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Abstract

Anomaly detection is the task of identifying examples that do not behave as expected.
Because anomalies are rare and unexpected events, collecting real anomalous examples
is often challenging in several applications. In addition, learning an anomaly detector
with limited (or no) anomalies often yields poor prediction performance. One option is to
employ auxiliary synthetic anomalies to improve the model training. However, synthetic
anomalies may be of poor quality: anomalies that are unrealistic or indistinguishable from
normal samples may deteriorate the detector’s performance. Unfortunately, no existing
methods quantify the quality of auxiliary anomalies. We fill in this gap and propose the
expected anomaly posterior (EAP), an uncertainty-based score function that measures the
quality of auxiliary anomalies by quantifying the total uncertainty of an anomaly detector.
Experimentally on 40 benchmark datasets of images and tabular data, we show that EAP
outperforms 12 adapted data quality estimators in the majority of cases. Code of EAP is
available at: https://github.com/Lorenzo-Perini/ExpectedAnomalyPosterior.

1 Introduction

Anomaly detection aims at identifying the examples that do not conform to the normal behaviour (Chandola
et al., 2009). Anomalies are often connected to adverse events, such as defects in production lines (Wang
et al., 2024), excess water usage (Perini et al., 2023), failures in petroleum extraction (Martí et al., 2015), or
breakdowns in wind turbines (Perini et al., 2022). Detecting anomalies in time can reduce monetary costs
and protect resources from harm (Bergmann et al., 2022). For this reason, there has been significant effort to
develop data-driven methods for anomaly detection.

Unfortunately, anomalies are inherently rare and sparse, which makes collecting them hard. As a result, the
data used to train data-driven methods for anomaly detection only contains a limited number of anomalies.
In autonomous driving, for instance, sensor malfunctions or unexpected pedestrian movements are infrequent
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but critical to address. As an additional challenge, available anomalies rarely represent all potential cases
due to the unpredictable nature of these events. In financial fraud detection, new techniques and schemes
are constantly emerging, meaning previously identified anomalies do not cover future fraudulent methods.
These factors highlight the difficulty of obtaining comprehensive anomaly datasets, as new and unpredictable
anomaly types are inherent to the very nature of these events.

With recent improvements in generative modeling (e.g. (Ho et al., 2020; Dhariwal & Nichol, 2021)) it seems
natural to introduce auxiliary anomalies, e.g. for training an anomaly detector (Murase & Fukumizu, 2022),
or for model selection (Fung et al., 2023). However, there are several failure cases for generated anomalies that
should not be neglected. For one, auxiliary anomalies might be too similar to normal examples. For instance,
the defects introduced into images of products might be imperceptible, making the image indistinguishable
from a normal counterpart. On the other hand, the quality of a generated anomaly also deteriorates as it
becomes too unrealistic, e.g. when the generated defect of a product is too severe. Including poor-quality
anomalies for training a model is likely to harm its performance (Hendrycks et al., 2019; Qiu et al., 2022b; Li
et al., 2023a;b). Although Chen et al. (2021); Ming et al. (2022) proposed sampling methods for selecting
informative anomalies during training, there is no approach for quantifying the quality of auxiliary anomalies.

In this paper, we close this critical gap by introducing the Expected Anomaly Posterior (EAP), the
first example-wise score function that measures the quality of auxiliary anomalies. Our approach relies
on a fundamental insight: high-quality auxiliary anomalies must fulfill two criteria — they must be (1)
distinguishable from normal examples in the training data and (2) realistic, i.e. similar to the training
examples (e.g., scratches only affect few pixels, leaving an anomalous image relatively similar to a normal
one). Finding a balance between these two characteristics poses an inherent challenge. On one hand, auxiliary
anomalies risk deteriorating an anomaly detector’s performance if they closely resemble normal examples. On
the other hand, they become less useful the more dissimilar from the training data.

Building upon this insight, we adopt a Bayesian framework to model the uncertainty of a detector’s prediction.
This framework accounts for both an example’s dissimilarity from the normal class (via class-conditional
probability) and its realism (via example density). More specifically, the class-conditional probability reflects
how good a detector is at discriminating the synthetic anomaly from the normal class, while the example
density reflects how well the example fits within the overall data distribution. The expectation of the posterior
probability that an example is anomalous reflects our concept of the quality of an auxiliary anomaly: the
approximation we derive in Section 3 to compute the EAP will give lower scores to indistinguishable and
unrealistic anomalies.

In summary, we make three following contributions.

• In Section 3, we compute the expected anomaly posterior (EAP), which measures the quality of an
anomaly by accounting both for aleatoric and epistemic uncertainty.

• In Section 4, we provide a theoretical analysis of EAP, including its properties and guarantees.

• In Section 5, we run an extensive experimental analysis and show that EAP enhances a detector’s
performance when using high-quality anomalies to enrich training or perform model selection.

2 Related Work

Anomaly detection. Designing an anomaly detector requires developing a way to assign real-valued
anomaly scores to the examples (Chandola et al., 2009; Han et al., 2022b), where the higher the score, the
more anomalous the example. Existing approaches often rely on heuristic intuitions about expected anomalous
behavior (Pang et al., 2021; Qiu, 2023). Propagation-based detectors, such as those using proximity to
training examples, assume similar instances share the same label (e.g., SSDO) (Vercruyssen et al., 2018).
Loss-based detectors, on the other hand, learn a decision boundary (e.g., a hypersphere over normals) and
assign scores based on the distance to this boundary (Ruff et al., 2020; Zhou et al., 2021; Gao et al., 2021;
Qiu et al., 2022a). Self-supervised detectors learn models through solving auxiliary tasks and score anomalies
according to model performance on self-supervised tasks (Golan & El-Yaniv, 2018; Bergman & Hoshen, 2020;
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Qiu et al., 2021). Recently, foundation models have enabled zero-shot anomaly detection (Jeong et al., 2023),
which overcomes the need to collect anomalies for training but still requires their use in model selection (Fung
et al., 2023).

Uncertainty quantification. Uncertainty quantification is the task of measuring the reliability of pre-
dictions in machine learning models (Hüllermeier & Waegeman, 2021). It typically considers two types of
uncertainty: the aleatoric uncertainty, which indicates randomness in the data such as overlapping classes,
and the epistemic uncertainty, which reflects the model’s lack of knowledge due to limited or biased training
data. Bayesian frameworks are commonly used to capture both uncertainties by leveraging their estimated
posterior distributions (Bengs et al., 2022). Recent works have introduced advanced methods, such as
posterior networks (Charpentier et al., 2020) and second-order scoring rules (Bengs et al., 2023), to refine
uncertainty estimates and mitigate limitations in traditional approaches. Such research has shown good
results in applied tasks, such as out-of-distribution detection (Ming et al., 2022) and model calibration (Deng
et al., 2022), leading to robust tools for tasks that require reliable prediction under uncertainty.

Data quality. Traditional quality score functions evaluate training examples by (1) defining a utility
function that takes as input a subset of the training set and measures the performance of the model, and (2)
finding a function that assigns a score to an example by quantifying its impact on the model’s performance
when included/excluded for training (Yoon et al., 2020; Sim et al., 2022; Jiang et al., 2023). Methods like
leave-one-out (Loo) iteratively remove one example at a time to observe how test performance varies. Various
techniques, such as DataShap (Ghorbani & Zou, 2019), BetaShap (Kwon & Zou, 2021), kNNShap (Jia
et al., 2019), DataBanzhaf (Wang & Jia, 2023), and AME (Lin et al., 2022), compute the marginal
contribution of an example by bootstrapping the training set and assessing its impact on model training.
DataOob is an out-of-bag (OOB) evaluator that measures out-of-bag accuracy variation. Other methods
like Lava and influence functions (Inf) quantify how the utility changes when a specific example is more
weighted. The Appendix A.1 provides a detailed overview. Unfortunately, all existing data quality estimators
focus on evaluating the impact of training examples and are impractical for evaluating auxiliary anomalies
for two reasons. First, retraining a detector multiple times is computationally prohibitive (e.g., Loo). In
contrast, EAP trains the detector only once. Second, they require an i.i.d. validation set with the same
distribution as the test set to measure the performance variation with and without the example, which is
challenging in anomaly detection due to the common distribution gap between validation and test.1 In
contrast, EAP is flexible and can operate effectively even in the absence of a high-quality validation set
by directly leveraging the detector’s posterior probabilities. This allows it to evaluate auxiliary anomalies
without relying on a separate dataset for comparison, which is especially useful in anomaly detection scenarios
where a well-matched validation set may not be available. For completeness, we will empirically compare
EAP against the main data quality estimators in the experiments (Section 5).

3 Methodology

In this Section, we introduce the problem setup and notations (Section 3.1), and describe our proposed
approach for quantifying the quality of auxiliary anomalies (Section 3.2).

3.1 Problem setup

Let (Ω, F , P) be a probability space, and X : Ω → Rd, Y : Ω → {0, 1} two random variables representing,
respectively, feature vectors and class labels (0 for normals, 1 for anomalies).2 A training dataset is an i.i.d.
sample of pairs D = {(x1, y1), . . . , (xn, yn)} ∼ p(X, Y ) drawn from the joint distribution. We denote by
P(Y |X) the class conditional probability, and by p(x) the class density. Because of the rarity of anomalies,
we assume to have only m << n (labeled) examples from the anomaly class, in addition to n − m (labeled)
normal examples.

1Anomalies may manifest as novelties or out-of-distribution examples, creating distribution shifts on the positive class.
2Anomaly detection is often treated as a binary classification task, where anomalies belong to the positive class. See, for

example, Chandola et al. (2009) for further information.
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Since anomalies provide valuable training signals, but are so rare to acquire, Hendrycks et al. (2019); Murase
& Fukumizu (2022) propose using auxiliary anomalies during training. With significant improvements in
generative modeling, there are many candidate methods for generating synthetic anomalies to complement
the training data. Our goal is to evaluate candidate synthetic anomalies with a quality score function ϕ such
that higher scores indicate that the synthetic anomaly is useful for training a detector. Before formalizing
our research task, we introduce the following definition.
Definition 3.1 (Categorization of Anomalies). Given the examples xr, xu, xi ∈ Rd, we define that

• xr is a realistic anomaly if it has high conditional probability and non-zero density

P(Y = 1|X = xr) ∈ [0.5, 1] and p(xr) > 0;

• xu is an unrealistic anomaly if it has high conditional probability and null density

P(Y = 1|X = xu) ∈ [0.5, 1] and p(xu) = 0;

• xi is an indistinguishable anomaly if it has null conditional probability and non-zero density

P(Y = 1|X = xi) = 0 and p(xi) > 0.

Strictly speaking, unrealistic anomalies refer to examples falling outside the support of the real data generation
model, i.e. with density equal to zero. Note that these are not merely low-density examples, which can
be realistic, as anomalies are naturally rare and often occur in low-density regions. On the other hand,
indistinguishable anomalies refer to examples that are confidently classified as normals by the anomaly
detector, i.e. with class conditional probability of being anomalous equal to zero.

An anomaly detector is a function f : Rd → R that assigns a real-valued anomaly score f(x) to any x ∈ Rd.
The detector f is learned using the training set D, and can be used for estimating the class conditional
probability P(Y |X) by mapping the scores to [0, 1] (Kriegel et al., 2011).

Given: D with m ≪ n anomalies, a set of l auxiliary anomalies {x ∈ Rd} , and a detector f ;

Challenge: Design a quality score function ϕ : Rd → R for the auxiliary anomalies, such that for any realistic
anomaly xr ∈ l and any unrealistic or indistinguishable anomaly xu, xi ∈ l, the realistic anomaly has
a higher quality score ϕ(xr) > ϕ(xu), ϕ(xi).

With this categorization, estimators for P(Y |X) alone cannot differentiate between xr and xu, while estimators
for p(X) alone cannot differentiate between xr and xi, thus not qualifying as good quality estimators.
Intuitively, a score must quantify the conditional probability to distinguish between xr and xi but the
estimate needs to account for an example’s density. Roughly speaking, the lower an example’s density the
more uncertain the estimate, because the lack of similar training data prevents a model from learning the
correct probability. This introduces an additional level of uncertainty (namely, epistemic), which requires a
Bayesian perspective to be properly measured (Hüllermeier & Waegeman, 2021; Bengs et al., 2022).

3.2 The Expected Anomaly Posterior

Capturing a detector’s uncertainty is challenging because one needs to account for (1) the example’s proximity
to the normal class (i.e., the aleatoric uncertainty) and (2) the lack of training data in the region where the
example falls (i.e., the epistemic uncertainty). This is particularly complicated in anomaly detection because
the epistemic uncertainty tends to be high for most anomalies, as they often fall in low-density regions (Bengs
et al., 2023).

We propose EAP, a novel approach that estimates the quality of auxiliary anomalies by capturing an anomaly
detector’s uncertainty. The key idea is to model each example’s probability of being an anomaly πx. This
captures both types of uncertainty: the one on the class prediction Y ∈ {0, 1} (i.e. aleatoric), and the one on
the probability πx (i.e. epistemic). The quality score we propose is the expected posterior of this parameter.
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Assumption. For any x the class conditional distribution Y |X = x is a Bernoulli

P(Y |X = x) = Bernoulli(πx), πx ∼ Beta(α0, β0).

The parameter πx can be interpreted as the probability of the example x being an anomaly. With the Beta
prior we can incorporate prior knowledge such as the expected ratio of anomalies in the data (Perini et al.,
2023). Since we have at most one observation of Y for each x, we follow Charpentier et al. (2020) and
model the posterior over πx by conditioning on pseudo observations. Given N pseudo observations ȳ1, . . . , ȳN

hypothetically drawn from P(Y |X = x), the posterior,

πx|ȳ1, . . . , ȳN ∼ Beta(α0 + α1, β0 + N − α1), (1)

is conjugate to the Beta prior, where α1 =
∑N

i=1 1(ȳi = 1) is the number of anomalies in the pseudo
observations. That is, if we could sample N labels for the same example x, i.e. (x, y1), . . . , (x, yN ), we would
derive the posterior distribution of Y |X = x by using a simple Bayes update (Eq. 1). However, sampling N
labels for the same example x is practically impossible. Thus, we need to parametrize α1. Roughly speaking,
if we drew n training examples from p(X, Y ) we would expect to draw N = n · p(x) examples with features x,
among which P(Y = 1|X = x) are anomalies:

α1 ≈ n × P(Y = 1, X = x)
∧

≈ n × P(Y = 1|X = x)
∧︸ ︷︷ ︸
conditional probability

× p(x)
∧︸︷︷︸

data density

(2)

where ·̂ indicates that the quantity is estimated. We describe how we compute both terms below.3 The
expectation of the posterior in Equation (1) reflects the quality of an auxiliary anomaly x: if the evidence N
is high, we have enough samples to rely on the expected conditional probability for evaluating the auxiliary
anomaly (EAP ≈ P(Y =1|X =x)

∧

), while if N is low, the quality reflects our prior belief (EAP ≈ α0
α0+β0

).
Note that, while n represents the training set size, it can also be treated as a hyperparameter. In this context,
it acts like a certainty budget distributed over the two classes.

Estimating the data density. Computing p(x)
∧

has two main challenges. First, most traditional density
estimators suffer the well-known curse of dimensionality (Verleysen & François, 2005; Bengio et al., 2005).
Second, deep estimators (e.g., Normalizing Flows (Kobyzev et al., 2020)) are prohibitively time-consuming to
be employed for data quality scores. Thus, EAP relies on the rarity score (Han et al., 2022a), which is fast
to compute and weakly affected by the curse of dimensionality. The rarity score (1) creates k-NN spheres
centered on each training example, and (2) assigns the smallest radius of the sphere that contains the given
synthetic example. If the synthetic example falls outside of all spheres, it is considered too uncommon and
gets null rarity.

We use the rarity score rk̂ with an estimated k̂ to estimate the data density.4 Intuitively, the density behaves
as the inverse of the rarity score: highly uncommon examples should have low density. Thus, we take the
reciprocal value of the rarity score and normalize it using the training rarity scores:

p(x)
∧

=
1/rk̂(x)

1/rk̂(x) +
∑n

i=1 1/rk̂(xi)
. (3)

Finally, we want to highlight that the weak estimator in Eq 3 is enough for our task for two reasons. First,
assigning null density to synthetic anomalies falling outside of all training spheres allows unrealistic anomalies
to be detected. Second, the provided implementation is fast, as one can compute the training spheres only
once for the whole set of synthetic examples.

Estimating the conditional probability. Computing P(Y = 1|X = x)
∧

in anomaly detection is a hard
task because (1) class probabilities are generally unreliable for imbalanced classification tasks (Wallace &

3Note that the principle itself is not restricted to this particular choice of estimators. One could apply any other method
without altering the validity of the framework.

4We explain how we compute k̂ in Appendix A.2.
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Dahabreh, 2012; Tian et al., 2020), and (2) the available anomalies might be non-representative of the whole
anomaly class (i.e., we have access to a biased set). This makes traditional calibration techniques often
impractical (Silva Filho et al., 2023; Deng et al., 2022). However, we mainly care about having probabilities
that satisfy two properties. First, they must be coherent with the detector’s prediction, namely a predicted
anomaly (normal) needs a probability greater (lower) than 0.5. Second, we want the proportion of predicted
anomalies to match the expected proportion of true anomalies. This guarantees that, if the detector’s ranking
is accurate, the class predictions are optimally computed.

For this task, we employ a squashing scaler (Vercruyssen et al., 2018) to map the anomaly scores f(x) to
[0, 1] probability values

P(Y = 1|X = x)
∧

= 1 − 2−
(

f(x)
λ

)2

(4)
where λ is the detector’s decision threshold, which we set such that the number of training examples with
probability > 0.5 (after mapping) is equal to the number of training anomalies m (Perini et al., 2023).
Roughly speaking, Eq. 4 uses a monotonic function to map λ to 0.5, all scores > λ to the interval (0.5, 1],
and all the scores < λ to [0, 0.5). This guarantees that, when transforming the estimated P(Y = 1|X = x)

∧

to
predictions by thresholding at 0.5, the predicted classes are the same as when thresholding scores with the
decision threshold λ. This transformation satisfies both properties listed above.

Computing the quality scores. Using our point estimates for the data density and the conditional
probability, the parametrized posterior distribution πx|ȳ1, . . . , ȳN can be computed by substituting to Eq. 1

α1 = n · P(Y = 1|X = x)
∧

· p(x)
∧

and N = n · p(x)
∧

.

Finally, we compute the quality of an auxiliary anomaly x by taking its expectation

ϕ(x) = E[πx|ȳ1, . . . , ȳN ] = α0 + n · p(x)
∧

· P(Y = 1|X = x)
∧

α0 + β0 + n · p(x)
∧ .

4 Theoretical Analysis of EAP

We theoretically investigate two tasks. First, we illustrate the main properties of EAP, namely how it
behaves when subject to (1) large training sets (n → +∞), (2) small training sets or zero-density examples,
(3) high-class conditional probabilities. Second, we answer the following question: Given a realistic anomaly
xr, an indistinguishable anomaly xi and an unrealistic anomaly xu as in Definition 3.1, does EAP rank
ϕ(xr) > ϕ(xi), ϕ(xu)?

i) EAP has three relevant properties:

P1) Convergence to class conditional probabilities. The number of training examples indicates how strong the
empirical evidence is. That is, the detector f has enough evidence to estimate properly the class conditional
probability. Thus, for high n, EAP converges to the class conditional probability

ϕ(x) → P(Y = 1|X = x)
∧

for n → +∞;

P2) Convergence to the prior’s mean. No empirical evidence implies that the posterior remains equal to the
prior. Thus, EAP assigns the prior’s mean for relatively small n or a null-density region,

ϕ(x) → α0

α0 + β0
for n → 0 or p(x)

∧

→ 0.

P3) The quality of distinguishable anomalies increases with their density. Given P(Y = 1|X = x)
∧

≈ 1 for an
example x, its quality depends only on its density: the closer/more similar to the training examples, the
higher the density, the higher its quality:

ϕ(x) ≈ 1 − β0

α0 + β0 + n · p(x) .
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Roughly speaking, assuming that the synthetic anomaly is distinguishable for the anomaly detector from a
normal counterpart, the closer it is to the training examples (normal or anomalous) the more likely it will
help to improve the decision boundary when used for training.

ii) EAP’ ranking guarantee.

We show that EAP ranks the anomalies as (1st) realistic, (2nd) unrealistic, and (3rd) indistinguishable.
Theorem 4.1. Let xr, xu, xi ∈ Rd be, respectively, a realistic, unrealistic, and indistinguishable anomaly. If
the estimators in Eq. 3 and Eq. 4 satisfy the properties of Definition 3.1, then

α0

α0 + β0
< 0.5 =⇒ ϕ(xr) > ϕ(xu) > ϕ(xi). (5)

Proof. Using the definition of indistinguishable and unrealistic anomaly, we immediately conclude

ϕ(xu) = α0

α0 + β0
>

α0

α0 + β0 + n · p(xi)
= ϕ(xi)

because p(xi) > 0. As a second step, we assume that α0
α0+β0

< 0.5 and show algebraically that

ϕ(xr) > ϕ(xu) ⇐⇒ ϕ(xr) − ϕ(xu) > 0 ⇐⇒ α0 + n · P(Y = 1|X = xr) · p(xr)
α0 + β0 + n · p(xr) − α0

α0 + β0
>0

⇐⇒ n · p(xr) [(α0 + β0) · P(Y = 1|X = xr) − α0] > 0 ⇐⇒ P(Y = 1|X = xr) >
α0

α0 + β0
,

which holds as P(Y = 1|X = xr) > 0.5 > α0
α0+β0

.

5 Experiments

We empirically evaluate two aspects of our method EAP: (a) whether it measures properly the quality of
auxiliary anomalies, and (b) its impact on selecting auxiliary anomalies for learning a model or for model
selection. For the first aspect, we compare EAP’s ability to rank high-quality examples above low-quality
ones. For the second aspect, we evaluate the downstream impact of including high-quality samples in training
or model selection, measuring how these examples improve the performance of the learned model. We argue
that, together, these evaluations illustrate both the standalone utility of EAP as a quality metric and its
practical relevance for improving anomaly detection. To this end, we address the following five experimental
questions:

Q1. How does EAP compare to existing methods at assigning quality scores?
Q2. How does a model’s performance vary when including high-quality anomalies for training?
Q3. How does a model’s performance vary when including low-quality anomalies for training?
Q4. How does the performance of a CLIP-based zero-shot anomaly detection method vary when using

the selected auxiliary anomalies for prompt tuning?
Q5. How do EAP’ scores vary for different priors?

5.1 Experimental Setup

Baselines. We compare EAP5 with 12 adapted baselines: Loo, kNNShap (Jia et al., 2019), Data-
Banzhaf (Wang & Jia, 2023), AME (Lin et al., 2022), LavaEv (Just et al., 2023), Inf (Feldman & Zhang,
2020), and DataOob (Kwon & Zou, 2023) are existing data quality evaluators that measure the impact of a
training example on the model performance. We adapt these methods by including each auxiliary anomaly
(individually) in the training set and evaluating its contribution. RandomEv assigns uniform random scores
to each auxiliary anomaly. Rarity (Han et al., 2022a) computes the rarity score of each auxiliary anomaly.
Finally, we include the estimators for the data density Px, the class conditional probability Py|x, and a linear
combination of them Py|x + NPx.

5Code is available at: https://github.com/Lorenzo-Perini/ExpectedAnomalyPosterior.

7

https://github.com/Lorenzo-Perini/ExpectedAnomalyPosterior


Published in Transactions on Machine Learning Research (12/2024)

Data. We carry out our study on 40 datasets, including 15 widely used benchmark image datasets
(MvTec) (Bergmann et al., 2019), 3 industrial image datasets for Surface Defect Inspection (SDI) (Wang
et al., 2022), and an additional 22 benchmark tabular datasets for anomaly detection with semantically useful
anomalies, commonly referenced in the literature (Han et al., 2022b). These datasets vary in size, feature
count, and anomaly proportion.

For each dataset, we construct an auxiliary set of l anomalies by combining realistic, indistinguishable,
and unrealistic anomalies ( l

3 each). Realistic anomalies are labeled anomalies provided with the dataset,
indistinguishable anomalies are labeled normal examples with swapped labels, and unrealistic anomalies come
from other datasets. Specifically, to collect unrealistic anomalies we randomly select 5 datasets out of 40,
subsample them to a specific count, and fix their dimensionality to d via random projections (either extending
or reducing it). Pseudo-quality labels “good” and “poor” are assigned to real anomalies and the other two
groups, respectively, reflecting the ground truth where real anomalies should have high-quality scores.

Setup. For each dataset, we proceed as follows: (i) We create a balanced test set by adding random normal
examples and 50% of available anomalies; (ii) We generate a set of l auxiliary anomalies as described above
with l

3 = 40% of available anomalies; (iii) We create a training set by adding 10% of available anomalies and
all remaining normal examples to the training set. (iv) We apply all methods to evaluate the external set of
anomalies, using the training set for validation when required (as m ≪ n, we avoid partitioning the training
set); To mitigate noise, steps (i)-(iv) are repeated 10 times with different seeds, resulting in a total of 4000
experiments (datasets, methods, seeds). While computing EAP is fast, the baselines have high computational
costs because they train a model several times. To run all experiments, we use an internal cluster of six 24-
or 32-thread machines (128 GB of memory). The experiments finish in ∼ 72 hours.

Models and Hyperparameters. For all baselines, we use SSDO (Vercruyssen et al., 2018) as the
underlying anomaly detector f with k = 10 and Isolation Forest (Liu et al., 2008) as prior. This choice is
motivated as follows. First, such a combination has been analyzed and used often by researchers (Drogkoula
et al., 2023; Stradiotti et al., 2024a; Serban et al., 2024; Pang et al., 2023; Stradiotti et al., 2024b). Second,
because some of our datasets include tabular data, we need to employ a fast yet accurate detector for
such a data modality. Recent papers such as (Stradiotti et al., 2024b) highlight that SSDO + Isolation
Forest is one of the best-performing detectors. When exposed to selected auxiliary anomalies, we employ
an SVM with RBF kernel (for images) and a Random Forest (for tabular data) to make the normal vs.
abnormal classification. For images, we use the pre-trained ViT-B-16-SigLIP (Zhai et al., 2023) to extract
the features from images and use them as inputs to EAP and all baselines. Our method EAP has one
hyperparameter, namely the prior α0, β0, which we set to m

n (the proportion of anomalies in the training set)
and 1 − m

n . Intuitively, this corresponds to the expected proportion of (real) anomalies if an external dataset
was sampled from P(X, Y ). The baselines6 have the following hyperparameters: kNNShap and Rarity
have k = 10, DataBanzhaf, AME, Inf and DataOob use 50 models. All other hyperparameters are set as
default (Soenen et al., 2021).

Evaluation Metrics. We employ four evaluation metrics. First, we use the Area Under the Receiving
Operator Curve (AUCqlt) to evaluate the methods’ ability to rank good-quality examples higher than
poor-quality ones based on quality scores compared to the pseudo-quality labels. Second, we qualitatively
analyze the impact of using auxiliary anomalies in training a model, showing the learning curves (LCg) with
the number of added anomalies following the ranking of quality scores on the x-axis and the test accuracy on
the y-axis. We compute the area under the learning curve up to 1

3 of ranked anomalies (AULCg) and the
test accuracy after including top 1

3 of ranked anomalies (ACCg). Similarly, we compute the LCp following
the methods’ inverse ordering and measure the AULCp of including up to 2

3 of inversely-ranked anomalies,
where lower values are desirable. Finally, separately for each metric, we rank all methods from the best
(position 1) to the worst (position 13) in each experiment. By monitoring the rankings, we get insights on
“how often” our method outperforms the competitors, as opposed to the traditional “by how much”. We
denote the ranking-based metrics by adding a r in front in Table 1.

6Code: https://github.com/opendataval
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Table 1: Summary of the results obtained by the 13 methods over 18 image (above) and 22 tabular (below)
datasets. Columns 6 − 10 show the ranking values for the 4 metrics employed (columns 2 − 5) and their
average. For metrics desiring lower values, we mark with a ↓. Overall, EAP achieves the best performance
and ranking position for most evaluation metrics as well as the best avg. ranking.

18 Image Datasets
Evaluator AUCqlt AULCg ACCg AULCp(↓) rAUCqlt rAULCg rACCg rAULCp Avg. Rank

EAP 0.803 0.717 0.833 0.688 1.99 3.94 3.12 3.66 3.18
Rarity 0.681 0.698 0.786 0.738 4.21 5.07 5.34 7.96 5.65
Lava 0.742 0.665 0.755 0.709 2.70 8.17 7.44 4.71 5.75
Py|x + NPx 0.669 0.700 0.795 0.729 4.80 5.60 5.61 7.13 5.79
Loo 0.537 0.693 0.777 0.694 7.22 5.86 6.56 6.14 6.44
RandomEv 0.491 0.696 0.793 0.756 8.92 6.21 5.93 9.90 7.38
DataOob 0.505 0.685 0.739 0.668 8.66 7.53 9.55 4.35 7.52
kNNShap 0.509 0.695 0.794 0.754 8.58 6.36 5.95 9.44 7.58
AME 0.512 0.693 0.793 0.756 8.56 6.42 5.85 9.94 7.69
Inf 0.488 0.681 0.778 0.744 8.87 7.01 6.73 8.55 7.79
Py|x 0.494 0.671 0.710 0.644 9.30 8.55 10.62 3.04 7.88
DataBanzhaf 0.500 0.668 0.775 0.748 8.71 8.01 6.68 8.54 7.98
Px 0.502 0.535 0.600 0.733 8.59 12.37 11.72 7.72 10.10

22 Tabular Datasets

EAP 0.821 0.779 0.839 0.717 1.91 4.27 4.28 2.11 3.14
Rarity 0.724 0.782 0.839 0.753 3.59 4.42 4.91 4.92 4.46
Lava 0.723 0.744 0.794 0.747 3.62 7.48 7.17 4.08 5.59
Py|x + NPx 0.676 0.758 0.815 0.771 4.93 6.16 6.23 6.16 5.87
kNNShap 0.541 0.770 0.825 0.805 7.61 5.24 5.29 9.15 6.82
RandomEv 0.502 0.773 0.827 0.809 8.25 4.92 5.33 9.72 7.06
AME 0.498 0.772 0.827 0.809 8.53 5.05 5.37 9.75 7.17
Loo 0.504 0.750 0.798 0.792 7.90 6.87 7.10 7.77 7.41
Px 0.554 0.703 0.768 0.752 6.77 10.39 9.29 4.69 7.78
Py|x 0.533 0.712 0.748 0.753 8.20 10.56 10.66 4.30 8.43
DataOob 0.513 0.729 0.768 0.785 8.48 9.39 9.84 7.43 8.78
Inf 0.434 0.742 0.795 0.816 10.29 7.78 7.37 10.40 8.96
DataBanzhaf 0.415 0.736 0.789 0.817 10.92 8.47 8.16 10.53 9.52

5.2 Experimental Results

Q1. EAP vs baselines at assigning quality scores. Figure 1 shows the methods’ mean AUCqlt on both
image (left) and tabular data (right). On images, EAP outperforms all baselines on 13 out of 18 datasets,
achieving an average AUCqlt significantly higher than Lava and Rarity by 6 and 12 percentage points, as
shown in Table 1. Also, EAP consistently obtains the lowest average ranking positions (1.99 for rAUCqlt).
On tabular data, EAP obtains an average AUCqlt = 0.821, which is around 10 percentage points higher
than the runner-ups. Also, EAP outperforms Lava and Rarity on 18 and 17 datasets and obtains the best
average ranking (1.91).

Interestingly, only EAP, Lava, Rarity, and Py|x + NPx achieve performance better than random, while
other methods get average AUCqlt around 0.5, which highlights their inability to distinguish good and poor
auxiliary anomalies consistently. As a second remark, EAP performs lower than random for the dataset Tile.
This happens because the defective images are extremely different than the normal images, thus resulting in
real anomalies falling in zero-density regions, which our method would categorize as unrealistic.

Q2. Including high-quality anomalies in training. We measure how the performance of a model
varies when introducing the top 1

3 of auxiliary anomalies into the training following the methods’ rankings.
Figure 2 (top) shows the learning curves (LCg) for four representative image datasets. Overall, including
high-ranked anomalies first has the claimed impact on the model’s performance: the learning curve grows
sooner for EAP compared to all baselines. Consequently, EAP obtains an AULCg that is, on average, higher
than all the baselines by between 2 (vs. Rarity and Py|x + NPx) and 5 (vs. Lava) percentage points. After
including one-third of the auxiliary anomalies for training, EAP shows an average improvement on the test
performance (ACCg) of 4 to 10 points over all baselines, standing out as the only method significantly better
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Figure 1: The plot illustrates the average AUCqlt obtained by each method on a per-dataset basis (left for
image data, right for tabular data). EAP achieves the highest performance for most datasets, beating the
runner-ups Rarity and Lava on, respectively, 30 and 31 datasets out of 40.
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Figure 2: Learning curve (LC) obtained by following the method’s ordering (top) and inverse ordering
(bottom) for four representative image datasets. Top: EAP’ LCg grows sooner (i.e., better) than the other
methods’, which confirms that including high-quality anomalies in the training set has a larger impact on the
test performance. Bottom: EAP’ LCp rises later (i.e., better) than most baselines’, showing that low-quality
anomalies have a comparatively modest impact on the test performance.

than RandomEv. Moreover, Table 1 shows that EAP achieves the best average ranking for both AULCg
(i.e., 3.94) and ACCg (i.e., 3.12).

On tabular data, Table 1 shows that EAP achieves an average AULCg slightly lower than Rarity (0.779 vs
0.782) and a similar ACCg (both 0.839). This occurs because, for most tabular datasets, Rarity assigns
high-quality scores to the unrealistic anomalies which are obviously different than normal data. When
including them for training, it yields an improvement of the Random Forest’s test accuracy surprisingly.
From a ranking perspective, EAP obtains the best average with rAULCg = 4.27 (vs. Rarity’s 4.42), and
rACCg = 4.28 (vs. Rarity’s 4.91).

Q3. Including low-quality anomalies in training. Figure 2 (bottom) shows the LCp obtained by
following an inverse ordering of the methods, i.e., lower ranked anomalies are included first. Using this inverse
ordering should result in much slower growth of the LCps: in some cases, the test accuracy using EAP
remains stable (Metalnut, Screw), while in others it shows strong fluctuations going up and down quickly
(Pill). Interestingly, every baseline’s performance goes up for Tile: this is due to their poor ability to assign
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Table 2: Test AUCs (%) of prompt tuning with auxiliary anomalies selected by each baseline on MvTec.
EAP performs the best on 12 of 15 classes and achieves the highest average AUC.

Evaluator bottle cable capsule carpet grid hazel leather metal pill screw tile tooth transis wood zipper avg

KNNShap 82.4 56.7 51.4 82.1 58.8 72.7 92.1 51.7 49.1 60.2 69.2 77.0 77.1 72.7 44.7 66.5
AME 82.4 56.7 51.4 82.1 71.2 72.7 98.4 51.7 49.1 60.2 69.2 75.4 68.3 72.7 44.7 67.1
LOO 82.4 60.7 64.4 85.8 58.8 68.2 98.8 51.7 49.1 60.4 69.2 77.0 62.1 72.7 44.7 67.1
DataOob 82.4 60.7 63.7 85.8 71.2 72.7 98.8 51.7 49.1 60.4 69.2 75.4 62.1 72.7 44.7 68.0
Py|x 82.4 60.6 51.2 85.8 71.2 68.2 98.4 56.2 65.6 60.4 69.2 75.4 62.1 72.7 44.7 68.3
INF 95.3 56.7 45.7 96.1 83.6 68.2 98.8 51.7 65.7 60.4 69.2 75.4 62.1 93.0 75.9 73.2
DataBanz 95.3 41.1 64.4 96.1 83.6 72.7 98.8 51.7 65.7 60.4 84.9 75.4 62.1 93.0 75.9 74.7
Randomev 95.3 69.2 63.7 96.1 83.1 68.2 98.8 56.2 65.7 60.4 87.8 75.4 62.1 96.4 75.9 76.9
Rarity 94.3 69.2 64.4 96.1 83.6 83.8 98.8 45.1 63.5 60.4 91.8 75.4 77.1 96.4 75.9 78.4
Px 94.3 70.2 64.6 96.1 83.6 76.7 86.9 90.8 63.5 60.4 84.9 75.4 77.1 93.0 75.9 79.6
Lava 94.3 70.3 64.4 96.1 83.6 83.8 98.4 90.9 63.5 60.0 87.8 75.4 77.1 93.0 75.9 80.9
Py|x + NPx 94.3 70.2 64.6 96.1 92.6 83.8 94.4 90.8 63.5 60.4 87.5 77.0 77.1 93.0 75.9 81.4

EAP 95.3 70.3 64.4 96.1 92.6 83.8 98.8 90.9 63.5 64.8 91.8 77.0 77.1 93.0 75.9 82.4

Table 3: Comparison between EAP with default α0 and its six variants EAPw that set α0 = w, β0 = 1 − w.
Rankings show low sensitivity to such a choice, as long as α0 < 0.4.

Evaluator AUCqlt rAUCqlt rACCg Avg. Rank

EAP 0.811 2.92 2.73 2.83
EAP0.2 0.812 2.78 3.25 3.02
EAP0.3 0.810 3.39 3.40 3.40
EAP0.1 0.810 3.01 3.46 3.24
EAP0.05 0.808 3.63 3.78 3.71
EAP0.01 0.805 4.10 3.54 3.82
EAP0.4 0.800 4.71 4.79 4.75

scores for this dataset, as described in Q1. Surprisingly, DataOob obtains the lowest AULCp, while EAP
has the second best AULCp with just two percentage points as gap. However, when ranking the experiments,
EAP achieves the best average ranking (3.66 of rAULCp), thus being the preferred method for most of the
experiments.

On tabular data, the results confirm the previous analysis: EAP has the lowest AULCp on 137 experiments
out of 220, while Rarity and Lava achieve so only on, respectively, 29 and 31 experiments. This motivates
that EAP obtains an average AULCp that is better than all baselines by between 3 and 10 percentage points,
as shown in Table 1.

Q4. Prompt tuning for zero-shot anomaly detection. CLIP-based anomaly detection methods save
the effort of collecting training examples and enable a zero-shot anomaly detection (Jeong et al., 2023).
However, their detection performance depends on the choice of prompts, which is usually tuned by using
labeled real-world anomalies. We study the impact of selected auxiliary anomalies on prompt tuning for the
MvTec datasets. Specifically, we search a prompt for each object class achieving the best performance on
the selected auxiliary anomalies from a pool of 27 candidate prompts (see details in Appendix A.3), and
apply the best-performing prompt to CLIP at test time.

Table 2 reports the test AUCs of CLIP with the best-performing prompts selected by each data valuation
method.7 We can see that EAP performs the best on 12 of 15 classes and achieves the highest AUC averaged
over all classes. Thanks to accounting for both the class conditional probability and the data density, EAP
clearly outperforms Rarity and Px, which only consider the data density, Py|x, which only considers the
class conditional probability, and their naive linear combination Py|x + NPx. The results confirm that EAP
selects high-quality auxiliary anomalies for the model selection purpose. We list the prompts selected by
EAP in Appendix A.3.

7Most values are identical because the baselines often select the same prompt from our discrete set of options.
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Q5. EAP’ sensitivity to α0
α0+β0

. EAP requires two hyperparameters: α0, β0 of the prior Beta distribution.
To remove one degree of freedom, we set α0 + β0 = 1 such that the dataset size n is much stronger (n
times) than our initial belief. Then, we investigate how varying the parameter α0 ∈ [0, 0.5) impacts
EAP’s overall performance (β0 = 1 − α0). We compare seven versions of our method by setting α0 ∈
{0.01, 0.05, 0.1, 0.2, 0.3, 0.4}, in addition to the original EAP that leverages the contamination level α0 = m/n.
We call EAPw the variant that uses α0 = w. Table 3 shows the rankings of these 7 variants for AUCqlt and
ACCg and their average.8 Overall, both parameters have a low impact on our method: while a higher value
for α0 improves the AUCqlt, in some experiments this improvement does not yield better performance at test
time in terms of ACCg. Moreover, setting α0 too high or too low has inherent risks: EAP0.4 and EAP0.01
are the worst variants by far, with significant drops in performance compared to the other variants.

6 Conclusion

This paper addressed the problem of evaluating the quality of an auxiliary set of synthetic anomalies. With
this quality score, one can enrich an anomaly detection dataset to learn a more accurate anomaly detector.
We proposed the expected anomaly posterior (EAP), the first quality score function for auxiliary anomalies
derived from an approximation for the posterior over the probability that a given input is an anomaly. We
showed that our approach theoretically assigns higher scores to the realistic anomalies, compared to unrealistic
and indistinguishable anomalies. Empirically, we investigated how EAP compares to adapted data quality
estimators at (1) assigning quality scores, (2) using such scores to enrich the data for training, and (3) model
selection. On 40 datasets, we show that EAP outperforms all 12 baselines in the majority of the cases.
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A Appendix

A.1 Data quality estimators.

Any data quality estimator can be seen as a mapping that assigns a scalar score to any example (x, y). Such
a score quantifies the impact of (x, y) on the model’s performance when trained including the example in the
training set. For this task, they introduce a utility function U(D̄) := Perf(f, D̄) that takes as input a subset
D̄ of D and measures the performance of f when trained on it. Next, we briefly describe the existing data
quality estimators employed in the experiments and refer to (Jiang et al., 2023) for additional details.

• Leave One Out (Loo) is defined as ϕloo(x, y) = U(D) − U(D\{(x, y)}), where U is commonly chosen
as the accuracy;

• DataShap generalizes Loo’s approach to the concept of marginal contributions, which measures the
average change in utility when (x, y) is removed from any training set. Given a training set cardinality
j ≤ N , the marginal contribution is defined as

Mj(x, y) :=
(

N − 1
j − 1

)−1 ∑
D̄j⊆D,|D̄j |=j−1

U(D̄j ∪ {(x, y)}) − U(D̄j)

where D̄j is a random subset of D of cardinality j −1 that does not contain (x, y). Then, DataShap (Ghor-
bani & Zou, 2019) computes the score as ϕDataShap(x, y) = 1

N

∑N
j=1 Mj(x, y);

• BetaShap (Kwon & Zou, 2021) generalizes DataShap by considering a weighted average of marginal
contributions ϕBetaShap(x, y) = 1

N

∑N
j=1 ωjMj(x, y), for some weights ω1, . . . , ωN .

• DataBanzhaf (Wang & Jia, 2023) exploits the same formulation as BetaShap but sets the weights to
ωj = 2−N

(
N−1
j−1

)
.

• AME (Lin et al., 2022) shows that the average marginal contribution taken over random subsets of D can
be efficiently estimated by predicting the model’s prediction. They employ a LASSO regression model
that minimizes

arg min
γ∈RN

E
[
U(D̄) − g(1(D̄))T γ

]2 + λ

N∑
i=1

|γi|,

where 1(D̄) is the multi-dimensional characteristic function, D̄ is a random subset draw the data distribution,
λ is the regularization parameter, and g : {0, 1} → RN is a predefined transformation. The values γi

represent the quality of (xi, yi).
• kNNShap (Jia et al., 2019) differs from DataShap on the choice of the utility function:

U(D̄) = 1
Nvalk

Nval∑
i=1

∑
(xj ,yj)∈N (xi,D̄)

1(yi = yj),

where k is the number of neighbors, Nval is the size of the validation set, and N (xi, D̄) indicates the set
of nearest neighbors for the validation example xi over the subset D̄. Roughly speaking, it measures the
proportion of examples in D̄ that are neighbors of xi and share the same label yi.

• Influence Functions (Inf) (Feldman & Zhang, 2020) approximate the difference of utility functions in
Loo by splitting D into two subsets of equal cardinalities and randomly drawing subsets from each of
them:

ϕInf(x, y) = ED̄x
[U(D̄x)] − ED̸̄x

[D̄ ̸x],

where all the subsets from D̄x contain (x, y), while none of the subsets from D̄ ̸x contain (x, y).
• Lava (Just et al., 2023) measures the quality of (x, y) by quantifying how fast the optimal transport cost

between the training and validation sets changes when increasing more weight to (x, y). That is,

ϕLava(x, y) = h∗ − 1
N − 1

∑
j

h∗
j ,

where h∗
i is part of the optimal solution of the transport problem.
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• DataOob (Kwon & Zou, 2023) relies on the concept of out-of-bag estimate to capture the data quality.
Given B weak learners fb, each trained on a bootstrap sample of D, the quality score is

ϕDataOob(x, y) =
∑B

b=1 1(wb = 0)T (y, fb(x))∑B
b=1 1(wb = 0)

,

where wb is the number of times (x, y) is selected in the b−th bootstrap, and T is an evaluation metric
(e.g., correctness 1(y = fb(x))).

A.2 Rarity score

Formally, given a synthetic image with extracted feature x, the rarity score is a function rk : Rd → R such
that

rk(x) =


0 if x /∈

⋃
xi∈D

Bk(xi)

min
xi∈D : x∈Bk(xi)

NNk(xi) otherwise
(6)

where NNk(xi) is the distance between xi and its k-th nearest neighbor in D, and Bk(xi) = {x|d(xi, x) ≤
NNk(xi)} is the k-NN sphere with xi as center and NNk(xi) as radius. The rarity score strongly depends on
the choice of the hyperparameter k: high values of k could map far unrealistic examples to a positive high
score, namely they would be considered authentic, while low values of k could map real examples slightly
different than the training data to a null score, namely they would be considered artifacts.

Because the rarity score strictly depends on the hyperparameter k ∈ {1, . . . , n − 1}, we need to estimate a
proper value k̂. Let’s assume the existence of an optimal k, and use the small set of m anomalies to estimate
it. Ideally, k should be: (1) as low as possible to assign null scores to unrealistic anomalies, and (2) high
enough to assign positive scores to the real training anomalies.

Following this insight, we assume a Bayesian perspective and set a normalized variable’s K prior to be
uniform

K := k − 1
n − 1 ∼ Beta(1, 1) = Unif(0, 1).

Roughly speaking, we min-max normalize K to [0, 1] to exploit that a Beta prior with a Bernoulli likelihood
results in a Beta posterior distribution. Because we want the minimum k that assigns positive scores to the
training anomalies {xm̄}m̄≤m, we compute for each xm̄ the minimum km̄ such that rkm̄

(xm̄) > 0. The set of
normalized { km̄−1

n−1 }m̄≤m is the empirical evidence for the Bayesian update, which is

K
∣∣∣{km̄−1

n−1

}
∼Beta

1+
∑

m̄≤m

km̄−1
n−1 , 1+m−

∑
m̄≤m

km̄−1
n−1

.

Finally, we estimate k̂ as the 95th percentile of the posterior distribution of K

k̂ = arg min
t∈[0,1]

P
(

K
∣∣∣ {

km̄ − 1
n − 1

}
≤ t

)
≥ 0.95 (7)

which guarantees that at least 95% of real anomalies get a positive rarity score.
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A.3 Prompt tuning for CLIP

%Candidate prompt templates for MvTec:
[‘{}’,‘damaged {}’],
[‘flawless {}’,‘{} with flaw’],
[‘perfect {}’,‘{} with defect’],
[‘unblemished {}’,‘{} with damage’],
[‘{} without flaw’,‘{} with flaw’],
[‘{} without defect’,‘{} with defect’],
[‘a photo of a normal {}’,‘a photo of an anomalous {}’],
[‘a cropped photo of a normal {}’, ‘a cropped photo of an anomalous {}’],
[‘a dark photo of a normal {}’, ‘a dark photo of an anomalous {}’],
[‘a photo of a normal {} for inspection’, ‘a photo of an anomalous {} for inspection’],
[‘a photo of a normal {} for viewing’, ‘a photo of an anomalous {} for viewing’],
[‘a bright photo of a normal {}’, ‘a bright photo of an anomalous {}’],
[‘a close-up photo of a normal {}’, ‘a close-up photo of an anomalous {}’],
[‘a blurry photo of a normal {}’, ‘a blurry photo of an anomalous {}’],
[‘a photo of a small normal {}’, ‘a photo of a small anomalous {}’],
[‘a photo of a large normal {}’, ‘a photo of a large anomalous {}’],
[‘a photo of a normal {} for visual inspection’, ‘a photo of an anomalous {} for visual inspection’],
[‘a photo of a normal {} for anomaly detection’,‘a photo of an anomalous {} for anomaly detection’],
[‘a photo of a {}’,‘a photo of something’],
[‘a cropped photo of a {}’, ‘a cropped photo of something’],
[‘a dark photo of a {}’, ‘a dark photo of something’],
[‘a photo of a {} for inspection’, ‘a photo of something for inspection’],
[‘a bright photo of a {}’, ‘a bright photo of something’],
[‘a close-up photo of a {}’, ‘a close-up photo of something’],
[‘a blurry photo of a {}’, ‘a blurry photo of something’],
[‘a photo of a {} for visual inspection’, ‘a photo of something for visual inspection’],
[‘a photo of a {} for anomaly detection’,‘a photo of something for anomaly detection’]

%EAP selected prompts for MvTec:
[‘bottle’, ‘damaged bottle’],
[‘cable without defect’, ‘cable with defect’],
[‘unblemished capsule’, ‘capsule with damage’],
[‘carpet’, ‘damaged carpet’],
[‘a bright photo of a normal grid’, ‘a bright photo of an anomalous grid’],
[‘hazelnut without defect’, ‘hazelnut with defect’],
[‘a photo of a normal leather for inspection’, ‘a photo of an anomalous leather for inspection’],
[‘metalnut’, ‘damaged metalnut’],
[‘pill’, ‘damaged pill’],
[‘a close-up photo of a screw’, ‘a close-up photo of something’],
[‘tile’, ‘damaged tile’],
[‘toothbrush without flaw’, ‘toothbrush with flaw’],
[‘a blurry photo of a normal transistor’, ‘a blurry photo of an anomalous transistor’],
[‘wood’, ‘damaged wood’],
[‘zipper without defect’, ‘zipper with defect’]

Table 4: Summary of the results obtained by the 13 methods over all 40 datasets. We report the mean ± std,
computed over all experiments. Overall, EAP achieves the best performance and ranking position for all
evaluation metrics as well as the best average ranking (last column).

Evaluator AUCqlt AULCg ACCg AULCp(↓) rAUCqlt rAULCg rACCg rAULCp Avg. Rank

EAP 0.81 ± 0.13 0.76 ± 0.15 0.84 ± 0.14 0.70 ± 0.14 1.95 ± 1.65 4.12 ± 2.88 3.76 ± 2.75 2.82 ± 2.17 3.16 ± 1.67
Rarity 0.70 ± 0.14 0.74 ± 0.16 0.82 ± 0.16 0.75 ± 0.15 3.87 ± 2.73 4.71 ± 3.36 5.11 ± 3.51 6.29 ± 3.49 4.99 ± 2.68
Lava 0.73 ± 0.13 0.71 ± 0.16 0.78 ± 0.17 0.73 ± 0.14 3.21 ± 2.03 7.79 ± 3.63 7.29 ± 3.62 4.36 ± 2.54 5.66 ± 2.19
Py|x + NPx 0.67 ± 0.18 0.73 ± 0.16 0.81 ± 0.16 0.75 ± 0.14 4.82 ± 3.22 5.87 ± 3.40 5.90 ± 3.37 6.55 ± 3.22 5.79 ± 2.53
Loo 0.52 ± 0.17 0.72 ± 0.16 0.79 ± 0.16 0.75 ± 0.14 7.59 ± 3.48 6.42 ± 3.57 6.86 ± 3.31 7.04 ± 3.42 6.98 ± 2.90
kNNShap 0.53 ± 0.08 0.74 ± 0.16 0.81 ± 0.15 0.78 ± 0.15 8.05 ± 2.02 5.74 ± 2.84 5.59 ± 2.60 9.28 ± 2.36 7.16 ± 1.40
RandomEv 0.50 ± 0.06 0.74 ± 0.16 0.81 ± 0.15 0.79 ± 0.15 8.55 ± 2.43 5.50 ± 2.63 5.60 ± 2.45 9.80 ± 2.21 7.36 ± 1.66
AME 0.50 ± 0.05 0.74 ± 0.16 0.81 ± 0.15 0.79 ± 0.15 8.54 ± 2.06 5.66 ± 2.59 5.58 ± 2.50 9.84 ± 2.17 7.41 ± 1.47
Py|x 0.52 ± 0.14 0.69 ± 0.16 0.73 ± 0.16 0.70 ± 0.13 8.69 ± 3.10 9.66 ± 3.07 10.64 ± 2.46 3.73 ± 2.67 8.18 ± 2.13
DataOob 0.51 ± 0.15 0.71 ± 0.15 0.75 ± 0.16 0.73 ± 0.14 8.56 ± 3.38 8.55 ± 3.15 9.71 ± 2.56 6.04 ± 3.71 8.22 ± 2.44
Inf 0.46 ± 0.14 0.71 ± 0.16 0.79 ± 0.17 0.78 ± 0.14 9.65 ± 2.61 7.43 ± 3.17 7.08 ± 2.95 9.56 ± 2.79 8.43 ± 2.26
Px 0.53 ± 0.11 0.63 ± 0.15 0.69 ± 0.16 0.74 ± 0.14 7.59 ± 3.59 11.28 ± 2.68 10.38 ± 3.32 6.06 ± 3.27 8.83 ± 2.51
DataBanzhaf 0.45 ± 0.14 0.71 ± 0.16 0.78 ± 0.17 0.79 ± 0.14 9.92 ± 2.89 8.26 ± 3.24 7.49 ± 3.24 9.63 ± 2.72 8.83 ± 2.39
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