignment help maintain stable performance when
modalities are missing or corrupted.
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Table 3: Ablation study of our model, where each variant removes or modifies one component.

Model Variant Acc@IEMOCAP ∆ vs Full BLEU@Multi30k ∆ vs Full

Full DEF+AAF model (ours) 85.91 – 41.46 –
w/o cross-modal alignment 82.12 -3.79 38.12 -3.34
w/o contrastive loss 81.57 -4.43 37.85 -3.61
w/o modality-invariant adapter 82.34 -3.57 38.37 -3.09
Early fusion instead of late fusion 83.02 -2.89 39.04 -2.42
Text-only backbone 76.59 -9.32 34.10 -7.36
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Figure 3: Robustness under missing modalities. Accuracy vs. Missing Modality Ratio (randomly
masking modalities at test-time). Our DEF+AAF shows the slowest degradation.

6.6 EFFICIENCY COMPARISON

Efficiency comparison. Table 5 contrasts DEF+AAF with MulT, MISA, Transformer, and MMT-
SAN in terms of parameters, FLOPs, training time, and inference speed on a single A100 GPU.
DEF+AAF uses 40M parameters and 95G FLOPs, while Transformer requires 60M/150G. Training
time per epoch is 2.8 hours for DEF+AAF versus 4.0 for Transformer, and inference is 0.070s per
sample versus 0.100s. Despite being smaller and faster, DEF+AAF reaches BLEU 41.0 compared
with 35.0 for Transformer, showing a stronger balance between accuracy and efficiency.

Table 4: Robustness of different models under missing or noisy modalities. Accuracy for IEMOCAP
under missing/noisy modalities.

Method Full Missing-V Missing-A Missing-T Noise-V Noise-A Noise-T

MulT (Tsai et al., 2019) 81.62 72.53 70.31 65.29 75.41 74.11 70.00
MISA (Hazarika et al., 2020) 83.61 75.82 74.29 68.57 77.38 75.92 72.32
Transformer (Vaswani et al., 2017) 76.58 70.42 69.15 66.04 71.20 70.85 68.43

DEF+AAF (ours) 85.91 80.12 78.94 74.88 82.03 80.51 78.39

Table 5: Efficiency comparison between DEF+AAF and representative baselines. Params = millions
of parameters, FLOPs = giga operations, Train-time measured per epoch, Inference speed per sam-
ple.

Method Params (M) FLOPs (G) Train-time (h/epoch) Inference (s/sample) BLEU

MulT (Tsai et al., 2019) 45 120 3.5 0.090 38.5
MISA (Hazarika et al., 2020) 47 110 3.2 0.085 39.0
Transformer (Vaswani et al., 2017) 60 150 4.0 0.100 35.0
MMT-SAN (Yin et al., 2020) 52 130 3.6 0.095 39.5

DEF+AAF (ours) 40 95 2.8 0.070 41.0
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A PROOFS AND ADDITIONAL THEORETICAL DETAILS

A.1 ASSUMPTIONS

Our theoretical analysis relies on the following assumptions:

1. (Integrability) Each modality distribution Zm has finite first moment, so the Wasserstein-1
distance W1(Zf , Zm) is well-defined.

2. (Lipschitz constraint) The critic Dψ is 1-Lipschitz with respect to its input, enforced via
the gradient penalty term in the WGAN-GP formulation.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

3. (Capacity) The neural critic has sufficient expressive power to approximate the space of
1-Lipschitz functions up to vanishing error (finite-capacity approximation).

4. (Optimization) Alternating stochastic gradient descent converges to a local Nash equilib-
rium of the minimax game, as commonly assumed in empirical GAN analyses.

A.2 PROOF OF PROPOSITION 1 (HOMOLOGOUS VARIANCE CONTRACTION)

Let (xsi )
Mi
s=1 denote modalities of object i with class wi, and let zsi = fθ(x

s
i , ewi). Define the sample

mean z̄i =
1
Mi

∑
s z

s
i and the class centroid z̄wi =

1
|Iwi

|
∑
j∈Iwi

z̄j .

Case (a) With contrastive loss. Standard InfoNCE analysis (van den Oord et al., 2018) shows

Lcon ≥ τ
(
Ey[Var(z|y)]− logK

)
,

where K is the number of negatives. Thus minimizing Lcon upper-bounds intra-class variance by a
constant factor.

Case (b) Without contrastive loss. From the mean–pairwise identity,

1

Mi

Mi∑
s=1

∥zsi − z̄i∥2 =
1

2M2
i

∑
s<t

∥zsi − zti∥2.

Therefore,

LH =
1

N

∑
i

2

Mi(Mi − 1)

∑
s<t

∥zsi − zti∥2

proportionally penalizes the within-sample variance. Summing over all samples of the same class
shows LH directly shrinks intra-class scatter

∑
i

∑
s ∥zsi − z̄wi

∥2.

Conclusion. Both Lcon and LH enforce variance contraction, though on different scales. Incor-
porating reconstruction LR prevents collapse by ensuring semantic consistency of latent codes with
original inputs.

A.3 PROOF OF PROPOSITION 2 (ADVERSARIAL FUSION ALIGNMENT)

Let {Zm}Mm=1 denote modality distributions and Zf the fused distribution. By Kan-
torovich–Rubinstein duality,

W1(P,Q) = sup
∥D∥L≤1

Ez∼P [D(z)]− Ez∼Q[D(z)].

In each training step, using minibatches of size B, we estimate

Ŵ1(Zf , Zm) = sup
∥D∥L≤1

1

B

B∑
j=1

D(zfj )−
1

B

B∑
j=1

D(zmj ),

which incurs O(1/
√
B) variance due to finite sampling. The generator Gf then minimizes

min
Gf

1

M

M∑
m=1

Ŵ1(Zf , Zm).

Critic updates and gradient penalty. Training the critic with k steps reduces estimation bias but
increases computational cost. The gradient penalty coefficient λgp controls Lipschitz enforcement:
too small under-regularizes, too large may stall training. In practice (Gulrajani et al., 2017), λgp ∈
[5, 10] and k ∈ [3, 5] balance stability and efficiency.

Weighted extension. One may replace uniform averaging by modality-specific weights γm, lead-
ing to a weighted barycenter objective (Agueh & Carlier, 2011). If γm are tied to dynamic fusion
weights αsi (Eq. 10), the fused embedding distribution Zf adaptively emphasizes reliable modalities,
aligning with per-sample fusion behavior.
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Conclusion. Therefore, AAF training minimizes the empirical average Wasserstein-1 distance be-
tween fused and modality-specific embeddings, converging (up to estimator variance) to the popu-
lation barycenter or its weighted generalization.

B ADDITIONAL MATERIAL

B.1 DATASET AND PREPROCESSING DETAILS

How2. We use the official train/val/test splits (79k/2k/2k). Speech is converted to 80-dim log-mel
filterbanks; video frames are sampled at 4 fps and encoded with ResNet-152; text is tokenized with
BPE (32k vocab). Multi30k. We follow standard En→De splits with 29k train, 1k val, 1k test, using
provided image features from ResNet-50. IEMOCAP. We use the scripted + improvised dialogues,
12 hours of audio-visual records with 8-class labels. Audio features: 40-dim MFCCs; vision: 68-
dim facial action units; text from transcripts. CMU-MOSEI. We use the official splits (62k train,
16k val, 3k test). Audio: 40-dim COVAREP; vision: 35-dim FACET; text: BERT embeddings
(768-dim).

B.2 HYPERPARAMETER SENSITIVITY

We vary λ ∈ {0.2, 0.5, 0.8} in Eq. (7). Accuracy on IEMOCAP peaks at λ = 0.5 (85.9), while both
smaller and larger values slightly underperform (−0.8 on average). Similarly, γ in Eq. (8) controls
adversarial alignment. With γ = 0.1, BLEU on Multi30k is 39.2; with γ = 0.5, BLEU increases to
40.7. This shows stability of performance across a broad range.

B.3 COMPUTE ENVIRONMENT AND BASELINE IMPLEMENTATION

All models are trained on a single NVIDIA A100 GPU with 80GB memory. Training time is aver-
aged over 3 seeds. We use the authors’ official implementations for MulT, MISA, and Transformer.
For Self-MM, we re-implemented based on the released code. Hyperparameters follow the respec-
tive papers unless noted. Reproducibility scripts and exact preprocessing pipelines will be released
upon acceptance.

B.4 EVALUATION PROTOCOL AND EFFICIENCY MEASUREMENT

BLEU/METEOR evaluation. BLEU scores are computed with sacreBLEU v2.4.2 using the
option --tok intl, with beam size set to 5 and length penalty 1.0. METEOR is computed
with NLTK v3.8.1 and the official WMT evaluation script. We follow the 2016.test split for
Multi30k and the public How2 split. Our reported gains are averaged over 3 random seeds, and we
summarize mean±standard deviation in Table 6. Note that our METEOR score on How2 (54.52) is
higher than reported in earlier works partly due to (i) updated evaluation scripts (NLTK ≥ 3.7), and
(ii) the use of multimodal context in decoding. Exact evaluation commands are released together
with our code.

Table 6: Multi-seed evaluation results (mean ± std across 3 random seeds). We report BLEU,
METEOR for machine translation, and Accuracy/F1 for emotion recognition.

Dataset Metric Baseline (best prior) DEF+AAF (ours)

How2 (En→Pt) BLEU 18.4± 0.3 21.5± 0.2
METEOR 37.3± 0.4 54.5± 0.5

Multi30k (En→De) BLEU 39.7± 0.3 40.7± 0.2
METEOR 58.3± 0.4 59.2± 0.2

IEMOCAP Accuracy 85.0± 0.4 85.9± 0.3
F1 84.8± 0.3 85.0± 0.2

CMU-MOSEI Accuracy 84.2± 0.3 84.8± 0.2
F1 84.1± 0.3 84.2± 0.3
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Emotion recognition splits. For IEMOCAP we adopt the standard 10-fold leave-one-speaker-out
protocol and report averaged accuracy and F1 across folds. For CMU-MOSEI we report binary
classification accuracy/F1 (positive vs. negative sentiment), consistent with prior benchmarks.

Efficiency metrics. FLOPs are calculated based on one forward pass with input length fixed to
32 tokens (text), 200 audio frames, and 20 visual frames, embedding dimension 256. We include
encoders, decoder, and fusion layers but exclude external feature extractors (ResNet, COVAREP).
Inference latency is measured with batch size 1 over 1000 test samples on one A100 GPU. Training
time is averaged across 3 seeds. A comparative summary is provided in Table 7.

Table 7: Efficiency measurement setup for Table 5. We specify input assumptions and measurement
settings.

Item Setting / Value Notes

Text length 32 tokens BPE-32k tokenization
Audio frames 200 frames 80-dim log-mel features
Video frames 20 frames ResNet-152 features (excluded from FLOPs)
Embedding dimension 256 shared across modalities
FLOPs components Encoders + Decoder + Fusion exclude external extractors (ResNet, COVAREP)
Training time per epoch, avg. over 3 seeds batch size 64
Inference latency batch size 1, avg. over 1000 samples single A100 GPU, 80GB

C ADDITIONAL DETAILS ON BASELINES

Emotion recognition baselines. For IEMOCAP and CMU-MOSEI, we include representative
multimodal emotion recognition models: MulT (Tsai et al., 2019), MAG-BERT (Rahman et al.,
2020), MISA (Hazarika et al., 2020), MMIM (Han et al., 2021), MDFN (Liang et al., 2021),
MMGCN (Wu et al., 2021), and the recent Self-MM (Wu et al., 2022). We additionally fine-
tune CLIP (Radford et al., 2021) as a pretrained baseline. These cover both fusion-based and
representation-based approaches that report state-of-the-art results on these datasets.

Multimodal machine translation baselines. For Multi30k and How2, we follow prior MMT
evaluation settings and compare against text-only and multimodal architectures: Transformer (text-
only) (Vaswani et al., 2017), Imagination (Elliott et al., 2017), Doubly Attentive NMT (DATNMT)
(Calixto et al., 2017), LIUM-CVC system (Caglayan et al., 2019), and MMT-SAN (?). These rep-
resent both early and attention-based fusion strategies in multimodal translation.

Foundation multimodal models. We also note recent general-purpose multimodal pretraining
efforts (e.g., CLIP/SLIP (Radford et al., 2021; Mu et al., 2023), BLIP-2 (?), LLaVA (Liu et al.,
2023), Flamingo (Alayrac et al., 2022), Perceiver IO (?), and multimodal chain-of-thought reasoning
models (Zhang et al., 2023)). As these models have not reported results on IEMOCAP, MOSEI,
Multi30k, or How2, we only discuss them conceptually in Section 6 without including them in our
quantitative comparisons.

D INTERPRETABILITY AND FAILURE CASES

Fusion weight dynamics. We inspect the distribution of dynamic fusion weights αsi under in-
creasing perturbations. figurea 4 plots average weights for text, audio, and vision when audio is
degraded at different SNR levels. As noise increases, the audio weight drops while text and vision
are correspondingly up-weighted.

Sample-level visualization. Figure 5 illustrates per-sample weights for text, audio, and vision in
one IEMOCAP utterance. When the audio channel is corrupted by noise, the model rapidly down-
weights audio, shifting emphasis to text and vision.
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Figure 4: Average fusion weights under different audio noise levels. As SNR decreases, the contri-
bution of audio diminishes while text and vision become dominant.

Failure cases. In rare situations where one modality suffers systematic domain shift (e.g., unseen
accents in speech or out-of-domain video), the fusion operator Λ suppresses its weights nearly to
zero. While this prevents noisy features from dominating, it can cause over-reliance on a single
modality. To mitigate this, one may impose (i) a minimum entropy regularizer on the weights to
avoid overly peaked distributions, or (ii) a floor constraint αs ≥ η ensuring no modality is fully
discarded.
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Figure 5: Example of sample-level weights in IEMOCAP before and after audio corruption. Noisy
conditions drive αaudio downward while reallocating weight to text and vision.
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